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Abstract

Large language models have achieved remarkable success in various tasks
but suffer from high computational costs during inference, limiting their
deployment in resource-constrained applications. To address this issue, we
propose a novel Collaborative Inference with Token-lEvel Routing (CITER)
framework that enables efficient collaboration between small and large
language models (SLMs & LLMs) through a token-level routing strategy.
Specifically, CITER routes non-critical tokens to an SLM for efficiency and
routes critical tokens to an LLM for generalization quality. We formulate
router training as a policy optimization, where the router receives rewards
based on both the quality of predictions and the inference costs of genera-
tion. This allows the router to learn to predict token-level routing scores
and make routing decisions based on both the current token and the future
impact of its decisions. To further accelerate the reward evaluation process,
we introduce a shortcut which significantly reduces the costs of the reward
estimation and improving the practicality of our approach. Extensive ex-
periments on five benchmark datasets demonstrate that CITER reduces
the inference costs while preserving high-quality generation, offering a
promising solution for real-time and resource-constrained applications.

1 Introduction

Large language models (LLMs) have revolutionized various natural language processing
tasks, from machine translation to context summarization and question answering (Coleman
et al., 2024; Kamalloo et al., 2024; Eniser et al., 2024). However, their impressive performance
comes with a substantial computational costs, particularly during inference. As these
models grow in size, the costs of inference becomes a significant barrier to their practical
deployment, especially in real-time applications. Therefore, there is an increasing need to
reduce inference costs without compromising the quality of the generated outputs.

To address these issues, most existing approaches (Dao et al., 2022; Sanh et al., 2020; Kou
et al., 2024; Anagnostidis et al., 2024) have proposed different methods to route different
input queries to models of different sizes to reduce inference costs while maintaining
output quality. Intuitively, small language models (SLMs) are assigned with simpler tasks
demanding lower computational resources, while more complex cases are routed to LLMs
to ensure response accuracy. However, most existing works only route queries to different
models once, which means that either the LLM or the SLM will handle the entire response
after routing. This one-step approach limits routing flexibility, as in many response, there
is only few critical tokens need to be generated by LLM while the rest of tokens can be
easily generated by SLM efficiently. As a result, simply routing these queries to LLM will
significantly reduce the efficiency.
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Figure 1: An overview of CITER. A router is leveraged to perform collaborative inference
between the SLM and LLM. The router is trained using routing preference collected through
three cases. Case 1: The SLM generates the correct token, the routing preference is assigned
to the SLM. Case 2: The SLM generates an incorrect token, while the LLM generates the
correct token, the routing preference is assigned to the LLM. Case 3: None of the SLM or
the LLM generates the correct token, then the collaborative inference is conducted to obtain
the completed response for assigning the routing preference.
To address this challenge, we present a novel framework, namely Collaborative Inference
with Token-lEvel Routing (CITER). CITER introduces a token-level router which determines
either LLM or SLM is used to generate each token. Specifically, many tokens in the response
that are not important to the final prediction, can be routed and generated by SLM to reduce
inference costs, while the LLM can be reserved to generate important tokens only. We
propose optimizing this router using pairwise data by reinforcement learning, with the
objective of minimizing the inference costs while preserving output quality. By employing
this formulation, the router learns to predict token-level routing scores and make routing
decisions not only based on the current token but also considering the impact of these
decisions on future tokens. In order to further accelerate the estimation of the reward
function defined by the accuracy of the response, we present a surrogate reward function as
a shortcut, where the predictions from the SLM and LLM are leveraged to estimate the final
reward without completing the whole generation process, accelerating the training process
significantly. Through this framework, we enable the collaboration of SLM and LLM for
effective and efficient autoregressive generation.

Our primary contribution is CITER, which reduces inference costs by employing a token-
level router to select the appropriate model to generate each token. Experiments on five
benchmark datasets demonstrate the effectiveness of our approach, making up to 30%
fewer inference costs with comparable accuracy or delivering up to a 25% improvement
in accuracy with the same cost compared to Co-LLM (Shen et al., 2024). Furthermore, our
experiments in the ablation study also demonstrate that token-level routing offers more
flexibility to achieve more promising results compared to query-level routing and that
considering the long-term impact of routing decisions significantly boosts performance.

Notations. We denote πθ as the policy model parameterized by θ, xi as the i-th token in the
input prompt, yj as the j-th token of the output response, 1[·] as the indicator function and
⊕ as the concatenate operation. All other notations are defined prior to their first usage.

2 Collaborative Inference with Token-lEvel Routing (CITER)

In this section, we describe our Collaborative Inference with Token-lEvel Routing (CITER)
framework that uses token-level routing to accelerate the inference of language models. As
illustrated in Figure 1, we introduce a router to facilitate collaborative inference between a
powerful but computationally expensive LLM and a fast but potentially inaccurate SLM.
Specifically, the router is used to predict the token-level routing score for each token, and a
predefined threshold τ is used to determine which model should generate this token. The
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key challenge of our framework is the router training process. To feed the router with the
knowledge on making the global optimal routing decisions not only based on the accuracy
of the current token but also the long-term impact of its decision, we formulate the router
training process as a preference-based policy optimization task, aiming to minimize the
inference costs while maintaining the generation quality. To be more specific, we first
formulate the RL problem and derive the reward function as token-wise routing preference,
which should be computed to collect during the router training process. Subsequently, we
introduce a shortcut for the reward function estimation, leveraging both the SLM and LLM’s
prediction to estimate the reward, significantly accelerating the collection process of the
token-wise routing preference. Finally, we propose an iterative router training process to
mitigate the potential inconsistencies of routing decisions in the preference collection phase
and deployment. In the rest of this section, we will outline router training and collaborative
inference processes in detail.

