Improving LLM Agent Planning with In-Context
Learning via Atomic Fact Augmentation and
Lookahead Search

Samuel Holt* Max Ruiz Luyten* Thomas Pouplin
University of Cambridge University of Cambridge University of Cambridge

Mihaela van der Schaar
University of Cambridge

Abstract

Large Language Models (LLMs) are increasingly capable but often require signifi-
cant guidance or extensive interaction history to perform effectively in complex,
interactive environments. Existing methods may struggle with adapting to new in-
formation or efficiently utilizing past experiences for multi-step reasoning without
fine-tuning. We introduce a novel LLM agent framework that enhances planning
capabilities through in-context learning, facilitated by atomic fact augmentation and
arecursive lookahead search. Our agent learns to extract task-critical “atomic facts”
from its interaction trajectories. These facts dynamically augment the prompts
provided to LLM-based components responsible for action proposal, latent world
model simulation, and state-value estimation. Planning is performed via a depth-
limited lookahead search, where the LLM simulates potential trajectories and
evaluates their outcomes, guided by the accumulated facts and interaction history.
This approach allows the agent to improve its understanding and decision-making
online, leveraging its experience to refine its behavior without weight updates. We
provide a theoretical motivation linking performance to the quality of fact-based
abstraction and LLM simulation accuracy. Empirically, our agent demonstrates
improved performance and adaptability on challenging interactive tasks, achieving
more optimal behavior as it accumulates experience, showcased in tasks such as
TextFrozenLake and ALFWorld.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable potential in building autonomous
agents for sequential decision-making in diverse settings, from text-based games [Yao et al., 2023] to
complex interactive environments [Yang et al., 2025]. A key insight underpinning their success is
their vast pre-trained knowledge, which can be steered towards specific tasks. However, effectively
harnessing this knowledge and enabling LLMs to learn from new experiences in-context remains a
critical challenge for improving their accuracy and optimality in long-horizon tasks.

Many LLM agents rely on extensive few-shot examples [Shinn et al., 2023] or retrieve entire past
trajectories [Kagaya et al., 2024] to inform their decisions. While effective to a degree, these
approaches can lead to very long prompts or may not efficiently distill the most crucial pieces of
information from past experiences. Model-based approaches [Hao et al., 2023, Chae et al., 2024]
have emerged, but often involve learning separate, potentially shallow, predictive models or require

*Equal contribution. Correspondence to: sih31@cam.ac.uk.

ICML 2025 Workshop on Programmatic Representations for Agent Learning.

environment interactions for each step of their lookahead, rather than leveraging the LLM’s inherent
simulation capabilities more deeply.

The core idea of this paper is that LLMs possess a substantial amount of latent knowledge about
world dynamics and task structures. To unlock better planning, we need to identify and provide the
missing pieces of information—concise, critical insights derived from experience—that allow the
LLM to more accurately simulate outcomes and evaluate states. We propose a novel LLM agent
architecture that learns and utilizes “atomic facts” to augment its planning process. These facts
are textual statements (e.g., “object X is in receptacle_Y”, “action Z leads_to_failure_condition™)
extracted from the agent’s interaction history at the end of each episode. The atomicity of these
facts is crucial; they represent minimal, yet impactful, units of knowledge that can be precisely
incorporated into the LLM’s reasoning context, effectively grounding its general knowledge to the
specific nuances of the current task environment.

Our agent employs these atomic facts to inform a recursive, depth-limited lookahead search. The
planning process involves three key LLM-driven components: An action proposer to suggest
plausible next actions. A latent world model to simulate the next observation, reward, and termination
status given an action. A value estimator to predict the long-term utility of states, especially at the
leaves of the search tree. All these components receive the current observation, recent interaction
history, and the curated set of atomic facts as input, allowing the LLM to make more informed
predictions and decisions. The agent learns online, purely in-context, as the set of facts evolves with
experience, leading to improved policies without any LLM fine-tuning. This approach is inspired
by Dyna-style architectures [Sutton, 1990], where experience is used to refine a model (here, the
fact-augmented LLM reasoning process) which is then used for planning.

Contributions: (DAlgorithmic: We propose an LLM agent that performs online, in-context learning
by extracting atomic facts from episodic trajectories. These facts augment LLM-driven action
proposal, latent world model simulation, and value estimation within a recursive lookahead search
framework. (2) Theoretical Motivation: We connect our approach to principles of fact-based
state abstraction (Section 3), suggesting that the quality of learned facts (impacting €g;y,) and LLM
simulation (impacting d,,04e1) underpins agent performance, ultimately influencing the planning
sub-optimality €p1an. (3 Empirical: We demonstrate that our method leads to improved decision-
making and more optimal behavior as the agent gains experience. On challenging benchmarks like
ALFWorld, the agent shows an ability to achieve consistent high reward by leveraging its learned
atomic facts.

This work offers a step towards LLM agents that can more effectively learn from their interactions
in-context, leading to more robust and accurate planning by systematically augmenting the LLM’s
reasoning with distilled, experience-grounded knowledge.

2 Related Work

Our work builds upon several lines of research in LLM-based agents, model-based reinforcement
learning, and the use of external knowledge for planning—see Section A for an extended related
work.

LLM Agents Early LLM agents like ReAct [Yao et al., 2023] introduced the concept of inter-
leaving reasoning (thought) and action generation. Reflexion [Shinn et al., 2023] extended this by
incorporating self-reflection, where an LLM analyzes past failures to generate textual feedback for
future trials. This episodic learning is akin to our fact extraction, but Reflexion focuses on high-level
advice rather than structured atomic facts for a world model. Many agents operate in a model-free
manner or rely heavily on in-context exemplars from fixed datasets.

LLM-Based Planning and World Models Several approaches have explored using LLMs for
planning. Some use LLMs to score or propose actions within classical search algorithms like Monte-
Carlo Tree Search (MCTS) [Hao et al., 2023, Kagaya et al., 2024, Liu et al., 2024b]. For instance,
Retrieval-Augmented Planning (RAP) [Kagaya et al., 2024] retrieves full past trajectories to inform
MCTS, often requiring environment interaction for tree expansion. Other works like [Chae et al.,
2024] use LLMs to build explicit, but often one-step, world models that predict state transitions
or webpage changes. [Xie et al., 2023] use LLMs to translate natural language goals into formal

planning problems. Our approach differs by using the LLM itself as a latent world model for multi-
step simulation during lookahead, conditioned on dynamically extracted atomic facts, rather than just
retrieving raw trajectories or learning a separate explicit model. The idea of an LLM as a “simulator”
has been explored, e.g., for few-shot generation [Prystawski et al., 2023], but its integration with
online fact-based learning for improved planning is a novel aspect of our work.

Dyna-Style Architectures and Fact-Based RL. Our method is inspired by Dyna-style reinforce-
ment learning [Sutton, 1990, Sutton and Barto, 2018], where an agent learns a model of the world
from real interactions and then uses this model to generate simulated experiences for planning. In
our case, the “model” is implicitly represented by the set of atomic facts combined with the LLM’s
inherent simulation capabilities. The extraction of facts from trajectories is analogous to model
learning, and the lookahead search is planning with this model. While traditional Dyna uses tabular or
parametric models, we leverage the LLM’s ability to reason over textual facts. The concept of using
facts or symbolic knowledge in RL is not new [Abel et al., 2020], but its integration with LLM-driven
simulation and online fact extraction is a key aspect of our work.

Knowledge Augmentation for LLMs Retrieval-Augmented Generation (RAG) [Lewis et al.,
2021] is a common paradigm for providing LLMs with external knowledge. Our fact extraction and
augmentation mechanism can be seen as a specialized form of RAG where the “retrieved” knowledge
(atomic facts) is actively generated and refined from the agent’s own experience rather than drawn
from a static corpus. This makes the knowledge highly task-specific and current, directly addressing
the information needs identified through interaction, rather than relying on potentially less relevant or
outdated general knowledge.

Our work distinguishes itself by the tight integration of online atomic fact learning from episodic
experience with an LLM-driven, multi-step lookahead planner where the LLM serves as both a latent
world model and value function, all operating in-context without weight updates. This focus on
distilled, symbolic knowledge (atomic facts) aims to provide a more structured and efficient way for
the LLM to learn from experience compared to methods relying on raw trajectory retrieval or general
textual reflections.

3 Theoretical Framework for Fact-Based Reinforcement Learning

We propose enabling agents to construct and reason over a fact-based world model. Such a model
relies on a compressed, symbolic representation of task-relevant information extracted as “atomic
facts” from the environment’s state. This section establishes a formal theoretical basis for this
approach. We first define an idealized fact-based agent and derive its performance guarantees. These
theoretical ideals subsequently motivate and guide the design of our practical LLM-driven algorithm
detailed in Section 4.

3.1 Problem Formulation

We model the agent’s interaction with its environment as a Markov Decision Process (MDP),
specified by the tuple G = (S, A, T, R,~). Here, S is the set of environment states, which we
assume are fully observable or derivable into a sufficient structured representation s; € S from
raw observations o;. A is a finite set of actions. 7 : S x A x § — [0, 1] is the state transition
probability function, 7 (s'|s,a) = P(st41 = §'|st = s,ar = a). R: S x A x S — Ris the reward
function, with expected reward R(s, a) = Egy 7 (.|s,0)[R(S, a, s")]. Finally, v € [0, 1) is the discount
factor. The agent’s goal is to learn a policy 7 : & — A that maximizes the expected discounted
cumulative reward, VZ (s) = Ex [> 7 o Y* R(S¢4%, as+k)|s: = s|. The optimal value function in G
is Vg (s) = max, V (s).

To manage the potential complexity of S, we introduce a fact-based state abstraction.

Definition 3.1 (Fact-Based Abstraction). Let Fyomic be a vocabulary of atomic predicates (e.g.,
is_goal(loc), obstacle_at ((z,y))) relevant to the task. These predicates primarily describe
properties of the current state s;. A fact set for a state s € S is Fs = {f € Fuomic | [is true in s}.
The Fact Extractor is an abstraction function VU : S — Zz, where Zx = P(Fuomic) s the space of
all possible fact sets. Each z € Zx constitutes an abstract state, representing the equivalence class

of ground states {s € S | U(s) = z}. We denote the abstract state at time t as z, = V(s;). A critical
objective is that | Zr| < |S|.

This abstraction ¥ induces an abstract MDP My = (Zx, A, Ty, Ry,), where Ty(2'|z,a) and
Ry (z,a) are the abstract transition and reward functions. These are derived from G by averaging
over the ground states s that map to a given abstract state z [Li et al., 2006]. For instance, if
S.={s €8|¥(s) =z}, then Ry(z,a) = ﬁ > ses, Bi(s; a), assuming a uniform distribution
over ground states within an abstract state.

3.2 An Idealized Fact-Based Agent (IFBA)

We conceptualize an Idealized Fact-Based Agent (IFBA) that flawlessly leverages such abstractions.

Definition 3.2 (Ideal Fact Abstraction U*). The IFBA employs an ideal abstraction function ¥* :
S — Zx which establishes an €;,-approximate bisimulation with the ground MDP G [Ferns et al.,
2004]. This implies a bound on the difference between the optimal value functions in G and the
induced abstract MDP My~ :
* * * eSim
Vg — Virg. © ¥l < T~ €]
where Vi is the optimal value function for M-, and €y, > 0 quantifies the maximum one-step

deviation in rewards and discounted next-state distributions for states aggregated by V*.

As we will discuss later, we would like it to be minimal, achieving the sufficiency for near-optimal
value representation (Eq. (1)) with the smallest possible fact set. This aligns with the Information
Bottleneck (IB) principle [Tishby et al., 2000, Alemi et al., 2017], which seeks a compressed
representation z; = ¥*(s;) of an input s; that maximizes information about a target variable (e.g.,
V*(s¢) or future returns) while minimizing I(z¢; s¢) (or a proxy like fact set complexity).

The IFBA is assumed to dynamically maintain such an abstraction.

Definition 3.3 (Ideal Abstract World Model and Planner for IFBA). The IFBA is endowed with:

1. A perfect abstract world model: Its internal model My~ is identical to the true abstract
MDP My~, implying zero model error w.r.t. My-~.

2. An epin-optimal planner: This planner computes a policy w3y . for My~ such that

7TO
Vitg () — VMI;I;“ (2) < €pian for all z € Zx, where €4, > 0.

The policy executed by IFBA in G is mp(s) = g, (V*(s)).

3.3 Performance Guarantees for Idealized Systems

We first establish a performance guarantee for the IFBA, which operates with a perfect abstract model.
Theorem 3.4 (Performance of IFBA with Perfect Abstract Model). Let 7 be the policy derived by
the Idealized Fact-Based Agent (IFBA) as defined above. If the ideal fact abstraction U* establishes
an €gim-approximate bisimulation between G and My, and the planner for My~ is €pja-optimal,
then for any state s € S:

* T 26sim
V3 (a) = Vg (5) € T2 + @

Proof. We defer the proof to Section E O

Performance with a Learned Abstract Model: In practice, an agent learns an approximate abstract
model My = (Z7, A, Ty, Ry,) from data, based on an abstraction ¥ (which itself has an associ-

ated €4 quality). Let 7, be an €p4,-optimal policy for this learned model M\p. The value loss is
decomposed as:

Vg (s)=Vg"(s) = (Vg (s) = Vi, (¥(9))) + (Vi (¥(s)) = Viie (U(s))) + (Vs (¥(s)) — Vg * ()

Term A Term B Term C

3

where V& is the optimal value function in the learned abstract model My.
v

s Term A (|V§ — V\’fjm [): This gap comprises two parts: (1) the inherent loss from abstraction,
Vg (s) = Vi, (¥(s))| < 72, and (2) the error in the optimal value due to inaccuracies in
the learned model My, compared to the true abstract model My, IVar, (¥(s))— Vite (T(s))].
This second part is typically bounded by Cl(fi%, where Jiode] TEpresents a composite

one-step model error (in abstract transitions and rewards) of M. v w.r.t. My [Strehl et al.,
2009, Jiang et al., 2015]. Thus, Term A < 65"“ + O (f"“’f;‘

e Term B (V;”r. — VCL): This is the planning error within the agent’s learned model My,
bounded by €pjan.

* Term C (|VZ" — V" |): This simulation error is [V2* (W(s)) — V5™ (s)| < [V 22 (¥(s)) —
N2 N2 v
Ve (U(s))] + [V (¥(s)) — Vg (s)|. The first part is bounded by Cg(fj% (Simulation
Lemma type result [Kearns and Singh, 2002]), and the second by 16—711 (abstraction quality
for policy 7). Thus, Term C < 2+ ({ST“‘
Summing these bounds, the total value loss is:

2€sim 5model
1— ~y + 6plam (Cl + OQ)W (4)

This equation rigorously connects abstraction quality (&im), planning sub-optimality (€p1an), and
abstract model learning error (dmoder) to overall performance. A key implication is that if | Zx| < |S|,
achieving a small d;,0qe for My is expected to be more sample efficient than learning a model of G
directly [Strehl et al., 2009].

Vg(s) = Vgh(s) S

3.4 Discussion: Connecting to LLM-Based Agents

This theoretical framework, while idealized, motivates our LLM-based agent. The LLM’s role is to
approximate key components:

* LLM as Fact Extractor (fy): This LLM component approximates the abstraction function
W, by processing observations and trajectories to produce a set of atomic facts F;. The
quality, relevance, and minimality of these facts are paramount. Well-chosen facts aim to
create an abstraction that is value-preserving, thereby minimizing the abstraction error €gjyy, .
The goal is to capture sufficient statistics about the ground state s; in F} such that planning
in the abstract space remains effective.

* LLM as Latent World Model and Value Estimator (/,,): The planning LLM, when simu-
lating transitions and estimating values based on F; and current observation oy, implicitly
defines the learned abstract model My. If the LLM can accurately predict the consequences
of actions and the utility of states given the facts, d;,0qe1 Will be small.

The core idea is that LLMs possess vast prior knowledge. By providing them with specific, missing
atomic facts derived from experience, we aim to improve their effective €4y, and dpeqer for the task at
hand, leading to better €pian through more accurate lookahead search. The online learning of facts
allows the agent to adapt and refine its “understanding” (i.e., its abstract model) over time, purely
through in-context mechanisms. Minimality and relevance of facts are key for focusing the LLM’s
reasoning, preventing dilution of critical information within the context window and grounding its
generative capabilities on task-specific evidence rather than solely relying on its vast but potentially
general pre-trained knowledge. Our method, described next, aims to be a practical realization of
these principles, using the recursive lookahead search to operationalize planning within this learned,
fact-based abstract MDP.

Atomic Facts

Hole @ (3,0) Hole @ (1,1) Hole @ (2,3)

S B
] &

20
&

S e S il A T e A e -

. @ Q(Oty ai) - 74/ - /\step + 7‘7(0,)

Figure 1: Illustration of LWM-Planner’s fact-augmented lookahead search. The agent begins
from a current environment observation og (left panel). Leveraging previously extracted Atomic
Facts (e.g., Hole@(3,0)), LWM-Planner executes a recursive lookahead search (right panel) to
determine the optimal action. This search involves: (i) an LLM, acting as a Latent World Model,
simulating action sequences (a;) to predict subsequent latent states (o’) and immediate rewards
(r"), conditioned on the Atomic Facts; (ii) an LLM-based state-value estimator providing V(o’)
for states at the search frontier, also conditioned on the Atomic Facts; and (iii) these simulated
outcomes and value estimates are then aggregated into Q-values using the formula Q(os,a;) =

= Xstep + Y V(o’), which ultimately guides action selection from og.

