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Abstract

Multimodal large language models (MLLMs), initiated with a trained LLM, first
align images with text and then fine-tune on multimodal mixed inputs. However,
during the continued training, the MLLM catastrophically forgets the text-only
instructions that the initial LLM masters. In this paper, we present WINGS, a novel
MLLM that excels in both text-only and multimodal instructions. By examining
attention across layers of MLLM, we find that text-only forgetting is related to
the attention shifts from pre-image to post-image text. From that, we construct an
additional Low-Rank Residual Attention (LoRRA) block that acts as the “modality
learner” to expand the learnable space and compensate for the attention shift. The
complementary learners, like “wings” on either side, are connected in parallel
to each layer’s attention block. The LoRRA mirrors the structure of attention
but utilizes low-rank connections to ensure efficiency. Initially, image and text
inputs are aligned with visual learners operating alongside the main attention,
balancing focus on visual elements. Later, textual learners are integrated with
token-wise routing, blending the outputs of both modality learners collaboratively.
Our experimental results demonstrate that WINGS outperforms equally-scaled
MLLMs in both text-only and visual question-answering tasks. WINGS with
compensation of learners addresses text-only forgetting during visual modality
expansion in general MLLMs.

1 Introduction

Large Language Models (LLMs) [34, 53, 92, 112] are making significant strides toward Artificial
General Intelligence (AGI) systems. Multimodal Large Language Models (MLLMs), as a visual
expansion of LLMs, have demonstrated astonishing performance in vision-related captioning [14,
16, 67], understanding [7, 33, 119], and reasoning [114, 124, 130]. Common MLLMs build upon
powerful pre-trained LLMs that take mixed textual and visual tokens as inputs. The visual ones are
acquired using an image encoder and a projector. We describe instructions processed by the LLM
without images as text-only instructions. In comparison, multimodal instructions incorporate visual
feature tokens into text-only sequences. Modality fusing at the token level provides a flexible and
effective pipeline for training MLLMs to comprehend visual information [76, 79, 80]. However,
training on multimodal instructions seems to impair the pre-existing profound knowledge, especially
making MLLM forget how to respond to text-only instructions like the initial LLM [85, 89]. MLLM
experiences a drastic performance decline on text-only evaluation. We term it as the text-only
forgetting of MLLM.
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User: Let's pick out a better watermelon.
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LLaVA-Next DeepSeek-VL WINGS (Ours)

WINGS (Ours): Both watermelons appear to be good 
quality, but  the left one has a smoother rind and 
more splited color, indicating potential sweetness and 
freshness due to the intact green stem. And …

User:You make a good point, but I haven't 
tasted it yet. You know what that
thing is? It is Beautiful.

Text-only QA v.s. Multimodal QA
User: What are some refreshing fruits 
to beat the summer heat?

User: Oh wow! I just found two 
watermelons in the garden:
They're gonna
be super refreshing.

WINGS (Ours): (…)  watermelon , strawberries, 
blueberries, raspberries, peaches, and oranges.

1 2
WINGS (Ours): The object in the
image is a  watermelon , which has 
been carved and decorated to resemble the heart. The 
heart shape is formed by the watermelon‘s natural  rind , 
and the roses are made from the watermelon’s  flesh .
The initials "K & M" are inscribed on…

WINGS (Ours): The
image shows  two watermelons, one labeled as 
“1” and the other as “2.” They are placed next to 
each other, and both are ripe. The watermelons 
are green and have a striped pattern…

Text-only Instruction

Interleaved Image-Text Context Multimodal Instruction

Figure 1: Examples of text-only and multimodal conversations. From left to right: Interacting
with MLLM through text-only and interleaved instructions; Performance radar charts for WINGS,
LLaVA-Next [80], and DeepSeek-VL [85] in text-only and multimodal QA tasks, with dark green
indicating WINGS with the comprehensive performance; Interacting with multimodal instructions.

In practical applications, MLLMs also require engaging in text-only or interleaved conversations.
As demonstrated in Figure 1, users often start with text-only inquiries and then, if not fully satisfied
with the response, proceed to supplement questions with visual content. For multimodal instructions,
MLLMs still rely on text to capture critical elements, as images may offer redundant information [15,
17, 84]. The first existing approaches replay extensive text-only or interleaved [60, 145] training data
to mitigate catastrophic forgetting in MLLMs [71, 85, 89]. However, increasing training data incurs
additional computational overhead and data collection challenges. Secondly, some applications [40]
switch between LLM and MLLM based on whether images are included. This intuitive solution
inevitably demands more deployment memory [1, 2] and is less cache-friendly in long vision-and-
language interleaved conversations [42, 75, 100]. Therefore, it is crucial to train MLLM while
preserving the text-only performance efficiently.

Given that the visual input tokens can be inserted at any position within the text sequence, we begin
by examining the text before and after the inserted position to mark the impact of the visual part.
Considering that MLLM’s attention weights reflect the focus on tokens and influence the decision-
making process, we first analyze the attention weights across each layer of the MLLM. Specifically,
for each layer, we compute the attention weight proportion on all text tokens before and after the
inserted image, termed as Layer-level Attention Weights (LAWS) of the before and after image text.
From this, we examine the dynamic of attention across all layers as MLLM-Laws. Through training
and sampling over 100 diverse MLLMs, we find that a well-trained model with superior text-only
performance shows a positive correlation of MLLM-LAWS between the text segments before and
after the image. This suggests that in a well-structured feature space, the main branch attention on
text exhibits similar trends across layers, which is statistically linked to the semantic similarity of the
text around the visual part. A closer similarity indicates minor disruption to MLLM’s core attention,
while a negative correlation shows that excessive focus on visual tokens shifts attention away from
the text, significantly impacting MLLM-Laws.

