

000 001 002 003 004 005 LOGICXGNN: GROUNDED LOGICAL RULES FOR EX- 006 PLAINING GRAPH NEURAL NETWORKS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Existing rule-based explanations for Graph Neural Networks (GNNs) provide
026 global interpretability but often optimize and assess fidelity in an intermediate,
027 uninterpretable concept space, overlooking grounding quality for end users in
028 the final subgraph explanations. This gap yields explanations that may appear
029 faithful yet be unreliable in practice. To this end, we propose LOGICXGNN, a
030 post-hoc framework that constructs logical rules over reliable predicates explic-
031 itely designed to capture the GNN’s message-passing structure, thereby ensuring
032 effective grounding. We further introduce data-grounded fidelity ($Fid_{\mathcal{D}}$), a re-
033 alistic metric that evaluates explanations in their final-graph form, along with
034 complementary utility metrics such as coverage and validity. Across extensive
035 experiments, LOGICXGNN improves $Fid_{\mathcal{D}}$ by over 20% on average relative to
036 state-of-the-art methods while being 10–100× faster. With strong scalability and
037 utility performance, LOGICXGNN produces explanations that are faithful to the
038 model’s logic and reliably grounded in observable data. Our code is available at
039 <https://anonymous.4open.science/r/LogicXGNN-ICRL2026/>.
040

1 INTRODUCTION

041 Graph Neural Networks (GNNs) have emerged as powerful tools for modeling and analyzing graph-
042 structured data, achieving remarkable performance across diverse domains, including drug discovery
043 (Xiong et al., 2021; Liu et al., 2022; Sun et al., 2020), fraud detection (Rao et al., 2021), and
044 recommender systems (Chen et al., 2022). Despite their success, GNNs share the black-box nature
045 inherent to neural networks, posing challenges to deployment in high-reliability applications such as
046 healthcare (Amann et al., 2020; Bussmann et al., 2021).
047

048 To address this, numerous explanation methods have been developed to uncover the decision-making
049 mechanisms of GNNs. However, most existing approaches are limited to providing local explanations
050 tailored to specific input instances or rely on input-feature attributions for interpretability (Pope et al.,
051 2019; Ying et al., 2019; Vu & Thai, 2020; Lucic et al., 2022; Tan et al., 2022). A complementary line
052 of work focuses on global explanations that characterize overall model behavior using rule-based
053 approaches (Xuanyuan et al., 2023; Azzolin et al., 2023; Armgaan et al., 2024). These methods
054 map relevant substructures into an *intermediate, abstract* concept space and then optimize logical
055 formulas over these concepts to produce class-discriminative explanations. For interpretability, the
056 abstract concepts are subsequently grounded in representative subgraphs, which serve as the final
057 explanations presented to end users.
058

059 While intuitive, this grounding step can introduce *unfaithfulness* and *unreliability*: methods may (i)
060 reconstruct invalid subgraphs by mismatching node attributes and concept structure, or (ii) select
061 plausible yet poorly representative subgraphs as post hoc rationalizations. This echoes a critical
062 concern in explainable AI (Laugel et al., 2019; Lipton, 2018), where explanations may reflect learned
063 artifacts rather than genuine data evidence. More importantly, these approaches optimize and evaluate
064 fidelity—the degree to which explanations align with model predictions—in their *intermediate*
065 *concept space*, neglecting issues with the ill-grounded subgraph explanations ultimately presented,
066 as illustrated in Figure 1(a). This oversight risks producing explanations that appear highly faithful
067 yet fail to reflect concrete, observable patterns in the data, thereby undermining both usability and
068 trustworthiness for end users (Camburu et al., 2020). For example, although the state-of-the-art
069 method GRAPHTRAIL (Armgaan et al., 2024) reports a 66% fidelity score in its concept space on
070 the Mutagenicity dataset (Debnath et al., 1991), its final explanations are *entirely ungrounded*: not a
071

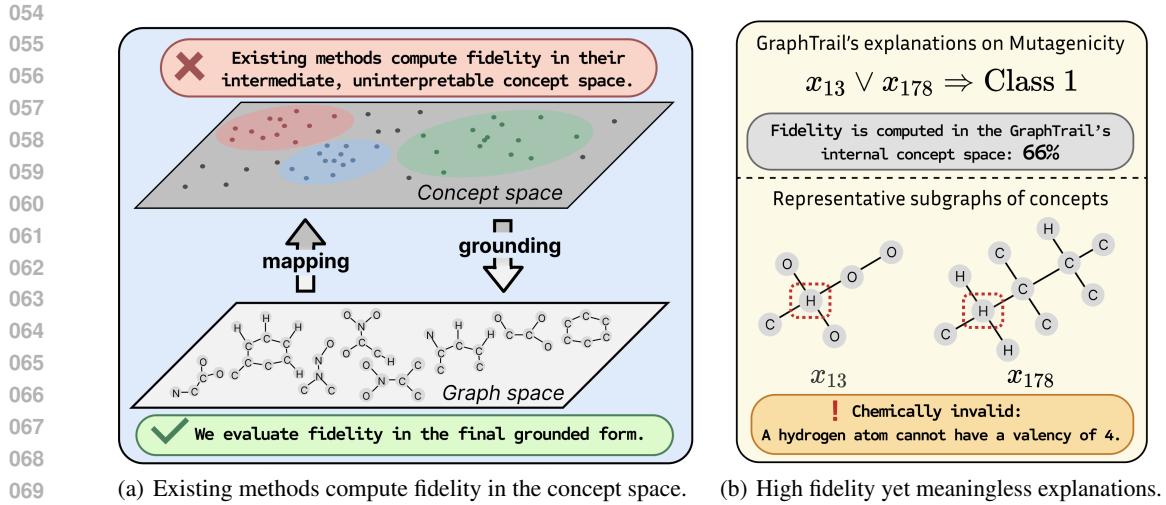


Figure 1: Existing methods such as GRAPHTRAIL compute fidelity in an uninterpretable concept space while overlooking the grounding quality of final subgraph explanations presented to end users.

single explanation subgraph is chemically valid, and none matches an instance in the dataset (see Figure 1(b)). To address this gap, we propose a framework for evaluating rule-based explanations in their final, grounded form. Our approach centers on data-grounded fidelity ($Fid_{\mathcal{D}}$), a metric that assesses fidelity directly on the final subgraph explanations, supplemented by utility metrics such as coverage and validity. Under these criteria, the performance of existing methods drops dramatically, highlighting the need for explanations that are both faithful and truly interpretable.

To this end, we propose LOGICXGNN, a novel post hoc framework for constructing explanation rules over reliable predicates. These predicates are explicitly designed to capture the structural patterns induced by the GNN’s message-passing mechanism, providing a solid foundation for reliable grounding. As a result, LOGICXGNN not only generates a rich set of representative subgraphs but also learns generalizable grounding rules for each predicate, addressing unreliable grounding in existing methods. Furthermore, our data-driven approach is highly efficient and demonstrates superior scalability on large real-world datasets, advantages we validate through extensive experiments. In summary, our key contributions are:

- We identify a key issue in existing rule-based explanation methods for GNNs: they optimize and evaluate fidelity in an intermediate, uninterpretable concept space without proper data grounding, which undermines usability and trustworthiness. To quantify this effect, we introduce $Fid_{\mathcal{D}}$, computed directly on the final-graph explanations presented to end users.
- We introduce LOGICXGNN, a novel framework for generating faithful and interpretable logical rule-based explanations for GNNs. Unlike existing methods, LOGICXGNN preserves structural patterns from message passing, enabling effective grounding that produces not only more representative subgraphs but also generalizable grounding rules.
- Our experimental results show that LOGICXGNN significantly outperforms existing methods, achieving an average improvement of over 20% in $Fid_{\mathcal{D}}$ while being $10\text{--}100\times$ faster in runtime. Additional metrics, including *coverage*, *stability*, and *validity*, further confirm the superior practical utility of our generated explanations over existing methods.

2 PRELIMINARY

2.1 GRAPH NEURAL NETWORKS FOR GRAPH CLASSIFICATION

Consider a graph $G = (V_G, E_G)$, where V_G represents the set of nodes and E_G represents the set of edges. For the graph dataset \mathcal{G} , let \mathcal{V} and \mathcal{E} denote the sets of vertices and edges across all graphs in \mathcal{G} , respectively, with $|\mathcal{V}| = n$. Each node is associated with a d_0 -dimensional feature vector, and the input features for all nodes are represented by a matrix $\mathbf{X} \in \mathbb{R}^{n \times d_0}$. An adjacency matrix

108 $\mathbf{A} \in \{0, 1\}^{n \times n}$ is defined such that $\mathbf{A}_{ij} = 1$ if an edge $(i, j) \in \mathcal{E}$ exists, and $\mathbf{A}_{ij} = 0$ otherwise. A
 109 graph neural network (GNN) model M learns to embed each node $v \in \mathcal{V}$ into a low-dimensional
 110 space $\mathbf{h}_v \in \mathbb{R}^{d_L}$ through an iterative message-passing mechanism over the L number of layers. At
 111 each layer l , the node embedding is updated as follows:

$$\mathbf{h}_v^{l+1} = \text{UPD}(\mathbf{h}_v^l, \text{AGG}(\{\text{MSG}(\mathbf{h}_v^l, \mathbf{h}_u^l) \mid \mathbf{A}_{uv} = 1\})), \quad (1)$$

114 where $\mathbf{h}_v^0 = \mathbf{X}_v$ is the feature vector of node v , and \mathbf{h}_v^l represents the node embedding at the layer
 115 l . The update function UPD , aggregation operation AGG , and message function MSG define the
 116 architecture of a GNN. For instance, Graph Convolutional Networks (Kipf & Welling, 2017) use an
 117 identity message function, mean aggregation, and a weighted update. A GNN model M performs
 118 graph classification by passing the graph embeddings \mathbf{h}_G^L to a fully connected layer followed by a
 119 softmax function. Here, \mathbf{h}_G^L is commonly computed by taking the mean of all node embeddings in
 120 the graph $\mathbf{h}_G^L := \text{mean}(\mathbf{h}_v^L \mid v \in V_G)$ through the operation `global_mean_pooling`.
 121

122 2.2 FIRST-ORDER LOGICAL RULES FOR GNN INTERPRETABILITY

124 First-order logic (FOL) is highly interpretable to humans, making it an excellent tool for explaining
 125 the behaviour of neural networks (Zhang et al., 2021). In this paper, our proposed framework,
 126 LOGICXGNN, aims to elucidate the inner decision-making process of a GNN M using a *Disjunctive*
 127 *Normal Form (DNF)* formula ϕ_M . The formula ϕ_M is a logical expression that can be described as a
 128 disjunction of conjunctions (OR of ANDs) over a set of predicates P , where each p_j represents a
 129 property defined on the graph structure \mathbf{A} and input features \mathbf{X} . Importantly, ϕ_M incorporates the
 130 *universal quantifier* (\forall), providing a global explanation that is specific to a class of instances.
 131

132 While this approach looks promising, generating a DNF formula ϕ_M that faithfully explains the
 133 original GNN M remains challenging. Specifically, we must address the following key questions:

- 134 1. How to define predicates P that *reliably capture genuine structural patterns in the dataset,*
 135 *rather than just abstract symbols that lack effective grounding?*
- 136 2. How to derive *faithful* logical rules ϕ_M over P that explains the GNN’s predictions?
- 137 3. Can we design an approach that is both efficient (with minimal computational overhead)
 138 and generalizable to different tasks and GNN architectures?

140 3 THE LOGICXGNN FRAMEWORK (ϕ_M)

142 3.1 IDENTIFYING HIDDEN PREDICATES P FOR ϕ_M

144 We begin by addressing the identification of hidden predicates for graph classification tasks. As
 145 discussed earlier, the desired predicates P should capture commonly shared patterns in both graph
 146 structures \mathbf{A} and hidden embeddings \mathbf{h}^L across a set of instances in the context of GNNs. While graph
 147 structure information can be encoded into hidden embeddings, it often becomes indistinguishable
 148 due to oversmoothing during the message-passing process (Li et al., 2018; Xu et al., 2019).

149 The core of our approach is to explicitly model the recurring structural patterns that a GNN uses
 150 for computation. After L layers of message passing in a GNN, the receptive field of a node v is the
 151 subgraph induced by its L -hop neighborhood. Our key insight is that nodes with structurally identical
 152 (isomorphic) receptive fields share the same fundamental computational pattern. To systematically
 153 capture and compare these patterns, we use Weisfeiler–Lehman (WL) graph hashing to assign a
 154 unique identifier to each distinct receptive field topology.¹ This allows us to efficiently record and
 155 model these recurring structures. Formally, the structural pattern for a node v is computed as follows:

$$\text{Pattern}_{\text{struct}}(v) = \text{Hash}(\text{ReceptiveField}(v, \mathbf{A}, L)). \quad (2)$$

157 Next, we discuss common patterns in the hidden embeddings. During GNN training, the hidden
 158 embeddings are optimized to differentiate between classes. Empirically, we find that a small subset
 159

160 ¹We use WL hashing without node or edge features to capture the pure topological structure upon which the
 161 GNN’s message-passing operates. This ensures our structural patterns have an expressiveness equivalent to that
 162 of standard GNNs.

