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Abstract

Fine-tuning pre-trained large language models in a
parameter-efficient manner is widely studied for its effec-
tiveness and efficiency. LoRA is one of the most widely used
methods, which assumes that the optimization process is es-
sentially low dimensional. Although LoRA has demonstrated
commendable performance, there remains a significant
performance gap between LoRA and full fine-tuning when
learning new tasks. In this work, we propose Low-Rank
Adaptation with Task-Relevant Feature Enhancement
(LoRATRF) for enhancing task-relevant features from
the perspective of editing neural network representations.
To prioritize task-relevant features, a task-aware filter
that selectively extracts valuable knowledge from hidden
representations for the target or current task is designed.
As the experiments on a vareity of datasets including NLU,
commonsense reasoning and mathematical reasoning tasks
demonstrates, our method reduces 33.71% parameters and
achieves better performance on a variety of datasets in
comparison with SOTA low-rank methods.

Introduction
Pre-trained language models (PLMs) have shown remark-
able performance across a wide variety of downstream nat-
ural language processing tasks through fine-tuning on task-
specific labeled data (Kenton and Toutanova 2019; Liu et al.
2019; Lewis et al. 2020). However, fine-tuning all model pa-
rameters (full fine-tuning) is prohibitively expensive. This
issue is particularly salient with the ever-growing size of
PLMs (e.g., BERT (Kenton and Toutanova 2019) with 330M
parameters and GPT-3 (Brown et al. 2020) with 175B pa-
rameters).

To adapt general knowledge in pre-trained models to
specific downstream tasks in a more parameter-efficient
way, Parameter-Efficient Fine-Tuning (PEFT) methods have
been proposed (Houlsby et al. 2019; Pfeiffer et al. 2021;
Li and Liang 2021a; Lester, Al-Rfou, and Constant 2021;
Ben Zaken, Goldberg, and Ravfogel 2022). For example,
adapter tuning (Houlsby et al. 2019; Pfeiffer et al. 2021)
inserts adapters to each layer of the pre-trained network.
Inspired by the success of prompting methods that control
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PLMs through textual prompts (Brown et al. 2020), prefix-
tuning (Li and Liang 2021a) and prompt-tuning (Lester, Al-
Rfou, and Constant 2021) prepend an additional tunable pre-
fix tokens to the input or hidden layers. Then, LoRA and its
derivatives (Hu et al. 2022; Zhang et al. 2023a; Liu et al.
2024) decomposes the attention weight gradients into low-
rank matrices. Some studies (Valipour et al. 2023; Zhang
et al. 2023a; Ding et al. 2023) mainly focused on dynam-
ically adjusting the rank of LoRA in different layers. The
above methods does not explore task-relevant features from
the perspective of editing neural network representations.

In this paper, we take a step towards addressing the per-
formance gap question, by proposing a new PEFT method
called Low-Rank Adaptation with Task-Relevant Feature
Enhancement (LoRATRF). We propose to enhance task-
relevant features from the perspective of editing neural net-
work representations. To prioritize task-relevant features, we
introduce a task-aware filter that selectively extracts valu-
able knowledge from hidden representations for the target
or current task. We conduct extensive experiments on a wide
range of tasks and models to demonstrate the effectiveness
of our method. To sum up, our contributions are:

• We enhance the performance of LoRA from the perspec-
tive of neural network editing.

• We design a task-aware filter that can selectively extract
valuable knowledge from the hidden representation of
the current task, which can enhance the model’s focus
on crucial features.

Related Work
Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) is an approach of op-
timizing a small number of parameters when fine-tuning
a large pre-trained backbone model and keeping the back-
bone model untouched for adaptation (Han et al. 2024).
A branch of PEFT methods (Lester, Al-Rfou, and Con-
stant 2021; Li and Liang 2021b; Liu et al. 2022) is to add
some special trainable vectors. Representative works in this
direction are Prefix tuning (Li and Liang 2021b), Prompt
tuning (Lester, Al-Rfou, and Constant 2021) and P-tuning
V2 (Liu et al. 2022). Another approach (Houlsby et al. 2019;
Pfeiffer et al. 2021; Zhang et al. 2023b) is to insert additional
neural modules to the backbone model, called Adapter. The



reparameterization-based methods have attracted much at-
tention (Hu et al. 2022). This type of PEFT method is closely
related to intrinsic dimension (Li et al. 2018; Aghajanyan,
Gupta, and Zettlemoyer 2021). However, the cost to train the
above methods is large as the amount of trainable parameter
is not small enough.

