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Abstract
Standard losses for training deep segmentation networks could be seen as individual classi-
fications of pixels, instead of supervising the global shape of the predicted segmentations.
While effective, they require exact knowledge of the label of each pixel in an image.

This study investigates how effective global geometric shape descriptors could be, when
used on their own as segmentation losses for training deep networks. Not only interesting
theoretically, there exist deeper motivations to posing segmentation problems as a recon-
struction of shape descriptors: First, annotations to obtain approximations of low-order
shape moments could be much less cumbersome than their full-mask counterparts, and
anatomical priors could be readily encoded into invariant shape descriptions, which might
alleviate the annotation burden. Also, some shape descriptors could be readily used to
“encode” biomarkers, leading to better interpretability. Finally, and most importantly,
we hypothesize that, given a task, certain shape descriptions might be invariant across im-
age acquisition protocols/modalities and subject populations, which might open interesting
research avenues for generalization in medical image segmentation.

We introduce and formulate a few shape descriptors in the context of deep segmenta-
tion, and evaluate their potential as stand-alone losses on two different, challenging tasks.
Inspired by recent works in constrained optimization for deep networks, we propose a way
to use those descriptors to supervise segmentation, without any pixel-level label. Very sur-
prisingly, as little as 4 descriptors values per class can approach the performance of a seg-
mentation mask with 65k individual discrete labels. We also found that shape descriptors
can be a valid way to encode anatomical priors about the task, enabling to leverage expert
knowledge without requiring additional annotations. Our implementation is publicly avail-
able and can be easily extended: https://github.com/hkervadec/shape_descriptors.
Keywords: Semantic segmentation, constraints, weak supervision, shape moments.

1. Introduction
In the recent years, image semantic segmentation has received considerable attention in
the medical imaging research community, and almost all contemporary methods rely on
deep learning and fully convolutional neural networks (Ronneberger et al., 2015; Litjens
et al., 2017). While network architectures have been extensively studied (Ronneberger
et al., 2015; Milletari et al., 2016; Chen et al., 2017), the loss functions used to train them
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have received relatively less attention, and most of the existing methods rely on variants of
either the cross-entropy (Ronneberger et al., 2015) or dice loss (Sudre et al., 2017; Milletari
et al., 2016). Ultimately, all those losses are actually performing “pixel-wise classification”,
and do not account for the image spatial domain—for instance, standard implementations
in popular frameworks completely discard the image dimension1. Other methods that take
into account the distances to the segmentation boundary (Kervadec et al., 2019a), or weakly
supervised methods that have access to only partial/uncertain annotations (Qu et al., 2019;
Rajchl et al., 2016; Papandreou et al., 2015; Bearman et al., 2016; Lin et al., 2016)—in a
weakly supervised segmentation setting—eventually supervise a subset of pixels individually.
Informally, we could say that the existing segmentation methods are “micro-managing”
pixels, taking each as a separate classification problem, instead of supervising the global
shape information of segmentation prediction.

The traditional computer vision literature abounds of global mathematical descriptions
that characterize the shapes of objects (Nayak and Stojmenovic, 2008), for instance, shape
moments, length, total variation, Fourier transforms, etc. It has also been showed that de-
scriptions based on a few geometric shape moments could be enough to re-construct complex
shapes (Milanfar et al., 2000), via solving an inverse problem. Furthermore, such geometric
shape moments could be made invariant with respect to geometric transformation (e.g.,
rotation, translation and scaling) by pure mathematical manipulations, which is convenient
for segmentation (Klodt and Cremers, 2011). This includes the well-known Hu’s invariant
moments (Hu, 1962). While less popular today in computer vision than they used to be,
those remain powerful regularization and shape-description tools for segmentation methods.
So powerful, perhaps, that they could be fully used to characterize the objects that we want
to segment, while providing intrinsic invariance; in short, supervising the overall shape pre-
diction of a segmentation networks, not through individual pixels but rather global shape
descriptions.