2.1 Reinforcement Learning for Router Optimization

We start by introducing the foundational concepts and notation for the Markov Decision
Process for token-level routing. In particular, we formulate the token-level routing task
as a Markov decision process (MDP) (Bellman, 1957) where state is a series of tokens
sh = (x0, · · · xm, y0, · · · , yh), including both the input prompt (x0, · · · xm) and the response
(y0, · · · , yh). At each time step h, the agent selects its action from A = {AL, AS}, which
means generating a token from LLM (AL) or SLM (AS), respectively. Then we write the
generation of the next token by the following transition kernel P(sh+1|sh, ah) given by the
dynamics of LLM and SLM. This generation process ends once the terminal token <EOS> is
generated from either of these models. The generated token length is denoted as H, which
can be flexible. The reward r(sh, ah) is then related to the generation cost and the accuracy
of the final response r(sH). The state-action value function is defined by

Qπ
h (s, a) = E

[
∑H

t=h r(st, at)
∣∣∣sh = s, ah = a, π

]
, (1)

with the optimal state-action value function Q∗ defined as Q∗
h(s, a) = maxπ Qπ

h (s, a). The
objective of the routing policy can be written by

π∗
h(a|s) = arg max

π
E [Q∗

h(s, a)− βKL(π ∥ µ)] ∝ µ(a|s) exp(β−1Q∗
h(a|s)), (2)

where µ is the prior policy related to the cost difference for evaluating LLM or SLM. The
expectation is taken over the randomness of language models, policy π and the prompt s0.

2.2 Preference-based Token-level Policy Optimization

Generally, defining the reward r(sh, ah) as well as the state-action value function Qh(sh, ah)
is difficult and may result in reward hacking (Amodei et al., 2016; Leike et al., 2020). To
tackle with this issue, similar with (Rafailov et al., 2023), we inject the pairwise preference
1h[aS ≻ aL] following the Bradley–Terry model (Bradley & Terry, 1952) as:

Pr
h
(aS ≻ aL|sh) = σ(β(Q∗

h(sh, aS)− Q∗
h(sh, aL))), (3)

where σ(z) is the sigmoid function. Following Rafailov et al. (2024), we have

Q∗
h(sh, aL)− Q∗

h(sh, aS) =β log
π∗

h(aL|sh)

µ(aL)
− β log

π∗
h(aS|sh)

µ(aS)

=β log
π∗

h(aL|sh)

π∗
h(aS|sh)

− β log
µ(aL)

µ(aS)
, (4)

In the case of µ(aL) = µ(aS) and β = 1, plugging equation 4 into equation 3 yields

Pr(aS ≻ aL|sh) =
1

1 + π∗
h (aL |sh)

π∗
h (aS |sh)

= π∗
h(aS|sh),
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Algorithm 1 Preference-based Router Optimization for CITER

1: Input: Training data D = {x, y∗}, SLM and LLM MS, ML, number of rounds K.
2: Initialize training policy πθ, preference set P0 = ∅
3: for round k = 1, · · · , K do
4: Initialize preference set Pk = ∅
5: for prompt-response pair x, y∗ in D do
6: Set h = 0, s0 = x
7: while yh is not <EOS> do
8: if MS(sh) = y∗h+1 then Set ph = 1 /* Case 1. aS ≻ aL */

9: if ML(sh) = y∗h+1 then Set ph = 0 /* Case 2. aL ≻ aS */
10: else /* Case 3. */
11: Generate new token: s̃h+1 = sh ⊕ [MS(sh)]
12: Generate s̃ = CITER(s̃h+1, MS, ML, πθ, 1

2 )
13: ph = 1 if s̃ is correct else ph = 0.
14: Update Pk = Pk ∪ {sh, ph}
15: /* Preference-based Optimization */
16: Update θ by minimizing loss L(θ) = −∑(s,p)∈Pk

p log πθ(aS|s) + (1− p) log πθ(aL|s)
17: Output: Routing policy πθ.

where the latter equation is due to the fact that π∗
h(aS|sh) + π∗

h(aL|sh) = 1. Therefore, given
a sequence of token sh, once we have labeled the preference 1[aS ≻ aL|sh], πh(aS|sh), the
routing agent π can be learned by minimizing the cross-entropy loss

L(θ) = −∑
sh

(1h[aS ≻ aL|sh] log πh(aS|sh, θ) + 1h[aL ≻ aS|sh] log πh(aL|sh, θ)), (5)

where 1[aL ≻ aS|sh] indicates using large language model is preferred at state sh.
2.3 Acquiring Token-level Routing Preference

In this subsection, we describe our strategy to determine the preference label 1[aL ≻ aS|sh].
For a state sh, we first generate the next token yh+1 with the small language model and then
complete the whole trajectory sH until the generation ends with <EOS> using the routing
policy π. Compared to equation 1, the reward collected on this trajectory sH is an unbiased
estimation of Qπ

h (sh, aS). Intuitively, if using the small language model in the current step h
can generate the correct response sH , then the small language model is preferred. Otherwise,
we assign aL ≻ aS and assume that the large language model can generate the correct
answer, as implemented in Line 9 in Algorithm 1.