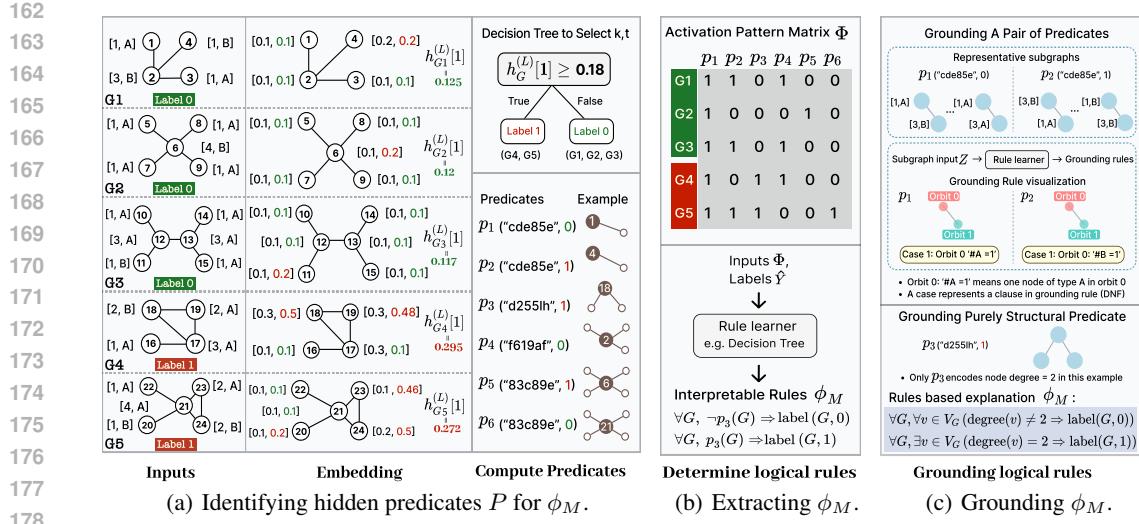


Figure 2: An overview of the LOGICXGNN framework, which involves identifying hidden predicates, extracting rules, and grounding these rules in the input space for interpretability.

of specific dimensions in the final-layer embeddings \mathbf{h}_G^L is sufficient to distinguish instances from different classes using appropriate thresholds, often achieving accuracy comparable to the original GNN. Similar observations have been reported in Geng et al. (2025). In this work, we apply the decision tree algorithm to the collection of \mathbf{h}_G^L from the training data to identify the most informative dimensions K along with their corresponding thresholds T . Formally, this is expressed as:

$$\text{DecisionTree}(\{\mathbf{h}_G^L \mid G \in \mathcal{G}\}, \hat{Y}) \rightarrow (K, T) \quad (3)$$

where \hat{Y} represents the prediction outcome of the GNN. We then leverage this information to construct embedding patterns at the node level, aligning with the definition of structural patterns. Recall that $\mathbf{h}_G^L := \text{mean}(\mathbf{h}_v^L \mid v \in V_G)$, so we broadcast K and T to each node embedding \mathbf{h}_v^L . Then, for an input node v , its embedding value \mathbf{h}_v^L at each informative dimension $k \in K$ is compared against the corresponding threshold T_k . The result is then abstracted into binary states: 1 (activation) if the condition is met, and 0 (deactivation) otherwise. Formally, we have:

$$\mathcal{I}_k(\mathbf{h}_v^L) = 1 \text{ if } \mathbf{h}_v^L[k] \geq T_k, \text{ else } 0 \quad (4)$$

In summary, the embedding pattern contributed by a given node v can be computed using the following function:

$$\text{Pattern}_{\text{emb}}(v) = [\mathcal{I}_1(\mathbf{h}_v^L), \mathcal{I}_2(\mathbf{h}_v^L), \dots, \mathcal{I}_K(\mathbf{h}_v^L)] \quad (5)$$

Putting it together, we define the predicate function as $f(v) = (\text{Pattern}_{\text{struct}}(v), \text{Pattern}_{\text{emb}}(v))$. To identify the set of predicates, we iterate over each node $v \in \mathcal{V}$ in the training set, collect all $f(v)$, and transform them into a set P . In addition, when a node v is evaluated against a predicate p_j , the evaluation $p_j(v)$ is true only if both the structural and embedding patterns from $f(v)$ match the predicate. To apply a predicate to a graph instance G , we override its definition as follows:

$$p_i(G) = 1 \text{ if } \exists v \in V_G, p_i(v) = 1, \quad p_i(G) = 0 \text{ if } \forall v \in V_G, p_i(v) = 0. \quad (6)$$

To better illustrate the process of identifying hidden predicates, we present a simple example in Figure 2(a). This scenario involves a binary graph classification task, a common setup in GNN applications. In this example, we have five input graphs, with each node characterized by two attributes: degree and type. The types are encoded as one-hot vectors. A GNN with a single message-passing layer is applied, generating a 2-dimensional embedding for each node (i.e., $d_L = 2$) and achieving 100% accuracy. As only one message-passing layer is used, structural patterns are extracted based on the nodes and their first-order neighbors.

Using decision trees, we identify the most informative dimension $k = 1$, and its corresponding threshold $t = 0.18$ from the graph embeddings. This threshold is then applied to the node embeddings to compute embedding patterns. As a result, six predicates are derived. Notably, p_5 ("83c89e", 1)

and p_6 (“83c89e”, 0) exhibit isomorphic structures, represented by identical hash strings, but differ in their activation patterns. Our predicates are therefore structurally grounded, as they capture concrete structural patterns from the training data, and model-faithful, since they are constructed by design to align with the GNN’s predictions, \hat{Y} . This offers a significant advantage over prior methods, which often lack clear subgraph correspondence (Azzolin et al., 2023; Armgaan et al., 2024).

3.2 DETERMINING THE LOGICAL STRUCTURE OF ϕ_M

The next task is to construct logical rules ϕ_M based on hidden predicates P for each class, which serve as the explanation of the original GNN M . We process all training instances from class $c \in C$ that are correctly predicted by M , evaluating them against the predicates P and recording their respective activation patterns. The results are stored in a binary matrix Φ_c for each class c , where the columns correspond to the predicates in P , and the rows represent the training instances. Specifically, an entry $\Phi_c[i, j] = 1$ denotes that the j -th instance exhibits the i -th predicate, while $\Phi_c[i, j] = 0$ indicates otherwise, as illustrated in Figure 2(b).

From a logical structure perspective, each row in Φ_c represents a logical rule that describes an instance of class c , expressed in conjunctive form using hidden predicates. For instance, in the simple binary classification task introduced earlier, G_1 corresponds to the column $(1, 1, 0, 1, 0, 0)$, which can be represented as $p_1 \wedge p_2 \wedge \neg p_3 \wedge p_4 \wedge \neg p_5 \wedge \neg p_6$. Here, we omit G in $p_j(G)$ for brevity. To obtain a more compact set of explanation rules, we input Φ and \hat{Y} into an off-the-shelf rule learner, such as decision trees or symbolic regression (Cranmer, 2023). In this work, we use decision trees for computational efficiency. The tree depth serves as a tunable parameter for controlling the complexity of the rules. For instance, in our simple GNN setting, the decision tree yields the following explanation rules ϕ_M :

$$\forall G, \neg p_3(G) \Rightarrow \text{label}(G, 0), \quad \forall G, p_3(G) \Rightarrow \text{label}(G, 1). \quad (7)$$

3.3 GROUNDING ϕ_M INTO THE INPUT FEATURE SPACE

The next challenge lies in grounding ϕ_M . Prior work often simplifies this task by mapping each latent concept to a single representative subgraph, which can be poorly representative or even invalid (see our analysis of the root cause in the Appendix B.4). Such subgraphs can become especially meaningless when the input feature space \mathbf{X} is continuous. To address these issues, LOGICXGNN goes beyond producing just individual explanation subgraphs. Moreover, it generates a set of generalized, fine-grained grounding rules that directly connect the hidden predicates P to the input space \mathbf{X} . In particular, our predicate design explicitly integrates structural patterns, enabling both (i) the generation of diverse, representative subgraphs for each predicate and (ii) the construction of *structure-aware inputs* \mathbf{Z} for inferring the grounding rules.

Recall that each p_j can be represented by a collection of isomorphic subgraphs that activate p_j . Formally, given a graph $G = (V, E)$, we consider the action of the automorphism group $\text{Aut}(G)$ on its node set V . The orbit of a node $v \in V$ under this action is defined as

$$\text{Orb}(v) = \{u \in V \mid \exists \pi \in \text{Aut}(G) \text{ such that } \pi(v) = u\}. \quad (8)$$

Each orbit corresponds to an equivalence class of nodes that are structurally indistinguishable within G . To create a canonical representation, we partition the node set into these orbits and establish a consistent ordering using Algorithm 1 (Appendix D):

$$\mathcal{O}(G) = \{\text{Orb}(v_1), \text{Orb}(v_2), \dots, \text{Orb}(v_k)\}, \quad (9)$$

where each $\text{Orb}(v_i)$ denotes the orbit of node v_i under $\text{Aut}(G)$, and the ordering is deterministic and can be reliably reproduced across isomorphic subgraphs (see proofs in Appendix D).

Definition 3.1 (Subgraph Input Feature \mathbf{Z}). The input features of nodes in a subgraph G (represented by pattern p_j) are aggregated in a structure-aware manner according to the orbit ordering $\mathcal{O}(G)$:

$$\mathbf{Z}_G = \text{CONCAT}_{\text{Orb} \in \mathcal{O}(G)} \left(\text{AGGREGATE}_{u \in \text{Orb}} \mathbf{X}_u \right), \quad (10)$$

where AGGREGATE applies frequency encoding (mean encoding) for multi-node orbits with discrete (continuous) features, and the identity function for singleton orbits. Since each subgraph G corresponds to the L -hop neighborhood of a central node v ,² we adopt the notation $\mathbf{Z}_{v,L}$ in place of \mathbf{Z}_G for convenience. For example, as shown in Figure 2(c), the subgraph input feature centered at node 1 is $\mathbf{Z}_{1,1} = (1, A, 3, B)$, which represents the concatenated features of nodes 1 and 2.

²Note that the central node v can be treated as a singleton orbit, as adopted in our GNN example in Figure 2.

Once we obtain \mathbf{Z} , we can derive interpretable grounding rules that approximate the embedding pattern function $Pattern_{emb}(\cdot)$ encoded by the GNN. To address this, we leverage off-the-shelf rule learners; in this work, we utilize decision trees due to their computational efficiency and inherent interpretability. For predicates that exhibit isomorphic subgraph structures but distinct embedding patterns, we recast this problem as a supervised classification task, where each predicate p_j is treated as a unique class label j . The training procedure constitutes a dataset for each predicate label j by collecting the subgraph representations of all nodes v that satisfy the predicate, formally defined as $\{\mathbf{Z}_{v,L} \mid p_j(v) = 1\}$. This process allows us to easily collect representative subgraphs, as shown in Figure 2(c). For example, the training data for p_1 (identified as (“cde85e”, 0)) is $\{\mathbf{Z}_{1,1}, \mathbf{Z}_{3,1}, \dots, \mathbf{Z}_{22,1}\}$, while the training data for p_2 (identified as (“cde85e”, 1)) is $\{\mathbf{Z}_{4,1}, \mathbf{Z}_{11,1}, \mathbf{Z}_{20,1}\}$. Applying the decision tree then generates rules $\mathbf{Z}[1] \leq 0.5$ for p_1 and the opposite for p_2 . Recall that $\mathbf{Z}[1]$, the first dimension of \mathbf{Z} , encodes the central node type. Therefore, we recognize that p_1 indicates that the central node is of type “A”, while p_2 indicates type “B”, conditioned on the structural pattern being “cde85e”.

For purely structural predicates without direct embedding counterparts, explanations are grounded in the presence of their topological structures. Consider the predicate p_3 , (“d255lh”, 1), which activates when an input graph contains a subgraph isomorphic to the “d255lh” pattern, corresponding to a node with 2 edges, as illustrated in Figure 2(c). Since this is the only predicate in our GNN example that encodes this specific property, we can ground ϕ_M into the following interpretable logical rules:

$$\forall G, \forall v \in V_G (\text{degree}(v) \neq 2) \Rightarrow \text{label}(G, 0), \quad \forall G, \exists v \in V_G (\text{degree}(v) = 2) \Rightarrow \text{label}(G, 1). \quad (11)$$

However, such straightforward rules cannot always be derived in more complex scenarios. In general, the final rule-based explanation takes the form of logical rules over predicates, with predicates grounded either through grounding rules or representative subgraphs. More details about our grounding process, including the additional examples, handling of continuous features, and guidance on interpreting the grounding rule visualizations, are provided in Appendix D.

Inference and Data-Grounded Fidelity. During inference, a definitive prediction for a class is made if and only if the logical rule for that class is uniquely satisfied, as determined by evaluating each predicate on the input graph (Eq. 6). We then compute data-grounded fidelity ($Fid_{\mathcal{D}}$) as the *class-weighted* percentage of instances where this rule-based prediction exactly matches the original GNN’s output. Note that a prediction is considered incorrect if it is ambiguous, which occurs when either no rule or multiple class rules are satisfied simultaneously. This issue is prevalent in prior methods, as shown with examples in Section 4.2. In contrast, our approach is guaranteed to avoid such ambiguity because its rules are derived from decision trees—a structure that inherently provides a unique classification for any given input. Further details on $Fid_{\mathcal{D}}$ and inference are in Appendix B.2.

3.4 ANALYSIS

Computational complexity. Our approach models message passing at each node to identify interpretable and reliable predicates. First, we extract activation patterns from pretrained GNNs and compute graph hashes over nodes’ local neighborhoods. Hashing the L -hop neighborhood of a node takes approximately $O(L \cdot (\nu + \varepsilon))$ time, where ν and ε denote the number of nodes and edges within the neighborhood. In practice, for well-structured and relatively sparse datasets, this hashing behaves nearly constant in runtime. Importantly, this step operates independently of the GNN’s size, with overall complexity $O(|\mathcal{V}| \cdot L \cdot (\nu + \varepsilon))$. Second, we determine the logical structure by constructing a binary matrix of size (number of predicates) \times (number of graphs), yielding a complexity of $O(|\mathcal{V}| \cdot |\mathcal{G}|)$. Finally, grounding each predicate requires constructing a dataset of representative subgraphs. Given that fitting a small decision tree is typically fast, often taking near-constant time in practice, this yields a complexity of $O(|\mathcal{V}|^2)$. Empirical runtime results are reported in Table 1.

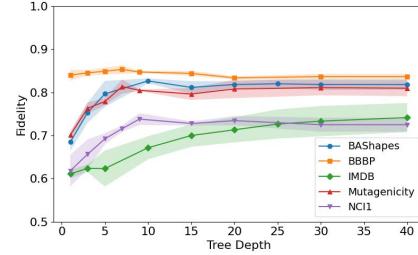
Generalization across different GNN architectures. We show the theoretical generalizability of LOGICXGNN to any GNN architecture. First, we model stacked message-passing computations using hidden predicates (activation patterns and local subgraphs), an architecture-agnostic formulation. We then generate logical rules through binary matrix construction and decision tree analysis, maintaining architecture independence. Finally, we ground predicates by linking them to input features via decision trees, requiring no GNN-specific details. Empirical evidence is provided in Appendix C.4.

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Table 1: Data-grounded fidelity Fid_D (%) on the test datasets and runtime (in 10^3 seconds) for various explanation methods. Results are reported over three random seeds. For each dataset, the highest fidelity and fastest runtime are highlighted in bold. “—” indicates no rules were learned.

Method	BAShapes		BBBP		Mutagenicity		NCI1		IMDB	
	$Fid_D \uparrow$	$Time \downarrow$								
GLG	31.09 ± 5.81	0.31 ± 0.02	—	0.36 ± 0.02	38.98 ± 3.01	0.73 ± 0.02	9.61 ± 7.76	0.88 ± 0.02	0.00 ± 0.00	0.33 ± 0.02
GTRAIL	79.82 ± 3.64	2.54 ± 0.12	50.00 ± 0.00	5.65 ± 0.12	65.93 ± 3.83	20.05 ± 1.12	60.04 ± 4.91	24.07 ± 1.12	35.35 ± 2.85	1.07 ± 0.05
ϕ_M (Ours)	82.67 ± 0.57	0.02 ± 0.00	85.32 ± 2.96	0.14 ± 0.01	81.36 ± 2.12	0.61 ± 0.10	73.81 ± 2.26	0.44 ± 0.00	74.16 ± 6.75	0.02 ± 0.00

332
 333
 334
 335
 Table 2: Data-grounded fidelity Fid_D (%) on the test datasets and runtime (in 10^3 seconds) on *large-scale* real-world datasets. TO (timeout) indicates that the method did not complete within the allocated time limit of 12 hours.

Method	Reddit		Twitch		Github	
	$Fid_D \uparrow$	$Time \downarrow$	$Fid_D \uparrow$	$Time \downarrow$	$Fid_D \uparrow$	$Time \downarrow$
GLG	—	TO	—	TO	—	TO
GTRAIL	—	TO	—	TO	—	TO
ϕ_M (Ours)	87.39 ± 0.59	4.04 ± 0.20	59.71 ± 0.92	7.27 ± 0.22	65.01 ± 2.59	12.17 ± 1.91



340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Figure 3: Impact of tree depth on Fid_D .