Based on this observation, we propose WINGS, which introduces an extra module that acts as the
boosted learner to compensate for the attention shift. We integrate complementary visual and textual
learners in parallel at each layer’s attention block, with visual learners enhancing focus on visual
tokens and textual learners on text, respectively. In the first stage, visual features align with textual
feature tokens, with all visual learners operating parallel to the main branch attention. The visual
learners allocate some attention to visual tokens, mitigating the attention shift in the main branch.
Subsequently, textual learners are integrated in parallel. We implement token-wise soft-routing based
on shifted attention weights to harmonize the learning on visual and textual tokens. We design the
Low-Rank Residual Attention (LoRRA) as the architecture for learners to ensure high efficiency.
Figure 3 shows that the visual and textual learners on either side, like light feathers woven into
“wings”. Experiments show that our WINGS comprehensively achieves superior performance in
text-only under the same training condition and exceeds other equal-level MLLMs on multimodal
benchmarks. In addition, we construct the Interleaved Image-Text (IIT) benchmark with multi-turn
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evaluations towards a general mixed-modality scenario. The samples are from text-only questions to
strongly image-related conversations. WINGS achieve leading performance across various vision-
relevance partitions. Overall, our contributions are as follows: (1) We claim and verify the text-only
forgetting phenomenon of MLLM is related to the attention shift of cross-layer MLLM-LAWS before
and after the image. (2) WINGS construct the visual and textual learners and introduce a router
based on shifted attention weights for collaborative learning to compensate for attention shifts. (3)
Experiments on text-only, visual-question-answering, and newly constructed Interleaved Image-Text
(IIT) benchmarks demonstrate the comprehensive and versatile performance of WINGS.

2 A Closer Look at Attention Shift in Multimodal LLMs

In this section, we introduce the development from initialized LLM to MLLM. Next, we devise the
MLLM-LAWS metric for representing attention shift and discuss the insights in building WINGS.

2.1 Granting Sight to Large Language Models

Large Language Models (LLMs). Even though existing Transformer-based [117] models [20,
82, 99, 131] like BERT [57] and OPT [139] have demonstrated profound language understanding
capabilities, there has been a recent surge in powerful Generative Pre-trained Transformers (GPT) [10]
under the auto-regressive language modeling paradigm. Both public [53, 54, 112, 113] and private [3,
92, 94, 110] solutions show remarkable progress in language comprehension and generation [90,
123]. These LLMs generally exceed a billion parameters, including pre-training [22, 32, 49, 55],
supervised fine-tuning with instructions [26, 103, 108, 122], and reinforcement learning from human
feedback [23, 95, 106, 146] on massive training data.

Multimodal LLMs (MLLMs). Integrating visual inputs into foundational LLMs to create
MLLMs is becoming increasingly popular [18, 19, 62, 71, 133]. Unlike vision-centric mul-
timodal frameworks [68, 134] such as CLIP series [98], MLLMs aim to align new modality
features as the input of LLM with an additional encoder and perform multimodal question-
answering [74, 79, 80, 125, 138, 144]. As illustrated in Figure 2 (a), it enables the com-
bined training of mixed multimodal tokens, facilitating rapid deployment across various appli-
cations [24, 25, 44, 81, 119]. One example of this pipeline is the LLaVA [79] series, which integrates
a CLIP vision encoder with a linear projection to LLM Vicuna [21] and innovatively introduces
instruction-following training data. Following this, some methods consider the richness of the
vision-related training context [14, 45, 61], the scaled visual backbone [51, 72, 78], or the enhanced
connectors [11, 121] to boost the visual effectiveness of MLLMs. Additionally, some works introduce
monolithic multimodal solutions [30, 87, 109, 120]. Recently, some work has focused on the general
capabilities of MLLM, specifically their performance on new modalities without suffering catas-
trophic forgetting of the text-only question-answering skills initially mastered by LLM [38, 73, 89].
For example, DeepSeek-VL [85] suggests that supplementing additional text-only training data can
mitigate this forgetting. Others [77, 89] try to incorporate interleaved visual-textual data into training
to retain language knowledge. However, these methods are limited by training resources and data
collection costs. We aim to preserve or even boost performance with text-related training data as
little as possible. Some studies [65, 76, 105, 111, 132, 140] also consider expanding the scalability
of LLM, such as using Mixture-of-Expert (MoE) with numerous parallel FFNs in the Transformer
block alongside a sparse gating network for efficient selection. There are some methods to configure
effective information and feedback examples to enhance in-context learning abilities [128, 129].
These methods, however, require a massive increase in training parameters or inference costs. In
WINGS, the newly designed parallel learners of Low-Rank Residual Attention (LoRRA) are similar
to MoE on attention block, but with at least three orders of magnitude less in resource consumption.
Compared to some LoRA-related methods [46], WINGS focuses on parallel processing within the
attention block rather than in certain in-block linear mappings [88, 118], particularly addressing the
issue of capability forgetting in existing architectures.