However, generating and evaluating the final response sH might be expensive or even
infeasible when H is large. In order to further accelerate the token-level routing preference
label, we introduce a shortcut by leveraging the ground truth response s∗H provided in the
dataset. As Line 8 in Algorithm 1 suggests, if the next token yS

h+1 generated by the small
language model is exactly the same as the ground-truth token y∗h+1, we assign aS ≻ aL since
the behavior of the small language model is good enough to match the ground-truth model.
In the case where the next token generated by the small language model does not match
the ground truth, as carried out in Line 10, we check the next token generated by the large
language model yL

h+1 and assign aL ≻ aS if yL
h+1 = y∗h+1. Otherwise we will go back to the

aforementioned case to evaluate the completed generated trajectory as conducted in Line 10
in Algorithm 1. We would like to highlight that only when both models fail to generate the
correct token y∗h based on ground truth context, the full response generation is required to
compute the reward. This shortcut allows us to obtain routing preferences for most tokens
without generating the full response. Empirically, we find that about 80% ∼ 90% of the
tokens can be correctly predicted by either the SLM or LLM, which makes the shortcut
significantly reduce the inference costs of estimating the reward function.
2.4 Proposed Algorithm

Finally we summarize the proposed algorithm as well as some implementation details in
Algorithm 1 as an iterative update of the routing policy πθ. In each iteration k, the router
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Algorithm 2 Collaborative Inference with Token-lEvel Routing (CITER)

1: Input: Input prompt s, SLM and LLM MS, ML, policy πθ, threshold τ
2: Let s̃ = s
3: while True do
4: Set M = MS if π(aS|s̃) ≥ τ else M = ML
5: Generate next token and let s̃ = s ⊕ {M(s̃)}
6: if M(s̃) = <EOS> then break
7: Output: Generated response s̃.

Table 1: The statistics of our evaluation datasets. The commonsense QA dataset and MMLU-
Professional Psychology dataset are denoted as CS QA and MMLU-PP, respectively.

Dataset Domain Task # choices Train size Test size

Commonsense QA (CS QA) General Multi-choice 5 9,741 1,221
ARC-Challenge Reasoning Multi-choice 4 1,119 299
MMLU-PP Psychology Multi-choice 4 612 69
GSM8k Math Question answering N/A 7,473 1,319
MATH Math Question answering N/A 7,500 5,000

πθk−1 from the previous iteration is used to collect routing preferences P = {s, p}. Then
iteration goes for at most K rounds but can also stop early when Pk = Pk−1 and thus the
policy optimization converges. The preference p ∈ {0, 1} is labeled through the three cases
described in Subsection 2.3, where the algorithm calls the inference algorithm CITER when
neither the LLM nor the SLM can predict the correct token.

The inference algorithm CITER is presented in Algorithm 2. In detail, CITER uses a
deterministic policy where it chooses the small language model when π(aS|s) ≥ π(aL|s)
(i.e., π(aS|s) ≥ 1

2 ) and vice versa. To further investigate the balance between efficiency and
precision by collaborating with LLM and SLM, we introduce another layer of prior policy
(ρ(aS), ρ(aL)), where ρ(aS) + ρ(aL) = 1. Thus, the deterministic rule of selecting the SLM
from the posterior policy distribution π′(a|s) ∝ π(a|s)ρ(a) is that

π(aS|s)ρ(aS) ≥ π(aL|s)ρ(aL) ⇒ π(aS|s) ≥ ρ(aL),

where we introduce τ := ρ(aL) as a hyper parameter in the algorithm to probe this balance.
Remark 2.1. We maintain separate KV caches for SLM and LLM. When CITER switches
between them, the previous KV cache is preserved, allowing it to be reused when switching
back. This eliminates the need for redundant computations, improving efficiency.

3 Experiments
In this section, we evaluate the performance of CITER aiming to answer the following
questions: (1) Compared with the previous works on speeding up the inference of LLM,
how does our framework perform in terms of the inference costs and the response quality?
(2) Does the components we proposed in our framework boost the performance of the
router? (3) Does the iterative training process of the router improve the performance of our
framework? (4) How does the performance of our framework change with the size of the
LLM? (5) Can the router distinguish the critical and non-critical tokens correctly?
3.1 Experimental Setup

Dataset Description. We evaluate CITER and our baselines on five widely-used academic
benchmark datasets: the commonsense QA dataset (Talmor et al., 2019) contains 12,102 ques-
tions requiring different types of commonsense knowledge to answer; the ARC-Challenge
dataset (Clark et al., 2018), including 1,418 genuine grade-school level, multiple-choice
science questions; the MMLU-Professional Psychology dataset (Hendrycks et al., 2021a),
consisting of 874 multiple-choice questions on psychology; the GSM8k dataset (Cobbe
et al., 2021) with 8.5K high quality linguistically diverse grade school math word prob-
lems and MATH dataset (Hendrycks et al., 2021b) with 12.5k problems from mathematics
competitions respectively. The statistics of the datasets are in Table 1.

Evaluation. To evaluate the performance of CITER and the baseline methods, we use the
accuracy of responses to reflect response quality and define the inference cost as the average
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Figure 2: The accuracy vs data transformation amount curve of CITER and the baselines.
The yellow and grey squares represent the performance of slm and llm respectively. The
grey line represents the random routing strategy. Points closer to the top-left corner indicate
better acceleration performance.
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Figure 3: The accuracy vs data transformation amount curve of CITER and the varient
CITER-S. The yellow and grey squares represent the performance of slm and llm respectively.
The grey line represents the random routing strategy. Points closer to the top-left corner
indicate better acceleration performance.
amount of data transformation per sample, mainly the KV cache that must be transferred
from GPU HBM to the on-chip cache, since LLM generation is primarily memory-bound.
Details on the data transformation calculations and an illustration of the memory-bound
nature of LLM generation are provided in Appendix E. Additionally, for both query-level
routing methods and token-level routing methods, a threshold τ is applied in each method
to balance the trade-off between leveraging the LLM to improve the response quality or
offloading to the SLM to reduce the overall inference costs. We then plot the accuracy curve
versus the average amount of data transformation per sample to illustrate the acceleration
performance of both CITER and the baselines. The optimal point is located in the top-left
corner of the curve, corresponding to the highest accuracy with the lowest costs.