This paper studies how effective global geometric shape descriptors can be, when used
on their own as segmentation losses for training deep neural networks. Not only interesting
theoretically, there exist deeper motivations to posing segmentation problems as a recon-
struction of shape descriptors: First, annotations to obtain approximations of low-order
shape moments could be much less cumbersome than their full-mask counterparts (e.g.,
from a few mouse clicks by the user). Furthermore, anatomical priors can also be read-
ily translated into shape descriptions, which is not feasible when using dense label masks.
This might alleviate the annotation burden for training deep segmentation networks. Also,
some shape descriptors could be readily used to “encode” biomarkers, leading to better
interpretability. Finally, and most importantly, we hypothesize that, given a task, certain
shape descriptions might be invariant across image acquisition protocols/modalities and
subject populations, which might open interesting research avenues for generalization in
segmentation.

Our contributions can be summarized as follow:

• we re-introduce and reformulate different shape descriptors, in the context of deep
semantic segmentation;

1. https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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(a) A visual comparison of the different supervision methods on the ACDC dataset.

Pixel Label
0 RV
1 Background
2 LV

...
65536 Background

(b) Pixel-wise labels
(65k discrete values)

Shape descriptor Class
(in pixels) RV Myo LV
Object volume V 3100 800 1600

Centroid location C (125, 80) (125, 125)
Avg. dist. to centroid D (20, 15) (15, 20) (10, 10)

Object length L 750 1000 500

(c) Shape descriptors
(16 continuous values)

Figure 1: RV, Myo and LV stands for “right-ventricle”, “myocardium” and “left-ventricle”,
respectively. The shape descriptors are detailed in Subsection 2.2.

• inspired by recent works in inequality constraints, we propose a way to use those
descriptors to supervise deep neural networks;

• as such, we benchmark a combination of those descriptors and show that–surprisingly–
using only a few shape descriptors can go a long way, even in more complex settings
(Figure 1). In fact, we found that as little as 4 descriptors values per class could
approach the performance of a segmentation mask with 65k individual discrete labels.;

• we discuss future research directions that could benefit from those surprising findings.

2. Formulation

2.1. Notation and background

Let Ω ⊂ R2 denotes the image spatial domain2 and I : Ω → R an input image, with
G : Ω → ∆̂K its associated ground truth. Here, ∆K refers to the K-simplex, and ∆̂K to its

2. For readability and simplicity, we detail here only the case of 2D-images, but the method could be
extended to N dimensions in a straightforward way.
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vertices, i.e., a one-hot encoding for K classes. Our goal is to train a network Nθ : I 7→ sθ,
with parameters θ predicting a dense probability map sθ : Ω → ∆K ; s(i,k)θ denotes the
predicted softmax probability for class k ∈ {0, ...,K} at pixel i ∈ Ω. For each pixel i, its
coordinates in the 2D space are represented by the tuple

(
x(i), y(i)

)
∈ R2.

Shape and central moments have been widely studied in traditionnal computer vision
(Nayak and Stojmenovic, 2008; Milanfar et al., 2000), where they can be used to characterize
a shape. Each moment is parametrized by its orders p, q ∈ N, and each order represents a
different characteristic of the shape.

Shape moment Shape moments can be defined, in their general form, as functions of a
deep-network softmax predictions for a given class k as follows:

µ(k)p,q (sθ) :=
∑
i∈Ω

s
(i,k)
θ xp(i)y

q
(i),

where p, q ∈ N are the moment orders.

Central moment The central moment is closely related to the shape moment, with the
difference being that coordinates x(i) and y(i) are shifted by their respective centroids, for
translation invariance (more details in the next section). It is given by:

µ̄(k)p,q :=
∑
i∈Ω

s
(i,k)
θ

(
x(i) −

µ
(k)
1,0

µ
(k)
0,0

)p(
y(i) −

µ
(k)
0,1

µ
(k)
0,0

)q

.