2.2 Capturing the Attention Shift with MLLM-LAWS

The significant decline in text-only performance is closely linked to the observed related shift during
the training process. Research on cross-modal learning [35, 66, 73] shows that transferring to new
modalities affects feature distribution, output values, and activation levels. Considering attention
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Figure 2: Illustration of mixed visual-and-textual inputs and the Layer-level Attention Weights
(LAWS) with its properties. (a) The visual feature tokens from the visual encoder and projector
are inserted into the textual feature sequence. (b) The attention weight proportion on textual tokens
before-image, image-itself, and after-image across layers. The red curve is from the superior text-only
MLLM, while the blue curve is from the inferior one. (c) Experiments on over 100 MLLMs show a
positive correlation from the ρ for MLLM-LAWS before and after the visual tokens (x-axis) to the
text-only performance of the MLLM (y-axis).

weights highlight where MLLM’s focus depends on visual or textual tokens for decision-making [97],
we investigate how attention shifts among different parts of the sequences, mainly where divided by
the visual feature tokens. Specifically, we study over 100 diverse MLLMs to uncover how attention is
allocated to each part for a text-only better MLLM. We take a closer look at the cross-layer dynamic
curve of attention proportion on all text tokens before and after the inserted image.

For a instruction x and its hidden states in MLLM as h = [h1,h2, · · · ,hs] consisting of s mixed
visual and textual tokens. Let alij represent the attention weight between the ith and jth tokens in
the lth of the L-layers MLLM. We have, for ∀i,

∑s
j=0 a

l
ij

(
hl−1

)
= 1. As shown in Figure 2 (a),

since the sequence of flattened visual tokens is continuously interleaved with the textual sequence,
we denote the index set of the visual tokens as Vitself = {vstart, vstart + 1, · · · , vend}. We refer to the
textual sequence before the visual tokens as Vbefore, and similarly, after the visual part as Vafter. For an
MLLM with L layers, we define the Layer-level Attention Weights (MLLM-LAWS) as:

LAWS V∗ =
[
a1V∗

, a2V∗
· · · , aLV∗

]
, alV∗

=

s∑
i=0

∑
j∈V∗

alij
(
hl−1

)
, (1)

where token index set V∗ can be Vitself, Vbefore, or Vafter as mentioned above, and for simplicity, we
omit hl−1 in alV∗

(·) of LAWS V∗ . In practice, LAWS V∗ characterizes the MLLM’s attention on the
current sequence Vitself, Vbefore, or Vafter regarding the dynamic curve over all MLLM-layers. As
shown in Figure 2 (b), the attention to the textual part initially increases and then decreases as the
layers progress, while the trend for the visual one is often the opposite. We find that when the
MLLM forgets the text-only instructions, the LAWS of the textual sequence after the visual ones
show a deviation from the initial trend of rising and then declining. This implies a shift of layer-level
attention in the text following the image Vafter compared to that preceding the image Vbefore. The
dynamics labeled as 3⃝ in Figure 2 (b) show the red curve for better text-only performance towards
the worse blue one. To quantify this, we compute the Pearson Correlation Coefficient [91] between
LAWS before and after the visual sequence. Formally,

Attention Shift = Ex [−ρ (LAWS Vbefore , LAWS Vafter)] + 1 .

Studying the attention shift of over 100 diverse MLLMs, we find a positive correlation between the
shift and the text-only performance degradation. In Figure 2 (c), each point represents a trained
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MLLM. We find that one reason for the poor text-only performance of MLLMs is the misalignment
of textual LAWS before and after the visual sequence, which largely stems from the main branch’s
attention block lacking sufficient capacity for continued fine-tuning [127, 143]. Next, We focus on
how to mitigate the shifted attention weights. Starting with LAWS we give the MLLM “wings”.

3 WINGS: Flying to Generality with Low-Rank Residual Attention Learners

In this section, we explore a sufficiently reliable and convenient mechanism to alleviate attention
shifts. Specifically, we introduce an additional attention extension structure to assist in learning the
main branch’s attention. The WINGS architecture operates intuitively by incorporating visual and
textual learners designed to mitigate shifts in attention. A dynamic attention-weighted router, guided
by negative feedback from biased attention weights, adjusts the outputs of these visual and textual
learners. WINGS aims to excel in text-only and visual question-answering tasks with high generality.
We start with the typical training pipeline for MLLM like LLaVA [79] (subsection 3.1). Following this,
we explore the motivation behind employing parallel modality learners and explain its implementation
(subsection 3.2). Finally, we describe the training process for WINGS (subsection 3.3).

3.1 Revisit the Training Pipeline of the MLLM

Following the mainstream architecture of visual-encoder-based MLLM, we take mixed visual and
textual features as inputs. For a one-turn conversation, the sequence of the visual feature tokens may
appear at any position in the input x. We represent the feature tokens as:

x = [xV,xT] =

 h1, · · · ,︸ ︷︷ ︸
textual features

hvstart ,hvstart+1, · · · ,hvend︸ ︷︷ ︸
visual features

, · · · ,hs︸ ︷︷ ︸
textual features

 , (2)

where we omit the superscript of layer-index l for the 0th layer. The vstart and vend represent the
starting and ending indices of the visual feature tokens, usually obtained through the vision encoder
ψ and projector Wproj, as xV = Wproj ·ψ (ximage). Correspondingly, xT = the remaining 0 to vstart
and vend to length s denote features of the textual system prompt or user instructions. We consider
the posterior of the ground-truth answer as:

Pr (xa | x) =
s∏

i=1

1[1,vstart)∪(vend,s] ·φ (hi | [h1, · · · ,hi−1]) . (3)

Here, φ represents the main branch LLM, which consists of Transformer decoder layers [116].
Considering the interleaved image tokens, we omit the loss calculation for the “next visual token.”