4 Method: LLM Agent with Atomic Fact Augmentation and Lookahead
Planning

Our proposed agent, the LLM-based World Model Planning Agent (LWM-Planner), enhances its
decision-making capabilities through a synergistic combination of online atomic fact learning and
LLM-driven lookahead search. The overarching goal is to enable the agent to learn from its interactive
experiences entirely in-context, without any updates to the underlying LLM weights, and to leverage
this learned knowledge to improve its planning and achieve more optimal behavior. The agent’s
architecture and operation can be understood through two main interacting processes: the dynamic
management of atomic facts and the lookahead planning mechanism that utilizes these facts. A
high-level summary of the agent’s operational cycle is provided in Algorithm 1, detailed in Section D.
The overarching goal is to enable the agent to learn from its interactive experiences entirely in-context
and to employ the lookahead planning mechanism that utilizes these facts to approximate optimal
actions (minimizing €pjan via an accurate implicit model, thereby reducing dmodet)-

The LWM-Planner maintains a concise representation of its world understanding and recent interac-
tions. Core to its state are a short-term interaction history (‘history*), which is a deque of recent
observation-action pairs, and a longer-term, distilled knowledge base in the form of an atomic fact
set (‘facts). These facts serve as the cornerstone of the agent’s learned abstraction; they are intended
to capture the most salient, value-relevant aspects of the environment discovered through experience.
The set is therefore composed of textual statements (e.g., “object X is on table Y,” “door Z is locked”)
that are crucial for task completion. These, along with an environment description and a list of
allowed actions, provide the necessary context for the LLM components.

The process of learning and refining the atomic fact set is central to the agent’s adaptability. This
occurs primarily at the end of each episode through a “reflection” phase. After an episode concludes,
the complete trajectory of observations, actions, rewards, and outcomes is provided to an LLM.
This LLM is tasked with identifying and generating “minimal new atomic facts” that were not
previously known (i.e., not in the current factsset) but are deemed critical for better predicting state
values or rewards in the future. The aim is to distill the most salient pieces of information from the
recent experience that, if known earlier, could have led to improved decision-making. This directly
addresses the goal of minimizing ey, by enriching the abstract state representation z; = (oy, F})
with information that better distinguishes states with different true values or optimal actions. These

newly extracted facts are then added to the factsdeque. To maintain the conciseness and relevance
of this knowledge base, an optional fact compression step can be performed. Here, an LLM reviews
the entire set of current facts and attempts to eliminate redundancies or overly specific information,
producing a more compact yet informationally rich set of facts. This evolving factsset serves as a
dynamically updated, experience-grounded augmentation for all subsequent LLM reasoning during
planning.

Decision-making in LWM-Planner is orchestrated by recursive lookahead search. This search is
bounded by a configurable depth (e.g., d = 3) and branching factor (e.g., b = 4). To ensure
deterministic planning behavior within a single search instance, all LLM calls during this phase
operate with a temperature of zero. A small step penalty is also incorporated to favor more efficient
solutions. The lookahead search relies on three specialized LLM-driven functionalities, invoked via
structured function calls: propose_actions for suggesting likely candidate actions from a given
state; simulate_step , which acts as the latent world model Ty, Ry. Conditioned on z; = (o1, F})
and a proposed action a, it predicts the next (potentially latent) observation o', immediate reward r”,
and termination status. The accuracy of this LLM-based simulation, enhanced by the atomic facts,
is directly tied to minimizing é,04e1. Finally, estimate_value approximates the value function

Vi, of the learned abstract MDP. It assesses the long-term utility of states, particularly those at the
frontier of the search (leaf nodes or terminal states). Facts also help ground this estimation (e.g.,
proximity to a known goal or hazard fact).

The planning process begins at the current observation o;. First, the action proposal LLM, conditioned
on oy, the interaction history, and the current atomic facts, suggests a set of candidate actions. For
each proposed action a;, an estimated Q-value, Q(o¢, a;), is computed. This computation involves
invoking the simulation LL.M (again, conditioned on the current state, action, history, and facts) to
predict the immediate reward v’ and next (potentially latent) observation o’. If ¢’ is a terminal state
or the maximum search depth is reached, the value estimation LLM is called to predict the future
cumulative reward from o’. Otherwise, the search recurses from o’ with decremented depth. The
Q-value is then a combination of the immediate simulated reward and the discounted value of the
subsequent state, plus any step penalties Q(o0¢, a;) = 1" — Agep + ¥ V(o). After evaluating all initial
candidate actions, the action yielding the highest Q-value is selected for execution in the environment.
To manage computational overhead during a single planning phase, the results of these LLM calls
(proposal, simulation, and value estimation) are memoized based on their inputs.

This architecture allows the LWM-Planner to systematically explore potential future trajectories
by leveraging the LLM’s generative and predictive power. Crucially, the quality and relevance of
the atomic facts continuously improve the LLM’s ability to simulate outcomes and evaluate states,
leading to an adaptive agent that learns and refines its behavior purely through in-context mechanisms.

5 Experiments

We evaluate our LWM-Planner to assess its ability to learn from experience and improve its decision-
making accuracy and task performance over time. The focus is on demonstrating that the online,
in-context learning via atomic fact augmentation leads to more optimal behavior, aligning with the
theoretical desiderata of minimizing €gim, Omodel, and €plan.

Benchmark Environments: We use three different diverse environment domains, from which
we can procedurally generate a near limitless amount of different environments. First, we create a
procedurally generated text version of the classic environment of Frozen Lake [Brockman et al., 2016],
where we can alter the probability that all the tiles are holes (h) and ensure that each board is always
at least solvable. Moreover, we use the standard ALFWorld environments [Shridhar et al., 2020b]
(randomly sampling three environments in the main paper, with more in the appendix). ALFWorld is
a text environment that parallels embodied worlds in the ALFRED dataset [Shridhar et al., 2020a],
where each environment requires agents to reason to solve embodied tasks in a home environment.
Furthermore, we benchmark against CrafterMini, a procedurally generated mini version of Crafter
[Hafner, 2021]—a 2D world where the player needs to explore for resources, collect materials and
build tools. The goal here is to craft an iron pickaxe, which can only be done by crafting two previous
items and using collected resources. We detail all environments in Section F.

Benchmark Methods: We seek to provide competitive benchmarks; therefore, we compare against
ReAct [Yao et al., 2023], reasoning then acting, which observes the current observation, interaction

history, and the environment description. Building on top of ReAct, we compare with Reflexion
[Shinn et al., 2023], which maintains a buffer of previously learned verbal lessons on how to act better
that is appended to the end of each episode, and is included in the agent’s prompt. Moreover, we
compare with an ablation of the method ReAct + FEC, which is a ReAct agent with Fact Extraction
and Compression as done in LWM-Planner, without the tree search, we also compare with our method
of LWM-Planner. Lastly, we evaluate a Random policy. We provide full benchmark method details
in Section G.

Evaluation: We run each LLM Agent method for 300 environment steps unless otherwise noted,
tracking episode return and the number of steps taken for each episode. Specifically after 300 steps,
we compute the cumulative return/total reward (sum of returns up to 300 steps)—and repeat this for
three random seed runs for each result with their 95% confidence intervals throughout. Moreover,
we normalize the cumulative return following the standard RL normalization [Yu et al., 2020]—
normalized to be between 0 and 100, where a score 0 is given by the random policy and a score of
100 by an expert, which is the highest benchmark method here, being LWM-Planner. Moreover, we
provide further experimental setup and evaluation details in Section H.

5.1 Main Results

We evaluated all the LLM benchmark methods across all environments and tabulate the results in
Table 1. LWM-Planner achieves a high normalized cumulative return on all environments. Specifically
LWM-Planner can learn near-optimal behaviour on environments, and solve the environments in
the near minimal number of steps needed to solve them. This is in comparison with non-online
learning methods such as ReAct or Reflexion, which have to explore within an environment to solve
it, solving it after a larger number of environment steps. The ReAct + FEC ablation shows that fact
learning itself provides a benefit, but the full LWM-Planner with lookahead search further improves
performance, indicating the value of planning with the learned facts.

Table 1: Normalised cumulative return (higher better) and steps per success (lower better);
mean =+ 95% CI, for each benchmark method across each environment. LWM-Planner performs the
best across all environments. Results are averaged over ten random seeds. Normalised cumulative
return is the cumulative return normalised to be between 0 and 100, where O corresponds to a Random
policy and 100 corresponds to the expert, or here the highest on average being LWM-Planner.

Method (metric) ‘ TextFrozenLake (4x4; h=0.9) ‘ CrafterMini (5x5) ‘ ALFWORLD-A ‘ ALFWORLD-B ‘ ALFWORLD-C

LWM-Planner (Cum. return norm 1) 100.00+18.24 100.00+10.23 100.00+44.68 100.00+52.92 100.00+42.90
(Steps/Success) 6.00£0.00 46.50+7.32 8.44+1.46 7.56+0.97 7.55+1.10

ReAct + FEC (Cum. return norm 1) 89.62+10.90 99.86+12.63 22.03+11.51 67.72£28.43 54.36+19.04
(Steps/Success) - 41.35+5.72 14.55+12.27 5.75+2.87 9.35+5.35
ReAct (Cum. return norm 1) —165.65 £ 30.04 86.73+13.01 59.06£1.73 55.92+1.98 64.10£1.93
(Steps/Success) - 50.70+5.47 24.70+0.96 23.80£1.29 25.05+0.52
Reflexion (Cum. return norm 1) 16.91+4.29 85.64+11.71 51.56+0.00 48.06+1.95 58.12+1.97
(Steps/Success) 23.20+£3.97 80.05+39.46 25.67+0.77 26.19+0.77 25.94+0.95
Random (Cum. return norm 1) ‘ 0.00£0.00 ‘ 0.00£0.00 ‘ 0.00£0.00 ‘ 0.00£0.00 ‘ 0.00£0.00

(Steps/Success)

5.2 Insight Experiments

In the following, we gain insight into why LWM-Planner outperforms Reflexion and ReAct.

How does LWM-Planner with its atomic fact learning lead to a higher cumulative return
over time compared to baselines? To investigate why LWM-Planner achieves a higher normalized
cumulative return, as seen in Table 1, we can qualitatively investigate the facts that it learns throughout
its process. Specifically on TextFrozenLake (4 x 4; h = 0.9), it learns the hole locations through trial
and error initially, as a hole terminates an episode, then during its fact extraction stage it self extracts
facts that if it had known would have improved its state value future estimation ability, which is the
extraction of the atomic concise facts of where the holes in the state are, such that it can then avoid
these. We provide detailed facts that are retrieved as a case study in Section 1.

Moreover, while capable, ReAct struggled with long-horizon planning and adapting to subtle but
critical state changes that weren’t immediately obvious from the current observation alone. Whereas,
Reflexion, showed learning by refining its high-level strategy. However, its reflections were often

less granular than the atomic facts used by LWM-Planner, making it harder for the LLM to directly
use them for precise simulation during lookahead. Such benchmark trajectories and memories are
outlined in Section I.

Table 2: Comparison of increasing environment state-action space. Normalised cumulative return
(higher better) and steps per success (lower better); mean +95% CI, for each benchmark method
across each environment. LWM-Planner performs the best across all environments. Results are
averaged over three random seeds. Normalised cumulative return is the cumulative return normalized
to be between 0 and 100, where O corresponds to a Random policy, and 100 corresponds to the the
expert, or here the highest on average being LWM-Planner.

(Steps/Success |)

Method (metric) | TextFrozenLake (4x4; h=0.9) | TextFrozenLake (6x6; h=9) | TextFrozenLake (8 x8; h=5)
LWM-Planner (Cum. return norm %) 100.00+46.34 100.00£30.91 100.00+90.33
(Steps/Success J.) 6.00+£0.00 13.67+11.47 42.83-+80.65
ReAct + FEC (Cum. return norm 1) 85.90+31.81 90.87+£22.45 18.18+156.46
(Steps/Success J.) 6.00+0.00 77.33£199.12 -
ReAct (Cum. return norm 1) —114.10 +11.03 —279.57 + 8.57 —336.36 + 22.58
(Steps/Success) - _ _
Reflexion (Cum. return norm 1) 17.31£13.16 47.83+14.12 —212.12+104.31
(Steps/Success) 23.33+£7.99 - -
Random (Cum. return norm 1) ‘ 0.00£0.00 ‘ 0.00£0.00 ‘ 0.00£0.00

Can LWM-Planner scale better with increasing state-action space? To investigate this we used
our procedurally generated TextFrozenLake environments to generate environments of increasing
board size, and hence state-action space. We tabulate these results for all the benchmarks in Table 2.
Interestingly, LWM-Planner achieves the highest normalised cumulative return, and crucially, as
the state-action space increases, the other baselines degrade; whereas LWM-Planner is still able to
online-learn and solve the environment. This verifies that the combination of both having the fact
extraction and compression, plus the ability to forward plan, is crucial, and provides an effective
in-context online learning method to learn the minimal fact representations of the environment, in
this case, where the holes are to solve the environment optimally.

6 Conclusion

We introduced an LLM agent framework, the LWM-Planner, that improves its planning and decision-
making capabilities through online, in-context learning. The agent extracts atomic facts from its
episodic experiences and uses these facts to augment the prompts for its core LLM-driven components:
action proposal, latent world model simulation, and state-value estimation. Planning is conducted via
a recursive lookahead search that leverages these LLM functionalities.

Our approach allows the agent to distill crucial knowledge from its interactions and apply it to
future reasoning, leading to more accurate simulations and value assessments within its lookahead
search. This occurs without any LLM fine-tuning, relying entirely on the power of in-context learning
augmented by dynamically generated facts. We provided a theoretical motivation for this fact-based
approach, linking agent performance to the quality of the learned factual abstraction and the LLM’s
simulation fidelity.

Empirical evaluations on ALFWorld tasks suggest that the LWM-Planner can effectively learn from
experience, leading to improved success rates and more optimal behavior over time compared to
baselines that lack this focused fact-learning mechanism or deep lookahead. The key lies in providing
the LLM with the specific, missing pieces of information (atomic facts) it needs to better ground its
powerful generative and reasoning capabilities in the context of the current task.

Future work includes exploring more sophisticated fact extraction and management techniques, such
as leveraging insights from causal discovery to identify truly influential facts; dynamically adjusting
search depth based on task complexity or uncertainty; and investigating methods for the agent to
explicitly identify when its factual knowledge is insufficient and trigger targeted exploration. The
LWM-Planner represents a step towards more robust, adaptive, and experience-grounded LLM agents
for complex sequential decision-making.

Acknowledgements

We extend our gratitude to the anonymous reviewers, area and program chairs, and members of the
van der Schaar lab for their valuable feedback and suggestions. SH, ML & TP gratefully acknowledge
the sponsorship and support of AstraZeneca. This work was supported by Azure sponsorship credits
granted by Microsoft’s Al for Good Research Lab and by Microsoft’s Accelerate Foundation Models
Academic Research Initiative.

References

D. Abel, N. Umbanhowar, K. Khetarpal, D. Arumugam, D. Precup, and M. Littman. Value preserving
state-action abstractions. In International Conference on Artificial Intelligence and Statistics,
pages 1639-1650. PMLR, 2020.

A. A. Alemi, 1. Fischer, J. V. Dillon, and K. Murphy. Deep variational information bottleneck. In
International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=HyxQzBceg.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

H. Chae, N. Kim, K. T.-i. Ong, M. Gwak, G. Song, J. Kim, S. Kim, D. Lee, and J. Yeo. Web agents
with world models: Learning and leveraging environment dynamics in web navigation. arXiv
preprint arXiv:2410.13232, 2024.

Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu, B. Chang, et al. A survey
on in-context learning. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 1107-1128, 2024.

N. Ferns, P. Panangaden, and D. Precup. Metrics for finite markov decision processes. In UAI,
volume 4, pages 162-169, 2004.

L. O. Gallegos, R. A. Rossi, J. Barrow, M. M. Tanjim, S. Kim, F. Dernoncourt, T. Yu, R. Zhang, and
N. K. Ahmed. Bias and fairness in large language models: A survey. Computational Linguistics,
50(3):1097-1179, 2024.

D. Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780, 2021.

P. Hager, F. Jungmann, R. Holland, K. Bhagat, I. Hubrecht, M. Knauer, J. Vielhauer, M. Makowski,
R. Braren, G. Kaissis, et al. Evaluation and mitigation of the limitations of large language models
in clinical decision-making. Nature medicine, 30(9):2613-2622, 2024.

S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu. Reasoning with language model
is planning with world model. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023. URL https://openreview.net/forum?id=VTWWvYtF1R.

S. Holt, T. Liu, and M. van der Schaar. Automatically learning hybrid digital twins of dynamical
systems. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024a. URL https://openreview.net/forum?id=S0si0bSdU2.

S. Holt, Z. Qian, T. Liu, J. Weatherall, and M. van der Schaar. Data-driven discovery of dynamical
systems in pharmacology using large language models. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024b. URL https://openreview.net/forum?
1id=KIrZmlTA92.

S. Holt, M. R. Luyten, A. Berthon, and M. van der Schaar. G-sim: Generative simulations with
large language models and gradient-free calibration. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=Pvk06rIixC.

N. Jiang, A. Kulesza, and S. Singh. Abstraction selection in model-based reinforcement learning.
In F. Bach and D. Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 179-188, Lille, France,
07-09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/jiangl5.html.

10

https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=VTWWvYtF1R
https://openreview.net/forum?id=SOsiObSdU2
https://openreview.net/forum?id=KIrZmlTA92
https://openreview.net/forum?id=KIrZmlTA92
https://openreview.net/forum?id=PvkO6rIixC
https://proceedings.mlr.press/v37/jiang15.html

K. Kacprzyk, S. Holt, J. Berrevoets, Z. Qian, and M. van der Schaar. ODE discovery for longitudinal
heterogeneous treatment effects inference. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=pxI5IPeWgl.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1):99-134, 1998. ISSN 0004-3702. doi: 10.1016/
S0004-3702(98)00023-X.