Image Laplacian The Laplacian of an image is defined by the underlying graph structure
GΩ, which describes the connectivity between each pair of pixels. A sparse graph (i.e., each
pixel is connected only to its 4 or 8 direct neighbors) is often used, and can be encoded with
a sparse adjacency matrix AΩ ∈ {0, 1}|Ω|×|Ω|, where AΩ,i,j = 1 means that i, j are neighbors,
and AΩ,i,j = 0 means that they are not. The Laplacian can be directly constructed from
AΩ:

LΩ := AΩ − diag(1⊤AΩ),

where diag : Ra → Ra×a builds a diagonal matrix and 1⊤AΩ ∈ R|Ω| encodes the number of
neighbors for each pixel i. For a 8-neighbors connectivity, this number will be the same for
all pixels, except the image edges which will have less.

Notice that LΩ depends only on the image spatial domain, but not the image values. As
such, it can be efficiently pre-computed and cached for all the samples in a dataset. There
exists some edge-sensitive variants, which define AΩ so that it accounts for pixel similarities
(ex., intensity differences), but this is beyond the scope of this study.

2.2. Shape descriptors
With those different standard building blocks, it is possible to define shape descriptors,
measuring actual properties of the object, rather than listing a list of pixels that should
belong to it. All following descriptors hold for some input image I and some class k:

Volume The volume of the predicted segmentation is simply a summation of the predicted
probabilities—which is a special case of shape moments. As such:

V(k)(sθ) := µ
(k)
0,0(sθ).
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Centroid The centroid of a class can be computed by dividing the first shape moment
by the volume. We can see it as the average of the pixel-coordinates for class k:

C(k)(sθ) :=

(
µ
(k)
1,0(sθ)

µ
(k)
0,0(sθ)

,
µ
(k)
0,1(sθ)

µ
(k)
0,0(sθ)

)
.

Average distance to the centroid It measures how far the object should spread around
its centroid, on average. It is the standard deviation of pixel-coordinates for class k:

D(k)(sθ) :=

 2

√√√√ µ̄
(k)
2,0(sθ)

µ
(k)
0,0(sθ)

, 2

√√√√ µ̄
(k)
0,2(sθ)

µ
(k)
0,0(sθ)

 .

Length The length of a segmentation, or rather, the length of its boundary, can be effi-
ciently computed by re-using the pre-computed image Laplacian. To summarily describe it,
each difference of classification between two neighbors will be counted as 1, while neighbors
with the same predicted class will count as 0; which is a standard Potts model. It is trivial
to relax this definition to plug the predicted (continuous) probabilities:

L(k)(sθ) :=
∑

i,j∈GΩ

|s(i,k)θ − s
(j,k)
θ |LΩ,i,j .

Ratio of descriptors In the multi-class setting, some relationships between different
classes might be known in advance, using anatomical priors, for instance. While exact
values are not necessarily required, inequalities could provide useful information. As such,
we can define an additional descriptors for pairs of classes k and l, for a specific descriptor
f ∈ {V,C,D,L}:

R
(k,l)
f (sθ) :=

f(k)(sθ)

f(l)(sθ)
.

2.3. Supervision with constraints

Instead of optimizing a pixelwise loss, we design loss functions, which penalize the deviations
between the global shape descriptors computed from the predicted segmentation and those
corresponding to the ground truth, e.g., C(k)(sθ) = C(k)(G). This could be formulated as a
hard equality-constrained optimization problem. Here, we propose to relax the constraint
to add a lower and upper bound centered around the ground truth value (this may mimic
imprecise information about shape descriptors when these are derived, for instance, from
anatomical prior knowledge and not from ground truth):

argmin
θ

Lθ (1)

subject to 0.9τ
(k)
f ≤ f(k)(sθ) ≤ 1.1τ

(k)
f ∀k, ∀f ∈ {V,C,D,L}

a ≤ R
(k,l)
f ≤ b for some f, a, b, k, l,

where τ (k)f = f(k)(G).
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In the context of deep neural networks, standard constrained optimization techniques
(such as Lagrangian or interior-point methods) are not directly applicable for tractability
reasons. The inequality constraints can be tackled directly as a loss function using a log-
barrier-extension penalty ψ̃t(·) (details can be found in Section A), controlled by a parameter
t that is increased over time to make the bounds tighter and tighter. Such log-barrier
penalties were introduced recently in (Kervadec et al., 2019c) in the general optimization
context for constrained deep networks. As, for the sake of the study, we want to completely
forego pixel-wise supervision, we set Lθ := 0. As such, our final model is:

argmin
θ

∑
f

∑
k

[
ψ̃t

(
0.9τ

(k)
f − f(k)(sθ)

)
+ ψ̃t

(
f(k)(sθ)− 1.1τ

(k)
f

)]
. (2)

Bounds for R(k,l)
f can be included in the same fashion, if available and relevant—depending

on the task at hand. The bound values for R do not rely on G, but rather on expert
knowledge about the task. We will give some examples in the next section.