4 EVALUATION

In this section, we conduct extensive experimental evaluations on a broad collection of real-world benchmark datasets to investigate the following research questions:

1. How does ϕ_M perform compared to existing rule-based explanation methods across key metrics, including data-grounded fidelity, efficiency, and scalability?
2. How does ϕ_M improve explanation quality over existing approaches, and what are the key advantages of our generated explanations?

Baselines. Consistent with prior work (Armgaa et al., 2024), we restrict our comparison to global rule-based explanation methods, excluding local approaches such as GNNEXPLAINER (Ying et al., 2019) and (sub)graph generation-based approaches such as GNNINTERPRETER (Wang & Shen, 2023) due to their different scope. For evaluation, we compare our approach against state-of-the-art methods, GLGEXPLAINER (Azzolin et al., 2023) and GRAPHTRAIL. Our primary evaluation metric is data-grounded fidelity, Fid_D . Additional results on other metrics are provided in Appendix C.

Due to page limits, detailed descriptions of the datasets are provided in Appendix A, while the experimental setup, including GNN training and baseline implementations, can be found in Appendix B.

4.1 HOW EFFECTIVE IS ϕ_M AS A LOGICAL RULE-BASED EXPLANATION TOOL?

We report the data-grounded fidelity Fid_D and runtime of our proposed approach ϕ_M and baseline methods on commonly used datasets for GNN explanation research, with results presented in Table 1. Results on large-scale real-world datasets are presented in Table 2. Notably, ϕ_M consistently outperforms both baselines by a substantial margin across all benchmarks. The performance gap arises because baseline explanation subgraphs are often poorly representative of the model’s decision regions, or even fail to match any real graph instances in the dataset (e.g., GLGEXPLAINER yields 0% Fid_D on IMDB). In contrast, ϕ_M learns grounding rules that generalize well, explaining a large portion of unseen test data. We further analyze the quality of their explanations using concrete examples and additional utility metrics in Section 4.2. Another interesting observation is that ϕ_M can achieve relatively high fidelity even with simple rules, as shown in Figure 3. The tunable depth also gives users the flexibility to choose an appropriate trade-off between fidelity and rule complexity.

In terms of runtime performance, both baseline methods are fundamentally bottlenecked by their reliance on computationally expensive operations for each instance. For example, GLGEXPLAINER must invoke a separate local explainer, PGEXPLAINER (Luo et al., 2020a), for every graph, while GRAPHTRAIL requires numerous, costly GNN forward passes to process its computation trees. In contrast, ϕ_M employs highly efficient graph traversal algorithms and decision trees, yielding a dramatic speedup of one to two orders of magnitude (10–100 \times). This enables ϕ_M to demonstrate significantly better scalability on large-scale real-world datasets such as Reddit, Twitch, and Github (Rozemberczki et al., 2020), where both baselines time out, as shown in Table 2.

432 produces chemically invalid motifs, such as x_{149} and x_{40} in BBBP. Moreover, since it generates
 433 only unilateral rules, all class 0 instances are trivially explained correctly, as they simply do not
 434 match these invalid subgraphs. Although GRAPHTRAIL appears to achieve a higher $Fid_{\mathcal{D}}$ than
 435 GLGEXPLAINER, such explanations remain largely meaningless to end users. In contrast, ϕ_M not
 436 only generates accurate representative subgraphs but also provides detailed general grounding rules
 437 for each predicate, resulting in a significantly higher $Fid_{\mathcal{D}}$ than the baselines. Moreover, our final
 438 explanations are expressed in DNF form, offering better readability than those of GRAPHTRAIL.

439 To complement this qualitative analysis, we quantitatively evaluate the generated explanations using a
 440 set of objective metrics that reflect their practical utility for end users: (1) *Coverage*: The proportion
 441 of target-class instances where the rule-based prediction remains correct when restricted to only
 442 valid subgraph patterns (i.e., after removing all invalid patterns). (2) *Stability*: The consistency of
 443 explanation subgraphs across multiple runs. (3) *Validity*: The proportion of explanation subgraphs
 444 corresponding to valid chemical fragments in the dataset. Additional details on these metrics are
 445 provided in Appendix E.1. All results are computed and reported over three seeds in Tables 3 and 4.

446 Note that our approach consistently outperforms all baselines across these metrics. The high coverage
 447 indicates that our method provides meaningful explanations to more instances, while higher stability
 448 suggests more reliable, reproducible explanations. The 100% validity scores further confirm that
 449 our explanations correspond to chemically meaningful substructures, making them interpretable and
 450 trustworthy for domain experts. Appendix E.2 provides additional analyses, which corroborate our
 451 qualitative findings and validate the effectiveness of our approach for high-quality graph explanations.

452 5 RELATED WORK

453 Explainability methods for Graph Neural Networks (GNNs) can be broadly categorized into local
 454 and global approaches. A significant portion of prior work has focused on local explanations, which
 455 provide input attribution scores for a single prediction (Pope et al., 2019; Ying et al., 2019; Luo et al.,
 456 2020b; Vu & Thai, 2020; Lucic et al., 2022; Tan et al., 2022). These methods identify the most critical
 457 nodes and edges for a given decision, analogous to attribution techniques like Grad-CAM (Selvaraju
 458 et al., 2017) used in computer vision. In contrast, global explanations aim to capture the model’s
 459 overall behavior, primarily through two strategies. (Sub)graph generation-base methods seek to
 460 identify representative graph patterns that are highly indicative of a particular class (Yuan et al., 2020;
 461 Wang & Shen, 2023; Xuanyuan et al., 2023; Wang & Shen, 2024; Saha & Bandyopadhyay, 2024; Lv
 462 & Chen, 2023; Yu & Gao, 2025). Logical rule-based methods, however, offer more expressive and
 463 human-readable explanations by using subgraphs as interpretable concepts within a formal logical
 464 formula. Our proposed method, LOGICXGNN, operates within this advanced domain of global
 465 rule-based explanations, aiming to generate precise and interpretable rules that clearly describe a
 466 GNN’s decision-making process. Another related line of work involves self-explainable GNNs,
 467 which aim to develop model architectures that are inherently interpretable by design (Dai & Wang,
 468 2021; Liu et al., 2025; Ragno et al., 2022). These methods are not directly compared in our work as
 469 they address a different goal, building interpretable models from scratch, whereas our focus is on
 470 providing post-hoc explanations for any pre-trained GNN. We believe that generalizing our rule-based
 471 framework to the domain of self-explainable models is a promising direction for future research.

472 6 CONCLUSION

473 In this work, we identify a fundamental limitation in existing rule-based explanation methods
 474 for GNNs: they optimize and evaluate fidelity in an intermediate, uninterpretable concept space
 475 while neglecting the grounding quality of final subgraph explanations presented to end users. This
 476 disconnect undermines both usability and trustworthiness, as methods often produce explanations that
 477 appear highly faithful yet fail to reflect concrete patterns in the data. To address this critical gap, we
 478 propose LOGICXGNN, a novel framework that constructs explanation rules over reliable predicates
 479 designed to preserve structural patterns inherent in GNN’s message-passing mechanism. Our approach
 480 enables effective grounding that produces representative subgraphs and learns generalizable grounding
 481 rules. LOGICXGNN achieves an average improvement of over 20% in data-grounded fidelity $Fid_{\mathcal{D}}$
 482 while delivering 10–100× computational speedup compared to existing methods. Comprehensive
 483 evaluation across coverage, stability, and validity metrics confirms that LOGICXGNN produces
 484 explanations with genuine practical utility, significantly advancing trustworthy GNN explainability.

486 REFERENCES
487

488 Julia Amann, Alessandro Blasimme, Effy Vayena, Dietmar Frey, Vince I. Madai, and Precise4Q
489 consortium. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective.
490 *BMC Medical Informatics and Decision Making*, 20(1):310, Nov 2020. doi: 10.1186/s12911-020-
491 01332-6. URL <https://doi.org/10.1186/s12911-020-01332-6>.

492 Burouj Armgaan, Manthan Dalmia, Sourav Medya, and Sayan Ranu. Graphtrail: Translating
493 GNN predictions into human-interpretable logical rules. In Amir Globersons, Lester Mackey,
494 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
495 *Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-*
496 *formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -*
497 *15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/df2d51e1d3e899241c5c4c779c1d509f-Abstract-Conference.html.

499 Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini. Global explainabil-
500 ity of gnn via logic combination of learned concepts. In *The Eleventh International Conference*
501 *on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
502 URL <https://openreview.net/forum?id=OTbRTIY4YS>.

503 Niklas Bussmann, Paolo Giudici, Dimitri Marinelli, and Jochen Papenbrock. Explainable machine
504 learning in credit risk management. *Comput. Econ.*, 57(1):203–216, January 2021. ISSN 0927-
505 7099. doi: 10.1007/s10614-020-10042-0. URL <https://doi.org/10.1007/s10614-020-10042-0>.

508 Oana-Maria Camburu, Brendan Shillingford, Pasquale Minervini, Thomas Lukasiewicz, and Phil
509 Blunsom. Make up your mind! adversarial generation of inconsistent natural language explanations.
510 In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetraeault (eds.), *Proceedings of the*
511 *58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July*
512 *5-10, 2020*, pp. 4157–4165. Association for Computational Linguistics, 2020. doi: 10.18653/V1/2020.ACL-MAIN.382. URL <https://doi.org/10.18653/v1/2020.acl-main.382>.

514 Ziheng Chen, Fabrizio Silvestri, Jia Wang, Yongfeng Zhang, Zhenhua Huang, Hongshik Ahn,
515 and Gabriele Tolomei. Grease: Generate factual and counterfactual explanations for gnn-based
516 recommendations, 2022. URL <https://arxiv.org/abs/2208.04222>.

518 Miles D. Crammer. Interpretable machine learning for science with pysr and symbolicregression.jl.
519 *CoRR*, abs/2305.01582, 2023. doi: 10.48550/ARXIV.2305.01582. URL <https://doi.org/10.48550/arXiv.2305.01582>.

521 Enyan Dai and Suhang Wang. Towards self-explainable graph neural network. In Gianluca Demartini,
522 Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (eds.), *CIKM '21: The 30th*
523 *ACM International Conference on Information and Knowledge Management, Virtual Event, Queens-*
524 *land, Australia, November 1 - 5, 2021*, pp. 302–311. ACM, 2021. doi: 10.1145/3459637.3482306.
525 URL <https://doi.org/10.1145/3459637.3482306>.

526 Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and
527 Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
528 compounds. correlation with molecular orbital energies and hydrophobicity. *Journal of Medicinal*
529 *Chemistry*, 34(2):786–797, 1991. doi: 10.1021/jm00106a046. URL <https://doi.org/10.1021/jm00106a046>.

532 Chuqin Geng, Xiaojie Xu, Zhaoyue Wang, Ziyu Zhao, and Xujie Si. Decoding interpretable logic
533 rules from neural networks, 2025. URL <https://arxiv.org/abs/2501.08281>.

534 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs,
535 2018. URL <https://arxiv.org/abs/1706.02216>.

537 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
538 works. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,*
539 *France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL
<https://openreview.net/forum?id=SJU4ayYgl>.

540 Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin Detyniecki.
 541 The dangers of post-hoc interpretability: Unjustified counterfactual explanations. In Sarit Kraus
 542 (ed.), *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
 543 IJCAI 2019, Macao, China, August 10-16, 2019*, pp. 2801–2807. ijcai.org, 2019. doi: 10.24963/
 544 IJCAI.2019/388. URL <https://doi.org/10.24963/ijcai.2019/388>.

545 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
 546 for semi-supervised learning. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), *Pro-
 547 ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
 548 innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
 549 Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, Febru-
 550 ary 2-7, 2018*, pp. 3538–3545. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11604. URL
 551 <https://doi.org/10.1609/aaai.v32i1.11604>.

552 Zachary C. Lipton. The mythos of model interpretability. *Commun. ACM*, 61(10):36–43, 2018. doi:
 553 10.1145/3233231. URL <https://doi.org/10.1145/3233231>.

554 Fanzhen Liu, Xiaoxiao Ma, Jian Yang, Alsharif Abuadbba, Kristen Moore, Surya Nepal, Cécile Paris,
 555 Quan Z. Sheng, and Jia Wu. Towards faithful class-level self-explainability in graph neural networks
 556 by subgraph dependencies. *CoRR*, abs/2508.11513, 2025. doi: 10.48550/ARXIV.2508.11513.
 557 URL <https://doi.org/10.48550/arXiv.2508.11513>.

558 Yunchao Liu, Yu Wang, Oanh Vu, Rocco Moretti, Bobby Bodenheimer, Jens Meiler, and Tyler
 559 Derr. Interpretable chirality-aware graph neural network for quantitative structure activity re-
 560 lationship modeling. In *The First Learning on Graphs Conference*, 2022. URL <https://openreview.net/forum?id=W20StztMhc>.

561 Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fabrizio Silvestri. Cf-
 562 gnnexplainer: Counterfactual explanations for graph neural networks, 2022. URL <https://arxiv.org/abs/2102.03322>.

563 Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
 564 Parameterized explainer for graph neural network. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia
 565 Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Pro-
 566 cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
 567 2020, December 6-12, 2020, virtual*, 2020a. URL <https://proceedings.neurips.cc/paper/2020/hash/e37b08dd3015330dcbb5d6663667b8b8-Abstract.html>.

568 Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
 569 Parameterized explainer for graph neural network, 2020b. URL <https://arxiv.org/abs/2011.04573>.

570 Ge Lv and Lei Chen. On data-aware global explainability of graph neural networks. *Proc.
 571 VLDB Endow.*, 16(11):3447–3460, 2023. doi: 10.14778/3611479.3611538. URL <https://www.vldb.org/pvldb/vol16/p3447-1v.pdf>.

572 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 573 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. *CoRR*,
 574 abs/2007.08663, 2020. URL <https://arxiv.org/abs/2007.08663>.

575 Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and Heiko Hoffmann.
 576 Explainability methods for graph convolutional neural networks. In *2019 IEEE/CVF Conference
 577 on Computer Vision and Pattern Recognition (CVPR)*, pp. 10764–10773, 2019. doi: 10.1109/
 578 CVPR.2019.01103.

579 Alessio Rago, Biagio La Rosa, and Roberto Capobianco. Prototype-based interpretable graph neural
 580 networks. *IEEE Transactions on Artificial Intelligence*, 5(4):1486–1495, 2022.

581 Susie Xi Rao, Shuai Zhang, Zhichao Han, Zitao Zhang, Wei Min, Zhiyao Chen, Yinan Shan, Yang
 582 Zhao, and Ce Zhang. xfraud: explainable fraud transaction detection. *Proceedings of the VLDB
 583 Endowment*, 15(3):427–436, November 2021. ISSN 2150-8097. doi: 10.14778/3494124.3494128.
 584 URL <http://dx.doi.org/10.14778/3494124.3494128>.