Baselines. We compare CITER against three methods: a representative query-level routing
approach (RouteLLM (Ong et al., 2024)), a token-level routing method (Co-LLM (Shen
et al., 2024)), and a non-routing-based technique (Speculative Decoding (Leviathan et al.,
2023)). RouteLLM makes routing decisions at the query level, directing entire queries to
different models for generation, while Co-LLM operates at the token level, dynamically
routing each token to different models throughout the generation process. In contrast,
Speculative Decoding does not involve routing between models; instead, it leverages the
SLM to propose a set of candidate tokens, and then verify them by the LLM.
Implementation Details We implement our framework using the Hugging Face Transform-
ers library (Wolf et al., 2020). For the SLM and LLM, we utilize Qwen2-1.5b and Qwen2-72b,
respectively. The router is implemented as a multilayer perceptron (MLP) network with
three hidden layers, ReLU activation (Agarap, 2019), BatchNorm normalization (Ioffe &
Szegedy, 2015), and a 0.1 dropout rate. It is trained using the Adam optimizer (Kingma &
Ba, 2017) with a learning rate of 1 × 10−7, betas of (0.9, 0.99), and no weight decay. Training
is performed on a single NVIDIA H100 GPU with a batch size of 80. The iterative training
process runs for 2 rounds. We use the hidden state corresponding to the last generated
token from the SLM as the input to our router. This approach enables the router to utilize
the rich representations extracted by the SLM, allowing routing decisions to be informed
not only by the current token but also by the broader context accumulated thus far.

3.2 Overall Performance

We conduct extensive experiments to assess the performance of CITER across all benchmark
datasets, comparing it against baseline methods. The results are presented in Figure 2.
Clearly, all token-level routing methods, including CITER and Co-LLM, significantly out-
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Figure 4: The accuracy vs data transformation amount curve of CITER with 1.5B SLM
and CITER with 7B SLM. The yellow, blue and grey squares represent the performance of
Qwen2-1.5B, Qwen2-7B and Qwen2-72B respectively. The grey line represents the random
routing strategy. Points closer to the top-left corner indicate better acceleration performance.

perform the query-level routing method, RouteLLM, across all datasets, particularly on the
Commonsense QA and GSM8k datasets, reducing up to 30% inference costs while main-
taining the same accuracy or achieving up to 12% higher accuracy with the same cost. This
emphasizes the effectiveness of token-level routing, which provides enhanced flexibility in
reducing inference costs while preserving response quality. Notably, Speculative Decoding
does reduce inference costs on some multiple-choice datasets. However, its verification
mechanism requires the small model to produce outputs identical to those of the large
model to maintain lossless output quality, which is overly stringent and limits the potential
for further cost reduction on complex cases. As a result, on mathematical datasets, the
acceptance rate of candidate tokens proposed by the small model is extremely low, leading
to higher inference costs than simply using the large model alone, which is unacceptable.
Furthermore, CITER consistently surpasses Co-LLM, achieving comparable accuracy with
up to 27% fewer inference costs or delivering up to a 17% improvement in accuracy with the
same cost. These findings demonstrate the success of our framework in accelerating LLM
inference. This outcome is expected, as Co-LLM does not consider long-term information
during the router training phase, which is crucial for token-level routing. In the following
section, we present experiments to further demonstrate the importance of incorporating
long-term information in router training.

3.3 Analysis of Long-Term Influence
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Figure 5: Accuracy vs. in-
ference costs of CITER with
router over the first three
iterations on the common-
sense QA datasets. Points
closer to the top-left corner
indicate better acceleration
performance.

In this section, we conduct an ablation study on a key com-
ponent of our framework: the long-term influence of routing
decisions, to evaluate its effectiveness. For this purpose, we
design an ablation variant, CITER-S, where the SLM is selected
if both the SLM and LLM provide incorrect predictions during
the routing preference collection, disregarding the long-term
impact of routing decisions. The results are shown in Figure 3.
Clearly, CITER significantly outperforms the ablation variant
CITER-S across all datasets, reducing inference costs by up to
42% while maintaining the same accuracy, or achieving up to
a 23% accuracy improvement with the same cost. These find-
ings highlight the critical role of accounting for the long-term
influence of routing decisions.

3.4 Analysis of Iterative Training Process

To highlight the importance of the iterative training process, we present the performance
curve of CITER with the router over the first three iterations on the Commonsense QA
dataset. As shown in Figure 5, the results demonstrate a clear improvement in performance
in the first two iterations. In the second iteration, CITER reduces ∼ 5% inference costs while
maintaining the same accuracy or achieves 2 ∼ 3% higher accuracy with the same cost
compared to the first. This improvement underscores the effectiveness of our proposed
iterative training process. Moreover, the performance curve of the third iteration closely
follows that of the second, indicating that the router has already converged by the second
iteration. The rapid convergence of the router emphasizes the robustness of our training
strategy, suggesting that optimal performance can be achieved without excessive costs.
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Figure 6: The accuracy vs data transformation amount curve of CITER and the baselines
with Llama3.1 series. The yellow and grey squares represent the performance of slm and
llm respectively. The grey line represents the random routing strategy. Points closer to the
top-left corner indicate better acceleration performance.

3.5 Results on Different Model Families

Additionally, we conduct experiments with Llama3.1 series models to demonstrate the
compatibility of our framework. Specifically, we leverage the Llama3.1-70B model as
the LLM and the Llama3.1-8B model as the SLM. The results are illustrated in Figure 6.
Similarly to the results with Qwen series, CITER consistently outperforms all other baseline
methods, achieving comparable accuracy with up to 32% fewer inference costs or providing
up to a 5% improvement in accuracy with the same cost, compared to Co-LLM, the best
baseline method. This result further demonstrates the effectiveness of our framework and
additionally highlights the compatibility of our framework with different series of models.

3.6 Analysis of the Impact of SLM Model Size
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Figure 7: Accuracy vs. la-
tency curve of CITER and
Speculative Decoding.