3.2 Visual and Textual Learners Weave WINGS

Motivation: Learning to mitigate the attention shift with modality-specific auxiliary structures.
As mentioned in subsection 2.2, MLLM-Laws demonstrates the attention shift in the sequence
following the visual features. The shift results from excessive dependency on visual features. This
issue may stem from the insufficient alignment within mixed inputs [7, 15, 127], or the main branch
struggles to accommodate capacity expansion during continual learning, where new modalities
can obscure existing knowledge. It suggests adding a small, adjustable factor to the shifted mixed
modality features and regulating unnecessary fluctuations in MLLM-LAWS. Consequently, we aim
to adopt an efficient, learnable module as the visual “wing”. Compared to the image-text mixed
feature inputs of the main branch, it should focus specifically on extracting visual information to
share the burden of overly shifted attention. The interaction between the current hidden state and
visual features is conducted within this module. Similarly, to balance the auxiliary function of the
visual learner, we also construct a symmetrical textual learner. Moreover, it is crucial to appropriately
distribute the two learners across both modalities to ensure they function collaboratively.

Structure: parallel learner of attention & token-wise router of attention outputs. To capture
key information in shifted modalities while ensuring efficiency, we design a multihead Low-Rank
Residual Attention (LoRRA) learner at every layer. It takes input from the hidden state and interacts
with the initial visual or text-only feature. The learner facilitates cross-cascading with the initial
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Figure 3: The WINGS - model architecture. We introduce extra modules parallel to the main
attention, serving as boosted learners to compensate for the attention shift. We train the visual
learners on one side, alleviating some shifted attention. Then, we collaboratively learn visual and
textual learners based on routing shifted attention weights. They are like light feathers woven “wings”.

projected information. Specifically, for the lth layer, the visual/text-only learner is formulated as:

Learner∗
(
Q=hl,K,V=x∗

)
∗∈{V,T}

= Softmax

(
hl
(
1+WQ

)
·
(
x∗
(
1+WK

))⊤
√
dhead

)
x∗

(
1+WV

)
WO ,

(4)
where the matrix WQ, WK, WV, and WO is low-rank and is obtained by the dot product of
Wa ∈ Rd×d and Wb ∈ Rd×d, and d is relatively small enough. The symbol 1 is represented as the
identity matrix. The structure of multihead LoRRA preserves the effectiveness of the cross-attention
structure and employs efficient low-rank mapping to reduce computational demands. Following
LoRA [46], LoRRA learners also employ random Gaussian initialization for Wa and sets Wb to
zero. Since WO lacks a residual, the output of LoRRA is zero at the beginning of training. As shown
in Figure 3, the visual and textual features are fed into their respective side learners, like two “wings”
woven together. The outputs of two learners from each layer are then weighted sum to the attention
of the main branch. As illustrated in the left part of Figure 4, a router receives attention weights to
generate the balance weights of visual and textual learners for each token. In summary, we formulate
the WINGS block as:

AttWINGS = Attmain +
∑

∗∈{V,T}

Router (a) · Learner∗
(
hl,x∗

)
, (5)

where a ∈ Rs×s represents the attention weights of the current main branch. The router is formalized
as Router (a) = W[:, : s] ·a⊤, which is implemented by a single-layer dynamic MLP, W ∈ R2×smax .
It receives the attention weights a and processes them using Softmax on two modality learners.

3.3 Stable Training Recipe

The architecture of WINGS comprises four elements: vision encoder, projector, initialized LLM, and
the learners with a router. During the training process, the vision encoder is consistently fixed. Firstly,
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(b) Training Paradigm
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Stage-2: tune LLM with routing visual and textual learners
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Figure 4: Illustrations of the detailed WINGS structure, and training strategies. WINGS is
constructed by the Low-Rank Residual Attention (LoRRA) module where the previous hidden state
acts as the query and the visual/textual features serve as the key and value. Training starts with
visual learners and projectors, followed by the dynamic attention-based routing.

we only fine-tune the projector and visual learners. We primarily employ image-text pairs for visual
alignment, while the outputs of visual learners are directly added to the main branch. For this part,
the visual learners primarily handle the visual focus, minimizing disturbances to the main branch
during continued learning. Subsequently, textual learners are paralleled with visual learners on the
attention block of LLMs. The router begins by learning to allocate visual and textual learners from
the attention weights of the main branch. At this stage, both types of learners work more effectively
together to focus attention on key tokens. To summarize, WINGS prioritizes enhancing visual learners
first. Subsequently, it “spreads its wings” by concurrently learning and routing visual and textual
learners based on shifted attention weights. During inference, the routed weights of the visual wings
branch are deactivated for text-only instructions, while multimodal instructions activate both wings.