594 Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented Open-source
 595 Python Framework for Unsupervised Learning on Graphs. In *Proceedings of the 29th ACM*
 596 *International Conference on Information and Knowledge Management (CIKM '20)*, pp. 3125–3132.
 597 ACM, 2020.

598 Sayan Saha and Sanghamitra Bandyopadhyay. Graphon-explainer: Generating model-level expla-
 599 nations for graph neural networks using graphons. *Trans. Mach. Learn. Res.*, 2024, 2024. URL
 600 <https://openreview.net/forum?id=yHUtuv0IQv>.

602 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 603 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
 604 tion. In *IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October*
 605 *22-29, 2017*, pp. 618–626. IEEE Computer Society, 2017. doi: 10.1109/ICCV.2017.74. URL
 606 <https://doi.org/10.1109/ICCV.2017.74>.

607 Mengying Sun, Sendong Zhao, Coryandar Gilvary, Olivier Elemento, Jiayu Zhou, and Fei Wang.
 608 Graph convolutional networks for computational drug development and discovery. *Briefings in*
 609 *Bioinformatics*, 21(3):919–935, 2020. doi: 10.1093/bib/bbz042.

610 Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Yunqi Li, and Yongfeng Zhang.
 611 Learning and evaluating graph neural network explanations based on counterfactual and factual
 612 reasoning. In Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides
 613 Gionis, Ivan Herman, and Lionel Médini (eds.), *WWW '22: The ACM Web Conference 2022,*
 614 *Virtual Event, Lyon, France, April 25 - 29, 2022*, pp. 1018–1027. ACM, 2022. doi: 10.1145/
 615 3485447.3511948. URL <https://doi.org/10.1145/3485447.3511948>.

617 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 618 Bengio. Graph attention networks. In *6th International Conference on Learning Representations,*
 619 *ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings*.
 620 OpenReview.net, 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.

621 Minh N. Vu and My T. Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
 622 neural networks, 2020. URL <https://arxiv.org/abs/2010.05788>.

624 Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
 625 compound retrieval and classification. *Knowledge and Information Systems*, 14:347–375, 2008.

626 Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-level ex-
 627 planation for graph neural networks. In *The Eleventh International Conference on Learning*
 628 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
 629 <https://openreview.net/forum?id=rqq6Dh8t4d>.

631 Xiaoqi Wang and Han-Wei Shen. Gnnboundary: Towards explaining graph neural networks
 632 through the lens of decision boundaries. In *The Twelfth International Conference on Learn-
 633 ing Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 634 <https://openreview.net/forum?id=WizzXCVYiH>.

635 Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
 636 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine
 637 learning, 2018. URL <https://arxiv.org/abs/1703.00564>.

638 Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph neural
 639 networks for automated de novo drug design. *Drug Discovery Today*, 26(6):1382–1393, 2021. doi:
 640 10.1016/j.drudis.2021.02.011.

641 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 642 networks? In *7th International Conference on Learning Representations, ICLR 2019, New*
 643 *Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL [https://openreview.net/forum?id=ryGs6iA5Km](https://openreview.net/

 644 <a href=).

646 Han Xuanyuan, Pietro Barbiero, Dobrik Georgiev, Lucie Charlotte Magister, and Pietro Liò. Global
 647 concept-based interpretability for graph neural networks via neuron analysis. In Brian Williams,
 648 Yiling Chen, and Jennifer Neville (eds.), *Thirty-Seventh AAAI Conference on Artificial Intelligence*,

648 AAAI 2023, *Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI*
 649 2023, *Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023,*
 650 *Washington, DC, USA, February 7-14, 2023*, pp. 10675–10683. AAAI Press, 2023. doi: 10.1609/
 651 AAAI.V37I9.26267. URL <https://doi.org/10.1609/aaai.v37i9.26267>.

652 Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
 653 Generating explanations for graph neural networks, 2019. URL <https://arxiv.org/abs/1903.03894>.

654 Zhaoning Yu and Hongyang Gao. MAGE: model-level graph neural networks explanations
 655 via motif-based graph generation. In *The Thirteenth International Conference on Learning*
 656 *Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL
 657 <https://openreview.net/forum?id=vue9P1Ypk6>.

658 Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph
 659 neural networks. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge*
 660 *Discovery & Data Mining*, pp. 430–438. ACM, August 2020. doi: 10.1145/3394486.3403085.
 661 URL <http://dx.doi.org/10.1145/3394486.3403085>.

662 Yu Zhang, Peter Tiño, Ales Leonardis, and Ke Tang. A survey on neural network interpretability.
 663 *IEEE Trans. Emerg. Top. Comput. Intell.*, 5(5):726–742, 2021. doi: 10.1109/TETCI.2021.3100641.
 664 URL <https://doi.org/10.1109/TETCI.2021.3100641>.

665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A DATASET DETAILS

704 We evaluate our approach on a diverse set of graph classification benchmarks commonly used in
 705 GNN explanation research. Table 5 summarizes the statistics of these datasets.

- 707 • **Molecular Graphs:** Mutagenicity (Debnath et al., 1991), NCI1 (Wale et al., 2008), and
 708 BBBP (Wu et al., 2018) are molecular datasets where nodes represent atoms and edges
 709 represent chemical bonds. In NCI1, each graph is labeled according to its anticancer activity.
 710 Mutagenicity contains compounds labeled based on their mutagenic effect on the Gram-
 711 negative bacterium (Label 0 indicates mutagenic). BBBP labels molecules by their ability to
 712 penetrate the blood-brain barrier.
- 713 • **Synthetic Graphs:** BAMultiShapes (BAShapes) consists of 1,000 Barabási-Albert (BA)
 714 graphs with randomly placed network motifs such as house, grid, and wheel structures
 715 (Ying et al., 2019). Class 0 contains plain BA graphs or those with one or more motifs,
 716 while Class 1 contains graphs enriched with two motif combinations.
- 717 • **Social Graphs:** IMDB-BINARY (IMDB) represents social networks where each graph
 718 corresponds to a movie; nodes are actors and edges indicate co-appearances in scenes
 719 (Morris et al., 2020).

721 Table 5: Statistics of standard graph datasets.

	BAShapes	Mutagenicity	BBBP	NCI1	IMDB
#Graphs	1,000	4,337	2,050	4,110	1,000
Avg. $ \mathcal{V} $	40	30.32	23.9	29.87	19.8
Avg. $ \mathcal{E} $	87.00	30.77	51.6	32.30	193.1
#Node features	10	14	9	37	0

729 To assess scalability, we also benchmark our approach and baselines on large-scale, real-world
 730 datasets from Rozemberczki et al. (2020): Reddit Threads, Twitch Egos, and GitHub Stargazers.
 731 Table 6 summarizes their statistics.

- 733 • **Reddit Threads** (Reddit): Labeled as discussion-based or non-discussion-based. The task
 734 is to predict whether a thread is discussion-oriented.
- 735 • **Twitch Egos** (Twitch): Ego networks of Twitch users. The task is to predict whether the
 736 central gamer plays a single game or multiple games.
- 737 • **GitHub Stargazers** (GitHub): Social networks of developers who starred popular machine
 738 learning or web development repositories. The task is to classify whether a social network
 739 belongs to a web or machine learning repository.

741 Table 6: Statistics of Graph Datasets: Nodes, Density, and Diameter

Dataset	Graphs	Nodes		Density		Diameter	
		Min	Max	Min	Max	Min	Max
Reddit	203,088	11	197	0.021	0.382	2	27
Twitch	127,094	14	452	0.038	0.967	1	12
GitHub	12,725	10	957	0.003	0.561	2	18

751 B EXPERIMENTAL SETUP AND REPLICATE BASELINES

752 B.1 EXPERIMENTAL SETUP

753 All experiments are conducted on an Ubuntu 22.04 LTS machine with 128 GB RAM and an AMD
 754 EPYC™ 7532 processor. Each dataset is split into training and testing sets using an 80/20 ratio, and

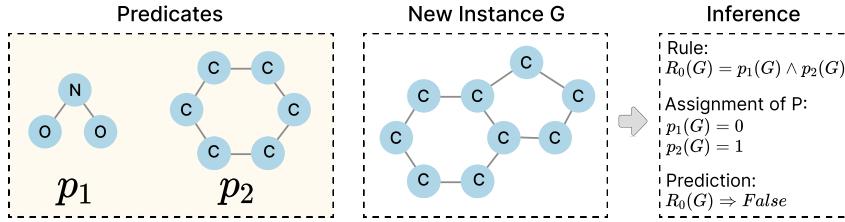


Figure 6: The example for inference.

all experiments are repeated with three different random seeds to ensure robustness. The seeds affect the entire pipeline, including GNN training. Although our method itself is deterministic, we evaluate it on GNNs trained with different seeds to ensure fair comparison and to assess robustness under natural variations, following standard XAI practice.

The default GNN architecture is GCN (Kipf & Welling, 2017) for all benchmarks. To demonstrate the model-agnostic nature of LOGICXGNN, we additionally benchmark against multiple GNN architectures, including 2-layer GraphSAGE (Hamilton et al., 2018), 3-layer GIN (Xu et al., 2019), and 2-layer GAT (Velickovic et al., 2018). Results are reported in Table 13. For GNN training, we use the Adam optimizer with a learning rate of 0.005. Each GNN is trained for up to 500 epochs with early stopping after a 100-epoch warm-up if validation accuracy does not improve for 50 consecutive epochs. *All explanation methods are trained and learned on the same training data as the base GNNs, and their performance is evaluated on the test splits. The main metric is data-grounded fidelity $Fid_{\mathcal{D}}$.*

As for our approach, LOGICXGNN, we employ the CART algorithm for all decision trees used in LOGICXGNN. To compute the predicates, we first select the top K most informative dimensions from the decision tree that achieves at least 95% accuracy (Eq. 3). We then use these dimensions to generate activation embeddings for each predicate and apply Weisfeiler-Lehman (WL) hashing to capture their topological structure. We report the best results across different tree depths for the final rule-based explanations. For each explanation method, we allocate a time limit of 12 hours, excluding the training time of the GNNs.

B.2 INFERENCE WITH RULE-BASED EXPLANATIONS ON GRAPH SPACE

Rule-based GNN explanations operate by evaluating a set of logical formulas defined over an input graph. During inference, these formulas are applied to an input graph G to generate a prediction. Typically, each symbol—i.e., a predicate or concept—in a formula evaluates to `True` if its corresponding subgraph is present in G (i.e., an isomorphic subgraph is detected).

To provide a concrete example, to make a final prediction for an input graph G , we define R_c as the logical rule for a given class c . The graph G is classified as class c if the rule R_c evaluates to `True` based on the values of the predicates (symbols) appearing in that formula. For instance, consider a GNN trained to predict mutagenicity, with a rule for the class “Mutagenic” (R_0). The explanation method might produce the following rule based on chemical substructure predicates:

- **Predicate p_1 :** `True` if the input graph contains a nitro group (NO_2).
- **Predicate p_2 :** `True` if the input graph contains a 6-carbon ring.
- **Rule R_0 (Mutagenic):** $p_1 \wedge p_2$

Now, consider an input molecule G that contains a 6-carbon ring but no nitro group. Predicate $p_1(G)$ evaluates to `False`, while predicate $p_2(G)$ evaluates to `True`. The rule $R_0(G) = p_1(G) \wedge p_2(G)$ therefore becomes `False` \wedge `True`, which evaluates to `False`. Consequently, the input graph G is **not** classified as “Mutagenic” according to this rule, as illustrated in Figure 6.

We use an efficient subgraph isomorphism matching algorithm (`igraph.subisomorphic_vf2`) to perform subgraph matching and evaluate the rules for the baseline approaches. A timeout of 10 minutes is applied to each instance (only a few cases in our experiments reached this limit). Final results are computed over all instances, excluding those that timed out.

810 Note that in our approach, LOGICXGNN, a predicate evaluates to `True` under either of two con-
 811 ditions: (1) when a matching subgraph is found in G , or (2) when a subgraph in G satisfies the
 812 corresponding grounding rule over its features Z , given that it matches the structural pattern. We adopt
 813 condition (2) as it provides a more comprehensive evaluation framework, incorporating both structural
 814 and feature-based constraints and going beyond simple pattern matching to a rule-driven assessment.
 815 This design allows LOGICXGNN to identify functionally equivalent subgraphs by leveraging the
 816 GNN’s learned representations, offering more accurate explanations and better generalization than
 817 baselines, which rely solely on purely structural matching.

818 **Computing Data-Grounded Fidelity $Fid_{\mathcal{D}}$.** Following the rule-inference paradigm introduced
 819 earlier, the ground truth for computing data-grounded fidelity ($Fid_{\mathcal{D}}$) is taken to be the GNN’s
 820 own predictions. Consider a binary classification setting where the GNN label is either 0 or 1.
 821 The rule-based explainer produces a tuple of outputs, for example $(\text{rule}_0(G), \text{rule}_1(G))$, indicating
 822 whether the corresponding class rule evaluates to `True`. For example, in the binary classification
 823 setting, the possible outputs are:

$$(0, 0), \quad (0, 1), \quad (1, 0), \quad (1, 1).$$

824 When computing $Fid_{\mathcal{D}}$, the cases $(0, 0)$ and $(1, 1)$ are treated as `False`, since they indicate either
 825 multiple or no classes are satisfied, making the prediction ambiguous. A prediction is counted as
 826 correct only when there is an exact match between the GNN label and the rule-based prediction; for
 827 example, if the GNN label is 0, then the rule output must be $(1, 0)$ for it to be considered correct. The
 828 same computation scheme is also applied to other metrics used in this paper, such as accuracy, recall,
 829 precision, and F1 score. Finally, to address class imbalance, we incorporate a weighting scheme so
 830 that underrepresented classes are not penalized disproportionately in the fidelity computation.

831 Formally, let $y_{\text{GNN}}(G)$ denote the GNN prediction for graph G , and let $\hat{y}_{\text{rule}}(G)$ denote the prediction
 832 of the rule-based explainer (defined only when exactly one class rule fires). With class weights
 833 $w_c > 0$, the data-grounded fidelity is defined as:

$$Fid_{\mathcal{D}} = \frac{\sum_{G \in \mathcal{D}_{\text{test}}} w_{y_{\text{GNN}}(G)} \cdot \mathbb{I}(\hat{y}_{\text{rule}}(G) = y_{\text{GNN}}(G))}{\sum_{G \in \mathcal{D}_{\text{test}}} w_{y_{\text{GNN}}(G)}}, \quad (12)$$

834 where $\mathbb{I}(\cdot)$ is the indicator function. This weighted formulation ensures that classes with fewer
 835 samples contribute proportionally, making $Fid_{\mathcal{D}}$ a fair measure of agreement between the GNN and
 836 the rule-based explainer.

837 B.3 REPRODUCTION OF BASELINE APPROACHES

838 **Reproduction of GLGEXPLAINER.** We conducted experiments on GLGEXPLAINER (Azzolin
 839 et al., 2023) using their official GitHub repository. Following the original paper, we adopted the
 840 default hyperparameter settings and consulted with the original authors to verify our understanding
 841 and methodology, ensuring a fair and faithful evaluation.