We further scale up the SLM size from Qwen2-1.5B to Qwen2-
7B, while keeping the LLM fixed to Qwen2-72B, to understand
the scalability of our framework. As shown in Figure 4, the
results clearly demonstrate that CITER reduces inference costs
by up to 10% while maintaining the same level of accuracy
or achieves up to 11% higher accuracy with the same cost
when using Qwen2-7B as the SLM compared to Qwen2-1.5B,
particularly on the commonsense QA and GSM8k datasets,
underscoring our framework’s scalability with larger SLMs.
However, the performance gap is most noticeable when only
very little tokens are generate by the LLM introducing a very
small additional cost, and it gradually diminishes or even disappears as the cost further
increases. This is expected, as the SLM’s capacity limits its performance, and the quality of
responses increasingly depends on the LLM as more calls are routed to it.

3.7 Latency Analysis

In addition, we also evaluate the wall-clock latency of CITER against Speculative Decoding.
The results are presented in Figure 7. The plot shows that CITER offers a flexible trade-off
between latency and accuracy. For instance, CITER achieves an accuracy of 80.8% with a
latency of only 4 seconds. While Speculative Decoding reaches a slightly higher accuracy
of 87.0%, it requires a significantly longer latency of 10.9 seconds. CITER can also achieve
85.6% accuracy which is very similar to Speculative Decoding with the same latency. In
addition, key advantage of CITER lies in the flexibility to operate at much lower latency
points with only a minor compromise in accuracy, a feature not available with Speculative
Decoding. This demonstrates the superior efficiency and adaptability of our framework.

3.8 Qualitative Analysis on the Router

Finally, we perform a case study to further analyze the decision-making process of the
router in our framework. A selection of examples, along with their corresponding routing
decisions, is shown in Figure 8. In the left example, it is clear that our router accurately
identifies the critical tokens, including the first occurrence of the answer ”Midwest” and
the word ”fertile,” which describes the farmland in the Midwest, both crucial to the final
answer. Moreover, most non-critical tokens are efficiently offloaded to the SLM, effectively
reducing inference costs.
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co-LLM

Wendi feeds each of her 20 chickens 3 cups of feed daily, split
into three meals. In the morning, she gives them 15 cups, and in
the afternoon, another 25 cups. How many cups of feed does she
need to give in the final meal?

James was looking for a
good place to buy
farmland. Where might
he look?

CITER

Wendi needs 20 * 3 = 60

cups of feed for the morning

meal. Wendi needs 60 cups

of feed for the afternoon

meal, so she needs 60 + 60

= \boxed{120} cups of feed

for the final meal.

Wendi needs 20 * 3 = 60 cups

of feed for the day. Wendi has

already given her chickens 15 +

25 = 40 cups of feed. Thus,

Wendi needs to give her

chickens 60 - 40 = \boxed{20}

cups of feed in the final meal.

CITER

The Midwest is a region of the

United States that is known

for its fertile farmland.

Therefore, the answer is

Midwest.

Q1 Q2

Figure 8: The case study analysis of our router. The words highlighted with yellow back-
ground are generated by the LLM, while other words are generated by the SLM. The
red-marked words are the mistakes in Co-LLM’s response.

In the right example, we compare CITER with the token-level routing method Co-LLM.
Clearly, our router outperforms Co-LLM by correctly identifying potential critical tokens,
particularly time-related words. In Co-LLM’s response, at the first red-marked word ”morn-
ing,” Co-LLM incorrectly routes the word ”the” to the LLM while assigning the contextually
important word ”morning” to the SLM, leading to an initial error in the response. Similarly,
Co-LLM routes the critical phrase ”afternoon meal” to the SLM, resulting in the final in-
correct prediction. In contrast, our router correctly identifies the critical word ”day” and
routes it to the LLM, followed by routing the phrase ”has already” to accurately capture the
reasoning process, ultimately leading to the correct prediction.

These examples illustrate that the router in CITER effectively distinguishes between critical
and non-critical tokens, offloading non-critical tokens to the SLM to minimize inference
costs, while leveraging the LLM to ensure the quality of the generated response.

4 Related Work

In this section, we conduct a literature review that mainly focuses on prior LLM infer-
ence acceleration methods, especially those that involve using routing mechanisms and
collaborative inference between LLMs for inference acceleration.

Query-Level Routing Mechanisms. Previous routing methods (Jang et al., 2023;
Chronopoulou et al., 2023; Diao et al., 2023; Lu et al., 2023; Cheng et al., 2024; Lu et al., 2024;
Chen et al., 2023b; Wang et al., 2024b; Srivatsa et al., 2024; Stripelis et al., 2024) for efficient
inference mainly focus on routing entire user queries to different models for generation. For
example, Routoo (Mohammadshahi et al., 2024) proposes a performance predictor and a
cost-aware decoder to route between LLMs, considering both performance and resource
constraints; Hybird LLM (Ding et al., 2024) proposes a probabilistic router to select LLM
backend for each query; RouteLLM (Ong et al., 2024) formulates the routing problem as
a classification problem and employs a data augmentation framework to significantly ex-
pand the dataset used for training the router; Gupta et al. (2024) first leverages the small
model (SLM) to generate the entire sequence, and then the decision to defer to the large
model (LLM) is made based on the uncertainty (e.g., entropy or confidence derived from
logits) during generation;FrugalGPT Chen et al. (2023b) formulates the routing problem
as a constrained optimization problem, where the final generated quality is maximized
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under a budget or inference cost constraint. However, as highlighted in Section 1, routing at
the query-level granularity may lead to suboptimal performance, as non-critical tokens in
complex queries may be generated inefficiently, while critical tokens in simple queries may
suffer from inaccuracy. In contrast, token-level routing methods offer more fine-grained
control over the routing process, improving both inference costs and the quality of the
generated response.