4 Experiments

In this section, we first introduce the benchmarks for evaluating WINGS, including Table 1: text-only
forgetting on the same multimodal training data, Table 2: comparison with general MLLMs, and
Figure 5: analysis on the Interleaved Image-Text (IIT) benchmark with varying levels of vision-related
conversation. Following that, we outline the training details and configurations of the WINGS, and
delve into experimental analysis across each benchmark. Following that, we perform an ablation study
on various learning rates with different training parts. Finally, we provide supplementary descriptions
regarding WINGS’ overhead compared to general MLLMs and how its innovative compensatory
learners help effectively mitigate attention issues.

Evaluation Setups. We aim to assess through MLLM how much visual information is required for
evaluation. For example, generic multimodal instructions require MLLMs to strongly capture image
aspects, whereas text-only instructions focus on the text. We introduce three types of benchmarks:

• Standard text-only benchmarks. We are particularly interested in the text-only performance
improvement of WINGS under the same training data and resource conditions. Different
datasets including interdisciplinary exams like MMLU [43], CMMLU [64], ARC-Easy, ARC-
Challenge [27], language understanding and knowledge such as WinoGrande [102], Open-
bookQA [8], Race-Middle, Race-High [59], WSC [126], CHID [141], reasoning such as Hel-
laSwag [136], SIQA [104], PIQA [9], OCNLI [47], and math and code-related tasks such as
GSM8K [28] and MBPP [4] are comprehensively evaluated.

• General multimodal benchmarks. We evaluate on MMMU [135], MME [37], MMBench [83]
(MMB) in English (EN) and Chinese (CN), ScienceQA [86] for test (SciQA), SEED-Bench [63]
for image part (SEED), AI2D [56] for test, and HallusionBench [41] (HallB).

• Our Interleaved Image-Text (IIT) benchmark with diverse text-only, interleaved, and image-
ralated multi-turn conversations. It includes sampling for MMLU, CMMLU, OpenbookQA,
HellaSwag, MMMU, MMBench, SEED-Bench, and AI2D datasets.
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Dataset

Model Vicuna Vicuna LoRAVicu.Vicuna Qwen Qwen LoRAQw. Qwen WINGS Text-only Our
LLM +

CLIP
+

CLIP
+

SigLIP
LLM +

CLIP
+

CLIP
+

SigLIP
(Ours) Forgetting

( - )
Impro.

( - )

Exam

MMLU 51.18 51.12 48.89 50.63 60.86 50.83 59.67 51.16 60.53 9.70 9.37
CMMLU 38.60 38.29 37.24 38.73 69.37 62.58 67.87 60.46 69.82 8.91 9.36
ARC-E 57.62 53.63 55.82 53.95 59.96 56.93 59.35 55.87 54.29 4.09 -1.58
ARC-C 33.75 34.60 34.68 35.17 38.90 39.14 38.64 39.50 43.39 -0.60 3.89

Under-
standing

Winogrande 68.01 64.97 67.83 65.21 71.38 69.82 71.03 69.05 69.28 2.33 0.23
OpenbookQA 77.10 73.28 77.15 72.12 81.73 78.31 81.29 77.51 81.05 4.22 3.54
Race-Middle 63.99 60.10 62.84 59.45 74.82 68.25 72.06 68.34 74.24 6.48 5.90
Race-High 58.74 53.24 54.91 52.69 71.05 59.20 65.67 57.72 69.62 13.33 11.90
WSC 51.30 47.21 51.06 47.72 56.17 54.18 57.30 55.23 66.35 0.94 11.12
CHID 39.05 49.66 45.26 53.49 71.94 71.82 72.92 74.29 74.06 -2.35 -0.23

Reasoning

HellaSwag 63.11 63.08 62.58 63.02 65.70 61.90 64.32 63.24 65.12 2.46 1.88
SIQA 42.37 44.06 43.27 44.52 45.57 50.20 46.83 51.71 49.64 -6.14 -2.07
PIQA 71.92 71.95 70.35 71.84 76.59 74.60 73.77 75.19 78.06 1.40 2.87
OCNLI 33.89 37.74 39.41 40.46 49.73 48.31 48.07 50.29 50.39 -0.56 0.10

Math GSM8K 25.19 23.72 22.68 23.05 56.77 50.10 54.25 51.37 52.08 5.40 0.71
Code MBPP 13.80 11.29 13.92 10.80 37.50 34.82 36.72 33.20 38.92 4.30 5.72

Multimodal

MMMU-VAL – 35.67 30.78 35.56 – 34.56 32.33 35.11 39.89 – 4.78
MMMU-TEST – 34.40 30.90 35.33 – 34.90 31.80 35.10 37.30 – 2.20
MMBench – 63.18 59.83 65.14 – 66.05 62.84 70.94 70.53 – -0.41
ScienceQA – 67.72 64.49 71.50 – 74.26 69.09 74.89 78.76 – 3.87

Table 1: Performance comparisons of WINGS and the baseline MLLMs under the same training
data. We consider 8 baseline MLLMs, including LLMs as Vicunav1.5 & Qwen1.5, visual encoders as
CLIP [98] & SigLIP [137], and training strategies as full-parameter & LoRA fine-tuning. The first
entry represents the initial LLM, upon which each MLLM is trained. Our evaluation spans 6 domains
with 20 datasets. WINGS is based on the Qwen1.5 and SigLIP, and the column “Our Improvement”
highlights how much WINGS surpasses its baseline with the same backbones.