3. Experiments
3.1. Datasets
Heart segmentation on cine-MRI The main dataset that we use in our experiments
is the publicly available 2017 ACDC Challenge (Bernard et al., 2018), which contains 4
classes to segment: left and right ventricles, myocardium, and background. The dataset
consists of 100 cine magnetic resonance (MR) exams covering well defined pathologies: di-
lated cardiomyopathy, hypertrophic cardiomyopathy, myocardial infarction with altered left
ventricular ejection fraction and abnormal right ventricle. It also included normal subjects.
We chose this dataset because it is a good benchmark for shape descriptors. Not only a
multi-class setting, the myocardium and left-ventricle share a common centroid, and the my-
ocardium completely surround the left-ventricle—which is more challenging to describe. We
constraint S,C,D,L, and τ (Myo)

C = τ
(LV)
C . Moreover, the relationship between myocardium

and left-ventricle can be formulated with the following bounds: 2 ≤ R
(Myo,LV)
L ≤ 3. We

retained 70 exams for training, 10 for validation and 20 for testing.

Prostate segmentation on MR-T2 The second dataset that we use is the Promise12
challenge (Litjens et al., 2014). It contains the transversal T2-weighted MR images of
50 patients acquired at different centers, with multiple MRI vendors and different scanning
protocols. The images include patients with benign diseases, as well as with prostate cancer.
We employed 35 patients for training, 5 for validation, and 10 for testing. The difficulty of
this dataset lies in the low-contrast, and very variable shape of the prostate. We supervise
S,C,D,L.

3.2. Implementation details
We use the ENet architecture (Paszke et al., 2016) for experiences on ACDC, and a mod-
ified fully residual UNet for the experience on Promise12—the prostate is a harder task
that requires a more powerful network, and it also enables us to validate the supervision
method on different architectures. We perform blurring, shifting, and scaling as online data
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augmentations, and we use the same network initialization for all settings, with the same
scheduler and hyper-parameters (Adam scheduler (Kingma and Ba, 2014), with learning
rate of 5e-4 and β = (0.9, 0.99)). The shape descriptors are computed from the annotated
mask, and we use a relaxed value by ±10% as bounds. Most of the implementation was
done in the PyTorch framework, and experiments were run on a Nvidia Titan RTX. All
descriptors can be efficiently vectorized, resulting in minimal slowdown during training (less
than 10% compared to a cross-entropy loss). The computation of the Laplacian LΩ is done
once per image shape (usually a single one per dataset after pre-processing), and cached
using standard Python utilities (lru_cache from functools). Our code is publicly avail-
able at https://github.com/hkervadec/shape_descriptors, and can easily be extended
to other shape descriptors.

4. Results

Surprisingly, using only a few shape descriptors in place of dense pixel-wise supervision is
capable to segment the objects of interest, as we can see in Figure 2. On ACDC, what
remains the most difficult to learn is the hierarchy between the left-ventricle and its sur-
rounding myocardium, and some noisy myocardium pixels can sometime remain inside the
predicted left-ventricle. Nonetheless, we can consider that the network has properly learned
the overall structure of the heart. On Promise12, the task is difficult even for cross-entropy
with full annotations. Despite the more powerful network used, the low-contrast can still
trick both methods. Nevertheless, supervision with shape descriptors is capable to get a
rough location and shape of the prostate, which is much more than we initially expected.
Actual testing DSC values can be found in Table 1, and the plots of training and validation
metrics over time can be found in Appendix B.

Figure 2: Visual comparison for both ACDC and Promise12 on the testing set, including
some failure cases.
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Table 1: Average and standard deviation of DSC on the testing set, for both datasets.