T. Kagaya, T. J. Yuan, Y. Lou, J. Karlekar, S. Pranata, A. Kinose, K. Oguri, F. Wick, and Y. You. RAP:
Retrieval-augmented planning with contextual memory for multimodal LLM agents. In NeurIPS
2024 Workshop on Open-World Agents, 2024. URL https://openreview.net/forum?id=
Xf49Dpxuox.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine learning,
49:209-232, 2002.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiittler, M. Lewis, W. tau Yih,
T. Rocktdschel, S. Riedel, and D. Kiela. Retrieval-augmented generation for knowledge-intensive
nlp tasks, 2021. URL https://arxiv.org/abs/2005.11401.

L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for mdps.
In International Symposium on Artificial Intelligence and Mathematics, Al&Math 2006, Fort
Lauderdale, Florida, USA, January 4-6, 2006, 2006. URL http://anytime.cs.umass.edu/
aimath06/proceedings/P21.pdf.

T.J. Liu, N. Boullé, R. Sarfati, and C. J. Earls. LIms learn governing principles of dynamical systems,
revealing an in-context neural scaling law. arXiv preprint arXiv:2402.00795, 2024a.

Z. Liu, H. Hu, S. Zhang, H. Guo, S. Ke, B. Liu, and Z. Wang. Reason for future, act for now: A
principled framework for autonomous 1lm agents with provable sample efficiency, 2024b. URL
https://arxiv.org/abs/2309.17382.

J. Pearl. Causality. Cambridge University Press, 2 edition, 2009.

T. Pouplin, H. Sun, S. Holt, and M. Van der Schaar. Retrieval-augmented thought process as sequential
decision making. arXiv e-prints, pages arXiv—-2402, 2024.

B. Prystawski, M. Y. Li, and N. D. Goodman. Why think step by step? reasoning emerges from the
locality of experience, 2023. URL https://arxiv.org/abs/2304.03843.

B. Ravindran and A. G. Barto. An algebraic approach to abstraction in reinforcement learning. PhD
thesis, University of Massachusetts Amherst, 2004. AAI3118325.

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language agents with
verbal reinforcement learning. Advances in Neural Information Processing Systems, 36:8634-8652,
2023.

M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and D. Fox.
Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 10740-10749,
2020a.

M. Shridhar, X. Yuan, M.-A. Co6té, Y. Bisk, A. Trischler, and M. Hausknecht. Alfworld: Aligning
text and embodied environments for interactive learning. arXiv preprint arXiv:2010.03768, 2020b.

A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite mdps: Pac analysis. J. Mach.
Learn. Res., 10:2413-2444, Dec. 2009. ISSN 1532-4435.

R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Proceedings of the seventh international conference on machine
learning, pages 216-224, 1990.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

11

https://openreview.net/forum?id=pxI5IPeWgW
https://openreview.net/forum?id=Xf49Dpxuox
https://openreview.net/forum?id=Xf49Dpxuox
https://arxiv.org/abs/2005.11401
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
https://arxiv.org/abs/2309.17382
https://arxiv.org/abs/2304.03843

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. arXiv preprint
physics/0004057, 2000.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824-24837, 2022.

Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh. Translating natural language to planning goals
with large-language models, 2023. URL https://arxiv.org/abs/2302.05128.

K. Yang, Y. Liu, S. Chaudhary, R. Fakoor, P. Chaudhari, G. Karypis, and H. Rangwala. Agentoccam:
A simple yet strong baseline for llm-based web agents, 2025. URL https://arxiv.org/abs/
2410.13825.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
and acting in language models. In International Conference on Learning Representations (ICLR),
2023.

T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. Advances in Neural Information Processing Systems, 33:14129-14142,
2020.

12

https://arxiv.org/abs/2302.05128
https://arxiv.org/abs/2410.13825
https://arxiv.org/abs/2410.13825

Appendix

Table of Contents

A Extended Related Work 14
B Prompt Structures 15
B.1 Fact Extractor LLM Prompts (fo) o o . 15
B.2 Planner LLM Prompts (g¢)« . o o o 17
C Conceptual Details of LLM Component Prompts 20
C.1 Fact Elicitation and Memory Refinement LLM (Wyim) o oo o L L. 20
C.2 Planner LLM (g4) Components for Lookahead Search 21
D Algorithm Details and Reproducibility 23
E Theory 27

E.1 Theorem: Performance of Idealized Fact-Based Agent (IFBA) with Perfect Abstract
Model 27
E.2 Further Theoretical Considerations 28
F Benchmark Environments Details 31
F1 TextFrozenLake 31
F2 ALFWorld e 31
E3 CrafterMini e 32
G Benchmark Method Implementation Details 34
G.1 Random Agent. e 34
G.2 ReAct Agent 34
G.3 Reflexion Agent L 34
G.4 ReAct+FEC Agent (Ablation) 35
G.5 LWM-Planner (Our Method) 35
H Evaluation Details 37
I Case Study: LWM-Planner on TextFrozenLake (4x4) 38
J Additional Results 42
J.1 ALFWorld Full Results o 42
J.2 Ablation Study - LWM-Planner Variants 46
J.3 Main Table Results Un-Normalized 46
K Discussion of Limitations 47
K.1 Fact Managementand Quality 47
K.2 Planning and Simulation L. 47
K.3 In-Context Learning Constraints 48
K.4 Theoretical Framework and Assumptions 48
K.5 Broader Considerations and Future Work 48
L Ethical Considerations and Broader Impact 50
L.1 Ethical Considerations i vt 50
L.2 BroaderImpact 50

13

A Extended Related Work

Our work builds upon several lines of research in LLM-based agents, model-based reinforcement
learning, and the use of external knowledge for planning. The related work in the following extends
that given in the main paper.

LLM Agents Early LLM agents like ReAct [Yao et al., 2023] introduced the concept of inter-
leaving reasoning (thought) and action generation. Reflexion [Shinn et al., 2023] extended this by
incorporating self-reflection, where an LLM analyzes past failures to generate textual feedback for
future trials. This episodic learning is akin to our fact extraction, but Reflexion focuses on high-level
advice rather than structured atomic facts for a world model. Many agents operate in a model-free
manner or rely heavily on in-context exemplars from fixed datasets.

LLM-Based Planning and World Models Several approaches have explored using LLMs for
planning. Some use LLMs to score or propose actions within classical search algorithms like Monte-
Carlo Tree Search (MCTS) [Hao et al., 2023, Kagaya et al., 2024, Liu et al., 2024b]. For instance,
Retrieval-Augmented Planning (RAP) [Kagaya et al., 2024, Pouplin et al., 2024] retrieves full past
trajectories to inform MCTS, often requiring environment interaction for tree expansion. Other works
like [Chae et al., 2024] use LLMs to build explicit, but often one-step, world models that predict
state transitions or webpage changes. [Xie et al., 2023] use LLMs to translate natural language
goals into formal planning problems. Our approach differs by using the LLM itself as a latent world
model for multi-step simulation during lookahead, conditioned on dynamically extracted atomic facts,
rather than just retrieving raw trajectories or learning a separate explicit model. The idea of an LLM
as a “simulator” has been explored, e.g., for few-shot generation [Prystawski et al., 2023], but its
integration with online fact-based learning for improved planning is a novel aspect of our work.

A complementary research direction investigates using LLMs not just as simulators, but as architects
for designing them. Frameworks such as G-Sim use an LLM’s reasoning to propose a simulator’s
causal structure, which is then calibrated with empirical data [Holt et al., 2025]. This methodology of
using LLMs for automated model discovery has been effectively applied to discover interpretable
models of dynamical systems in fields such as pharmacology [Holt et al., 2024b] and to create hybrid
digital twins by having LLMs propose and optimize composite mechanistic and neural models [Holt
et al., 2024a]. This contrasts with our work, where the LLM functions directly as the simulation
engine, grounded by distilled facts from experience rather than by designing a separate model
structure. The idea that LLMs can intrinsically model dynamical systems has also been explored,
showing they can learn and extrapolate governing physical principles purely from in-context time
series data [Liu et al., 2024a].

Dyna-Style Architectures and Fact-Based RL. Our method is inspired by Dyna-style reinforce-
ment learning [Sutton, 1990, Sutton and Barto, 2018], where an agent learns a model of the world
from real interactions and then uses this model to generate simulated experiences for planning. In
our case, the “model” is implicitly represented by the set of atomic facts combined with the LLM’s
inherent simulation capabilities. The extraction of facts from trajectories is analogous to model
learning, and the lookahead search is planning with this model. While traditional Dyna uses tabular or
parametric models, we leverage the LLM’s ability to reason over textual facts. The concept of using
facts or symbolic knowledge in RL is not new [Abel et al., 2020], including outside the LLM domain,
for instance, through the discovery of ODEs for treatment effect inference [Kacprzyk et al., 2024].
Our integration of LLM-driven simulation with online atomic fact extraction brings this paradigm
into the modern LLLM agent landscape.

Knowledge Augmentation for LLMs Retrieval-Augmented Generation (RAG) [Lewis et al.,
2021] is a common paradigm for providing LLMs with external knowledge. Our fact extraction and
augmentation mechanism can be seen as a specialized form of RAG where the “retrieved” knowledge
(atomic facts) is actively generated and refined from the agent’s own experience rather than drawn
from a static corpus. This makes the knowledge highly task-specific and current, directly addressing
the information needs identified through interaction, rather than relying on potentially less relevant or
outdated general knowledge.

Our work distinguishes itself by the tight integration of online atomic fact learning from episodic
experience with an LLM-driven, multi-step lookahead planner where the LLM serves as both a latent

14

world model and value function, all operating in-context without weight updates. This focus on
distilled, symbolic knowledge (atomic facts) aims to provide a more structured and efficient way for
the LLM to learn from experience compared to methods relying on raw trajectory retrieval or general
textual reflections.

B Prompt Structures

This section provides the core prompt structures employed by LWM-Planner’s LLM components.
These conceptual prompts are dynamically populated at runtime with specific content such as envi-
ronment descriptions ({{env_description_str}}), the current set of atomic facts ({{current_-
facts_list_str}}), the current observation ({{current_observation_str}}), and relevant
interaction history ({{history_lines_str}}). All LLM interactions leverage a structured function-
calling interface. The prompts guide the LLM to produce a “thought” (chain-of-thought reasoning)
and then invoke a specified function with the relevant arguments, following Wei et al. [2022].

B.1 Fact Extractor LLM Prompts (fy)

Invoked post-episode to extract new atomic facts and refine the fact memory. These LLM calls use a
temperature of 0.0 for deterministic fact processing.

B.1.1 Fact Elicitation from Trajectory (fact_extraction)

Fact Elicitation Prompt:

SYSTEM: You are an expert agent.

USER: You are a LLM fact extraction agent. Operating in the following
environment defined below. Your task is to extract atomic facts that you did
not know already to help with predicting the next state value / next reward,
such that if you had this fact you would have improved your prediction for
the next state value, when being a world model (that is be able to complete
the task optimally in the minimum number of steps, therefore extract key
information that helps you).

ENVIRONMENT DESCRIPTION:

{{ env_description_str }}

episode_trajectory_summary_str // This includes: Outcome: episode_-
outcome_str (Total Reward: ...) // And a sequence like: // "1. 0Obs: S00
| Act: wright | Reward: 0.0 | Next_0Obs: S01 // 2. 0bs: S01 | Act: douwn |/
Reward: -1.0 | Next_Obs: S11 (Hole)"

We already know and have the following facts (ensure you do not duplicate them)
(at beginning of episode):

{{ current_facts_list_str }}

// e.g., ["hole@(1,1)", "object_A_is_on_table_B"]

Now respond with minimal new atomic facts (at beginning of episode) that you
did not already know, for the rest of the states assume you already know them.
Make facts as concise as possible. Optimize them for other agents reading
and decision making given a current state. Never duplicate the facts if they
already exist within our following fact set. Do not include any other text
or reasoning, just the facts. If no new facts just return empty string. Use
function "fact_extraction" to do this now.

Function Call: fact_extraction Arguments: "thought": (string) Your reasoning
process for identifying these new facts. ‘"new_facts": (list of strings) The
list of newly extracted atomic facts. If no new critical facts are found,
provide an empty list. Example: ["hole_at(1,1)", "goal_at(3,3)"]

15

B.1.2 (Optional) Fact Memory Compression and Refinement (fact_redundancy_remover)

Fact Memory Compression Prompt:

SYSTEM: You are an expert agent.

USER: Remove any redundant facts that are already included in the list of all
facts given to you. You will also always be given the environment description,
therefore you can use that to help you remove any redundant facts. Always

keep all exhaustive factual knowledge, just remove any duplicate facts, or
redundant information already contained within the environment description.

You optimize the facts so they can be read by another LLM agent using them

for being a world model of the environment (where the agent has to simulate
given a state,action to predict the next state, next reward and terminal state).
Remove any redundancy, otherwise copy over the existing facts verbatim.

ENVIRONMENT DESCRIPTION:

{{ env_description_str }}

Facts (at beginning of episode):

{{ current_facts_list_for_compression_str }}

// e.g., ["hole_at(1,1)", "object_A_is_on_table_B", "hole_at(row=1,col=1)"]

List of all facts (at beginning of episode) that you did not know already (not
contained within the environment description) to help with predicting the

next state value / next reward, such that if you had this fact you would have
improved your prediction for the next state value, when being a world model.
Optimize them for other agents reading and decision making given a current
state. Use function "fact_redundancy_remover" to do this now.

Function Call: fact_redundancy_remover Arguments: "thought": (string) Your
reasoning for the compression and refinement decisions. "all_facts": (list of
strings) The refined, concise list of essential atomic facts.

16

B.2 Planner LLM Prompts (g4)

Used within the lookahead search. These LLM calls operate with a temperature of 0.0 for deterministic
planning outcomes, as described in Section 4.

B.2.1 Action Proposal (propose_actions)

Action Proposal Prompt:

SYSTEM: You must call propose_actions.

USER: You are an next best action proposing agent, task with solving the given
environment defined below optimally. Your task is to propose up to {{ branch_-
factor_int }} most likely next best unique actions to try next that make the
agent solve the environment task optimally.

Environment description:

{{ env_description_str }}

Atomic facts that help to predict next state value / next reward accurately (at
beginning of episode):

{{ current_facts_list_str }}

Current Observation:

{{ current_observation_str }}

Recent history (old->new):

{{ history_lines_str }}

// e.g., "Obs: 800 -> Adct: right -> Obs: S01"

You now see Observation: {{ current_observation_str }}. Now reason through
(using the atomic facts, and recent observation and action history), then give
propose up to {{ branch_factor_int }} most likely next best unique actions to
try next that make the agent solve the environment task optimally, each from {{
allowed_actions_list_str }}. You will call the function propose_actions to do
this.

Function Call: propose_actions Arguments: "thought": (string) Your reasoning
for selecting these actions. "actions": (list of strings) The proposed
actions.

17

B.2.2 Latent World Model - Single Step Simulation (simulate_step)

World Model Simulation Prompt:

SYSTEM: You must call simulate_step.

USER: You are a latent world model for the given environment defined below.
Given the current observation and an action, predict: the next (perhaps
latent) observation, immediate reward and done flag (whether the resulting
state ends the episode). You must be as accurate as possible, as your output
is used as a planner to solve the given environment optimally.

Environment description:

{{ env_description_str }}

Atomic facts that help to predict next state value / next reward accurately (at
beginning of episode):

{{ current_facts_list_str }}

Current Observation:

{{ current_observation_str }}

Recent history (old->new):

{{ history_lines_str }}

Given action to simulate the next observation and reward for:

{{ action_to_simulate_str }}

You now see Observation: {{ current_observation_str }}. Now reason through
(using the atomic facts, and recent observation and action history), and
predict the next (perhaps latent) observation, immediate reward, and done flag
(whether the resulting state ends the episode) after taking the given action
of {{ action_to_simulate_str }}. You must be as accurate as possible (for

the predicted reward, and ensure your predicted next observation has enough
observation information to predict future rewards for the given task in the
given environment), as your output is used as a planner to solve the given
environment optimally. You will call the function simulate_step to do this.

Function Call: simulate_step Arguments: "thought": (string) Your reasoning
for the predicted outcome. '"next_observation": (string) The predicted
(perhaps latent) observation after the action. "reward": (float) The
predicted immediate reward (float) after the action. "done": (boolean) True
if the resulting state ends the episode (terminal), false otherwise.

18

B.2.3 Value Estimator (estimate_value)

Value Estimation Prompt:

SYSTEM: You must call estimate_value.

USER: You are a state value function estimator for the given environment
defined below. You must predict the current cumulative future reward from

the current (perhaps latent) observation. You must be as accurate as possible,
as your output is used as a planner to solve the given environment optimally.
The environment’s discount factor is {{ discount_gamma_float }}.

Environment description:

{{ env_description_str }}

Atomic facts that help to predict next state value / next reward accurately (at
beginning of episode):

{{ current_facts_list_str }}

Current Observation (to predict the current cumulative future reward for):

{{ observation_to_evaluate_str }}

Recent history (old->new):

{{ history_lines_str }}

You now see Observation: {{ observation_to_evaluate_str }}. Now reason
through (using the atomic facts, and recent observation and action history),
and predict the current cumulative future reward from the current (perhaps
latent) observation. You must be as accurate as possible, as your output is
used as a planner to solve the given environment optimally. The environment’s
discount factor is {{ discount_gamma_float }}. You will call the function
estimate_value to do this.

Function Call: estimate_value Arguments: "thought": (string) Your reasoning
for this value estimate. "value": (float) The estimated state value (float).
The cumulative future reward from the current (perhaps latent) observation.