842 During our study on this baseline, we made several important observations:

- 843 **1. Incomplete Implementation:** The public codebase for GLGEXPLAINER relies on pre-
 844 computed local explanations from PGEXPLAINER (Luo et al., 2020a) but omits the code
 845 for generating them. This prevents the method from being applied to new datasets out
 846 of the box. Following the authors’ guidance, we integrated the official PGEXPLAINER
 847 repository and performed the necessary hyperparameter tuning to generate these essential
 848 local explanations running properly for our experiments.
- 849 **2. Instability:** We observed that the explanation quality of both PGEXPLAINER and GLGEX-
 850 PLAINER is highly sensitive to hyperparameter choices and random seeds. The original
 851 authors confirmed they also faced challenges in consistently reproducing results, attributing
 852 it to “high stochasticity” in the training process. This inherent instability means that expla-
 853 nations can differ substantially across runs, affecting direct reproducibility—a limitation
 854 they themselves highlight in the paper.
- 855 **3. Reliance on Domain Knowledge:** The method requires external domain knowledge to
 856 derive concept representations from local explanations. To replicate the original authors’
 857 setup, we used concepts learned from our own approach to supply this necessary domain
 858 knowledge to GLGEXPLAINER.

In summary, our reproduced results are largely consistent with those reported in the original paper, as shown in Table 8. Specifically, the reproduced fidelity in the intermediate abstract concept space aligns closely with the results reported in the original paper (Azzolin et al., 2023) and in subsequent work (Armgaan et al., 2024). Moreover, our experiments on GRAPHTRAIL with new datasets were carefully conducted under the guidance of the original authors. Taken together, we are confident that our experimental setup is fair and that our results on GRAPHTRAIL constitute a valid comparison.

Reproduction of GRAPHTRAIL. We conducted experiments on GRAPHTRAIL (Armgaan et al., 2024) using their official GitHub repository. Following the original paper, we adopted the default hyperparameter settings and consulted with the original authors to verify our understanding and methodology, ensuring a fair and faithful evaluation.

During our study on this baseline, we made several important observations:

1. **Instability:** We observed that the explanations vary significantly across different seeds. The authors also acknowledged this issue. They confirmed that final subgraph explanations may indeed vary from seed to seed, although the fidelity values remain stable. This highlights that GraphTrail's symbolic rules are not deterministic and depend on stochastic elements of the pipeline.
2. **Chemically Invalid Motifs:** We observed many invalid subgraph explanations for molecular datasets. The authors admitted that invalid-looking subgraphs (e.g., a hydrogen atom appearing in a ring, which is chemically impossible) can occur. In the paper, they stated that subgraphs were manually redrawn to avoid such errors. This admission suggests that the published qualitative results required manual intervention and that the current pipeline cannot guarantee chemically valid visualizations.
3. **Fidelity Concerns:** The authors claimed that issues such as invalid subgraphs do not affect fidelity, since fidelity is based on c-trees. However, this also means that fidelity does not fully capture the validity or interpretability of the symbolic rules. In practice, fidelity values may be correct while the extracted rules remain trivial or domain-invalid.

In summary, our reproduced results are largely consistent with those reported in the original paper, as shown in Table 8. In particular, the reproduced fidelity in the intermediate abstract concept space aligns closely with the original findings (Armgaan et al., 2024). Taken together with our direct communication with the original authors, we are confident that our experimental setup is fair and that our results on GRAPHTRAIL provide a valid comparison.

Moreover, the issue of *chemically invalid motifs*, which the original authors themselves acknowledged, provides further motivation for the development of our proposed LOGICXGNN. By explicitly addressing the unreliable grounding of baseline methods, LOGICXGNN ensures that the learned explanations are not only faithful but also scientifically valid and interpretable.

B.4 THE INEFFECTIVE GROUNDING ISSUE OF BASELINE APPROACHES

The grounding issue of GLGEXPLAINER. While the subgraphs produced by GLGEXPLAINER are structurally valid, their grounding often results in explanations that are *unrepresentative or trivial*. The primary issue lies in its two-stage, post-hoc process, which first clusters a large set of local explanations into abstract concepts and then selects a representative subgraph for each.

As the code in Figure 7 illustrates, the method simply visualizes the top examples that best match a learned prototype after the concepts have already been formed. The critical weakness is that if the initial clustering groups dissimilar or noisy local explanations together, the resulting "concept" becomes incoherent. Consequently, the final representative subgraph, though a valid member of the cluster, may only be a trivial or poorly representative example, leading to an unfaithful explanation of the model's behavior.

The grounding issue of GRAPHTRAIL. During our analysis, we identified a critical issue with how GRAPHTRAIL grounds its explanations by generating subgraphs from computation trees, a problem the original authors acknowledge as a bug. Upon inspection, we found that the method *reconstructs invalid subgraphs by mismatching node attributes with the underlying graph structure*.

```

918     materialize prototypes
919
920     In [16]: # change assign function to a non-discrete one just to compute distance between local expls, and prototypes
921     # useful to show the materialization of prototypes based on distance
922     best_expl.hyper["assign_func"] = "sim"
923
924     x_train, emb, concepts_assignment, y_train_1h, le_classes, le_idxs, belonging = best_expl.get_concept_vect
925
926     best_expl.hyper["assign_func"] = "discrete"
927
928     proto_names = {
929         0: "Others",
930         1: "$NO_25",
931     }
932     torch.manual_seed(42)
933     fig = plt.figure(figsize=(17,4))
934     n = 5
935     for p in range(best_expl.hyper["num_prototypes"]):
936         idxs = le_idxs[concepts_assignment.argmax(-1) == p]
937         idxs = idxs[torch.randperm(len(idxs))] # for random examples
938         sa = concepts_assignment[concepts_assignment.argmax(-1) == p]
939         idxs = idxs[torch.argsort(sa[:, p], descending=True)]
940
941         for ex in range(5):
942             n += 1
943             plt.subplot(best_expl.hyper["num_prototypes"], 5, n)
944             utils.plot_molecule(dataset_train[int(idxs[ex])], composite_plot=True)
945
946     for p in range(best_expl.hyper["num_prototypes"]):
947         plt.subplot(best_expl.hyper["num_prototypes"], 5, 5*p + 1)
948         plt.ylabel(f"${p} ${proto_names[p]}", size=25, rotation="horizontal", labelpad=50)
949
950     plt.show()

```

Figure 7: Code from GLGEXPLAINER for selecting representative subgraphs. This post-hoc selection can yield unrepresentative examples if the underlying concept cluster is poorly defined or contains noisy local explanations.

This error originates in the `utils.dfs` function, shown in Figure 8. The function attempts to merge two different graph representations: `ctree` (containing rich attributes like atom types) and `ctree_id` (using simple integer IDs). It operates on the flawed assumption that the nodes in both graphs are identically ordered, mapping them by their list position rather than a stable identifier. Crucially, the original author's comment in the code, `! Incorrect`, explicitly acknowledges this flawed premise. Consequently, the subgraphs produced by this function are often structurally invalid, undermining their reliability as faithful explanations.

```

96     def dfs(ctree, ctree_id, node_mapping=None):
97         """
98         ! Incorrect
99         The ctree_id code is generated by writing down the node id as the canonical label of ctree
100        is generated. Hence, the node order between the two is preserved. Therefore, we can map
101        ctree's node attributes to ctree_id's node attributes.
102        """
103        G = nx.Graph()
104        for i in range(len(ctree_id.nodes)):
105            if node_mapping is not None:
106                attr = node_mapping[ctree.nodes[i]['attr']]
107            else:
108                attr = ctree.nodes[i]['attr']
109                G.add_node(ctree_id.nodes[i]['attr'], attr=attr)
110        for e in ctree_id.edges:
111            src, dest = e
112            src = ctree_id.nodes[src]['attr']
113            dest = ctree_id.nodes[dest]['attr']
114            G.add_edge(src, dest, attr=ctree_id.edges[e]['attr'])
115
116    return G

```

Figure 8: The flawed `utils.dfs` function from the official GRAPHTRAIL repository. The original author's comment (`! Incorrect`) confirms the function's incorrect assumption about node ordering when reconstructing subgraphs.

Why our approach ϕ_M achieves effective grounding? The effectiveness of our grounding process for ϕ_M stems from its rigorous, data-driven foundation. Our method begins with a systematic *cataloging of all structural patterns* as they appear in the training data. This detailed "bookkeeping" ensures that every subgraph used for grounding is guaranteed to be both *structurally valid and highly representative*, as it is drawn directly from real instances.

Furthermore, ϕ_M moves beyond simply showing these examples. It learns formal *grounding rules* on top of this empirical collection, providing a precise, logical explanation for *why* a given structural pattern is important for the model's prediction. This combination of data-backed, representative

972 subgraphs and the formal rules that govern them provides a grounding that is both faithful to the data
 973 and deeply interpretable.
 974

976 C ADDITIONAL EVALUATION RESULTS 977

978
 979 Table 7: Running record on three large datasets using 4 CPU cores.
 980

981 Dataset	982 Seed	983 $Fid_{\mathcal{D}}$ (%)	984 Mem. (GB)	985 Time	986 CPU usage
983 Reddit Threads	984 0	985 86.82	986 36.1	987 1 h 06 min	988 102
984 Reddit Threads	985 1	986 87.35	987 36.7	988 1 h 06 min	989 103
985 Reddit Threads	986 2	987 87.99	988 36.7	989 1 h 10 min	990 98
986 Twitch-Egos	987 0	988 57.49	989 69.2	990 2 h 02 min	991 98
987 Twitch-Egos	988 1	989 57.81	990 69.5	991 2 h 13 min	992 92
988 Twitch-Egos	989 2	990 55.01	991 69.2	992 2 h 18 min	993 95
989 Github Stargazers	990 0	991 65.79	992 64.9	993 3 h 35 min	994 80
990 Github Stargazers	991 1	992 59.49	993 84.6	994 3 h 43 min	995 95
991 Github Stargazers	992 2	993 66.85	994 79.9	995 3 h 18 min	996 97

994 C.1 FIDELITY COMPARISON 995

996 We compare the original fidelity—computed in the intermediate, uninterpretable concept space
 997 and reported by the baselines—against their data-grounded fidelity ($Fid_{\mathcal{D}}$), computed in the final
 998 grounded form, in Table 8. Under this more rigorous metric, the performance of existing methods
 999 drops significantly, underscoring the need for explanations that are both faithful and genuinely
 1000 interpretable.

1001 C.2 RUNNING RECORD ON THREE LARGE-SCALE BENCHMARKS 1002

1003 We report the running record of our approach, LOGICXGNN, on three large-scale benchmarks in
 1004 Table 7. Our method is the only existing approach that can scale to this size with high efficiency, as
 1005 indicated by its low and stable memory usage.

1006 C.3 ADDITIONAL METRICS ON EXPERIMENTS OVER FIVE COMMON DATASETS 1007

1008 To ensure robust and reliable comparisons, in addition to Table 1, we also report the weighted test
 1009 accuracy, precision, recall, and F1-score, averaged across three runs, in Tables 9, 10, 11, and 12,
 1010 respectively. The highest scores are highlighted in bold. Note that precision, recall, and F1-score
 1011 are computed against the GNN predictions, following the evaluation protocol used in GraphTrail
 1012 Armgaan et al. (2024).
 1013

1014 C.4 EMPIRICAL EVIDENCE FOR GENERALIZABILITY ACROSS GNN ARCHITECTURES 1015

1016 Table 13 reports the best baseline fidelity (Base.) and the fidelity of our approach, ϕ_M , across multiple
 1017 GNN architectures. The table also includes the classification accuracy of the underlying GNN models
 1018 (M) for reference. Note that the GNN architectures **GraphSAGE** and **GAT** achieve only 47.50%
 1019 accuracy on the BAShapes dataset due to their limited expressive power. These results are consistent
 1020 with the findings reported in Armgaan et al. (2024). ϕ_M consistently achieves high fidelity across all
 1021 architectures and datasets, uniformly outperforming the baselines. This demonstrates both (1) the
 1022 strong generalizability of ϕ_M across different GNNs and (2) its state-of-the-art explanatory fidelity.
 1023

Table 8: Data-grounded fidelity $Fid_{\mathcal{D}}$ (%) in percentage and original fidelity Fid of all baselines, averaged over three random seeds. For each dataset, the highest fidelity is highlighted in bold. Since our approach reports only $Fid_{\mathcal{D}}$, its Fid entries are omitted and marked with “—”. “—” indicates cases where no rules were learned.

Method	BAShapes		BBBP		Mutagenicity		NCI1		IMDB	
	<i>Fid</i>	<i>Fid_D</i>	<i>Fid</i>	<i>Fid_D</i>	<i>Fid</i>	<i>Fid_D</i>	<i>Fid</i>	<i>Fid_D</i>	<i>Fid</i>	<i>Fid_D</i>
GLG	57.50 ± 0.50	31.09 ± 5.81	52.50 ± 0.50	—	62.16 ± 2.19	38.98 ± 3.01	58.09 ± 2.51	9.61 ± 7.76	53.50 ± 0.50	0.00 ± 0.00
G-TRAIL	84.67 ± 4.77	79.82 ± 3.65	97.17 ± 0.89	50.00 ± 0.00	73.90 ± 1.49	65.93 ± 3.83	68.70 ± 0.93	60.04 ± 4.91	66.67 ± 10.93	35.35 ± 2.85
ϕ_M (Ours)	—	82.67 ± 0.58	—	85.32 ± 2.96	—	81.36 ± 2.12	—	73.81 ± 2.26	—	74.17 ± 6.75

Table 9: Test accuracy of various explanation methods (%) on graph classification datasets.

Method	BAShapes	BBBP	Mutagenicity	NCI1	IMDB
GLG	41.14 ± 4.81	—	38.37 ± 0.46	3.73 ± 8.57	0.00 ± 0.00
G-TRAIL	78.88 ± 5.14	55.10 ± 3.82	59.72 ± 4.37	56.69 ± 1.46	30.20 ± 4.23
ϕ_M (Ours)	82.67 ± 0.57	78.06 ± 4.28	68.69 ± 2.01	63.63 ± 2.93	74.16 ± 6.75

Table 10: Weighted precision of various explanation methods (%) on graph classification datasets.

Method	BAShapes	BBBP	Mutagenicity	NCI1	IMDB
GLG	28.85 ± 5.49	—	70.63 ± 6.59	67.64 ± 4.45	0.00 ± 0.00
G-TRAIL	80.05 ± 6.48	59.12 ± 2.81	64.45 ± 1.14	61.18 ± 2.51	39.60 ± 9.66
ϕ_M (Ours)	82.76 ± 0.61	92.10 ± 0.88	81.71 ± 1.77	74.19 ± 1.73	82.78 ± 2.68

Table 11: Weighted recall of various explanation methods (%) on graph classification datasets.

Method	BAShapes	BBBP	Mutagenicity	NCI1	IMDB
GLG	31.09 ± 5.81	—	38.98 ± 3.01	9.61 ± 7.76	0.00 ± 0.00
G-TRAIL	79.82 ± 3.65	50.00 ± 0.00	65.93 ± 3.83	60.04 ± 4.91	35.35 ± 2.85
ϕ_M (Ours)	82.67 ± 0.57	85.32 ± 2.96	81.36 ± 2.12	73.81 ± 2.26	74.16 ± 6.75

Table 12: Weighted F1-score of various explanation methods (%) on graph classification datasets.