ACDC Promise12
Method RV Myo LV Overall Prostate
Cross-entropy (pixel-wise) 0.879 (0.066) 0.829 (0.074) 0.919 (0.059) 0.876 (0.076) 0.871 (0.047)
Ours (shape descriptors) 0.825 (0.107) 0.660 (0.114) 0.819 (0.086) 0.768 (0.128) 0.651 (0.098)

5. Discussion and conclusion

We have showed that simple and light shape descriptors can be effective supervision tools
for semantic segmentation, allowing us to avoid completely pixel-wise supervision; proving
how powerful shape descriptors can be. In a multi-class setting, the neural network is able
to learn the inherent relationship between classes and the anatomical structure of the heart.

While not needed on the two datasets that we benchmarked on, it is very easy to
compute the orientation and elongation of an object (Nayak and Stojmenovic, 2008), which
would be very useful for certain tasks (for instance, esophagus segmentation). Spatial
relationship between classes, that would be translation invariant, could be very beneficial
in some settings, such as the co-segmentation of esophagus and trachea—both long objects,
next to each others.

We found empirically that using only shape descriptors without online data augmen-
tation was more sensitive to network initialization than its pixel-wise counterpart. It is
entirely plausible that the random networks’ initializations, designed and tuned with cross-
entropy in mind (Sutskever et al., 2013), are not optimal for shape descriptors. As such,
future works could investigate other network initialization strategies.

One main limitation of the method is its inability to be sub-patched and processed in
different batches (Any loss requiring a sum over an area bigger than the current patch shares
this limitation, including the very popular Dice loss and its derivatives.) Recently, for a
similar ill-suited problem (enforcing a prior of the distribution of the classes, over the whole
training set), (Zhou et al., 2019) showed that a primal-dual approach can be a promising
avenue.

We believe that we barely scratched the surface for the potential of invariant shape
descriptors: shape and central moments orders can go much higher than two. Depending
on the task, some invariant and higher-order descriptors could be common to all the sam-
ples and would not require additional annotations, but rather exploit existing anatomical
knowledge. This might open interesting avenues for generalization across subject popula-
tions and acquisition protocols. Also, using the Discrete Fourier Transform to characterize
the objects in the frequency domain could provide an interesting avenue for future works.

References

Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li Fei-Fei. What’s the point:
Semantic segmentation with point supervision. In European conference on computer
vision, pages 549–565. Springer, 2016.

8



Beyond pixel-wise supervision

Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-
Ann Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester,
et al. Deep learning techniques for automatic mri cardiac multi-structures segmentation
and diagnosis: is the problem solved? IEEE transactions on medical imaging, 37(11):
2514–2525, 2018.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017.

Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE transactions on
information theory, 8(2):179–187, 1962.

Hoel Kervadec, Jihene Bouchtiba, Christian Desrosiers, Eric Granger, Jose Dolz, and Is-
mail Ben Ayed. Boundary loss for highly unbalanced segmentation. In International
conference on medical imaging with deep learning, pages 285–296. PMLR, 2019a.

Hoel Kervadec, Jose Dolz, Meng Tang, Eric Granger, Yuri Boykov, and Ismail Ben Ayed.
Constrained-cnn losses for weakly supervised segmentation. Medical image analysis, 54:
88–99, 2019b.

Hoel Kervadec, Jose Dolz, Jing Yuan, Christian Desrosiers, Eric Granger, and Ismail Ben
Ayed. Constrained deep networks: Lagrangian optimization via log-barrier extensions.
arXiv preprint arXiv:1904.04205, 2019c.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Maria Klodt and Daniel Cremers. A convex framework for image segmentation with moment
constraints. In 2011 International Conference on Computer Vision, pages 2236–2243.
IEEE, 2011.

Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun. Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3159–3167, 2016.