19

C Conceptual Details of LLM Component Prompts

This appendix provides a more formal conceptual overview of the prompts used to guide the LLM
components within the LWM-Planner framework, as detailed in Section 4. These prompts are
designed to elicit specific reasoning and generation capabilities from the LLMs, enabling them to
function as fact extractors, world model simulators, and value function approximators, all operating
through a structured function-calling interface. The specific fields like {{ env_description_str
}}, {{ current_facts_list_str }}, etc., are placeholders populated dynamically by the agent
at runtime.

C.1 Fact Elicitation and Memory Refinement LLM (Uy)

The Fact Elicitation and Memory Refinement LLM, denoted Wy (see Section 3.4), is responsible
for constructing and maintaining the agent’s symbolic Fact Memory, M. This typically occurs post-
episode, leveraging the trajectory 7. = (0o, ag, ro, - - ., o) from episode e. The process involves
two main LLM-driven function calls: fact extraction and fact compression/refinement.

C.1.1 Fact Elicitation (fact_extraction call)

* Objective: To identify a concise set of new, task-relevant atomic facts AF, from the trajectory 7e.
These facts, when incorporated into the existing M, are intended to improve the agent’s predictive
capabilities and decision-making quality, effectively learning and refining the abstraction function
v,

* Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }1}): A comprehensive description
of the environment G, including its rules, objectives, action space A, and the nature of
observations o € O.

2. Current Fact Memory ({{ current_facts_list_str }}): The set of atomic facts, M,
that the agent currently holds, passed as a list of strings.

3. Episode Trajectory Summary ({{ episode_trajectory_summary_str }}): A string
summarizing the completed episode 7., including the outcome (e.g., success/failure), total
reward, and a formatted sequence of observations, actions, rewards, and next observations.

* LLM Task Specification (Instructions guiding the LLM to generate arguments for the fact_-
extraction function):

1. Analyze the provided {{ episode_trajectory_summary_str 1}} in conjunction with the
{{ current_facts_list_str }}and {{ env_description_str }}.

2. Identify “minimal new atomic facts” (AF.) that are evidenced by or can be reliably inferred
from the trajectory and are not already present or directly implied by the {{ current_-
facts_list_str }}or {{ env_description_str }}.

3. Prioritize facts crucial for explaining significant trajectory events (e.g., unexpected rewards,
state transitions leading to success or failure, particularly those that would improve the
prediction of state values or rewards if known beforehand).

4. Ensure facts are concise, atomic, and adhere to any implicitly defined predicate vocabu-
lary illustrated by examples (e.g., hole_at (x,y) for TextFrozenLake, object_X_is_in_-
receptacle_Y for ALFWorld).

5. The LLM should structure its output to call the fact_extraction function, providing its
internal reasoning as the thought argument and the identified new facts as a list of strings for
the new_facts argument.

* Qualitative Goal: The LLM engages in a form of abductive reasoning to hypothesize underlying
environmental properties or dynamics. These hypotheses, framed as new atomic facts, should
explain observed phenomena in 7., especially aspects that were surprising or poorly modeled by
the existing M. The aim is to iteratively refine M, towards a more accurate and value-preserving
abstraction, contributing to minimizing €gjn,.

20

C.1.2 (Optional) Fact Compression and Refinement (fact_redundancy_remover call)

* Objective: To maintain a compact, non-redundant, and highly informative Fact Memory M, ;.
This enhances computational efficiency within the LLM’s context window and can improve the
generalization of the Planner LLM by focusing its attention on the most salient information.

* Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }}).
2. Augmented Fact Set ({{ current_facts_list_for_compression_str }}): The union
of the previous Fact Memory and newly extracted facts, M; U AF,, passed as a list of strings.

* LLM Task Specification (Instructions guiding the LLM to generate arguments for the fact_-
redundancy_remover function):

1. Review the entire provided set of facts for semantic overlap, direct redundancy (e.g., facts
identical to or trivially inferable from the {{ env_description_str }}), or subsumption
by more general facts within the set.

2. Generate a revised and refined fact set, M;,1, by removing or merging facts to enhance
conciseness while preserving all critical, distinct pieces of information essential for optimal
decision-making and world model accuracy.

3. The LLM should structure its output to call the fact_redundancy_remover function, pro-
viding its reasoning as the thought argument and the complete, refined list of facts as the
all_facts argument.

* Qualitative Goal: This process aims to manage the complexity of the abstract state representation
|Zx|. By ensuring M, ; is maximally informative yet minimally redundant, it helps focus the
Planner LLM’s reasoning and prevents dilution of critical information, especially within a fixed
context window.

C.2 Planner LLM (g4) Components for Lookahead Search

The Planner LLM, gy, is central to the lookahead search mechanism described in Section 4. It is
invoked through three distinct function calls to propose actions, simulate their outcomes, and estimate
the value of states encountered during the search. An abstract state z;, at any point in the search (real
or simulated) is effectively represented by (ox, M}), where oy, is the observation at that point and
M is the agent’s current, fixed set of atomic facts for the episode.

C.2.1 Action Proposal (propose_actions call)

* Objective: To generate a focused yet diverse set of up to kp candidate actions from the current
(potentially simulated) observation oy, that are relevant for achieving the task goal or for effective
exploration during planning.

* Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }}).

2. Current Atomic Facts ({{ current_facts_list_str }}): The agent’s Fact Memory,
M;.

3. Current Observation ({{ current_observation_at_node_k_str 1}1}): The observation
oy, from which actions are to be proposed.

4. Recent Trajectory History ({{ recent_history_for_prompt_str }}): An excerpt of
the (simulated or real) trajectory within the current lookahead search (or agent history) leading
to og. This is typically a list of "Obs: ..." and "Act: ..." strings.

5. Available Actions ({{ available_actions_list_str }}): The set of legally permissible
actions A(sy) from the underlying ground state s, corresponding to oy, (or the full action set
A).

6. Branching Factor ({{ branch_factor_k_B_int }}): The maximum number of actions
to propose.

* LLM Task Specification (Instructions for the propose_actions function): Given oy, M, and
{{ recent_history_for_prompt_str }}, propose up to {{ branch_factor_k_B_int 1}}
distinct actions from {{ available_actions_list_str 1}} that appear most promising. The
selection should be informed by the current understanding of the environment as encoded in M
and the immediate context og. The LLM returns its reasoning (thought) and the list of actions.

21

C.2.2 Single-Step Abstract Simulation (simulate_step call)

* Objective: To predict the immediate outcome—next observation o;-, immediate reward 7, and ter-
mination status d;-—of executing a proposed action a; from the current observation oy, conditioned

on the Fact Memory M. This approximates the abstract transition 7w and reward Ry functions.
 Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }}).

2. Current Atomic Facts ({{ current_facts_list_str }},i.e., My).

3. Current Observation ({{ current_observation_at_node_k_str }}, i.e., ok).

4. Action to Simulate ({{ action_to_simulate_str }},ie.,a; € A).

5. Recent Trajectory History ({{ recent_history_for_prompt_str }})leading to o.

* LLM Task Specification (Instructions for the simulate_step function): Predict the next_-
observation (o)), reward (r;), and done (dj) status that would result from taking {{
action_to_simulate_str }} from {{ current_observation_at_node_k_str }}, given
{{ current_facts_list_str }}. The prediction should be deterministic (temperature for this
LLM call is 0.0 as per Section 4) and consistent with the known facts and environment rules. The
LLM returns its reasoning (thought) and these three predicted outcomes.

Qualitative Goal: The LLM leverages M, to make informed predictions. For instance, a fact like
hole_at (x,y) should lead to a prediction of a terminal state and negative reward if a; leads to
(x,y). If facts are insufficient, the LLM relies on its pre-trained knowledge, as discussed in the
context of minimizing dpedel-

C.2.3 Abstract State-Value Estimation (estimate_value call, approximating VMW)

* Objective: To estimate the expected total discounted future reward, V(ox|M;) = Vi (zk),

obtainable from the abstract state z, = (o, M), particularly for leaf nodes in the lookahead
search tree.

* Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str 1}3}).

2. Current Atomic Facts ({{ current_facts_list_str }},i.e., M,).

3. Observation to Evaluate ({{ observation_to_evaluate_str 1}},i.e., o).

4. Recent Trajectory History ({{ recent_history_for_prompt_str }}) leading to o.
5. Discount Factor ({{ discount_gamma_float }},i.e., 7).

¢ LLM Task Specification (Instructions for the estimate_value function): Estimate the cumu-
lative future discounted reward (value) achievable from {{ observation_to_evaluate_str
}}, considering {{ current_facts_list_str 1}} and the overall task objective. The estimation
should be deterministic (temperature for this LLM call is 0.0). The LLM returns its reasoning
(thought) and the estimated value.

* Qualitative Goal: The LLM assesses the long-term utility by considering the strategic implications
of known facts (e.g., proximity to a goal, known hazards, locked doors leading to goal areas)
relative to the task.

The LWM-Planner’s lookahead search (Section 4) systematically invokes these LLM functionali-
ties. The propose_actions function generates branches, simulate_step projects these branches
forward one step in the abstract model My, and estimate_value provides valuations VM at the
search frontier or for terminal states. This entire process relies on the dynamically updateciP M to
ground the LLM’s powerful generative and reasoning capabilities in task-specific, experience-derived
knowledge.

22

1

N-TE-CIEEN R R

—
W N = O

[
wm

D Algorithm Details and Reproducibility

The LWM-Planner agent enhances its decision-making by iteratively learning atomic facts and using
them in a lookahead planning process. This section details its operational cycle, broken down into
a main agent loop (Algorithm 1) and sub-algorithms for the core planning (Algorithm 2) and fact
learning (Algorithm 3) phases. This modular description aims to provide clarity for reproducibility,
aligning with the methodology presented in Section 4 and the agent’s Python implementation. Key
LLM interactions are managed via a structured function-calling interface, detailed in Appendix B
and Appendix C.

Algorithm 1: LWM-Planner: Main Agent Loop

Initialize : Global Fact Memory M «+ 0;
LLM Components: ¥ v: Fact Extractor & Refiner LLM, g4: Planner LLM, comprising

propose simulate value.

9e 94 196 s
Hyperparameters: Dy, kp,, Asteps Tmaxs Hr;
Short-term history buffer H <+ deque(maxlen=H7,);

for episode e < 1 to E do

B.+0; # Episode trajectory buffer for (o,a,r*®* o’ d) tuples
0, < env.reset();

‘H.clear(); H.append(FormatAsHistoryString("Obs: ", 0;)) ; # Reset history
Meurrent_ep < M5 # Snapshot of facts for consistent planning

for ¢t < 0 to T, — 1 do
a; < RecursiveLookaheadPlan(os, H, Mcurent_ep> Ds, KB, 7V, Asiep 96):
Execute a} in environment G; observe real (0441, 7%, dyy1);
Add (Ota CLI, ,r.;eal, Ot+1, dt-‘rl) to Be;
H.append(FormatAsHistoryString("Act:", a}));
‘H.append(FormatAsHistoryString("0bs:", 0141));
Ot <= Ot41;
if dt+1 then
L break ; # End episode if terminal state reached

| M « LearnFactsAndUpdateMemory(B., M, env_description_str, Vipm);

Main Agent Loop (Algorithm 1) The LWM-Planner operates over a series of E episodes.

* Initialization (Lines 1-5): The agent starts with an empty global Fact Memory (M). The
LLM components are defined: Wy for managing facts and g4 for planning. The planner

gy internally comprises three distinct LLM-driven functionalities: g, ™™ for proposing

actions, gf;m“me for simulating outcomes of actions, and gZ;“l“e for estimating the value
of states. Hyperparameters critical for the agent’s operation are set, including maximum
search depth D, branching factor kg, discount factor v, step penalty Agep, maximum steps
per episode Thax, and the length Hj, of the short-term interaction history buffer . This
buffer H stores a rolling window of the most recent observations and actions (conceptually
as formatted strings, e.g., "Obs: <obs_string>") to provide immediate context to the
LLMs.

* Episodic Interaction (Lines 6-16): For each episode:

— An episode buffer B, is initialized to log the sequence of interactions. The environment
is reset, and the initial observation oy is used to initialize . A snapshot of the current
global Fact Memory, M cyrent_cp 1S taken to ensure that planning within the current
episode uses a consistent set of facts learned up to that point.

— Per-Step Cycle (Lines 7-14): The agent interacts with the environment step-by-step.

+ Planning (Line 7): The RecursiveLookaheadPlan sub-algorithm (Algorithm 2)
is invoked. This function takes the current observation oy, the short-term history H,
the episode’s fact set Myrrent_ep, and planning hyperparameters to determine the
best action a;.

23

+ Interaction & Recording (Lines 8-12): The chosen action af is executed in the
actual environment G. The resulting transition (next observation oy 1, real reward
rgea‘, and done signal d;1) is recorded in .. The short-term history # is updated
with af and o4, 1. The current observation o, becomes 0, 1.

+ Episode Termination (Line 14): If a terminal state is reached (d;; is true), the
inner step loop concludes.

— Fact Model Learning (Line 15): After the episode finishes, the
LearnFactsAndUpdateMemory sub-algorithm (Algorithm 3) is called. This
function processes the trajectory B, and the facts known at the start of the episode

(M current_ep) to update the global M.

Algorithm 2: LWM-Planner: Recursive Lookahead Plan

1 Function RecursiveLookaheadPlan (Ocu, Heurr, Mep, Ds, KBy Y, Astep, 930 ¢

2

3
4

e ® N S wn

11

12

13

14

15
16
17

18
19
20

21
22
23
24
25
26
27

28

29
30

31

Candidate actions {a; };-\Z‘lgk‘? — ggropose(ocum Heurrs Mep);
if {a;} is empty then
L return a default action (e.g., random or no-op from available actions);
Qroot(a;) < —oo for all a;;
foreach candidate action a; € {a;} do
(03‘7 T, d;) — gZImU:Late(Ocurrv as, chrra Mep);
if d; then
‘ V(z;) «~0; # Terminal state, no future rewards
else
H; (_ 7-LCLII‘I‘ @
(FormatAsHistoryString("Act:", a;), FormatAsHistoryString("Obs:",0}));
V(z}) + EstimateNodeValue (0}, H};, Mep, Ds — 1,kp, 7, Asteps 96);
| Qroot(aj) T)\step + - V(Zé),

return arg max, Qroot(a;);

Function EstimateNodeValue (0node, Hnodes Mep, depth, kB, ¥, Aseps gg) s

if depth < 0 or 0,040 is known/simulated as terminal then
L return g;al“e (Onoden Hnode Mep);

propose

Candidate actions {ax} < ¢ A (Onode> Hnodes Mep)s
if {a} is empty then

L return gf‘l‘le(onode, Huode, Mep) # Leaf node: estimate value directly
Viode_val —00 ; # This will store maxy Q(Znode, ak)
foreach action ay, € {a)} do
(O;W Tk, d;g) — g;imulate (Onodea A, Hnodea Mep);
if dj, then

| V(=) 0
else

/HZ — Hnode ®
(FormatAsHistoryString("Act:", aj), FormatAsHistoryString("0bs:", 0}));

V(z},) < EstimateNodeValue(o},, H},, Mep, depth — 1, kg, 7, Astep, 90):

Q(Znodea ak) T —)\step + - V(Z;C)’
N V;lode_val — max(v;lode_vala Q(znodea ak));
return Vioge val ; # Node’s value is max Q of children

Recursive Lookahead Plan (Algorithm 2) This algorithm describes the planning process to select
an action at the current step ¢.

24

* Function RecursiveLookaheadPlan (Lines 1-12): This is the entry point for planning at
the root of the search (current actual state).

— Inputs: Current observation Ocyy, current short-term history Hy, the episode’s Fact
Memory M., max search depth Dy, branch factor kg, discount vy, step penalty Agep,
and the planner LLM collection g.

— Root Action Proposal (Line 2): gi;*™ generates initial candidate actions {a;} from

Ocurr- If nO actions are proposed, a default policy is invoked (Lines 3-4).

— Root Q-Value Calculation (Lines 6-13): For each proposed root action a;:

* The world model g;jmula‘e predicts the next state 0}, immediate reward 7, and done

status d}.
* If the simulated state 0;- is terminal (d;- is true), its future value V(zg) is 0 (Line 8).

Otherwise, the value V(z}) is obtained by calling EstimateNodeValue (Line 10)
for state 03- with remaining depth Dy — 1. The history 7—[;- for this recursive call is

the current history Hur extended by the action a; and simulated observation 0;.

 The Q-value Qroot(a;) is computed using the simulated reward 7, the step penalty
Asieps and the discounted estimated value V(z;) of the next state.

— Action Selection (Line 14): The action a; with the highest Qro0 Value is selected.

* Function EstimateNodeValue (Lines 16-31): This function recursively estimates the
value of a node o,4c in the search tree.

— Inputs: The node’s observation opede and its history path Hyode, Mep, current remaining
search depth depth, and other parameters.

— Base Cases (Lines 16-20):

If depth < 0, or if 0y0¢e 1s determined to be a terminal state, the recursion stops.

The value of 0404 is then directly estimated by g;‘““e

x If gg“’p ¢ fails to generate any actions from oyode, Onoge is also treated as a leaf, and

its value is estimated by gj"*.

— Recursive Step (Lines 22-30): If not a base case:

* Candidate actions {ay, } are proposed from opoqe Using ggmpose.

+ For each action ag: g™ yields (0, 7, d},).

« If dj is true, V'(z;,) = 0. Else, EstimateNodeValue is called recursively for o)
with depth-1 to get V'(z,).

The Q-value Q(znodge; ar) is calculated: 71, — Agep + 7V (27,).

- Return Value (Line 31): The function returns Viode vai = max,, Q(Znode, @k), repre-
senting V' (znode)-

All LLM calls by g4 components within the planning phase operate with a temperature
of 0.0 for deterministic evaluations. Results are memoized within a single planning step
(_value_cache in the implementation) to avoid redundant computations, as mentioned in
Section 4.