Method	BAShapes	BBBP	Mutagenicity	NCI1	IMDB
GLG	31.77 ± 3.46	—	32.08 ± 0.46	11.66 ± 8.29	0.00 ± 0.00
G-TRAIL	78.26 ± 5.15	66.84 ± 2.49	57.53 ± 5.82	53.01 ± 3.92	32.45 ± 1.94
ϕ_M (Ours)	82.68 ± 0.56	92.11 ± 0.78	81.44 ± 1.92	73.66 ± 2.02	71.43 ± 7.82

Table 13: Fidelity comparison of LOGICXGNN against baseline methods *across multiple GNN architectures*. M denotes the underlying model’s classification accuracy (%); $Base.$ denotes the best baseline fidelity (%) from the better of GLGEXPLAINER and GRAPHTRAIL; and ϕ_M denotes the fidelity of our method, LOGICXGNN (%).

Dataset	GCN			GraphSAGE			GIN			GAT		
	M	$Base.$	ϕ_M	M	$Base.$	ϕ_M	M	$Base.$	ϕ_M	M	$Base.$	ϕ_M
BAShapes	80.50	72.02	82.67	47.50	73.69	100.00	80.50	72.81	83.00	47.50	82.98	100.00
BBBP	80.88	50.00	85.32	84.80	50.00	79.16	86.76	50.00	80.08	80.88	50.00	83.75
Mutagenicity	78.69	65.93	81.36	76.15	61.69	79.23	76.73	61.80	77.96	76.61	61.80	77.27
IMDB	74.50	35.35	74.16	73.50	25.67	76.00	74.00	25.67	75.00	76.00	26.98	72.50
NCI1	70.56	60.04	73.81	70.07	59.25	69.70	70.56	61.84	74.20	70.32	57.67	68.11

1080 **D MORE DETAILS ON GROUNDING ϕ_M INTO THE INPUT FEATURE SPACE \mathbf{X}**
10811082 **D.1 ON THE CANONICAL REPRESENTATION OF SUBGRAPH INPUT FEATURE \mathbf{Z}**
10831084 To create a canonical representation, we partition the node set into orbits and establish a consistent
1085 ordering using Algorithm 1. The ordering scheme employs a hierarchical multi-criteria approach that
1086 ensures deterministic results:

1. **Anchor priority:** The orbit containing the anchor node is always placed first
2. **Size ordering:** Remaining orbits are sorted by cardinality in ascending order
3. **Degree signature:** Orbit with identical sizes are distinguished by their sorted degree sequences
4. **Distance profile:** Further ties are resolved using sorted distances from the anchor node
5. **Node identifiers:** Ultimate disambiguation is achieved through sorted node identifiers

1095 We prove in Theorem D.1 that this multi-criteria lexicographic ordering produces a deterministic
1096 total order, ensuring the canonical representation can be reliably reproduced across identical graph
1097 structures.1099 **Algorithm 1:** Stable Orbit Decomposition with Anchor1100 **Input:** Graph G , anchor node a 1101 **Output:** Orbit labels L and sorted orbits \mathcal{O}

```

1 Function StableOrbitDecomposition( $G, a$ )
2    $D \leftarrow \text{ComputeAnchorDistances}(G, a)$  /* Calculate shortest path distances from
3   anchor */
4    $\Sigma \leftarrow \text{FindAllAutomorphisms}(G)$            /* Enumerate all graph symmetries */
5    $\mathcal{O}_{\text{raw}} \leftarrow \text{ExtractNodeOrbits}(\Sigma, G)$  /* Group nodes into symmetry equivalence
6   classes */
7    $\mathcal{O}_{\text{anchor}} \leftarrow \text{IdentifyAnchorOrbit}(\mathcal{O}_{\text{raw}}, a)$  /* Locate orbit containing anchor node
8   */
9    $\mathcal{O} \leftarrow \text{StableSortOrbits}(\mathcal{O}_{\text{raw}}, \mathcal{O}_{\text{anchor}}, D, G)$  /* Sort by size, degree, distance,
10  node IDs */
11   $L \leftarrow \text{AssignCanonicalLabels}(\mathcal{O}, a)$            /* Map nodes to orbit labels with anchor
12  priority */
13  return  $(L, \mathcal{O})$ 

```

1114
1115 **Theorem D.1** (Orbit Sorting Consistency). *The multi-criteria orbit sorting scheme employed in*
1116 *Algorithm 1 produces a deterministic total ordering for any graph with fixed structure and anchor*
1117 *node.*1118 *Proof.* Let $\mathcal{O} = \{O_1, O_2, \dots, O_k\}$ be the set of orbits obtained from the automorphism group
1119 decomposition. We define the sorting key for orbit O_i as:

1120
$$\text{Key}(O_i) = (|O_i|, \mathbf{d}_i, \mathbf{dist}_i, \mathbf{ids}_i) \quad (13)$$

1121 where:

- $|O_i|$ is the orbit size
- $\mathbf{d}_i = \text{sorted}([\deg(v) : v \in O_i])$ is the sorted degree sequence
- $\mathbf{dist}_i = \text{sorted}([d_G(a, v) : v \in O_i])$ is the sorted distance sequence from anchor a
- $\mathbf{ids}_i = \text{sorted}(O_i)$ is the sorted node identifier sequence

1131 We prove that this lexicographic ordering induces a strict total order on \mathcal{O} .1132 **Well-definedness:** Each component is well-defined for any finite graph: $|O_i| \in \mathbb{N}$, $\mathbf{d}_i \in \mathbb{N}^{|O_i|}$,
1133 $\mathbf{dist}_i \in (\mathbb{N} \cup \{\infty\})^{|O_i|}$, and \mathbf{ids}_i is a finite sequence of distinct node identifiers.

1134
 1135 **Totality:** For any two distinct orbits O_i, O_j with $i \neq j$, we have $O_i \cap O_j = \emptyset$ by definition of orbit
 1136 decomposition. We show $Key(O_i) \neq Key(O_j)$ by case analysis:
 1137

- 1138 1. If $|O_i| \neq |O_j|$, then $Key(O_i) \neq Key(O_j)$ immediately.
- 1139 2. If $|O_i| = |O_j|$ but $\mathbf{d}_i \neq \mathbf{d}_j$, then the orbits have different degree signatures, so $Key(O_i) \neq$
 1140 $Key(O_j)$.
- 1141 3. If $|O_i| = |O_j|$ and $\mathbf{d}_i = \mathbf{d}_j$ but $\mathbf{dist}_i \neq \mathbf{dist}_j$, then the orbits have different distance
 1142 profiles from the anchor, so $Key(O_i) \neq Key(O_j)$.
- 1143 4. If $|O_i| = |O_j|$, $\mathbf{d}_i = \mathbf{d}_j$, and $\mathbf{dist}_i = \mathbf{dist}_j$ but $\mathbf{ids}_i \neq \mathbf{ids}_j$, then the orbits contain
 1144 different sets of nodes (since node identifiers are unique), so $Key(O_i) \neq Key(O_j)$.

1145
 1146
 1147 **Tiebreaker completeness:** The final case cannot occur when $O_i = O_j$. Suppose $|O_i| = |O_j|$,
 1148 $\mathbf{d}_i = \mathbf{d}_j$, $\mathbf{dist}_i = \mathbf{dist}_j$, and $\mathbf{ids}_i = \mathbf{ids}_j$. Then $\text{sorted}(O_i) = \text{sorted}(O_j)$. Since node identifiers
 1149 are unique within a graph, this implies O_i and O_j contain exactly the same nodes, contradicting the
 1150 assumption that $i \neq j$ (orbits are disjoint).

1151 **Determinism:** Each component of $Key(O_i)$ is computed deterministically from the graph structure
 1152 and anchor choice. Since lexicographic comparison admits no ties between distinct orbits and
 1153 standard sorting algorithms are deterministic, the resulting orbit ordering is completely determined
 1154 by the graph structure.

1155 Therefore, the multi-criteria sorting scheme produces a unique, deterministic total ordering of orbits
 1156 for any fixed graph structure and anchor node. \square
 1157

1158 *Remark D.2.* This result ensures that the stable orbit decomposition is reproducible across multiple
 1159 runs for the same graph instance. The hierarchical sorting criteria are designed to resolve ties at
 1160 progressively finer granularities, with the node identifier sequence providing ultimate disambiguation.
 1161 Since our method operates on graphs with consistent structural representations, the deterministic
 1162 ordering property is sufficient for ensuring algorithmic reliability.

1163

1164 D.2 EXAMPLES WITH GUIDANCE ON READING GROUNDING RULE VISUALIZATIONS

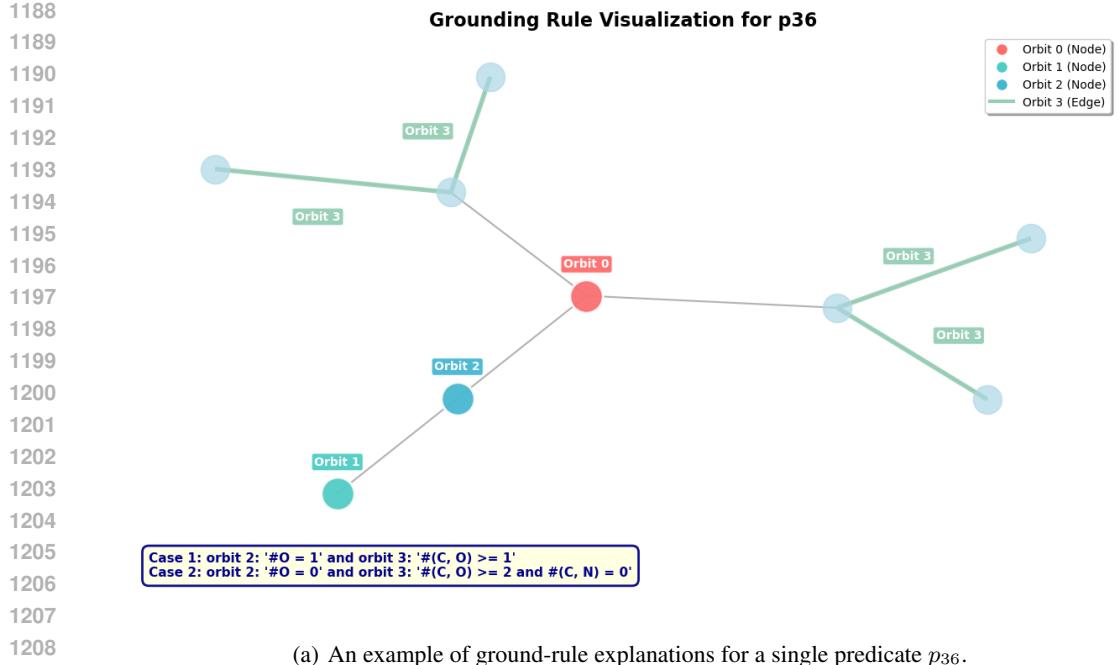
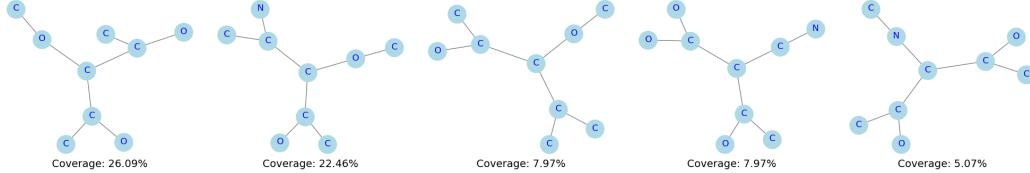
1165

1166 We show an example of our generated explanations for a single predicate p_{36} from the real-world
 1167 dataset BBBP in Figure 9, with the grounding rule visualization presented in Figure 9(a). Note that
 1168 each orbit in the visualization is labeled and colored differently. The figure illustrates three node
 1169 orbits, such as Orbit 0 (the central red node) and Orbit 2 (the blue node), and an edge orbit, Orbit 3
 1170 (the four thick teal edges). This distinction improves the fine-grained expressiveness of our grounding
 1171 rules, enhancing the structural specificity of the explanation.

1172 The grounding rules are presented in Disjunctive Normal Form (DNF), where the overall explanation
 1173 is a disjunction of cases (clauses) connected by an implicit “or.” Each case is a conjunction of
 1174 conditions on different orbits. To interpret these rules:

1175

- 1176 • **Case Structure:** In Figure 9(a), two cases are shown. Case 1 is the conjunction of the
 1177 condition on Orbit 2 ($' \#O = 1 '$) and the condition on Orbit 3 ($' \#(C, O) >= 1 '$).
 1178 Case 2 is the conjunction of the condition on Orbit 2 ($' \#O = 0 '$) and the conditions on
 1179 Orbit 3 ($' \#(C, O) >= 2$ and $\#(C, N) = 0 '$).
- 1180 • **Node Orbit Interpretation:** Orbit 2 is a node orbit. The condition $' \#O = 1 '$ in Case 1
 1181 means that the node(s) in Orbit 2 must include exactly one Oxygen (O) atom; $' \#O = 0 '$
 1182 in Case 2 forbids Oxygen in that orbit.
- 1183 • **Edge Orbit Interpretation:** Orbit 3 is an edge orbit. The condition $' \#(C, O) >= 2 '$ in
 1184 Case 2 means that at least two of the edges in Orbit 3 must connect a Carbon (C) atom to an
 1185 Oxygen (O) atom, while $' \#(C, N) = 0 '$ forbids Carbon–Nitrogen edges in that orbit.
- 1186 • **Case Satisfaction:** A specific case is satisfied only if all of its conjunctive conditions are
 1187 met simultaneously. The model’s prediction is explained if the input graph satisfies at least
 1188 one of the listed cases.

(a) An example of ground-rule explanations for a single predicate p_{36} .**Top 5 explanation graphs for p36**(b) Top 5 subgraph explanations for a single predicate p_{36} . Coverage below each subgraph indicates the percentage of instances that activate the predicate p_{36} in which this subgraph occurs as an explanation.Figure 9: An example of grounding rule explanations (top) and subgraph explanations (bottom) generated by our proposed approach ϕ_M .

A major limitation of existing explanation methods is their *ineffective grounding*, as they often associate each concept with a single, possibly cherry-picked subgraph. Our approach provides a richer, data-driven alternative. As shown in Figure 9(b), we display the top-5 representative subgraphs for each rule, ranked by their frequency in the dataset. Coverage quantifies the proportion of instances activating predicate p_{36} in which each subgraph occurs as an explanation, providing a more comprehensive view of the concept’s presence across the data.

This strong alignment between our abstract rules and concrete examples is a direct result of our methodology. We first extract these subgraph instances directly from the data and then learn the general grounding rules from this empirical collection. The resulting dual representation—a formal logical rule paired with a ranked set of visual instances—offers a more detailed and multifaceted explanation than existing methods, yielding a deeper, more robust, and ultimately more interpretable grounding of the GNN’s behavior.