Token-Level Routing Mechanisms. Unlike query-level routing methods, previous token-
level routing methods (Pfeiffer et al., 2021; Belofsky, 2023; Muqeeth et al., 2024; Wang et al.,
2024a; Wu et al., 2024; Xu et al., 2024) mainly focus on routing input tokens to different
specialized experts to enhance performance without considering the inference costs. For
example, Arrow (Ostapenko et al., 2024) builds a mixture-of-experts (MoE) architecture with
multiple LoRAs, dynamically routing inputs to different LoRAs during inference. Similarly,
Branch-Train-MiX (Sukhbaatar et al., 2024) fine-tunes LLMs on different domains from a
seed LLM, creating specialized experts to form an MoE framework. Besides these methods,
Narasimhan et al. (2024) introduces token-level cascading and tackles the challenge of
implementing deferral rules by leveraging speculative decoding, relying exclusively on the
logits output by the model to determine when to defer to the LLM. Similarly, Co-LLM (Shen
et al., 2024) introduces a router to route tokens to models of different sizes. However,
they only consider the current outputs from SLM and LLM when generating ground truth
labels to make the router decisions. This may lead to suboptimal performance since the
influence of current decisions on future tokens is not considered. Moreover, similar to other
token-level routing methods, they focus on enhanced response quality without taking the
inference costs of the inference process into account. In contrast, our CITER framework
considers both the current token and the future impact of each decision, enabling more
accurate and efficient routing.

Other Methods for LLM Inference Acceleration. In addition to routing methods, several
approaches ranging from algorithmic to system optimizations (Miao et al., 2023; Kwon
et al., 2023; Chen et al., 2024a) have been proposed to accelerate LLM inference. Speculative
Decoding (Leviathan et al., 2023; Chen et al., 2023a) employs a small draft model to generate
potential next tokens, which are concatenated with previously generated tokens. These
guesses are then processed by the target LLM in parallel to verify their correctness. Tokens
are only committed to the final output if confirmed by the target LLM. Although this
approach reduces inference time by generating multiple tokens in a single forward pass,
it does not lower the overall computational complexity (e.g., the total amount of FLOPs).
Speculative Streaming (Bhendawade et al., 2024) addresses the computational overhead of
Speculative Decoding by predicting n-grams instead of individual tokens in each forward
pass. However, it requires redesigning the LLM architecture, necessitating re-pretraining,
which is computationally prohibitive for many use cases. Medusa (Cai et al., 2024) mitigates
the re-pretraining issue by adding auxiliary heads to the original LLM, allowing n-gram
predictions without modifying the core model. These heads can be trained while keeping
the original LLM frozen, thereby avoiding the need for re-pretraining. SpecInfer and
Sequoia (Miao et al., 2023; Chen et al., 2024b) leverage tree-based parallelism for decoding
and verification to further accelerate inference.

5 Conclusion

In this paper, we introduced CITER, a novel collaborative inference with token-level routing
framework designed to reduce the inference cost of LLM while maintaining high-quality
generation. By dynamically routing non-critical tokens to a SLM and reserving the LLM for
critical tokens, CITER achieves an efficient balance between inference cost and generation
quality. We formulated the routing problem as a policy optimization task, where the router
learns to make token-level decisions based on both immediate token quality and long-term
impact. Furthermore, we introduced a shortcut for reward estimation to enhance training
efficiency. Experimental results across five benchmark datasets demonstrate that CITER
significantly reduces inference costs while preserving accuracy, offering a promising solution
for real-time and resource-constrained applications.
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B Dataset Description

In this section, we describe our benchmark datasets with more details.

B.1 Commonsense QA

CommonsenseQA is a large-scale, multiple-choice question-answering dataset designed
to challenge and evaluate systems on their ability to leverage commonsense knowledge.
The dataset consists of 12,102 questions, each accompanied by one correct answer and
four distractor (incorrect) options, requiring models to distinguish the correct answer by
understanding various types of commonsense reasoning. What sets CommonsenseQA apart
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is its emphasis on requiring a broader array of everyday knowledge, involving not only
basic facts but also causal, temporal, and conceptual reasoning.

B.2 ARC-Challenge

The AI2 ARC dataset is a comprehensive collection of 7,787 grade-school-level multiple-
choice science questions, meticulously curated to stimulate advancements in question-
answering systems. The dataset is strategically divided into two subsets: the ARC-Easy
Set and the ARC-Challenge Set. The ARC-Challenge Set, which is the subset we utilized in
our work, comprises a selection of particularly difficult questions. These questions were
specifically included because they were misclassified by both a traditional retrieval-based
algorithm and a word co-occurrence algorithm, making them a true test of a model’s ability
to understand and reason through complex scientific concepts. The ARC-Challenge subset
serves as an ideal benchmark for testing sophisticated models, as it presents questions that
require more than surface-level understanding or simple pattern matching.

B.3 MMLU-Professional Psychology

The MMLU dataset is a comprehensive multitask benchmark that comprises multiple-choice
questions across a vast range of knowledge domains, including subjects in the humanities,
social sciences, hard sciences, and other fields. It covers 57 distinct tasks such as elementary
mathematics, U.S. history, computer science, law, and more, aimed at evaluating a model’s
general world knowledge and problem-solving capabilities.

In our work, we focused specifically on the “Professional Psychology” subset of MMLU.
This subset contains questions rich in domain-specific terminology, including specialized
terms related to psychology and, occasionally, biological concepts tied to psychological
phenomena. It provides a robust test for assessing a model’s proficiency in understanding
and reasoning within a specialized academic field, thus offering insights into the model’s
capability to handle complex, domain-specific content.

B.4 GSM8k

GSM8k (Grade School Math 8k) is a dataset consisting of 8.5K high-quality, linguistically
diverse grade school math word problems. Designed to evaluate and improve question-
answering capabilities in basic mathematical problem-solving, this dataset emphasizes
multi-step reasoning, requiring between 2 and 8 steps to arrive at the correct solution.