25

Algorithm 3: LWM-Planner: Fact Model Learning and Memory Update

Function LearnFactsAndUpdateMemory (B., Myuown, env_desc_str, Uypy)

Fact Extraction from completed episode trajectory

trajectory_summary_str < FormatTrajectorySummary(B.);

AF, + Ugriract (trajectory_summary_str, Mymown, env_desc_str) ; # Invokes
fact elicitation LLM

Update Fact Memory and Optionally Refine/Compress
Mcandidate — Mknown U Afe;
if compression hyperparameter is enabled then
L Maext_siobal <= PTen" (Mcandidate, €nv_desc_str) ; # Invokes fact compression
LLM

else
L Mnext_global < Mcandidate;
return Mex_global}

Fact Model Learning and Memory Update (Algorithm 3) This procedure, corresponding to
the reflect method in the agent’s codebase, is executed at the end of each episode e to update the
agent’s knowledge.

* Inputs (Line 1): The episode trajectory buffer 5., the Fact Memory Mpow, that was used
for planning during that episode, a description of the environment env_desc_str, and the
Fact Extractor & Refiner LLM WUy v.

* Fact Extraction (Lines 2-3): A textual summary (trajectory_summary_str) of the
trajectory in B, is created. The fact elicitation component, U™, processes this summary,
along with My,own and env_desc_str, to generate a set of new candidate atomic facts
AF..

* Memory Update and Refinement (Lines 4-8): The newly extracted facts AF, are com-
bined with Mypown. If fact compression is enabled (via the compress flag in the implemen-
tation), \I/f{‘{\‘f processes this combined set to produce the refined Fact Memory M ext_giobal-
Otherwise, the combined set becomes M ex_global-

* Output (Line 9): Returns the updated global Fact Memory M ex_global-

This iterative cycle enables LWM-Planner to adapt by progressively building a more accurate symbolic
understanding of its environment.

26

E Theory

This section provides the theoretical underpinnings of our fact-based reinforcement learning approach,
focusing on the performance guarantees of an idealized agent.

E.1 Theorem: Performance of Idealized Fact-Based Agent (IFBA) with Perfect Abstract
Model

Let 7w be the policy derived by the Idealized Fact-Based Agent (IFBA), as defined in Section 3.2
of the main text. If the ideal fact abstraction U* establishes an egy-approximate bisimulation
(Definition 3.2) between the ground MDP G and the induced abstract MDP My, and the planner for
My~ is eplan-optimal (Definition 3.3), then for any state s € S:

N - 2€;;
Vg (S) - Vg F(S) < 1 o + €plan (5)

E.1.1 Proof

The value loss of the policy 7 in the ground MDP G can be decomposed. Recall that g (s") =
Tory. (P(s)), where 7§, is the €plan-optimal policy found by the planner operating in the abstract
MDP My-«.

We express the total value loss as follows:
Vg (s) = Vgr(s) = (V§(s) = Vip,. (T7(s)))

T (vM (W°(s)) — Vo <‘P*<S>>>

+ (Vi o) -1)
Let’s analyze each term:

1. Term I: Abstraction Error on the Optimal Value Function
This term, (Vg (s) — Vyy, . (¥%(s))), represents the difference between the optimal value
function in the ground MDP and the optimal value function in the abstract MDP, mapped
back to the ground state via U*. By Definition 3.2 (specifically, Equation (1) in the main
text), the property of egm-approximate bisimulation directly bounds this difference:
* * * €sim
Vg (s) = Vir,. (¥ (s)) < 7—
-
2. Term II: Planning Error in the Abstract MDP
This term, (VJC}W (T*(s)) — VATK‘P (T*(s)) |, quantifies the sub-optimality of the policy

Th,. computed by the planner within the abstract model My-. By Definition 3.3, the
planner is €pja,-optimal, which means:

V];I\I,* (\IJ*(S)) - VMZ;,I;P* (\I/*(S)) S €plan

Since value functions are non-negative (assuming non-negative rewards or appropriate
initialization), this term is bounded by €pjan.

3. Term III: Abstraction Error on the Planned Policy’s Value
This term, (VATK‘P (U*(s)) — V5" (s) |, captures the difference between the value of the

planned policy 73, . when evaluated in the abstract MDP My~ versus its value when
executed in the ground MDP G (which is V7 (s) by definition of 7r). A key property
of egim-approximate bisimulation is that it not only bounds the difference in optimal value
functions but also the difference in value functions for any fixed policy that respects the
abstraction U*. Since 7 (s") = 73, . (¥*(s')), it respects the abstraction. Therefore, we
have [Ravindran and Barto, 2004]:

T * T €sim
Varr™ (U7(s)) = Vg7 (s)] < 15_7

27

Combining the Bounds:

Using the triangle inequality (X —Z = (X -Y)+ (Y -2) = | X -Z|<|X-Y|+|Y - Z)),
we can sum the absolute bounds of these terms. More directly, since Term II is already an upper
bound on the difference (not an absolute value), we have:

VG (s) = Vg©(s) < [V (s) = Vig,. (¥°(s))

(Vi (00 = Vil ()

VM:I;I'* (*(s)) — VgﬂF (s)

+
€sim €sim
> 1i7+6plan+ 1~
2€g
= 1 juily + €plan

This completes the proof, establishing the performance bound for the Idealized Fact-Based Agent
operating with a perfect abstract model My~ derived from an €gp,-approximate bisimulation U*, and
an €pjan-optimal planner. O

E.2 Further Theoretical Considerations

The theoretical framework presented in Section 3 and the proof in Appendix E.1.1 rely on the quality
of the fact-based abstraction W and the learned abstract model My . Here, we elaborate on two guiding
principles relevant to achieving a good abstraction and, consequently, robust agent performance:
bisimulation for state aggregation and the Information Bottleneck principle for fact minimality and
relevance.

E.2.1 Approximate State Abstraction and Bisimulation

The concept of €y,-approximate bisimulation (Definition 3.2) provides a formal grounding for why
a good fact-based abstraction can lead to provably near-optimal policies [Ferns et al., 2004]. A
bisimulation groups states of the ground MDP G that are behaviorally equivalent. In an exact
bisimulation, states s1, so are in the same abstract state z = W(s;) = W(s3) if, for any action a € A:

* They yield the same immediate reward: R(s1,a) = R(s2,a).

* They transition to the same distribution over next abstract states:), g , 7 (s}[51,a) =
1 z
> sres., T(sh]s2,a) forall 2’ € Zp.

The €, term in an approximate bisimulation relaxes these conditions, allowing for small differences
in one-step rewards and transition probabilities for states mapped to the same abstract state z. The
crucial implication, as shown in Equation (1), is that the value function VA*h* in the abstract MDP
My~ (induced by an €5,-approximate bisimulation ¥*) is close to the optimal value function V5 in
the ground MDP, with the error bounded by %

In LWM-Planner, the atomic fact set F; generated by the Fact Extractor fy for a ground state s forms
the basis of the abstract state z = ¥(s) = (o, Fs) (where o is the direct observation). The goal of
learning “critical” and “minimal” facts is to construct an abstraction ¥ that minimizes €gp,. That is,
the facts should capture enough information to ensure that states s, so mapped to the same (o, Fy)
have similar optimal values and similar optimal actions. If the extracted facts fail to distinguish
between ground states that are behaviorally different (e.g., one leads to a high reward and another to
a low reward with the same action), €5, will be large, and the performance guarantee in Equation (4)
degrades. The online learning of facts is a process of refining ¥ to better approximate a bisimulation
relevant to the task.

E.2.2 Information Bottleneck Principle and Fact Relevance

The desire for “minimal, yet impactful, units of knowledge” (atomic facts) aligns with the Informa-
tion Bottleneck (IB) principle [Tishby et al., 2000, Alemi et al., 2017]. The IB principle seeks to

28

find a compressed representation (bottleneck) Z of a source variable X that is maximally informative
about a target relevance variable Y, while minimizing the mutual information I(X; Z) (i.e., Z should
be a minimal sufficient statistic of X for predicting V).

In our context:

* The source variable X is the ground state s; (or the full trajectory history leading to s;).

 The compressed representation Z is the abstract state z; = W(s;), primarily defined by the
set of atomic facts Fj, derived from s, or its history.

 The target relevance variable Y can be conceptualized as the optimal action-value function
Qg (st,a), the optimal value function V¢ (s;), or even future rewards and observations.

The LWM-Planner’s fact extraction process aims to learn a ¥ (instantiated by fy) that distills Fj,
such that it is highly informative about V¢ (s¢) (to minimize €gy,) and future transitions/rewards
(to minimize dmodet When g4 uses these facts). The “atomicity” and “minimality” criteria for facts
directly serve the goal of compressing s; into F;, without losing task-critical information. A smaller,
more relevant set of facts:

* Reduces computational burden: Shorter prompts for the LLM components.

* Focuses LLM reasoning: Prevents dilution of critical information within the LLM’s limited
context window, allowing the LLM to better utilize its pre-trained knowledge by grounding
it on the most salient task-specific evidence.

» Improves sample efficiency for model learning: A smaller abstract state space |Zz|

generally means that learning the dynamics 7g and rewards Ry of the abstract MDP My
(implicitly done by g4) requires fewer samples (interactions) to achieve a 1ow dmogel [Strehl
et al., 2009].

The optional fact compression step in LWM-Planner explicitly attempts to enforce this minimality
by removing redundant or less informative facts, further aligning with the IB objective of finding a
maximally compressed yet sufficient representation. The quality of this compression directly impacts
the complexity and effectiveness of the learned abstract model and, consequently, the overall planning
performance.

By striving for fact-based abstractions that approximate bisimulations and adhere to information
bottleneck principles, LWM-Planner aims to construct an internal representation that is both robust
for planning and efficient for learning. The interplay between the quality of facts (egn,) and the
LLM'’s ability to simulate and value using these facts (dmode1) 1S central to achieving near-optimal
performance, as formalized in Equation (4).

E.2.3 Future Theoretical Directions and Open Questions

While the current theoretical framework provides initial motivation, several avenues for future
theoretical work could further solidify and extend the understanding of LWM-Planner and similar
fact-based LLM agents.

Causality in Fact Extraction A significant direction is the integration of causal reasoning into the
fact extraction process [Pearl, 2009]. Currently, atomic facts are evaluated in terms of correlation?,
capturing observed relationships (e.g., “action Z leads_to_failure_condition’). However, facts that
represent causal relationships (e.g., “action Z causes failure condition if precondition P holds’’) would
offer more robust and generalizable knowledge.

* Improved Generalization: Causal facts are more likely to hold true under slight variations
in the environment or task, potentially leading to a smaller d;,04e1 When the agent encounters
novel situations that share underlying causal structures.

* Intervention-based Learning: Future agents could be designed to perform specific in-
terventions (exploratory actions) aimed at discovering causal links, rather than passively
observing correlations. This could lead to more sample-efficient learning of highly impactful
facts.

2LLMs probably implicitly already perform some form of causal reasoning

29

* Counterfactual Reasoning: A fact base enriched with causal understanding could allow
the Planner LLM (g,4) to engage in more sophisticated counterfactual reasoning during
lookahead search (e.g., “what would have happened if I had chosen action B instead of A,
given these causal rules?”).

Developing methods for fy to reliably infer or validate causal statements from observational and
interventional data within interactive environments is a challenging but promising research area.

Formal Analysis of LLM-driven Components The current framework treats the LLM components
(g5, g™, gy, and Wiy) largely as oracles with certain performance characteristics (e.g.,

LLM simulation accuracy contributing to dmeger). Future work could delve into:

* Characterizing LLM Errors: More formally characterizing the types of errors LLMs make
in simulation and value estimation, and how these errors propagate through the lookahead
search to affect €ppan.

* Impact of Prompt Engineering: Theoretically analyzing the sensitivity of €gm and dmodel
to the quality and structure of prompts, including the presentation of atomic facts.

* Convergence of Fact Memory: Investigating conditions under which the learned Fact
Memory M, converges to a “sufficient” or “minimal” set of facts that guarantees a certain
level of performance (e.g., bounding €4, below a desired threshold).

Fact-Based Abstractions in Partially Observable MDPs (POMDPs) The current theoretical
analysis assumes an underlying MDP where states s; are fully observable or can be derived into
a sufficient structured representation. Many real-world scenarios are better modeled as POMDPs
[Kaelbling et al., 1998], where the agent receives observations o; that are incomplete or noisy
manifestations of the true underlying state s;.

* Belief State Abstraction: Future work could explore how atomic facts can be used to
form abstractions not directly over s;, but over belief states b(s;) = P(s;|history). Atomic
facts could represent properties of the environment that are inferred to be true with high
probability based on the observation history.

 Information-Gathering Facts: The agent might learn facts not just about the environment’s
dynamics, but about which actions are most informative for reducing uncertainty about
critical, unobserved aspects of the state, guiding exploration more effectively.

Addressing these theoretical questions will be crucial for advancing the capabilities and understand-

ing of LLM agents that learn and plan from interaction by building and reasoning over symbolic
knowledge representations like atomic facts.

30

F Benchmark Environments Details

We evaluate our LWM-Planner agent and baseline methods on three distinct, procedurally generated,
text-based environments. Each environment is designed to test different aspects of an agent’s learning
and planning capabilities, ranging from grid-world navigation with sparse rewards to complex
instruction following and multi-step crafting tasks.

F.1 TextFrozenLake

This environment is a procedurally generated text-based version of the classic FrozenLake problem
[Brockman et al., 2016].

* Objective: The agent must navigate from a starting position (S) at coordinates (0,0) to a
goal position (G) at (N — 1, N — 1) onan N x N grid. The grid also contains ice surfaces
(.) and holes (H). Reaching the goal yields a reward of +1.0, falling into a hole yields -1.0,
and all other steps yield 0.0. An episode terminates upon reaching the goal, falling into a
hole, or exceeding a maximum step limit.

* Procedural Generation:

— The grid size N (e.g., 4 x4, 6 x 6, 8 x 8) and hole density h are configurable parameters
at initialization.

— A key feature is the guarantee of at least one solvable path from start to goal. This is
achieved by first constructing a "Manhattan corridor" or a zig-zag safe path near the
diagonal to connect (0,0) and (/N — 1, N — 1). Holes are then sampled on the remaining
cells based on the hole_density parameter.

— The environment can be seeded for deterministic board generation and agent starting
position.

* Observation Space: The agent receives a textual observation describing its current state,
e.g., "You are at (0, 1) on ice.". This provides local information (current coordinates and
terrain type of the square it stands on) without revealing the global map layout.

non

* Action Space: The agent has four discrete actions: "up", "down", "left", "right". Actions
that would move the agent off the grid boundaries result in the agent remaining in its current
position but on the edge cell.

* Rewards: As described, +1.0 for goal, -1.0 for a hole, 0.0 otherwise.

» Episode Termination: An episode ends if the agent reaches the goal (G), falls into a hole
(H), or if the _step_count reaches max_steps. The max_steps is setto 8 x (N — 1),
which is four times the optimal path length in an empty grid.

* env_description: The environment provides a detailed textual description string that
includes the grid size, start/goal locations, reward structure, maximum steps, and hole
density, explicitly stating that a path to the goal is guaranteed.

F.2 ALFWorld

We utilize the standard ALFWorld (Action Learning From World) benchmark [Shridhar et al., 2020b],
which involves text-based agents performing tasks in simulated household environments based on
the ALFRED dataset [Shridhar et al., 2020a]. The A1fWorldEnv class in our codebase acts as a thin
adapter around the official ALFWorld text environment.

* Objective: The agent is given a high-level natural language instruction (e.g., "put some
spraybottle on toilet") and must navigate the environment, interact with objects and recepta-
cles, and manipulate objects to satisfy the goal condition.

¢ Environment Structure: ALFWorld environments are simulated indoor scenes (kitchens,
bedrooms, bathrooms) containing various receptacles (e.g., cabinets, drawers, countertops,
sinks) and objects (e.g., spraybottle, bowl, desklamp). Objects can be picked up, placed
in/on receptacles, and sometimes manipulated (e.g., heated, cleaned, sliced, though these
more complex interactions are often simplified or yield generic feedback in some wrapper
implementations).

31

Observation Space: The agent receives rich textual observations describing its current
location, visible objects and receptacles, its inventory, and feedback from its previous action.
The initial observation also includes the specific task goal.

Action Space: The environment defines a set of canonical action templates such as "look",

"non non "non

"inventory", "go to (receptacle)”, "open (receptacle)”, "close (receptacle)”, "take (object)

from (receptacle)”, "move (object) to (receptacle)”, "examine (something)", "use (object)",
etc..

Rewards: A reward of +1.0 is typically given upon successful completion of the task goal.
All other steps yield a reward of 0.0.

Episode Termination: An episode ends if the agent successfully completes the task or if
the maximum number of steps (max_steps, typically configured from a YAML file, e.g.,
base_config.yaml) is reached.

Task Variability: ALFWorld offers a diverse set of tasks (identified by task_id) cate-
gorized into different types (e.g., pick & place, heat & place, clean & place). For our
experiments, we randomly sample tasks from the "eval_out_of_distribution" split, as speci-
fied in the A1fWor1ldEnv constructor. Each task_id corresponds to a unique environment
configuration and goal.

env_description: The AlfWorldEnv provides a comprehensive env_description
string that outlines the nature of the environment, receptacles, objects, task structure, reward
system, maximum steps, the full list of admissible actions, and examples of interaction,
along with advice for the agent.

For some ablation studies or simpler scenarios, a minimal version, A1fMiniEnv, is also available.
It features a single, deterministically generated room with a fixed set of receptacle and object types
(e.g., "drawer", "shelf", "vase", "keychain") and a canonical goal like "put some vase in safe 1". This
version allows for more controlled experimentation by simplifying the state and action space while
retaining the core object interaction mechanics. It also features deterministic resets to a blueprint
state or a newly seeded state.