Geert Litjens, Robert Toth, Wendy van de Ven, Caroline Hoeks, Sjoerd Kerkstra, Bram
van Ginneken, Graham Vincent, Gwenael Guillard, Neil Birbeck, Jindang Zhang, et al.
Evaluation of prostate segmentation algorithms for mri: the promise12 challenge. Medical
image analysis, 18(2):359–373, 2014.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken,
and Clara I Sánchez. A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

Peyman Milanfar, Mihai Putinar, James Varah, Bjoern Gustafsson, and Gene H Golub.
Shape reconstruction from moments: theory, algorithms, and applications. In Advanced

9



Kervadec Bahig Letourneau-Guillon Dolz Ben Ayed

Signal Processing Algorithms, Architectures, and Implementations X, volume 4116, pages
406–416. International Society for Optics and Photonics, 2000.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional
neural networks for volumetric medical image segmentation. In 2016 fourth international
conference on 3D vision (3DV), pages 565–571. IEEE, 2016.

Amiya Nayak and Ivan Stojmenovic. 2d shape measures for computer vision. 2008.

George Papandreou, Liang-Chieh Chen, Kevin P Murphy, and Alan L Yuille. Weakly-and
semi-supervised learning of a deep convolutional network for semantic image segmenta-
tion. In Proceedings of the IEEE international conference on computer vision, pages
1742–1750, 2015.

Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A
deep neural network architecture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147, 2016.

Hui Qu, Pengxiang Wu, Qiaoying Huang, Jingru Yi, Gregory M Riedlinger, Subhajyoti
De, and Dimitris N Metaxas. Weakly supervised deep nuclei segmentation using points
annotation in histopathology images. In International Conference on Medical Imaging
with Deep Learning, pages 390–400. PMLR, 2019.

Martin Rajchl, Matthew CH Lee, Ozan Oktay, Konstantinos Kamnitsas, Jonathan Passerat-
Palmbach, Wenjia Bai, Mellisa Damodaram, Mary A Rutherford, Joseph V Hajnal, Bern-
hard Kainz, et al. Deepcut: Object segmentation from bounding box annotations using
convolutional neural networks. IEEE transactions on medical imaging, 36(2):674–683,
2016.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso.
Generalised dice overlap as a deep learning loss function for highly unbalanced segmen-
tations. In Deep learning in medical image analysis and multimodal learning for clinical
decision support, pages 240–248. Springer, 2017.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013.

Yuyin Zhou, Zhe Li, Song Bai, Chong Wang, Xinlei Chen, Mei Han, Elliot Fishman, and
Alan L Yuille. Prior-aware neural network for partially-supervised multi-organ segmen-
tation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 10672–10681, 2019.

10



Beyond pixel-wise supervision

Appendix A. Extended log-barrier
The extended log-barrier was introduced in (Kervadec et al., 2019c), as standard Lagrangian
or interior-point methods are not directly applicable to deep learnign settings. If we take a
simple constrained optimization setting:

argmin
θ

Lθ

subject to z ≤ 0,

then its extended log-barrier equivalent is:

argmin
θ

Lθ + ψ̃t(z)

ψ̃t(z) =

{
−1

t log(−z) if z ≤ − 1
t2

tz − 1
t log(

1
t2
) + 1

t otherwise,

where t is the slope parameter of the log-barrier that is increased over time, eventually
“closing” the barrier when t→ ∞. This is illustrated in Figure 3

Figure 3: Illustration of the extended log-barrier (Kervadec et al., 2019c), for increasing t
values, compared to a fixed quadratic penalty (Kervadec et al., 2019b).

The advantage of the log-barrier are two-fold:

• it allows to gradually increase the tightness of the constraints that we want to satisfy;

• once satisfied, it gently pushes back the constrained function toward the feasible set,
preventing it to go out of bounds.

Appendix B. Training curves
The training curves shows that the trainig is fairly stable over time, though in the case of
Promise12 it takes a few epochs for the network to start producing meaningful predictions.
This is related, we think, to the random initialization procedure used in standard deep
learning settings, which might not be the most optimal method when using different forms
of supervision.
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Figure 4: Comparison of the training and validation dice, and the distribution of (patient-
wise) testing dice for each individual class, for both datasets. In the case of ACDC, we plot
one curve per class (RV=1, Myo=2, LV=3), as well as an average of the three.
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