Model Summaries & Implementation Details. We release the WINGSbase and WINGSpro, with
Qwen1.5-7B LLM [6] and SigLIP [137] visual encoder as the foundations. We also introduce the
WINGS1.8B version, adapted to Qwen1.5-1.8B LLM for edge device compatibility. As illustrated
in Figure 4, we only optimize the projector and the image learners of WINGS for the first alignment
stage. The LLM branch adaptation is incorporated during the second instruction tuning stage. We
train for 1 epoch with the AdamW optimizer and the Cosine learning schedule. Typically, the learning
rates for the first and second stages are set at 1e−3 and 2e−6 (with the projector part as 1e−5),
respectively. For WINGSbase, approximately 1m training data to align image learners and about 0.6m
supervised fine-tuning instructions for the next stage (the same as LLaVAv1.5 [79]). In the WINGSpro,
we use the same aligned data and approximately 2m training data for learning image-text learners.
These two types of MLLM require about 1.5 and 6 days of training on 8× A100 GPUs, respectively.
The training datasets for WINGSmini are consistent with the WINGSpro. It takes approximately 5 days
to run on 4× A100 GPUs.

Details in Figure 2. We adopt various multimodal to text-only sample ratios (25:1, 20:1, 10:1, 5:1,
2:1, 1:1, 1:2, . . ., 1:25) plus an all:0 setup (12 combinations total) to ensure sufficient scenarios.
The learning rate is kept consistent with the setup described above. We sample 5 models per epoch,
excluding 12 failed ones due to issues like gradient explosion, resulting in 108 for analysis.

4.1 Toward Comprehensive Text-only and Multimodal Performance

Text-only Comparison in Fair Data and Resource Environments. As shown in Table 1, “Vicuna-
v1.5 + CLIP” corresponds to LLaVAv1.5, and “Qwen1.5 + SigLIP” serves as the foundation for WINGS.
When comparing LLM itself and the rest of MLLMs, we observe that fine-tuning with multimodal
instructions, compared to the “Qwen LLM”, there is text-only forgetting in 12 out of 16 datasets, with
notable decreases of up to 9.70, 8.91, and 13.33 in MMLU, CMMLU, and RACE-High, respectively.
WINGS significantly improve performance on datasets such as MMLU, CMMLU, RACE-High, and
WSC, despite the potential for severe text-only forgetting on baselines. Additionally, we find that
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Method
Dataset Text-Only QAs Multimodal QAs

MMLU/C* RACE-M/H ARC HellaSwag Winog. GSM8K MBPP MMMU-V/T MMB-EN/CN MME SciQA SEED AI2D HallB

Equal-Scale Open-Source 7B Multimodal LLMs

O-Flamingov2 [5] 26.9 / 27.1 40.3 / 32.6 31.0 55.4 58.3 10.2 9.1 29.1 / 28.7 10.9 / 13.3 803.9 55.8 30.2 32.6 30.4

IDEFICS [50] 33.0 / 26.4 38.2 / 36.9 33.2 58.9 60.2 11.7 8.1 17.6 / 20.2 49.6 / 27.3 1239.3 62.4 44.8 43.4 24.6

InstructBLIP [29] 43.2 / 35.7 52.8 / 49.7 39.5 55.7 54.9 18.3 10.3 32.7 / 32.1 38.5 / 26.8 1425.6 61.3 45.7 41.1 33.3

ShareGPT4V [14] 47.6 / 36.9 55.9 / 51.0 41.6 54.7 60.1 18.0 8.9 35.5 / 35.2 67.4 / 63.1 1915.3 68.9 68.1 58.2 26.6

Qwen-VL [7] 49.7 / 58.3 65.2 / 64.8 34.4 58.2 61.0 49.0 34.6 36.4 / 35.9 60.3 / 57.4 1806.2 69.6 62.0 61.9 34.1

Monkey [72] 52.8 / 66.9 65.6 / 62.1 38.2 60.6 59.3 51.8 37.1 40.3 / 37.1 71.9 / 67.8 1815.4 78.3 69.1 62.5 42.1

LLaVAv1.5 [79] 51.1 / 38.3 60.1 / 53.2 34.6 63.1 65.0 23.7 11.3 35.7 / 34.4 63.2 / 57.7 1518.6 67.7 63.7 56.4 29.7

LLaVANext [80] 50.2 / 39.7 65.1 / 58.3 36.0 63.7 68.9 30.3 23.0 37.6 / 35.8 67.8 / 61.8 1760.3 70.1 69.1 66.4 29.6

DeepSeek-VL [85] 53.9 / 64.0 70.6 / 63.8 39.2 65.1 67.2 55.3 43.1 37.6 / 35.3 72.7 / 72.5 1716.8 80.6 70.0 66.5 36.2

WINGS (Ours) 60.5 / 69.8 74.2 / 69.6 43.4 65.1 69.3 52.1 38.9 39.9 / 37.3 70.5 / 68.3 1753.8 78.8 69.5 62.7 45.8

WINGSpro(Ours) 61.3 / 68.5 82.8 / 76.3 46.3 69.2 70.9 56.3 39.3 38.2 / 36.9 73.1 / 69.0 1786.1 83.1 70.2 65.8 47.3