F.3 CrafterMini

CrafterMini is a procedurally generated, text-only, miniaturized version of the Crafter environment
[Hafner, 2021], designed to test planning for resource gathering and multi-step crafting.

Objective: The primary goal is to craft an "iron_pickaxe". This requires a sequence of
sub-goals: collecting raw materials (wood, stone, iron) and crafting intermediate tools
(wood_pickaxe, stone_pickaxe).

Environment Structure: The world is a N x N grid (default 5 x 5) with a toroidal
(wrap-around) topology. Each tile can be grass, tree, stone, iron, or water.

Procedural Generation:
— The grid size N and max_steps are configurable. The world is seeded for deterministic
generation.

— The grid is randomly populated with tiles, ensuring that at least one of each crucial
resource (tree, stone, iron) is present, making the game solvable.

— The reset () method can either restore an initial "blueprint” of the world or generate a
new world if a new seed is provided.

Observation Space: The observation is a textual string describing the agent’s current tile
type and coordinates, the terrain in the four cardinal directions, the agent’s inventory (e.g.,
"wood=3, stone=1"), and a list of tools already crafted.

Action Space: Actions are represented by integers with corresponding names:

— 0-3: Movement (north, south, east, west).

— 4: "collect" - Gathers a resource from the current tile if it’s a resource tile (tree, stone,
iron). Collecting turns the tile to grass.

— 5: "craft_wood_pickaxe" (requires 3 wood).
— 6: "craft_stone_pickaxe" (requires 1 wood, 3 stone).

32

— 7: "craft_iron_pickaxe" (requires 1 stone_pickaxe, 3 iron).

Crafting actions are only considered available if the recipe can be satisfied by the current
inventory and already crafted tools (e.g., a stone_pickaxe is consumed to make an iron_-
pickaxe). The RobustCrafterMiniEnv variant can also parse textual synonyms for these
actions.

* Rewards:
— Each step incurs a -1 reward (step cost).
— Crafting a wood_pickaxe gives +10 reward.
— Crafting a stone_pickaxe gives +20 reward.
— Crafting an iron_pickaxe gives +50 reward.

* Episode Termination: The episode ends immediately if an "iron_pickaxe" is successfully
crafted or if the number of steps reaches max_steps (default 4 x N?2).

* env_description: A detailed textual description outlines the grid, observation format,
action list with integer mappings, crafting recipes, rewards, and termination conditions.

These three environments provide a diverse set of challenges for evaluating the LWM-Planner’s

ability to learn from textual interactions, build effective world models through atomic facts, and plan
over extended horizons.

33

G Benchmark Method Implementation Details

This section provides a detailed overview of the high-level logic for each benchmark method evaluated
in our experiments. All LLM-based agents (LWM-Planner, ReAct, Reflexion, and ReAct + FEC)
utilize a frozen LLM (model gpt-40). LLM interactions are performed via API calls using a
common internal utility that supports structured function calling; no LLM weights are updated during
experiments. The default temperature for LLM calls in planning components (simulation, value
estimation) and fact processing is 0.0. For ReAct-style thought generation, a temperature of 0.3 is
typically used. The maximum token output for LLM responses is configured to 8512 tokens.

G.1 Random Agent
The Random agent serves as a basic non-learning baseline.

* Policy: At each step, the agent selects an action uniformly at random from the set of allowed
actions provided for the specific environment.

» State: It maintains a short-term memory buffer of observation-action pairs for logging
consistency, though this history does not influence its action selection.

G.2 ReAct Agent
The ReAct agent implements the Reason-Act prompting paradigm [Yao et al., 2023].

* Core Mechanism: The agent prompts an LLM to first generate a “Thought” (internal
reasoning) and then an “Action” to take in the environment.

¢ LLM Interaction:

— A prompt is constructed using a template specific to the ReAct style. This template
incorporates a description of the environment, the current observation, the recent
interaction history (formatted as a sequence of observations and actions), and the list of
allowed actions.

— The LLM is expected to provide its output in a structured format that distinguishes the
thought process from the chosen action.

» State: The agent maintains a short-term memory buffer (a deque of observation-action
strings) of a configurable length (e.g., 51 interactions). It also stores the most recent thought
generated by the LLM.

* Hyperparameters: Key parameters include the length of the interaction history, LLM
model, temperature, and maximum token limits.

G.3 Reflexion Agent

The Reflexion agent extends the ReAct agent by incorporating a self-reflection mechanism to learn
from past experiences [Shinn et al., 2023].

* Core Mechanism: In addition to ReAct’s thought-action cycle, after each episode, the
Reflexion agent analyzes its trajectory to generate a textual "lesson".

* Lesson Generation and Usage:

— Lessons are stored in a memory buffer (a deque) of a configurable maximum length
(e.g., 5 lessons).

— The ReAct prompt template is augmented to include these learned lessons, providing
additional context for future decisions.

— A post-episode reflection process involves constructing a summary of the completed
trajectory (including observations, actions, rewards, and overall outcome) and prompt-
ing an LLM to generate a concise, actionable lesson (typically < 20 words and prefixed
accordingly).

» State: In addition to the ReAct state, it maintains the buffer of lessons, a record of the
current episode’s trajectory (observations, actions, rewards, next observations), and the
cumulative reward for the current episode.

34

* Hyperparameters: Includes ReAct parameters plus the lesson buffer length and a reward
threshold to determine episode success for reflection purposes (e.g., 0.99).

G.4 ReAct + FEC Agent (Ablation)

This agent is an ablation of our full LWM-Planner. It combines the ReAct decision-making process
with the Fact Extraction and Compression (FEC) mechanism, but without lookahead search.

¢ Fact Mechanism:

— Maintains a memory buffer (a deque) of atomic facts with a configurable maximum
length (e.g., 200 facts).

— The ReAct prompt template is augmented to include these atomic facts.

— Fact Extraction: After each episode, a dedicated LLM-driven process analyzes the
trajectory summary, environment description, and existing facts to identify minimal
new atomic facts critical for improving predictions. The LLM is guided to output these
new facts in a structured manner.

— Fact Compression: If enabled, another LLM-driven process reviews the complete set of
current facts (newly extracted plus existing) along with the environment description. It
aims to produce a concise, refined set of facts by removing redundancies or information
trivially inferable from the environment description, again using a structured output
format.

* Decision-Making: Employs the standard ReAct thought-action cycle, but the LLM’s
reasoning is informed by the dynamically updated set of atomic facts included in its prompt.

* Hyperparameters: Includes ReAct parameters plus the fact buffer length and a flag to
enable/disable fact compression.

G.5 LWM-Planner (Our Method)

The LWM-Planner is our proposed agent that integrates online atomic fact learning with a recursive
lookahead search, where LLMs serve as key planning components.

» Base Functionality: It incorporates the same fact extraction and compression mechanisms
(Fact Extractor Wy y) as the ReAct + FEC agent. These facts are stored in a dynamically
updated memory buffer (a deque with a capacity of, e.g., 200 facts) and are used to augment
the reasoning of all LLM components.

* Core Planning Mechanism: Instead of a direct ReAct step, LWM-Planner performs a
depth-limited recursive lookahead search to select actions (Planner gg).

propose

— Action Proposal (g,): At each node in the search, an LLM module proposes
a set of plausible actions (up to a configurable branching factor, e.g., 4). This pro-
posal is conditioned on the current (potentially simulated) observation, the history of
interactions within the simulation, and the accumulated atomic facts.

— Latent World Model Simulation (g§™"*): For each proposed action, an LLM
module predicts the next (latent) observation, immediate reward, and termination
status. This simulation is conditioned on the current state, the action being simulated,
the simulation history, and the atomic facts. This LLM interaction operates with a
temperature of 0.0 for deterministic outcomes.

— Value Estimation (g;f‘l“e): At the leaves of the search tree (determined by a con-
figurable search depth, e.g., 3, or upon reaching a terminal state), an LLM module
estimates the discounted future cumulative reward (value) from that state. This estima-
tion is also conditioned on the state’s observation, simulation history, and atomic facts,
and uses a temperature of 0.0.

* Q-Value Computation: The Q-value for an action a,; from observation o; is computed as
Q(ot,a;) = 1" — Agep + 7V ('), where 1’ and o’ are from the simulation, Ayp is a step

penalty (e.g., -0.01), and + is the discount factor (e.g., 0.99). V(o’) is the estimated value of
the next state, derived either from further recursion or direct estimation at a leaf node.

35

» State and Caching: The agent maintains a short-term interaction history (e.g., last 51
interactions) and the set of learned atomic facts. Within a single planning phase (for one
action selection), results of LLM calls for action proposal, simulation, and value estimation
are memoized to avoid redundant computations. A set of known terminal observations is
also maintained across steps.

* Hyperparameters: Inherits fact-related parameters. Key planning parameters include
search depth, branching factor, discount factor for planning, and step penalty. Asynchronous
execution of LLM calls for different search branches is supported to improve computational
efficiency. The MCTS-based extension of this agent introduces further parameters like the
number of simulations and an exploration constant (UCT).

All LLM-based agents are initialized with a textual description of the environment and the set of
allowed actions. Their prompts are dynamically constructed to include the current observation,
relevant interaction history, and any learned knowledge (lessons or facts) appropriate for the specific
agent architecture.

36

H Evaluation Details

The experimental evaluation of our proposed LWM-Planner and baseline methods follows a structured
procedure to ensure fair comparison and robust assessment of performance. Key aspects of our
evaluation protocol are detailed below:

* Run Duration: Each agent method is run for a total of 300 environment steps per evaluation
trial, unless specified otherwise in a particular experiment. Within these 300 steps, an agent
may complete multiple episodes depending on task complexity and its efficiency.

* Metrics Tracked: We focus on the following quantitative metrics to assess agent perfor-
mance:

— Cumulative Return: This is the primary metric and is defined as the sum of all rewards
obtained by the agent over the entire 300-step run. It reflects the agent’s overall ability
to accumulate reward within a fixed interaction budget.

— Steps per Success: For environments that have a clear binary success condition (e.g.,
reaching the goal tile in TextFrozenLake, or successfully completing the assigned task
in ALFWorld), we record the number of environment steps taken within an episode to
achieve that success. This metric is typically reported as an average over all successful
episodes completed by the agent during its run. If an agent fails to achieve success in
an episode or across the entire 300-step run, it may not contribute to this average, or its
contribution might be noted as not applicable (e.g., marked as "—’ in results tables).

* Replication and Statistical Significance: To account for inherent stochasticity in agent
learning (if applicable) and environment generation (for procedurally generated tasks),
results for each method on each environment are averaged over multiple independent runs,
each initialized with a different random seed. The number of seeds is typically 3 or 10, as
specified in the respective table captions in Section 5. We report the mean of the metrics
and the 95% confidence interval (CI) to provide a measure of statistical significance and
variability.

* Normalized Cumulative Return: To facilitate comparison of agent performance across dif-
ferent benchmark environments, which may have varying reward scales and task difficulties,
we normalize the cumulative return. This normalization follows the methodology proposed
by Yu et al. [2020]:

Raw Score — Random Agent Score
Expert Agent Score — Random Agent Score

Normalized Score = 100 x

In our experiments:

— The “Random Agent Score” is the average cumulative return achieved by the Random
policy (described in Section G) on the specific environment.

— The “Expert Agent Score” is set to the average cumulative return achieved by the
highest-performing benchmark method observed in our experiments for that particular
environment. As per our findings (detailed in Section 5), LWM-Planner consistently
represents this expert level.

This normalization scales the performance scores to a range where 0 typically corresponds
to the Random agent’s performance, and 100 corresponds to the best performance observed
among the evaluated methods, providing a standardized measure of relative improvement.

37

I Case Study: LWM-Planner on TextFrozenLake (4x4)

This case study details the learning process of the LWM-Planner agent in a procedurally generated
our experiments (with a 90% chance any non-start/goal tile is a hole, and solvability_et;su;ec{), features
a high density of holes. Holes (H) terminate the episode with a negative reward. The agent’s objective
is to navigate from the starting position (S) at (0,0) to the goal (G) at (3,3). Ice tiles (.) are safe to
traverse.

The initial state of the grid is (S represents the Start/Agent):

. HH
. H

j==jita == 1R)]

H. .

HHG

The agent never observes this map, this is just for illustration. Instead the agent can only learn where
the holes are by falling down each hole at least once, motivating the need for a persistent memory.

Initial Exploration and Learning from Failures (Episodes 0-3)

In its initial episodes, LWM-Planner explores the environment and primarily learns by encountering
hazards. The atomic fact extraction mechanism is crucial during this phase for building a rudimentary
map of dangers.

» Episode 0: The agent’s first action is to move ‘down‘ from (0,0).
— Trajectory Snippet: Obs: You are at (0,0) on start. | Act: down |
R: -1.0 | Next: You are at (1,0) on hole.
— Outcome: FAILURE.
— Fact Extracted: (1,0) is a hole.
— Accumulated Facts (after Ep. 0): [’ (1,0) is a hole.’]

This first fact immediately informs the agent about a critical environmental feature.

* Episode 1: Aware of the hole at (1,0), the agent attempts a different path. It moves ‘right*
from (0,0) to (0,1), then ‘down* to (1,1), and then ‘down‘ again.

— Trajectory Snippet: ...0bs: You are at (1,1) on ice. | Act: down |
R: -1.0 | Next: You are at (2,1) on hole.
— Outcome: FAILURE.
— Fact Extracted: (2,1) is a hole.
— Accumulated Facts (after Ep. 1): [°(2,1) is a hole.’, ’(1,0) is a
hole.’]
* Episode 2: The agent continues to explore. From (0, 1), it moves ‘right*.
— Trajectory Snippet: ...0Obs: You are at (0,1) on ice. | Act: right |
R: -1.0 | Next: You are at (0,2) on hole.
— Outcome: FAILURE.
— Fact Extracted: (0,2) is a hole.
— Accumulated Facts (after Ep. 2): [°(0,2) is a hole.’, ’(2,1) is a
hole.’, °(1,0) is a hole.’]
» Episode 3: Another failed attempt reveals another hole. From (1,2), it moves ‘right*.
— Trajectory Snippet: ...0Obs: You are at (1,2) on ice. | Act: right |
R: -1.0 | Next: You are at (1,3) on hole.
— Outcome: FAILURE.
— Fact Extracted: (1,3) is a hole.

— Accumulated Facts (after Ep. 3): [°(1,3) is a hole.’, ’(0,2) is a
hole.’, ?(2,1) is a hole.’, ’(1,0) is a hole.’]

38

After these initial four failures, the agent has learned the locations of four distinct holes. This
knowledge is critical for subsequent planning using lookahead search, as these facts help the LLM-
based simulator predict negative outcomes.

First Success and Learning the Safe Path (Episode 4)

Equipped with knowledge of several hazards, LWM-Planner’s lookahead search can now better
evaluate potential paths, biasing away from known holes.

» Episode 4: The agent successfully navigates to the goal.
— Full Trajectory: (0,0) -> right -> (0,1) -> down -> (1,1) -> right ->
(1,2) -> down -> (2,2) -> right -> (2,3) -> down -> (3,3)
— Steps: 6 (Optimal for this grid)
— Outcome: SUCCESS (Reward: +1.0)
— Facts Extracted: A set of facts confirming the nature of the traversed safe tiles and the
goal location:
% (0,1) is ice.
(1,1) is ice.
(1,2) is ice.
(2,2) is ice.
(2,3) is ice.
(3,3) is the goal.
— Accumulated Facts (Snapshot after Ep. 4 includes): [’ (0,1) is ice.’, ’(1,1)
is ice.’, ..., 7(3,3) is the goal.’, ’(1,3) is a hole.’, ’(0,2)
is a hole.’, ’(2,1) is a hole.’, ’(1,0) is a hole.’]

¥ X ¥ X

*

This successful episode significantly expands the agent’s knowledge base, not just with more hazards,
but with positive confirmation of safe (ice) tiles and the goal’s location. This richer set of facts
allows the LLM-driven world model and value estimator to make more accurate predictions during
lookahead.

Refinement and Consistent Optimal Performance (Episodes 5 onwards)
Even after the first success, the agent continues to refine its understanding of the environment.

» Episode 5: The agent explores an alternative move from a state on the previously successful
path ((2,2)) and encounters another hole.

— Trajectory Snippet: ...0bs: You are at (2,2) on ice. | Act: down |
R: -1.0 | Next: You are at (3,2) on hole.
— Outcome: FAILURE.
— Fact Extracted: (3,2) is a hole.
— This further completes the agent’s map of hazards, particularly those adjacent to the
known safe path.
* Episode 6: The agent again reaches the goal in 6 steps, following the optimal path.

— Outcome: SUCCESS.
— Facts Extracted: [’(0,0) is the start.’, ’(0,0) is ice.’] (Identifying
properties of the start tile based on the successful trajectory.)
» Episode 7: The agent achieves another 6-step success. The LLM’s reflection process
identifies additional facts based on the episode’s context and existing knowledge.
— Outcome: SUCCESS.

— New Facts Extracted Include: °(0,3) is a hole.’, ’(3,0) is a hole.?’,
’(3,1) is a hole.’. The LLM also re-identified > (3,2) is a hole.’ (learned
in Episode 5), possibly due to its relevance in the broader context of successful naviga-
tion.

— Accumulated Facts (after Ep. 7):

39

[2(0,3) is a hole.’, ’(3,0) is a hole.’, °(3,1) is a hole.’,
’(3,2) is a hole.’, °(0,0) is the start.’, ’(0,0) is ice.?,
’(0,1) is ice.?’, °(1,1) is ice.’, °(1,2) is ice.’,

’(2,2) is ice.?’, ’(2,3) is ice.’, ’(3,3) is the goal.’,
’(1,3) is a hole.’, °(0,2) is a hole.’,

’(2,1) is a hole.’, °(1,0) is a hole.’]