The problems involve a sequence of elementary calculations using basic arithmetic opera-
tions—addition, subtraction, multiplication, and division—along with some early Algebra
concepts. However, the dataset ensures that all problems are approachable for a bright
middle school student, avoiding the need for advanced mathematical tools like variable
definitions in most cases.

One of the distinctive features of GSM8K is that the solutions are presented in natural
language rather than purely in mathematical expressions. This design decision aligns with
the dataset’s goal to illuminate the reasoning capabilities of large language models (LLMs),
specifically how they simulate an “internal monologue” when reasoning through problems.
The dataset’s natural language solutions provide a more interpretable and instructive
resource for evaluating the logical progression of LLMs in real-world tasks.

B.5 MATH

The Mathematics Aptitude Test of Heuristics (MATH) dataset consists of an extensive set of
12,500 intricate mathematical problems curated from prestigious competitions, such as the
AMC 10, AMC 12, and AIME Hendrycks et al. (2021b). Each problem is provided alongside
a fully worked-out solution, offering step-by-step reasoning that facilitates both answer
derivation and explanation generation. Covering a broad spectrum of mathematical top-
ics—including Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry,
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Intermediate Algebra, and Precalculus—the dataset serves as a rigorous benchmark for
mathematical reasoning.

To enable a structured evaluation of model capabilities, problems are stratified into five
difficulty levels (1 to 5), ensuring a progressive challenge across varying levels of complexity.
The solutions are typeset in LATEX, maintaining precision and coherence in mathematical
notation. Notably, the MATH dataset emphasizes problems that extend beyond direct
formula application, frequently requiring creative heuristics and nontrivial problem-solving
strategies. This characteristic makes it particularly valuable for training and assessing
models in advanced mathematical reasoning and structured solution generation.

C Prompt

In this section, we illustrate the prompt we used for each dataset.

Multiple-Choice Question Prompt

For multiple-choice question datasets, including the Commonsense QA dataset, the ARC-
Challenge dataset, and the MMLU-Professional Psychology dataset, we leverage the follow-
ing prompt to require LLMs to provide both an explanation and a final answer in a specific
format.

Example:

Question: $question
Choices:
A. $choice_A
B. $choice_B
C. $choice_C
D. $choice_D
E. $choice_E

Please format your response in the following way: [Explanation]. Therefore,
the answer is answer (label). Ensure the final sentence includes the answer
followed by the label in parentheses.
Answer and Reasoning: $response

C.1 GSM8k Math Problem Prompt

For math problems in the GSM8k dataset and the MATH, the following prompt is employed
to require LLMs to provide a step-by-step solution with clear reasoning in LaTeX format,
with the final answer enclosed in a box using \boxed{}.

Example:

Solve the following math problem step by step. Ensure all reasoning is shown
clearly in LaTeX format, and the final answer should be enclosed using the
LaTeX command \boxed{} to display it in a box.
Question: $question
Solution: $solution

D Examples

In this section, we list examples of each dataset, including the questions, prompts, and
responses from LLMs to clearly demonstrate the prompt we use and the task of each dataset.

D.1 Commonsense QA
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Question: What do people aim to do at work?
Choices:
A. complete job
B. learn from each other
C. kill animals
D. wear hats
E. talk to each other

Please format your response in the following way: [Explanation]. Therefore,
the answer is answer (label). Ensure the final sentence includes the answer
followed by the label in parentheses.
Answer and Reasoning: The answer should be something that people aim to do at
work. People generally aim to complete jobs. Therefore, the answer is complete
job (A).

D.2 ARC-Challenge

Question: Juan and LaKeisha roll a few objects down a ramp. They want to see
which object rolls the farthest. What should they do so they can repeat their
investigation?
Choices:
A. Put the objects in groups.
B. Change the height of the ramp.
C. Choose different objects to roll.
D. Record the details of the investigation.

Please format your response in the following way: [Explanation]. Therefore,
the answer is answer (label). Ensure the final sentence includes the answer
followed by the label in parentheses.
Answer and Reasoning: To repeat their investigation, Juan and LaKeisha should
record the details of the investigation. This will involve noting down the
objects they rolled, the height of the ramp, and the distance each object
rolled. This way, they can replicate the exact conditions and compare the
results of their repeated investigation. This is the crucial step in the
scientific method, as it ensures that the results are reliable and can be
trusted. Therefore, the final answer is record the details of the
investigation (D).

D.3 MMLU-Professional Psychology

Question: Justice primarily involves ___________.
Choices:
A. Recognizing fairness for all persons
B. Promoting accuracy and truthfulness
C. Benefitting others and do no harm
D. Respecting cultural and individual difference

Please format your response in the following way: [Explanation]. Therefore,
the answer is answer (label). Ensure the final sentence includes the answer
followed by the label in parentheses.
Answer and Reasoning: Justice primarily involves recognizing fairness for all
individuals. It is about ensuring that everyone is treated equally and fairly,
without any discrimination or bias. Therefore, the answer is Recognizing
fairness for all persons (A).

D.4 GSM8K
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Solve the following math problem step by step. Ensure all reasoning is shown
clearly in LaTeX format, and the final answer should be enclosed using the
LaTeX command \boxed{} to display it in a box.
Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers' market daily for \$2 per fresh duck egg. How
much in dollars does she make every day at the farmers' market?
Solution: 16 - 3 = << 16 - 3 = 13 >> 13 eggs are left after breakfast. 13 - 4
= << 13 - 4 = 9 >> 9 eggs are left after baking. 9 * 2 = << 9 * 2 = 18 >> 18
dollars she makes at the farmers' market. The final answer is: \\boxed{18}.