Advanced Private Multimodal LLMs

GPT-4 [94] 83.5 / 71.2 93.2 / 87.8 93.6 88.4 75.6 91.6 56.2† – – – – – – –

GPT-4V [93] 79.3 / 69.4 93.7 / 89.2 92.9 84.7 76.1 88.4 72.4 58.9 / 56.8 77.0 / 74.4 2153.6 68.4 73.7 75.5 46.5

Geminipro vision [101]85.9 / 73.7 88.9 / 83.2 85.0 78.8 71.5 86.4 61.5 60.6 / 62.2 73.6 / 74.3 2193.2 58.3 70.8 70.2 45.2

Efficient Multimodal LLMs with WINGS1.8B

DeepSeek-VL1.3B [85] 31.7 / 38.2 63.6 / 58.4 35.8 52.9 45.7 17.6 16.3 33.8 / 32.3 65.1 / 60.7 1483.4 65.4 63.3 50.1 25.0

MiniCPM-V2.4B [48] 42.4 / 40.9 68.8 / 62.6 37.0 48.3 51.7 32.5 24.2 37.2 / 34.4 65.7 / 64.1 1584.1 64.9 64.7 54.9 31.8

WINGS1.8B(Ours) 44.9 / 50.9 68.5 / 63.2 37.1 50.5 53.0 40.6 28.5 35.7 / 33.9 64.2 / 61.2 1527.3 67.5 62.8 55.2 30.2

Table 2: Performance comparisons of the equal-scale MLLMs and the efficient multimodal
LLMs on text-only and multimodal datasets. We evaluate the open-source, efficient, and private API
MLLMs. We select 18 representative evaluation datasets. C* represents the CMMLU dataset.

the forgetting effects of CLIP and SigLIP are similar. In contrast, parameter-efficient fine-tuning
methods like LoRA result in less text-only forgetting but underperform on multimodal questions.
Overall, WINGS’ visual and textual learners are credibly demonstrated to retain performance on
text-only tasks while also performing well on visual-related questions. In datasets like CHID, OCNLI,
and SIQA, MLLMs show improved text-only performance due to increased language diversity (e.g.,
Chinese context) or semantic similarity in their fine-tuning data.

General Evaluation in Text-Only and Multimodal Tasks. We present the performance of 9,
roughly 8B open-source MLLMs, 2 roughly 2B, and 2 private API ones evaluated in the general
text-only and multimodal tasks. Table 2 shows that WINGS series can perform better on text-only
and multimodal question-answering datasets. It achieves state-of-the-art performance on 13 out of
18 datasets, significantly surpassing LLaVAv1.5 with the same architecture. We find that WINGS is
equally effective for more efficient foundations, as shown in the “Efficient Multimodal LLMs” parts.
WINGS can still capture key elements and demonstrate good scalability as the parameter increases.
Although WINGSbase does not receive additional training for the text-only component, it is still able
to achieve comparable performance.

4.2 Interleaved Image-Text (IIT) Benchmark

To finely evaluate MLLMs, we construct a series of text-only and multimodal mixed multi-turn
conversations. We extract instructions from MMLU, CMMLU, OpenbookQA, HellaSwag, MMMU,
MMBench, SEED-Bench, and AI2D datasets with similar semantics by chroma [39]. We then polish
the connection between some instructions using GPT-3.5 Turbo to make them closer to real-world
conversations. We set up 6 vision-content configurations, categorized by the multi-turn content as:
(T), (T, T), (T, T, T), (T, T, V), (T, V), and (V). For instance, (T, T, V) indicates two consecutive text-only
queries followed by a visual question requiring a response.
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(a) Comparison of LLaVA-v1.5 Series and WINGS (b) Comparison of Various Learning Rate on WINGS (c) Comparison of Different Training Parts of WINGS

Figure 5: Performance comparison on the newly constructed Interleaved Image and Text (IIT)
Benchmark of the LLaVA series, different learning rate and fine-tuning parts. The horizontal axis
represents different multimodal question settings. The horizontal axis shows different multimodal
setups, e.g., (T, T, I) represents a visual question after two text-only QAs. The three subfigures
represent different ablation settings, with the violet color representing our WINGS.

4.3 Ablation Studies

Referencing Figure 5, we address three questions to comprehensively analyse WINGS:

• Can WINGS sustain performance with interleaved evaluation? We find that part (a) highlights
WINGS surpassing LLaVAv1.5 and the same-backbone as LLaVAv1.5 (Qwen-SigLIP) for each
multi-turn setting, especially in text-centric dialogues.

• How do WINGS fare with different learning rate settings? Part (b) demonstrates that using a lower
learning rate maintains proficiency in text-only tasks but falls short in multimodal questions, while
a higher rate boosts multimodal abilities but not text-only. Applying a higher learning rate to the
projector and a lower one to the others achieves the optimal.

• Are all components of WINGS equally effective? In part (c), we examine that incorporating visual
learners alone slightly preserves text-only abilities, likely by minimizing disruption to the LLM,
but diminishes performance on multimodal tasks.

In the diverse IIT bench, which ranges from text-rich to multimodal contexts, the effectiveness of
WINGS is particularly evident. As shown in Figure 1, within real-world applications, textual content
offers insights for following visual tasks. WINGS excels in handling text-only tasks while improving
performance on visual-related instructions.