At this stage, the agent has a fairly comprehensive map of the 4x4 grid, identifying most
holes and the safe path.

* Subsequent Episodes (e.g., Episodes 8-15 from trace): The agent consistently solves the
task by taking the optimal 6-step path. Fact extraction continues to refine its knowledge. For
example, in Episode 11, the fact > (2,0) is a hole.’ is added, correctly identifying one
of the remaining unknown holes. Other extracted facts often reinforce existing knowledge
(e.g.,>(0,1) is not a hole.’ in Episode 8, consistent with > (0,1) is ice.’). By
Episode 12, the agent’s fact list implies knowledge of all hole locations and the optimal
path.

Comparison with ReAct and Reflexion Baselines

To contextualize LWM-Planner’s performance, we compare its learning trajectory with ReAct and
Reflexion agents on the same TextFrozenLake instance (4 x 4, h = 0.9, seed 0).

ReAct Agent: The ReAct agent, which relies on in-context reasoning based on the current observa-
tion and a short interaction history, struggled significantly in this environment. Over 150 timesteps
(spanning 83 episodes in the provided trace), the ReAct agent failed to solve the task even once.

* Behavior Pattern: ReAct repeatedly fell into the same holes. For example, it fell into the
hole at (1,0) (by moving ‘down* from start) in Episode 0, and repeated this exact mistake
in Episodes 3, 4, 5,7, 10, 11, 13, 14, 15, 16, etc. Similarly, it frequently fell into the hole at
(2,1) (e.g., Episodes 1, 2, 6, 8,9, 12).

* Lack of Persistent Memory: This behavior demonstrates ReAct’s core limitation in envi-
ronments requiring persistent spatial memory beyond its immediate prompt context. Without
a mechanism to explicitly record and recall that "(1,0) is a hole" across episodes, it
re-discovers these hazards repeatedly. The short-term history provided in its prompt is
insufficient for building a persistent map of the environment.

ReAct’s performance highlights the challenge of pure in-context reasoning without a structured
memory mechanism for accumulating task-critical knowledge like hazard locations.

Reflexion Agent: The Reflexion agent incorporates an episodic self-reflection mechanism, generat-
ing textual "lessons" from past failures and successes. This allows for a degree of learning across
episodes.

* Initial Learning: Reflexion also initially failed, but its lessons attempted to capture insights.

— Ep 0 Failure: (fell into (1,0)) — Lesson: “Avoid moving into holes by evaluating the
safety of the next position before taking an action.” (General advice)

— Ep 1 Failure: (fell into (0,2)) — Lesson: “Avoid moving right from (0,1) on ice to
prevent falling into the hole and losing reward.” (More specific, state-action advice)

* First Success: Reflexion achieved its first success (optimal 6 steps) in Episode 5 (after 11
total environment steps, plus 4 prior failed episodes). This is notably slower than LWM-
Planner, which succeeded in Episode 4 (after 4 prior failed episodes, totaling 10 failure steps
+ 6 success steps = 16 steps to first success, vs Reflexion’s 4 failure episodes of 14+2+3+4 =
10 steps + 6 success steps = 16 steps to first success — wait, the LWM-Planner trace shows
1+3+2+4 = 10 steps for failures, so LWM-Planner also took 16 steps to first success).

* Nature of Lessons vs. Facts: Reflexion’s lessons are typically higher-level strategic advice
or state-action rules (e.g., "Avoid moving down from (1,1) on ice..."). While helpful,
these lessons are less granular and less directly usable for precise world model simulation

40

compared to LWM-Planner’s atomic facts (e.g., "(2,1) is a hole."). An atomic fact
directly describes a property of the environment state, which is crucial for simulating
outcomes.

* Consistency and Repeated Errors: Despite learning, Reflexion still exhibited some
inconsistent behavior and repeated errors. For instance, after its first success in Episode
5, it failed in Episode 6 by falling into (3,2) (a new hole). In Episode 7, it repeated the
mistake from Episode 1 by falling into (0,2), even though a lesson about it was generated.
This suggests that the general nature of lessons or the limited buffer for lessons might not
always prevent re-encountering hazards if the specific context isn’t perfectly matched by
an active lesson. It did achieve further successes (e.g., Ep 10, 11, 16, 17, 18), showing
progressive improvement, but its path to consistent optimal play was slower and less robust
than LWM-Planner’s.

Reflexion demonstrates learning through its self-generated advice, but the abstract nature of its
lessons and potential for lesson forgetting (due to a limited buffer) can make it less efficient and
robust than LWM-Planner’s fact-based learning in this type of task.

Analysis of LWM-Planner’s Advantage
This case study, when compared to ReAct and Reflexion, demonstrates LWM-Planner’s ability to:

1. Learn from Failures and Successes: Initial interactions quickly identify critical hazards
(holes), and successful trajectories confirm safe paths and the goal. Both types of experiences
are distilled into atomic facts.

2. Improve Planning via Fact Augmentation: The accumulated atomic facts dynamically
augment the prompts for the LLM components (proposer, simulator, value estimator). This
grounding significantly improves the LLM’s ability to:

* Simulate transitions more accurately (reducing d,,04e1 from our theoretical framework):
Knowing > (1,0) is a hole.’ means simulating ‘down‘ from (0,0) will correctly
predict a terminal state and negative reward. This precise knowledge is more effective
than ReAct’s lack of memory or Reflexion’s more general "avoid holes" advice.

» Estimate state values more effectively: States adjacent to known holes or leading
towards known safe paths to the goal will have more accurate value estimates, guiding
the lookahead search. LWM-Planner’s value estimation is directly informed by a
growing, precise map.

* Propose better actions: The action proposer is less likely to suggest actions leading
directly into known holes because the facts make these outcomes predictable during
the lookahead.

3. Achieve Consistent Optimal Behavior More Quickly: By building a sufficiently accurate
and granular fact-based abstraction () of the environment, LWM-Planner converges to
an optimal policy for this TextFrozenLake instance more rapidly and consistently than
Reflexion, and vastly outperforms ReAct. The agent’s performance, in terms of steps to
goal, rapidly improves and stabilizes at the optimal 6 steps after a few initial exploratory
episodes.

4. Leverage In-Context Learning with Structured Knowledge: All learning occurs via
prompt augmentation with dynamically generated, structured atomic facts, without any LLM
weight updates. This showcases the power of in-context learning when guided by distilled,
experience-derived knowledge that is directly usable for building an internal model of the
environment.

The conciseness and specificity of atomic facts (e.g., >(1,0) is a hole.’) provide verifiable
information that is directly usable by the LLM during its lookahead search. This contrasts with
ReAct’s inability to form such a persistent representation and Reflexion’s more general textual advice.

This progression from exploration and failure to consistent, optimal task completion highlights the
effectiveness of combining online atomic fact augmentation with LLM-driven lookahead search for
adaptive planning and decision-making, particularly when compared to methods with less structured
or less persistent learning mechanisms.

41

J Additional Results

J.1 ALFWorld Full Results

In the main paper we evaluate on three ALFWORLD environments, of ALFWORLD-A,
ALFWORLD-B, ALFWORLD-C which correspond to tasks 90, 3, and 5 respectively. To en-
sure exhuasitve evaluation we compare against all the ALFWORLD evaluation environments [Shinn
et al., 2023]. We tabulate these in Tables 3 to 6.

Table 3: Aggregated performance across all ALFWORLD 134 eval environments (single-seed runs,
95% Cls). Higher cumulative return 1 is better.

Method (metric) | ALFWORLD Aggregate
LWM-Planner (Cum. return 1) | 10.42+1.43
ReAct + FEC (Cum. return) | 8.53+0.93
ReAct (Cum. return 1) 5.00£0.09

0.00£0.00

|
Reflexion (Cum. return 1) \ 4.3640.10
Random (Cum. return 1) \

42

Table 4: Cumulative return per ALFWorld task (0-50). Higher 7 is better. Single-seed runs (no CI).

Environment LWM-Planner | ReAct + FEC | ReAct | Reflexion | Random
T T T T T
ALFWORLD-0 12.00 5.00 4.00 4.00 0.00
ALFWORLD-1 2.00 16.00 6.00 4.00 0.00
ALFWORLD-2 10.00 5.00 4.00 4.00 0.00
ALFWORLD-3 10.00 2.00 5.00 4.00 0.00
ALFWORLD-4 8.00 8.00 5.00 4.00 0.00
ALFWORLD-5 4.00 0.00 4.00 4.00 0.00
ALFWORLD-6 12.00 14.00 6.00 4.00 0.00
ALFWORLD-7 4.00 17.00 5.00 5.00 0.00
ALFWORLD-8 0.00 12.00 5.00 5.00 0.00
ALFWORLD-9 6.00 5.00 5.00 5.00 0.00
ALFWORLD-10 12.00 8.00 5.00 5.00 0.00
ALFWORLD-11 12.00 4.00 5.00 4.00 0.00
ALFWORLD-12 0.00 8.00 5.00 4.00 0.00
ALFWORLD-13 7.00 7.00 5.00 4.00 0.00
ALFWORLD-14 0.00 15.00 5.00 5.00 0.00
ALFWORLD-15 1.00 6.00 5.00 5.00 0.00
ALFWORLD-16 11.00 2.00 5.00 - 0.00
ALFWORLD-17 2.00 15.00 5.00 4.00 0.00
ALFWORLD-18 18.00 9.00 5.00 4.00 0.00
ALFWORLD-19 6.00 11.00 5.00 5.00 0.00
ALFWORLD-20 8.00 9.00 5.00 4.00 0.00
ALFWORLD-21 0.00 3.00 5.00 - 0.00
ALFWORLD-22 9.00 3.00 4.00 5.00 0.00
ALFWORLD-23 8.00 12.00 5.00 5.00 0.00
ALFWORLD-24 4.00 4.00 5.00 4.00 0.00
ALFWORLD-25 7.00 10.00 5.00 5.00 0.00
ALFWORLD-26 9.00 13.00 5.00 4.00 0.00
ALFWORLD-27 24.00 8.00 6.00 4.00 0.00
ALFWORLD-28 6.00 3.00 5.00 4.00 0.00
ALFWORLD-29 13.00 11.00 5.00 5.00 0.00
ALFWORLD-30 3.00 1.00 4.00 4.00 0.00
ALFWORLD-31 8.00 11.00 5.00 5.00 0.00
ALFWORLD-32 11.00 7.00 6.00 4.00 0.00
ALFWORLD-33 1.00 8.00 4.00 4.00 0.00
ALFWORLD-34 1.00 5.00 5.00 5.00 0.00
ALFWORLD-35 26.00 3.00 6.00 4.00 0.00
ALFWORLD-36 5.00 7.00 6.00 4.00 0.00
ALFWORLD-37 14.00 3.00 5.00 4.00 0.00
ALFWORLD-38 10.00 6.00 5.00 4.00 0.00
ALFWORLD-39 23.00 3.00 5.00 5.00 0.00
ALFWORLD-40 2.00 13.00 5.00 4.00 0.00
ALFWORLD-41 2.00 16.00 5.00 4.00 0.00
ALFWORLD-42 20.00 12.00 4.00 4.00 0.00
ALFWORLD-43 5.00 4.00 6.00 4.00 0.00
ALFWORLD-44 11.00 10.00 5.00 5.00 0.00
ALFWORLD-45 7.00 6.00 5.00 5.00 0.00
ALFWORLD-46 1.00 8.00 5.00 5.00 0.00
ALFWORLD-47 4.00 8.00 5.00 5.00 0.00
ALFWORLD-48 13.00 4.00 5.00 4.00 0.00
ALFWORLD-49 0.00 2.00 5.00 5.00 0.00
ALFWORLD-50 3.00 5.00 5.00 3.00 0.00

43

Table 5: Cumulative return per ALFWorld task (51-100). Higher 7 is better. Single-seed runs (no
CD.

Environment LWM-Planner | ReAct + FEC | ReAct | Reflexion | Random
T 0)))
ALFWORLD-51 12.00 9.00 5.00 4.00 0.00
ALFWORLD-52 28.00 4.00 5.00 4.00 0.00
ALFWORLD-53 13.00 12.00 5.00 4.00 0.00
ALFWORLD-54 5.00 4.00 5.00 - 0.00
ALFWORLD-55 19.00 6.00 6.00 4.00 0.00
ALFWORLD-56 10.00 9.00 5.00 5.00 0.00
ALFWORLD-57 17.00 4.00 5.00 5.00 0.00
ALFWORLD-58 9.00 13.00 5.00 4.00 0.00
ALFWORLD-59 26.00 9.00 6.00 4.00 0.00
ALFWORLD-60 29.00 0.00 5.00 5.00 0.00
ALFWORLD-61 23.00 8.00 6.00 5.00 0.00
ALFWORLD-62 7.00 8.00 5.00 4.00 0.00
ALFWORLD-63 12.00 21.00 5.00 4.00 0.00
ALFWORLD-64 7.00 14.00 4.00 5.00 0.00
ALFWORLD-65 25.00 5.00 5.00 5.00 0.00
ALFWORLD-66 18.00 7.00 5.00 3.00 0.00
ALFWORLD-67 5.00 2.00 5.00 5.00 0.00
ALFWORLD-68 25.00 8.00 5.00 4.00 0.00
ALFWORLD-69 1.00 20.00 5.00 4.00 0.00
ALFWORLD-70 23.00 3.00 5.00 3.00 0.00
ALFWORLD-71 7.00 10.00 4.00 4.00 0.00
ALFWORLD-72 8.00 18.00 6.00 5.00 0.00
ALFWORLD-73 4.00 8.00 5.00 5.00 0.00
ALFWORLD-74 26.00 6.00 4.00 5.00 0.00
ALFWORLD-75 6.00 25.00 5.00 5.00 0.00
ALFWORLD-76 21.00 7.00 5.00 - 0.00
ALFWORLD-77 7.00 2.00 5.00 5.00 0.00
ALFWORLD-78 28.00 3.00 6.00 5.00 0.00
ALFWORLD-79 12.00 16.00 5.00 4.00 0.00
ALFWORLD-80 10.00 15.00 5.00 5.00 0.00
ALFWORLD-81 11.00 1.00 5.00 5.00 0.00
ALFWORLD-82 5.00 3.00 5.00 5.00 0.00
ALFWORLD-83 8.00 1.00 5.00 4.00 0.00
ALFWORLD-84 6.00 10.00 5.00 5.00 0.00
ALFWORLD-85 7.00 3.00 5.00 - 0.00
ALFWORLD-86 33.00 9.00 5.00 5.00 0.00
ALFWORLD-87 1.00 7.00 5.00 4.00 0.00
ALFWORLD-88 28.00 14.00 4.00 4.00 0.00
ALFWORLD-89 12.00 5.00 5.00 4.00 0.00
ALFWORLD-90 27.00 20.00 5.00 4.00 0.00
ALFWORLD-91 0.00 8.00 5.00 4.00 0.00
ALFWORLD-92 7.00 10.00 5.00 4.00 0.00
ALFWORLD-93 4.00 2.00 5.00 5.00 0.00
ALFWORLD-9%4 5.00 11.00 5.00 5.00 0.00
ALFWORLD-95 14.00 8.00 5.00 4.00 0.00
ALFWORLD-96 23.00 9.00 6.00 - 0.00
ALFWORLD-97 8.00 10.00 5.00 5.00 0.00
ALFWORLD-98 1.00 13.00 4.00 4.00 0.00
ALFWORLD-99 24.00 4.00 5.00 4.00 0.00
ALFWORLD-100 5.00 13.00 6.00 4.00 0.00

44

Table 6: Cumulative return per ALFWorld task (101-134). Higher 7 is better. Single-seed runs (no
CI).

Environment LWM-Planner | ReAct + FEC | ReAct | Reflexion | Random
)) T T)
ALFWORLD-101 7.00 20.00 5.00 4.00 0.00
ALFWORLD-102 30.00 4.00 5.00 5.00 0.00
ALFWORLD-103 4.00 12.00 4.00 4.00 0.00
ALFWORLD-104 9.00 7.00 5.00 4.00 0.00
ALFWORLD-105 11.00 10.00 5.00 4.00 0.00
ALFWORLD-106 8.00 5.00 5.00 - 0.00
ALFWORLD-107 17.00 3.00 5.00 4.00 0.00
ALFWORLD-108 - 14.00 4.00 4.00 0.00
ALFWORLD-109 10.00 2.00 5.00 4.00 0.00
ALFWORLD-110 9.00 12.00 5.00 5.00 0.00
ALFWORLD-111 24.00 7.00 6.00 - 0.00
ALFWORLD-112 14.00 10.00 5.00 4.00 0.00
ALFWORLD-113 7.00 1.00 6.00 - 0.00
ALFWORLD-114 6.00 9.00 5.00 4.00 0.00
ALFWORLD-115 0.00 10.00 5.00 - 0.00
ALFWORLD-116 22.00 6.00 5.00 4.00 0.00
ALFWORLD-117 0.00 28.00 5.00 4.00 0.00
ALFWORLD-118 0.00 8.00 5.00 5.00 0.00
ALFWORLD-119 2.00 12.00 5.00 - 0.00
ALFWORLD-120 5.00 7.00 6.00 5.00 0.00
ALFWORLD-121 28.00 12.00 5.00 4.00 0.00
ALFWORLD-122 3.00 7.00 5.00 5.00 0.00
ALFWORLD-123 10.00 4.00 5.00 4.00 0.00
ALFWORLD-124 4.00 4.00 5.00 4.00 0.00
ALFWORLD-125 4.00 15.00 6.00 4.00 0.00
ALFWORLD-126 22.00 9.00 4.00 4.00 0.00
ALFWORLD-127 20.00 2.00 4.00 5.00 0.00
ALFWORLD-128 6.00 13.00 4.00 5.00 0.00
ALFWORLD-129 0.00 12.00 4.00 5.00 0.00
ALFWORLD-130 0.00 13.00 5.00 4.00 0.00
ALFWORLD-131 18.00 4.00 5.00 3.00 0.00
ALFWORLD-132 8.00 6.00 5.00 5.00 0.00
ALFWORLD-133 3.00 9.00 5.00 4.00 0.00
ALFWORLD-134 18.00 30.00 5.00 4.00 0.00

45

J.2 Ablation Study - LWM-Planner Variants

We investigate the impact of the depth d, and branching factor b in our method on our main table of
environments presented. We find that the ablations reveal that we fit to the text frozen lake searching
MDP environment that having a depth of d = 3 and b = 4 performs best, which validates our initial
choice of parameters.