D.5 MATH

Solve the following math problem step by step. Ensure all reasoning is shown
clearly in LaTeX format, and the final answer should be enclosed using the
LaTeX command \boxed{} to display it in a box.
Question: How many vertical asymptotes does the graph of
$y=\\frac{2}{xˆ2+x-6}$ have?
Solution: The vertical asymptotes of a rational function occur at the values
of $x$ for which the denominator of the function is equal to zero. \n\nSo, to
find the vertical asymptotes of the function $y=\\frac{2}{xˆ2+x-6}$, we need
to solve the equation $xˆ2+x-6=0$ for $x$.\n\nThis is a quadratic equation,
and we can solve it by factoring. The equation $xˆ2+x-6=0$ can be factored
into $(x-2)(x+3)=0$.\n\nSetting each factor equal to zero gives the solutions
$x=2$ and $x=-3$.\n\n Therefore, the graph of $y=\\frac{2}{xˆ2+x-6}$ has $2$
vertical asymptotes, at $x=2$ and $x=-3$.\n The final answer is: \\boxed{2}

E Data Transformation Calculation and the Memory-bound LLM
Generation

In this appendix, we first analyze the computational characteristics of large language models
(LLMs) during the decoding phase and then conclude that this phase is fundamentally
memory-bound on modern hardware, such as NVIDIA H100 GPUs. Finally, we illustrate
the calculation of the data transformation required for each token during the decoding
process.

To analyze the generation process of LLMs, we begin by illustrate their structures. Each
Transformer block in a decoder-only LLM consists of the following components:

• LayerNorm
• Multi-Head Self-Attention (MHSA): includes linear projections for queries (Q), keys (K),

and values (V), scaled dot-product attention, and an output projection.
• Residual Connection
• LayerNorm after Self-Attention
• Feedforward Network (FFN): typically two linear layers with an activation in between,

often of shape d → 4d → d.
• Residual Connection

During decoding, tokens are generated one at a time. To avoid recomputation of attention
over previous tokens, modern implementations cache the key and value projections from
previous steps in GPU memory, referred to as the KV cache. Moreover, FlashAttention is
employed to efficiently compute attention within a single fused kernel, minimizing data
movement and maximizing usage of on-chip memory.

Because of these optimizations, each new token only requires computing its query vector
and performing attention against cached keys and values. This reduces both computation
and data movement compared to training or prompt processing.
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Let d be the hidden dimension, l the number of layers, m the length of the current context
(i.e., number of cached tokens), and assume float16 precision (2 bytes per element). We now
analyze the compute and memory access for each component in a single Transformer layer
during decoding of one token:

• LayerNorm: Requires reading and writing a d-dimensional vector, calculating the mean
and variance and used them for nomalization.
Memory: read d inputs, wriet d outputs, 2d memory access in total.
Compute: 4d FLOPs.

• Q projection: Matrix-vector product (1 × d multiply d × d).
Memory: read d inputs and weights (d2), write d outputs, d2 + 2d memory access in total.
Compute: 2d2 FLOPs

• K/V projection: Not needed during decoding, as keys/values are cached.
• Attention (FlashAttention):

– Read m · d cached keys and m · d cached values.
– Compute attention scores and weighted sum over m past tokens.

Memory: read 2md inptus, wriet d outputs, 2md + d memory access in total.
Compute: 4md + 2m FLOPs (QK matmul + attention weighted sum)

• Output projection: Matrix-vector product (1 × d multiply d × d).
Memory: read d inputs and weights (d2), write d outputs, d2 + 2d memory access in total.
Compute: 2d2 FLOPs

• FFN: Two linear layers: d → 4d → d with an activation in between
Memory: read d + 4d + 4d inputs and weights (8d2), write 4d + 4d + d outputs, 8d2 + 18d
memory access in total.
Compute: 8d2 + 4d + 8d2 = 16d2 + 4d FLOPs

Summing over all components, the total computation and memory per layer per token is:

FLOPs per layer = 4d + 2d2 + 4md + 2m + 2d2 + 16d2 + 4d

= 20d2 + 4md + 8d + 2m FLOPs (6)

Memory access per layer = 2 ∗ (2d + d2 + 2d + 2md + d + d2 + 2d + 8d2 + 18d)

= 20d2 + 4md + 50d bytes (7)

Assume a typical setup with d = 8192, m = 1024 (context length), float16 (2 bytes). The per
layer FLOPs will be 20d2 + 4md + 8d + 2m ≈ 1.28GFLOPs and the memory accessed per
layer will be 20d2 + 4md + 50d ≈ 1.28GB. Thus, the compute-to-memory ratio is ≈ 1 FLOPs
per byte

On the other hand, an NVIDIA H100 GPU has Peak FP16 Tensor Core throughput: ∼ 2000
TFLOPs/s and peak memory bandwidth: ∼ 3 TB/s. Thus, the compute-to-memory ratio:
∼ 666.67 FLOPs per byte.

The actual compute-to-memory ratio of decoding is much lower (∼ 1 FLOPs/byte) than
what the H100 GPU hardware is capable of (∼ 666.67 FLOPs/byte). Therefore, decoding in
LLMs is significantly memory-bound: performance is bottlenecked by memory bandwidth
rather than compute throughput. This suggests that optimizations that reduce memory
movement can have a substantial impact on inference speed and that the memory movement
amount can be a great metric for the theoretical analysis of inference speed.

Therefore, in our experiments, we record the generated source of each token for both the
query-level routing methods and the token-level routing methods and leverage Equation 7
to calculate the data transformation amount that occurred during the whole generation
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process. Similarly, for speculative decoding, the generated source of each token is also
recorded, and a similar equation, where the output token of one forward pass is changed
from a single token to multiple tokens, is employed to calculate the data transformation
amount. All the additional data transformation introduced by additional structure (such
as the router) in those methods are also included properly. In addition, we deploy the
SLM and the LLM on the same device, so there is no switch cost and additional data
transformation when we switch between those two models. Finally, we employ the data
transformation amount to indicate the computation cost of the generation process. This
improves the reproducibility of our experimental results and avoids the result deviation
caused by different hardware devices and experimental environments due to the selection
of indicators such as inference time.
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