D.3 EXAMPLE: GROUNDING (ϕ_M) IN A CONTINUOUS FEATURE SPACE

We demonstrate our method’s ability to generate explanations in a continuous feature space using predicate p_{38} as an example (Figure 10). For demonstration only, p_{38} is trained on a synthetic dataset constructed by replacing discrete node features with continuous random features in a subset of Mutagenicity. To the best of our knowledge, most existing explanation approaches cannot handle such cases effectively. Their reliance on discrete attributes means their subgraph explanations lose meaning when faced with continuous feature distributions. Our approach addresses this limitation by leveraging

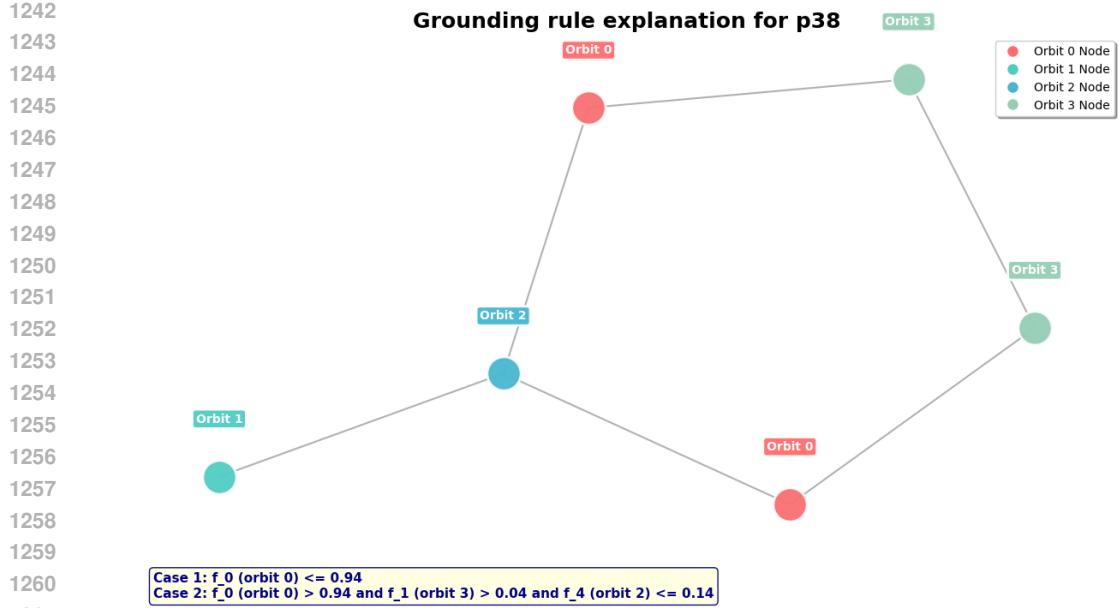


Figure 10: An example of grounding rule explanations on *continues* feature space \mathbf{X} generated by our proposed approach ϕ_M .

orbit-based feature aggregation combined with learnable, threshold-based rules. The grounding rules are formulated in Disjunctive Normal Form (DNF), where different cases are connected with an implicit “or.” To interpret these rules:

- **Case Structure:** Case 2 is a conjunction of three conditions: the condition on Orbit 0 ($f_0(\text{orbit 0}) > 0.94$), on Orbit 3 ($f_1(\text{orbit 3}) > 0.04$), and on Orbit 2 ($f_4(\text{orbit 2}) \leq 0.14$).
- **Orbit-based Aggregation:** Each orbit aggregates continuous features from its constituent nodes using a statistical function (e.g., mean). This provides a robust summary of the features for all structurally equivalent nodes within the pattern.
- **Continuous Feature Interpretation:** The condition $f_0(\text{orbit 0}) > 0.94$ means the aggregated value of the 0-th feature dimension across the nodes in Orbit 0 must exceed 0.94. Similarly, other conditions apply learned thresholds to different feature dimensions of their respective orbits.
- **Adaptive Threshold Learning:** These numerical thresholds (e.g., 0.94, 0.04, 0.14) are not fixed but are learned during training to define optimal boundaries that best discriminate between prediction classes.
- **Case Satisfaction:** Case 2 is satisfied only when all three of its threshold conditions are met simultaneously, ensuring that both structural and feature constraints work in conjunction.

Traditional subgraph-based explanations are ill-suited for this setting. They typically produce a single graph structure with discrete labels, which fails to capture the nuances of how continuous feature distributions influence a model’s prediction. In contrast, our orbit-based rules provide a more robust and expressive explanation. By aggregating features across structurally equivalent nodes and learning discriminative thresholds, our method specifies *how* continuous feature values within a given topological pattern collectively drive the model’s decision. This capability enables our method to deliver meaningful, interpretable explanations for complex real-world datasets where traditional approaches fail due to the prevalence of continuous attributes.

1296 E ADDITIONAL DETAILS OF RULE-BASED EXPLANATIONS

1298 E.1 THE METRICS: COVERAGE, STABILITY, AND VALIDITY

1300 To complement this qualitative analysis, we quantitatively evaluate the generated explanations using
1301 a set of objective and reproducible metrics that reflect their practical utility to end users:

- 1303 • **Coverage:** The proportion of target-class instances for which the rule-based prediction
1304 remains correct *when restricted to only valid subgraph patterns* (i.e., after removing all
1305 invalid patterns). Formally,

$$1306 \text{Coverage}(\phi) = \frac{|\{x \in \mathcal{D}_c : \phi(x) = \text{True}\}|}{|\mathcal{D}_c|}, \quad (14)$$

1308 where $\phi(x)$ is True iff evaluating the rule on x using only valid subgraph patterns (i.e.,
1309 considering their presence or absence) predicts class c . Here, “valid” refers to subgraph
1310 patterns that appear as actual subgraphs of molecules in the dataset, ensuring they are derived
1311 from structurally valid molecular graphs rather than artificially constructed or chemically
1312 impossible fragments.

- 1313 • **Stability:** The consistency of explanation subgraphs across multiple runs with different
1314 random seeds. This metric is crucial for building user trust, as inconsistent explanations
1315 undermine confidence in the model’s reasoning. We measure stability as the fraction of
1316 subgraphs repeated in *all runs* relative to the largest number of subgraphs in any single run:

$$1318 \text{Stability}(\{\phi_i\}_{i=1}^k) = \frac{|\bigcap_{i=1}^k \phi_i|}{\max_{i=1,\dots,k} |\phi_i|}, \quad (15)$$

1320 where ϕ_i denotes the set of subgraphs discovered in the i -th run and k is the total number of
1321 runs. In this case of $k = 3$ (3 runs), this simplifies to

$$1323 \text{Stability} = \frac{|\phi_1 \cap \phi_2 \cap \phi_3|}{\max\{|\phi_1|, |\phi_2|, |\phi_3|\}}. \quad (16)$$

- 1325 • **Validity:** The proportion of explanation subgraphs that correspond to valid chemical
1326 fragments or structural motifs found in the dataset. For molecular datasets, this ensures that
1327 the generated explanations respect chemical constraints and represent realistic molecular
1328 substructures. Invalid fragments (e.g., impossible bond configurations or non-existent
1329 functional groups) reduce the practical utility of explanations for domain experts. We define
1330 validity as:

$$1331 \text{Validity} = \frac{|\{f \in \Phi : f \in \mathcal{F}_{\text{valid}}\}|}{|\Phi|}, \quad (17)$$

1333 where Φ is the set of all generated fragments and $\mathcal{F}_{\text{valid}}$ represents the set of chemically valid
1334 fragments derived from the training data.

1335 In Figures 4 and 5, we normalized the complexity of the generated rule-based explanations for
1336 all approaches for clearer visualization. Specifically, we configured each approach—setting the
1337 tree depth for ϕ_M , specifying the number of concepts for GRAPHTRAIL, and selecting the top- k
1338 subgraphs for GLGEXPLAINER—to generate rules of a comparable scale, using 3 concepts (or
1339 predicates) per class. This choice does not affect the fundamental nature of the methods, and we
1340 maintain hyperparameter and random seed settings consistent with the results in Table 1.

1341 For the stability experiment in Section 4.2, however, a different complexity was required. A fair
1342 comparison of stability necessitates normalizing explanation complexity to a level that is both chal-
1343 lenging and informative. Through preliminary analysis, we found that a low complexity setting (e.g.,
1344 3 concepts) was insufficiently discriminative for a rigorous comparison. In this setting, our method
1345 achieved near-perfect stability, creating a ceiling effect that, while demonstrating its robustness,
1346 prevented a more nuanced assessment of relative performance against the baselines. To create a
1347 more challenging benchmark that allows for a fine-grained evaluation across all methods, we chose a
1348 moderate complexity of approximately 5–6 concepts per class, as this was empirically determined to
1349 be the most informative for comparing the stability of the different approaches. For all other metrics,
we use the default hyperparameter and seed settings for each explainer, consistent with Table 1.

1350
1351

E.2 FURTHER ANALYSIS OF TABLES 3 AND 4

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

Table 3 reveals an important distinction between the baselines in the binary classification setting. GLGEXPLAINER produces rules for *both* classes, but these rules are often conflicting and rely on less representative subgraphs, resulting in very low coverage (e.g., only 6.11% for Mutagenicity class 0). Another major limitation of GLGEXPLAINER is its reliance on prior knowledge and its high sensitivity to hyperparameter choices—an issue explicitly acknowledged by the original authors (Azzolin et al., 2023). This makes the method less applicable to new datasets; for example, despite replicating their settings with direct guidance from the authors, GLGEXPLAINER failed to learn any rules on BBBP. We discuss these reproducibility challenges in more detail in Section B.3. By contrast, GRAPHTRAIL generates only *unilateral* rules. This design makes it artificially easier for GRAPHTRAIL to appear correct—since all instances of the opposite class are explained by default—but at the cost of explanatory quality, as the method produces only discriminative rules rather than descriptive rules for each class. Furthermore, because GRAPHTRAIL frequently produces chemically invalid subgraphs, many of its explanations cannot be considered constructive, as they depend merely on the presence or absence of subgraphs that never occur in the dataset, further reducing effective coverage. We also consulted with the original authors and confirmed this issue, as discussed in Section B.3. This combination of unilateral shortcuts and invalid fragments underscores why GRAPHTRAIL’s explanations are unsuitable for faithful or practical interpretability.

1368
1369
1370
1371
1372
1373
1374

In sharp contrast, our approach ϕ_M learns rules for *both* classes while still achieving very high coverage (e.g., 80.06% and 82.58% for Mutagenicity, and 47.86% and 98.16% for BBBP). Achieving strong performance under this stricter and more balanced setting is particularly noteworthy, as it demonstrates that ϕ_M provides class-wise explanations without relying on unilateral shortcuts or invalid patterns. This fairness in rule construction makes the comparison against baselines more rigorous and highlights the strength of our method in generating meaningful explanations that remain faithful to the underlying model.

1375
1376
1377
1378
1379
1380

Table 4 complements this picture with *stability* and *validity*. ϕ_M attains the highest stability across seeds (66.67% on Mutagenicity, 60.00% on BBBP), surpassing GLGEXPLAINER on Mutagenicity (40.00%) and GRAPHTRAIL (37.50% on Mutagenicity, 20.00% on BBBP). High stability suggests that ϕ_M learns rules that are robust to randomness in training and sampling. On *validity*, ϕ_M reaches $100.00\% \pm 0.00$ on both datasets, matching GLGEXPLAINER on Mutagenicity but far exceeding GRAPHTRAIL ($61.90\% \pm 6.73$ on Mutagenicity and 0.00% on BBBP).

1381
1382
1383
1384
1385
1386

Taken together, the results across coverage, stability, and validity form a consistent narrative: while GLGEXPLAINER suffers from conflicting rules and poorly representative explanations, and GRAPHTRAIL exploits unilateral shortcuts compounded by invalid and equally unrepresentative subgraphs, ϕ_M generates balanced rules for both classes that are faithful, reproducible, and chemically valid. This balance is particularly rare in explanation methods, underscoring the robustness and scientific reliability of ϕ_M as a framework for generating high-quality graph explanations.

1387
1388
1389
1390
1391
1392
1393
1394
1395

Why don’t we use a human study in this work to assess the final explanations? While human studies are widely employed in XAI for interpretability assessment, they are particularly ill-suited for scientific domains like biochemistry for several key reasons: (1) Meaningful evaluation in such contexts demands *domain expertise*, making large-scale recruitment of qualified participants prohibitively difficult and expensive. (2) Laypeople’s subjective perceptions of “understandability” often diverge significantly from *scientific validity*—explanations that appear intuitively clear may be biochemically erroneous or fundamentally misleading. (3) Human evaluations inherently introduce substantial variability due to differences in participant expertise levels, experimental design choices, and evaluation criteria, thereby compromising the reproducibility essential for scientific validation.

1396
1397
1398
1399
1400

We therefore adopt objective, quantitative metrics, *coverage*, *stability*, and *validity*, specifically designed to evaluate biochemical explanation quality. This framework prioritizes generalizability, consistency, and scientific accuracy, providing a rigorous alternative to subjective assessments that aligns with the precision requirements of scientific inquiry.

1401
1402
1403

E.3 MORE EXAMPLES

We present the generated rule-based explanations of our approach ϕ_M on BASHapes, BBBP, Mutagenicity, and IMDB. NCI1 is excluded because the information on its feature attributes is not

1404 available. Although the features are one-hot encoded for atoms, the mapping between atoms and
 1405 feature indices has not been released, so we chose not to report results for NCI1.
 1406

1407 **IMDB Dataset Classification Rules (Depth = 10)**

1408 $(\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge \neg p_{268} \wedge \neg p_{16} \wedge \neg p_{270} \wedge \neg p_{276} \wedge \neg p_{333} \wedge \neg p_{278} \wedge \neg p_{282})$
 1409 $\vee (\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge \neg p_{268} \wedge p_{16})$
 1410 $\vee (p_0) \Rightarrow \text{IMDB Class 0};$
 1411
 1412 $(\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge \neg p_{268} \wedge \neg p_{16} \wedge \neg p_{270} \wedge \neg p_{276} \wedge \neg p_{333} \wedge \neg p_{278} \wedge p_{282})$
 1413 $\vee (\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge \neg p_{268} \wedge \neg p_{16} \wedge \neg p_{270} \wedge \neg p_{276} \wedge \neg p_{333} \wedge p_{278})$
 1414 $\vee (\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge \neg p_{268} \wedge \neg p_{16} \wedge \neg p_{270} \wedge \neg p_{276} \wedge p_{333})$
 1415 $\vee (\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge \neg p_{268} \wedge \neg p_{16} \wedge \neg p_{270} \wedge p_{276})$
 1416 $\vee (\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge \neg p_{268} \wedge \neg p_{16} \wedge p_{270})$
 1417 $\vee (\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge \neg p_{268} \wedge p_{268})$
 1418 $\vee (\neg p_0 \wedge \neg p_{274} \wedge \neg p_{267} \wedge p_{267})$
 1419 $\vee (\neg p_0 \wedge p_{274}) \Rightarrow \text{IMDB Class 1}$
 1420
 1421
 1422