Table 7: Cumulative return (0 = Random, 100 = Expert/best). Higher 1 is better.

Method | alfworld_task_3 1 | alfworld_task_5 1 | alfworld_task_90 1 | crafter_mini_5_s_01 | grid_4_h_9_s 01
LWM-Planner (d=3, b=4) 15.33+39.62 21.004+228.71 34.67+85.20 119.33+£124.34 32.00tnan
LWM-Planner (d=3, b=2) 1.33£3.79 29.33+44.81 11.00+14.90 334.00+17.91 15.004+25.41
LWM-Planner (d=1, b=4) 27.00+£60.29 5.50+6.35 15.004+26.29 294.00+£327.46 6.00+165.18
LWM-Planner (d=2, b=4) 1.50+6.35 19.50+120.71 12.67+12.25 217.67+£249.46 0.00+nan

J.3 Main Table Results Un-Normalized

Table 8: Cumulative return (higher better) and steps per success (lower better); mean £+ 95% CI,
for each benchmark method across each environment. Bold indicates the best performing method
for that metric and environment. LWM-Planner is also referred to as Wolrd_parallel. Results are
averaged over ten random seeds.

(Steps/Success |)

Method (metric) ‘ TextFrozenLake (4x4; h=0.9) ‘ CrafterMini (5x5) ‘ ALFWORLD-A ‘ ALFWORLD-B ‘ ALFWORLD-C
LWM-Planner (Wolrd_parallel) (Cum. return 1) 31.80+20.39 150.30+-44.94 21.33+9.53 22.89+12.11 19.50+8.37
(Steps/Success |) 6.00+0.00 46.50+7.32 8.44+1.46 7.56+0.97 7.55+1.10
ReAct + FEC (Cum. return 1) 20.20£12.19 149.70+£55.50 4.70+2.46 15.50+6.51 10.60+3.71
(Steps/Success |) - 41.35+5.72 14.55+12.27 5.75+2.87 9.354+5.35
ReAct (Cum. return 1) -265.20+£33.59 92.00+£57.16 12.60+0.37 12.80+0.45 12.50+0.38
(Steps/Success |) - 50.70+£5.47 24.70+0.96 23.80+1.29 25.05+0.52
Reflexion (Cum. return 1) -61.10+4.80 87.20+51.45 11.00+0.00 11.00+0.45 11.33+£0.38
(Steps/Success |) 23.20£3.97 80.05+39.46 25.67+0.77 26.19+0.77 25.94+0.95
Random (Cum. return 1) ‘ -80.004+4.49 ‘ -289.00+8.56 ‘ 0.00-£0.00 ‘ 0.00£0.00 ‘ 0.00£0.00

46

K Discussion of Limitations

While LWM-Planner demonstrates a promising approach to enhancing LLM agent planning capabili-
ties through in-context learning via atomic fact augmentation and lookahead search, it is important to
acknowledge several limitations. These limitations, detailed below, also point towards avenues for
future research and refinement.

K.1 Fact Management and Quality

The efficacy of LWM-Planner is significantly predicated on the quality, relevance, and atomicity of
the facts extracted by the fy component.

* Quality and Relevance of Extracted Facts: The process for extracting facts is guided
by LLM-based interpretation of episodic trajectories (see Appendix B.1). While the aim
is to identify “minimal new atomic facts” critical for improving future predictions (as
per the motivation in Section 3.4), the current mechanism relies on the LLM’s heuristic
understanding. There is no formal guarantee that the extracted facts are indeed optimally
atomic, critical, or non-redundant with prior knowledge or the environment description.
Suboptimal facts could lead to inefficient use of the context window or, in worse cases,
mislead the planning process, thereby affecting the practical realization of minimizing ey,
and 6model~

* Scalability of Fact Memory: The set of atomic facts, My, is managed using a deque and
an optional LLM-based compression step (Appendix B.1). However, in very long-running
deployments or exceedingly complex environments, the number of unique, relevant facts
might still grow substantially. This could eventually strain the LLM’s context window
capacity, potentially leading to a performance bottleneck or the loss of older, still relevant
facts if the deque’s maximum length is exceeded or compression is overly aggressive. The
impact on achieving a small |Zx| < |S]| (Section 3.1) in such scenarios needs further
investigation.

* Nature of Atomic Facts: The current framework operates on textual atomic facts. While
flexible, this lacks a formal grounding typically found in symbolic Al systems where
predicates have precise semantics and grounding in an ontology or logical theory. The
definition of “atomic” is operational (minimal useful textual statements) rather than tied
to a formal decomposition of the state space or transition dynamics. This could limit the
systematicity and verifiability of the learned knowledge.

K.2 Planning and Simulation
The lookahead search mechanism, while powerful, also introduces certain limitations.

» Computational Cost: The recursive lookahead search (Algorithm 2) involves multiple LLM
calls for action proposal (gl(;mp %), state simulation (gf;mul‘“e), and value estimation (gfl“) at
each search node. The computational cost can therefore be considerable, scaling with search
depth (D;) and branching factor (kp). While memoization within a single planning step
helps (as mentioned in Section 4), the overall latency might be prohibitive for environments
requiring very rapid decision-making. Future work could explore how to hybridize some of

these components to reduce the computational burden.

* Fidelity of LLM-based World Model and Value Function: The core assumption is that
an LLM, augmented with relevant atomic facts, can serve as an accurate latent world model
(minimizing dmode1) and a reliable value estimator (contributing to minimizing €p1,n). While
LLMs have shown impressive reasoning capabilities, their simulations of environmental
dynamics or estimations of long-term value can be imperfect, especially in novel situations
not well-covered by the current fact set or for states requiring deep causal reasoning beyond
the LLM’s inherent capabilities. Errors in simulation or value estimation can directly lead to
suboptimal planning.

* Fixed Search Parameters: The current LWM-Planner employs a fixed search depth (D)
and branching factor (kp). This is a simplification, as optimal search effort can vary signifi-
cantly depending on the current state’s complexity or uncertainty. A more adaptive search

47

control mechanism, potentially guided by confidence scores from the LLM components,
could improve both performance and efficiency.

K.3 In-Context Learning Constraints

The reliance on in-context learning, while avoiding weight updates, has its own set of challenges
[Dong et al., 2024].

* Context Window Capacity: The primary constraint is the finite context window of current
LLMs. All learned knowledge (atomic facts) and recent interaction history must fit within
this window to inform the LLM’s operations. This inherently limits the total amount of
experience that can be directly brought to bear at any single decision point or during fact
extraction.

* Knowledge Retention and ‘“Forgetting’’: The management of the atomic fact set via a
deque and optional compression aims to keep the most relevant information. However,
there’s a potential for “forgetting” older facts that might still be crucial if they are pushed
out of the deque or overly compressed. The efficacy of the LLM-based compression in
preserving all and only essential information is heuristic.

* Rate of Learning and Adaptation: Learning occurs implicitly through the curation and
augmentation of the fact set. While this allows for online adaptation, the rate of learning or
the ultimate performance ceiling might be constrained by the LLM’s inherent in-context
learning capabilities compared to methods that can fine-tune model weights on accumulating
experience.

K.4 Theoretical Framework and Assumptions

The theoretical motivation in Section 3 provides a valuable formal basis but relies on certain idealiza-
tions.

* Idealized Abstraction: The framework assumes the possibility of an e, -approximate
bisimulation via fact-based abstraction U*. In practice, the LLM-driven fact extractor fy
approximates this ideal, and the quality of this approximation directly impacts the bounds.
Achieving and verifying such a bisimulation with textual facts is an open challenge.

* Perfect Abstract Model Assumption (Initially): Theorem 3.4 assumes a perfect model
My of the abstract MDP. While Equation (4) accounts for model learning error d,,04e1, the
practical estimation and minimization of this error when the model is implicitly defined by
an LLM conditioned on facts are complex.

* Measurability: Directly measuring quantities like €y, Or dpp0de1 for the LWM-Planner in
practical settings is difficult, making it challenging to empirically verify the tightness of the
derived theoretical bounds.

K.5 Broader Considerations and Future Work

* Dependence on Foundational LLM Capabilities: The performance of LWM-Planner is
intrinsically linked to the capabilities of the chosen LLM (e.g., its reasoning, simulation,
and instruction-following fidelity). Limitations in the base LLM will propagate to the agent
[Hager et al., 2024].

* Prompt Sensitivity: Like many LLM-based systems, the performance of LWM-Planner’s
components can be sensitive to the precise phrasing and structure of the prompts (examples
in Appendix B and C). Ensuring robustness and generalizability of these prompts across
diverse tasks and environments may require significant engineering or meta-learning.

* Generalization to Diverse Environments: The current empirical evaluation focuses on
text-based environments. Extending LWM-Planner to handle environments with continuous
state/action spaces, partial observability, or multi-modal inputs would require adaptations,
particularly in how atomic facts are defined, extracted, and utilized by the LLM components.

» Exploration-Exploitation Balance: LWM-Planner’s current lookahead search is primarily
geared towards exploitation of its current knowledge (facts and LLM capabilities). A

48

more explicit mechanism for exploration, perhaps by using uncertainty in LLM-generated
values or simulations to guide the search towards informative regions or to trigger targeted
fact-finding actions, could further enhance learning and performance.

* Cost of LLM Usage: The reliance on multiple LLM calls, especially within the lookahead
search, can lead to significant computational and API costs, which might be a practical
concern for widespread deployment or very long-running experiments.

Addressing these limitations offers rich avenues for future research, potentially leading to even more

robust, efficient, and broadly applicable LLM agents capable of sophisticated online learning and
planning.

49

L Ethical Considerations and Broader Impact

The LWM-Planner framework, while aimed at advancing Al planning capabilities, introduces several
ethical considerations and potential broader impacts that warrant careful discussion. Our approach
relies on Large Language Models (LLMs) for core functionalities such as fact extraction, latent world
model simulation, and value estimation. Consequently, it inherits both the strengths and weaknesses
inherent in current LLM technology [Gallegos et al., 2024, Hager et al., 2024].

L.1 Ethical Considerations

* Factual Accuracy and Reliability of Learned Knowledge: A core component of LWM-Planner
is the extraction and utilization of "atomic facts." The veracity and relevance of these facts are
paramount. If the ¥y component (Fact Extractor) erroneously extracts incorrect facts or mis-
interprets trajectory data, the agent’s world model and subsequent planning can become flawed.
This could lead to suboptimal or even detrimental behavior, particularly if the agent is deployed in
safety-critical applications. While our approach aims for "atomic" and verifiable facts, the LLM’s
generation process is not infallible, and mechanisms for fact validation and retraction may be
necessary for robust real-world deployment.

* Bias in LLM Components: The underlying LLMs (g4 and W) are pre-trained on vast datasets,
which may contain societal biases. These biases could manifest in how facts are interpreted or
generated, how states are valued, or how actions are proposed and simulated. For example, an LLM
might exhibit biases in simulated interactions involving representations of different demographic
groups if such biases were present in its training data. This could lead to unfair or inequitable
agent behavior if deployed in human-interactive settings. Ongoing research into bias detection and
mitigation in LLMs is crucial for addressing these concerns.

* Autonomy, Control, and Oversight: LWM-Planner enhances agent autonomy by enabling online,
in-context learning and adaptation without direct weight updates. While this is a research goal,
increased autonomy necessitates robust mechanisms for human oversight, control, and the ability
to intervene if the agent learns undesirable facts or behaviors. The "atomic facts" provide a degree
of transparency into the agent’s learned knowledge, which can aid in debugging and oversight, but
ensuring safe and aligned behavior in complex, long-horizon tasks remains a significant challenge.

* Computational Resources and Environmental Impact: Training and deploying large-scale
LLMs, even without fine-tuning for each task, requires significant computational resources, con-
tributing to energy consumption and environmental concerns. While LWM-Planner aims for
sample efficiency in terms of environment interactions, the LLM inference calls during planning
(especially with lookahead search) can be computationally intensive. Future work should consider
the efficiency of the planning and fact management processes to mitigate these impacts.

» Explainability and Trust: While the use of explicit "atomic facts" is intended to make the agent’s
reasoning more transparent than end-to-end black-box models, the internal decision-making of the
LLM components themselves (e.g., how géjmu]ate predicts a next state based on facts and observation)
remains complex. Building trust in such systems requires further advancements in methods for
interpreting and explaining LLM-driven reasoning processes, even when augmented with symbolic

facts.

L.2 Broader Impact

* Advancing AI Planning and Adaptability: This research contributes to developing more capable
Al agents that can learn from experience in-context and adapt their plans in dynamic environments.
This could have positive implications for various fields requiring sophisticated planning, such as
logistics, robotics, personalized education, and scientific discovery, by enabling agents to more
efficiently tackle complex, long-horizon tasks.

* Reduced Dependence on Extensive Fine-Tuning: The LWM-Planner’s ability to learn online
through fact augmentation reduces the need for repeated, task-specific fine-tuning of the base LLM.
This can lower the barrier to applying powerful LLMs to new sequential decision-making problems,
saving data and computational resources typically associated with training specialized models.

* Potential for Misuse or Unintended Consequences: As with any advanced Al technology, more
autonomous and adaptive agents could potentially be misused if deployed without appropriate

50

safeguards. An agent learning incorrect or malicious "facts" in an unconstrained environment could
lead to undesirable outcomes. Furthermore, the increasing capability of autonomous agents raises
long-term questions about their role in society and the workforce.

* Scalability and Generalization Challenges: While LWM-Planner shows promise, scaling the
approach to vastly more complex, open-ended, or partially observable environments presents
significant challenges. The manageability of the "atomic fact" base, the combinatorial explosion of
lookahead search (even if depth-limited), and the LLM’s ability to accurately simulate highly novel
scenarios are areas requiring further research. Overcoming these challenges is crucial for realizing
the broader positive impacts of such agents.

* Interaction with Humans: If LWM-Planner or similar agents are deployed in scenarios involving
human interaction, the nature of fact extraction and utilization becomes particularly sensitive. Facts
learned from human interactions must be handled with care to ensure privacy, fairness, and to
avoid perpetuating harmful stereotypes or misinformation. The design of human-agent interaction
protocols that allow for collaborative fact validation and refinement will be important.

Continued research, alongside open discussion and the development of robust safety and ethical

guidelines, will be essential to navigate the challenges and harness the benefits of increasingly
autonomous and adaptive LLM-based agents like LWM-Planner.

51

	Introduction
	Related Work
	Theoretical Framework for Fact-Based Reinforcement Learning
	Problem Formulation
	An Idealized Fact-Based Agent (IFBA)
	Performance Guarantees for Idealized Systems
	Discussion: Connecting to LLM-Based Agents

	Method: LLM Agent with Atomic Fact Augmentation and Lookahead Planning
	Experiments
	Main Results
	Insight Experiments

	Conclusion
	Appendix
	 Appendix
	Extended Related Work
	Prompt Structures
	Fact Extractor LLM Prompts (ExtractorLLM)
	Fact Elicitation from Trajectory (fact_extraction)
	(Optional) Fact Memory Compression and Refinement (fact_redundancy_remover)

	Planner LLM Prompts (gPhi)
	Action Proposal (propose_actions)
	Latent World Model - Single Step Simulation (simulate_step)
	Value Estimator (estimate_value)

	Conceptual Details of LLM Component Prompts
	Fact Elicitation and Memory Refinement LLM (PsiLLM)
	Fact Elicitation (fact_extraction call)
	(Optional) Fact Compression and Refinement (fact_redundancy_remover call)

	Planner LLM (g extunderscorephi) Components for Lookahead Search
	Action Proposal (propose_actions call)
	Single-Step Abstract Simulation (simulate_step call)
	Abstract State-Value Estimation (approximating V-M-Psi-tilde)

	Algorithm Details and Reproducibility
	Theory
	Theorem: Performance of Idealized Fact-Based Agent (IFBA) with Perfect Abstract Model
	Proof

	Further Theoretical Considerations
	Approximate State Abstraction and Bisimulation
	Information Bottleneck Principle and Fact Relevance
	Future Theoretical Directions and Open Questions

	Benchmark Environments Details
	TextFrozenLake
	ALFWorld
	CrafterMini

	Benchmark Method Implementation Details
	Random Agent
	ReAct Agent
	Reflexion Agent
	ReAct + FEC Agent (Ablation)
	LWM-Planner (Our Method)

	Evaluation Details
	Case Study: LWM-Planner on TextFrozenLake (4x4)
	Additional Results
	ALFWorld Full Results
	Ablation Study - LWM-Planner Variants
	Main Table Results Un-Normalized

	Discussion of Limitations
	Fact Management and Quality
	Planning and Simulation
	In-Context Learning Constraints
	Theoretical Framework and Assumptions
	Broader Considerations and Future Work

	Ethical Considerations and Broader Impact
	Ethical Considerations
	Broader Impact