5 Conclusion

We propose WINGS, which includes visual and textual learners, to alleviate text-only forgetting. The
learner is composed of efficient Low-Rank Residual Attention (LoRRA). We start by considering
the shifted attention weights in MLLM and, in the first stage, focus on learning the visual learner.
Then, we co-train the visual and textual learners with routing based on the shifted attention weights.
WINGS demonstrates remarkable performance on text-only, visual-question-answering, and newly
constructed Interleaved Image-Text (IIT) benchmarks. WINGS allows for maintaining text-only
performance with limited resources and further enhances performance in well-resourced settings.
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Supplementary Material

A Experimental Setups and Implementation Details

Training Datasets. The training datasets for the first and second stage of WINGSbase are consistent
with LLaVAv1.5 [79]. For the second stage, WINGSpro extends the training dataset to include some
visual QA datasets as ALLaVA [13], SynthDog [58], and ArXivQA [69], and text-only QA datasets
as Stanford Alpaca [107], Alpaca GPT-4 [96], LIMA [142], UltraChat [31], WebQA [12], and
BELLE-0.5M [52]. WINGS1.8B shares the same training set as WINGSpro.

Model Structures. We employ Qwen1.5 [6] and SigLIP [137] as our foundations.

Training Hyperparameters. We utilize a batch size of 32, along with the AdamW optimizer and a
cosine schedule. For all WINGS-series, the learning rate is set at 1e−3 for the first stage and adjusts
to 2e−6 for the second stage, except for the projector as 1e−5.

Training Environment. WINGSbase and WINGSpro are trained over approximately 1.5 or 6 days on
8× A100 GPUs. WINGS1.8B require approximately 5 days of training on 4× A100 GPUs.

B Additional Experimental Results
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(a) Comparison of Parameter Efficient Modules and WINGS

Figure 6: Performance comparison on the newly constructed Interleaved Image and Text (IIT)
Benchmark of the Parameter Efficient Modules. The horizontal axis represents different mul-
timodal question settings. The horizontal axis shows different multimodal setups, e.g., (T, T, I)
represents a visual question after two text-only QAs.

Should we only add additional modules on top of an LLM branch or, like WINGS, create two distinct
learners for visual and textual modalities? We delve into the low-rank adaptation (LoRA) [46]
and Prefix-tuning [70] for minimally adapt to the LLM component. These techniques introduce
optimization parameters beyond the primary branch. These lightweight adjustments align with
extensive modifications, effectively minimizing text-only forgetting but concurrently curbing cross-
modal positive transfer.

C Discussion

WINGS is a universal plugin that can be integrated with any multimodal mixed-input MLLMs.
Notably, it introduces a new concept of competitive reuse among multiple expert groups: we may not
require the experts to the Transformer block’s MLP layer at a scale three orders of magnitude larger;
instead, a minor update in the attention for better allocation may suffice. This idea is also found in
some variants of LoRA [36, 115]. In the future, we will gradually explore the future of MLLMs.

Regarding the extent to which WINGS alleviates attention shifts, we acknowledge that the main branch
of WINGS (without visual and textual learners) still exhibits attention shifts. However, since the
outputs from the visual and textual learners compensate within the hidden state, we extract portions of
the attention weight matrices from both learners and add them to the main branch’s weights. Results
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show that throughout the training process, the attention shift phenomenon is continually mitigated
under the influence of these learners. Essentially, the primary branch’s attention ideally retains its
original text-only capabilities, while the visual solutions are implemented within the auxiliary learner.

D Limitation & Broader Impact

Despite WINGS’ strong adaptability for embedding auxiliary attention learners in various MLLMs,
integrating visual learners requires restarting the feature alignment training, incurring extra costs.
Additionally, its deployment on edge devices faces limitations, with WINGS1.8B offering a solution at
the expense of performance. Furthermore, WINGS still requires some text-only data to replay and
enhance overall performance, aiming for integration into more generic AI systems in the future.

Figure 7: Dynamics of Attention Weights from Shallow to Deep Layers. We calculate the
proportion of attention weights for the image-before (yellow), the image-itself (red), and the image-
after (green) in each layer. From left to right, top to bottom, from shallow to deep layers.

User: There is a single choice question about Sociology. 
Answer the question by replying A, B, C or D.
Question: Which of the following did the post-war welfare 
state of 1948 not aim to provide:
A. free health care and education for all
B. a minimum wage
C. full employment
D. universal welfare

User: Sociology studies <image> and governmental 
relationships as.

QA1: Text-only Instruction (from MMLU)

QA2: Multimodal Instruction (from MMMU)

Figure 8: An Example of an Interleaved Image-Text Benchmark. This dialogue is represented as
(T, V), consisting of a text-only QA from MMLU [43] and a visual QA from MMMU [135]. It can be
observed that, due to the sampling, both include questions from the Sociology category.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract reflects the contribution and scope of our work and illustrates our
model and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We show the architecture in Figure 3 and Figure 4. Additionally, we provide
the experimental details in section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The datasets and benchmarks used in our work are open source. The code of
our proposed method will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide training and test details in section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: During the training process and evaluation, we use methods such as fixed
random seeds to obtain certain and consistent results, so our work do not focus on the
significance of the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources for the experiments is reported in section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and strictly followed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in the Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no such risk in this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have listed and cited relevant datasets and models in detail in the paper to
ensure that the license and terms are met.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: Our work uses public datasets for training and evaluation, and does not involve
or open source new datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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