1423 **BAShapes Class 0 Rules: (Depth = 5)**

1424 $(\neg p_{280} \wedge \neg p_{52} \wedge \neg p_{324} \wedge \neg p_{55} \wedge \neg p_{4495})$
 1425 $\vee (\neg p_{280} \wedge \neg p_{52} \wedge \neg p_{324} \wedge p_{55} \wedge \neg p_{14})$
 1426 $\vee (\neg p_{280} \wedge \neg p_{52} \wedge p_{324} \wedge \neg p_{587} \wedge p_{49})$
 1427 $\vee (\neg p_{280} \wedge \neg p_{52} \wedge p_{324} \wedge p_{587})$
 1428 $\vee (\neg p_{280} \wedge p_{52} \wedge \neg p_{8} \wedge \neg p_{324} \wedge \neg p_{55})$
 1429 $\vee (\neg p_{280} \wedge p_{52} \wedge p_{8} \wedge \neg p_{36} \wedge p_{1207})$
 1430 $\vee (\neg p_{280} \wedge p_{52} \wedge p_{8} \wedge p_{36})$
 1431 $\vee (p_{280} \wedge \neg p_{204} \wedge \neg p_{698} \wedge p_{1817})$
 1432 $\vee (p_{280} \wedge \neg p_{204} \wedge p_{698})$
 1433 $\vee (p_{280} \wedge p_{204})$
 1434 $\Rightarrow \text{BAShapes Class 0}$
 1435
 1436
 1437

1438 **BAShapes Class 1 Rules: (Depth = 5)**

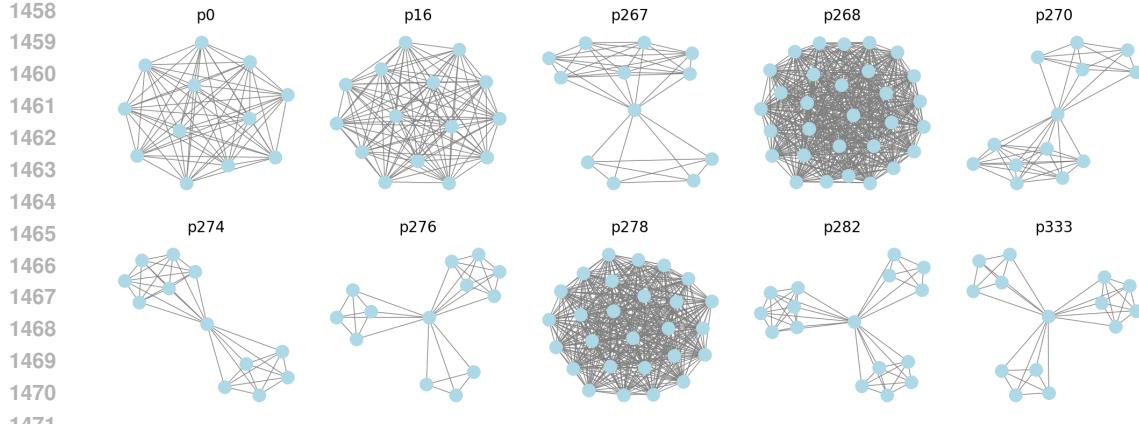
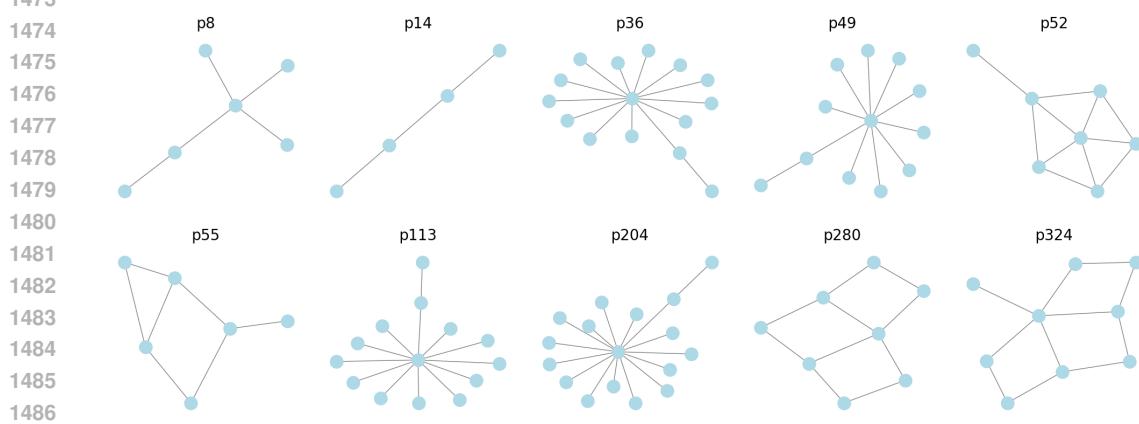
1439 $(\neg p_{280} \wedge \neg p_{52} \wedge \neg p_{324} \wedge \neg p_{55} \wedge p_{4495})$
 1440 $\vee (\neg p_{280} \wedge \neg p_{52} \wedge \neg p_{324} \wedge p_{55} \wedge p_{14})$
 1441 $\vee (\neg p_{280} \wedge \neg p_{52} \wedge p_{324} \wedge \neg p_{587} \wedge \neg p_{49})$
 1442 $\vee (\neg p_{280} \wedge p_{52} \wedge \neg p_{8} \wedge \neg p_{324} \wedge p_{55})$
 1443 $\vee (\neg p_{280} \wedge p_{52} \wedge \neg p_{8} \wedge p_{324})$
 1444 $\vee (\neg p_{280} \wedge p_{52} \wedge p_{8} \wedge \neg p_{36} \wedge \neg p_{1207})$
 1445 $\vee (p_{280} \wedge \neg p_{204} \wedge \neg p_{698} \wedge \neg p_{1817} \wedge \neg p_{113})$
 1446 $\vee (p_{280} \wedge \neg p_{204} \wedge \neg p_{698} \wedge \neg p_{1817} \wedge p_{113})$
 1447 $\Rightarrow \text{BAShapes Class 1}$

1448 **BBBP Dataset Classification Rules (Depth = 3)**

1449 $(\neg p_{38} \wedge \neg p_5 \wedge p_{31}) \vee (\neg p_{38} \wedge p_5 \wedge \neg p_{59}) \vee (\neg p_{38} \wedge p_5 \wedge p_{59}) \vee (p_{38} \wedge \neg p_{61} \wedge p_{20})$
 1450 $\vee (p_{38} \wedge p_{61} \wedge \neg p_{54}) \vee (p_{38} \wedge p_{61} \wedge p_{54}) \Rightarrow \text{BBBP Class 0};$
 1451
 1452
 1453
 1454
 1455
 1456
 1457

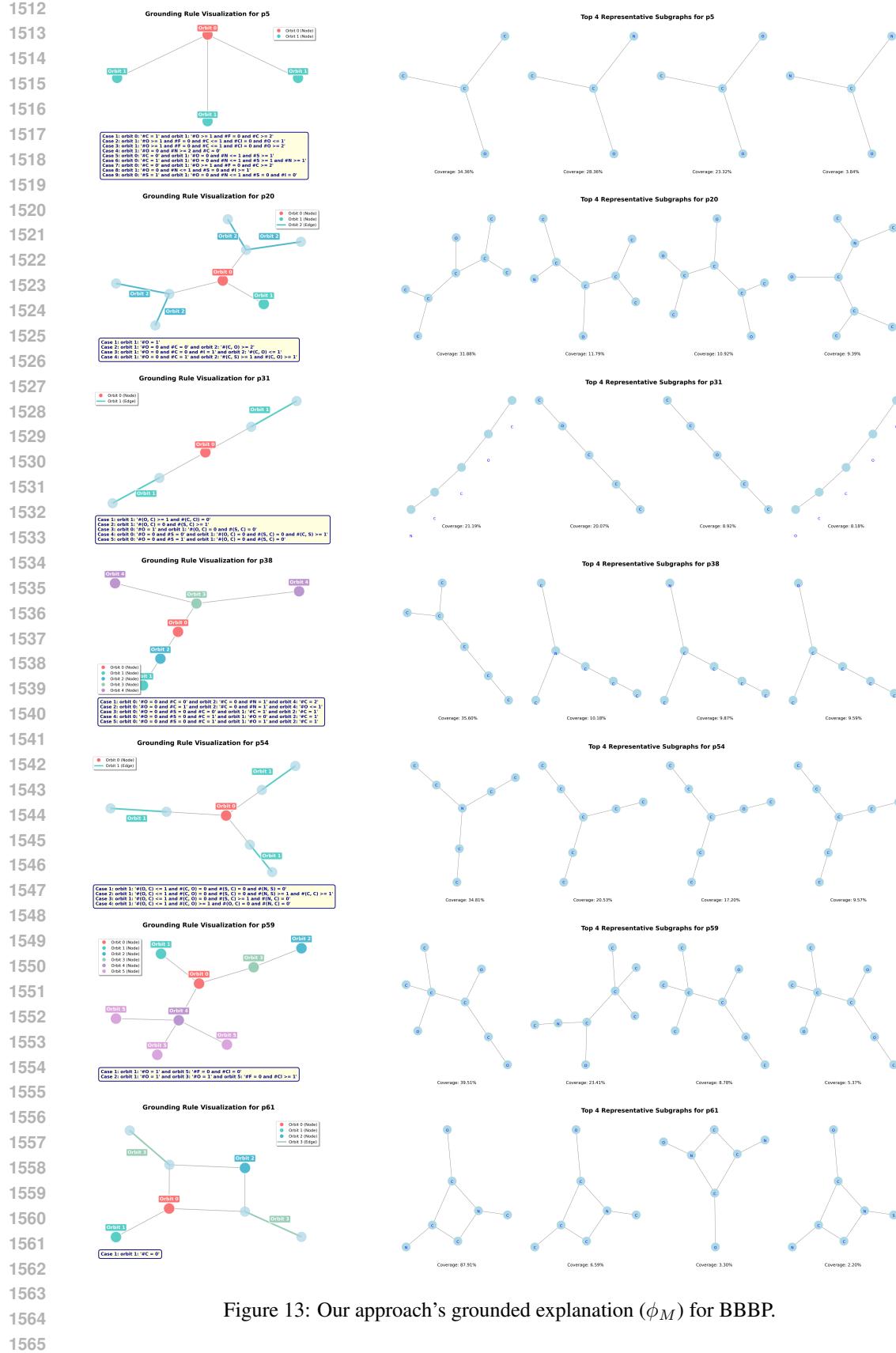
1458 **Mutagenicity Dataset Classification Rules (Depth = 3)**

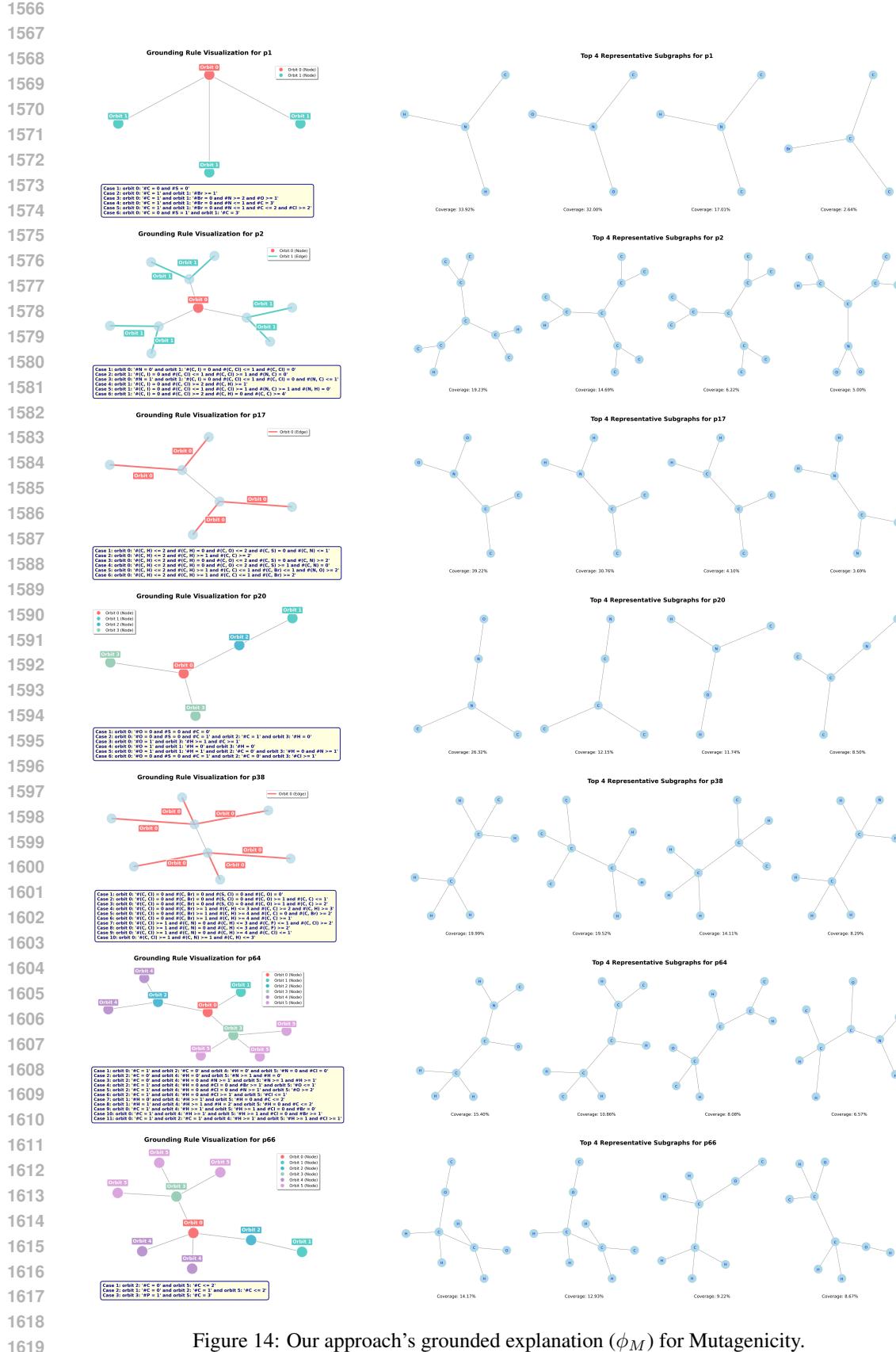
1459 $(\neg p_2 \wedge p_{20} \wedge \neg p_{66}) \vee (p_2 \wedge \neg p_{38} \wedge \neg p_{64}) \vee (p_2 \wedge p_{38} \wedge p_{17}) \Rightarrow \text{Mutagenicity Class 0};$
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523

Figure 11: Our approach’s grounded explanation (ϕ_M) for IMDB.Figure 12: Our approach’s grounded explanation (ϕ_M) for BASHapes.

F LLM USAGE

Large Language Models (LLMs) were used as a general-purpose assistive tool in the preparation of this work. Specifically, LLMs supported tasks such as refining the clarity of writing, suggesting alternative phrasings, and checking the consistency of technical terminology. They were **not** used for generating research ideas, conducting experiments, or producing original scientific contributions. All substantive research decisions, analysis, and results presented in this paper are the responsibility of the authors. The authors have carefully reviewed and verified all LLM-assisted text to ensure accuracy and originality.

Figure 13: Our approach's grounded explanation (ϕ_M) for BBBP.

Figure 14: Our approach’s grounded explanation (ϕ_M) for Mutagenicity.