LoRA and Its Variants
LoRA (Hu et al. 2022) is proven to be effective and yield sta-
ble results when applied to both relatively small pre-trained
models and large language models (Dettmers et al. 2023;
Hu et al. 2023). Then, some researchers explore more flexi-
ble and appropriate ranks, such as DyLoRA, AdaLoRA, and
SoRA. Other works focus on the combination of LoRA and
other approaches, such as AdaMix (Wang et al. 2022) and
QLoRA (Dettmers et al. 2023). Besides, LoRAHub (Huang
et al. 2023) and LoRAMoE (Wu, Huang, and Wei 2024) fo-
cus on how to merge multiple LoRA blocks that are fine-
tuned on different tasks respectively. However, the above
methods lacks efficiency on low-rank representation of com-
plex reasoning tasks for LLMs.
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Figure 1: The overview of our approach. Task-aware fil-
ter can selectively extract valuable knowledge from hidden
representations for the target task. ⊙ refers to element-wise
multiplication.

Methodology
Preliminaries
Low-Rank Adaptation (LoRA). LoRA (Hu et al. 2022)
approximates the incremental update by decomposing it into
the product of two low-rank matrices, constraining the up-
date to a low-rank space and making the fine-tuning process
more efficient. Through this approximate low-rank decom-
position, we have:

∆W ≈ BA, (1)
where B ∈ Rm×r, A ∈ Rr×n, and the rank r <<
min(m,n). In the forward propagation of LoRA, for an in-

put representation x, the output after passing through the pa-
rameter matrix W0 is

h = W0x+∆Wx = W0x+BAx (2)

To ensure that introducing LoRA at the initial stage does
not impact the computation results of the model’s forward
propagation, it is crucial to ensure that BAx = 0. To achieve
this, LoRA initializes A as a random Gaussian matrix and B
as a zero matrix. During training, W0 is frozen, and B and
A are treated as trainable parameters. Upon completion of
training, the parameter matrices A and B are merged into
W0 to form the final parameter matrix

Wft = W0 +BA (3)

It is noteworthy that the final update is BA, which is con-
strained within a low-rank space.

Motivation
To further improve performance, we propose Low-Rank
Adaptation with Task-Relevant Featur Enhancement (Lo-
RATRF). Figure 1 gives an overview of our approach, where
the task-aware filter identifies task-relevant features within
hidden representations and adaptively integrates these fea-
tures back into the representations.

Task-Aware Filters
Firstly, we introduce task-aware filters (Zou et al. 2023) that
are able to select task-relevant features in the output and then
reincorporate them into the output representation.

Specifically, we design a learnable task vector tξ ∈ Rd

and employ it to perform the matrix product with the rep-
resentation vector hl in each Transformer layer l, subse-
quently, the resulting product is clamped to [0,1]. This se-
lective mechanism preferentially retains tokens that exhibit
high similarity to tξ, while effectively attenuating others via
a soft masking procedure.

h̃l
i = sim(hl

i, tξ) · hl
i (4)

Here tξ acts as a task embedding that encodes what kind
of tokens are important for the task, and each token hl

i is
reweighted by its relevance (measured by cosine similarity)
with the task embedding, thereby simulating token prioriti-
zation based on task-related importance.

Secondly, we integrate a transformation matrix T ∈ Rd×d

to execute linear transformations on the reweighted repre-
sentation 1, permitting finer adjustments and augmentations
that are tailored to the task:

ĥl
i = h̃l

i · T (5)
The transformation matrix T is designed to linearly trans-
form the selected and reweighted token representations in a
task-adaptive manner. This approach ensures that the result-
ing representation is discriminative and adaptable, prioritiz-
ing the information elements that is most relevant to the task.
Finally, this refined information ĥl

i is added to the original
representation to achieve comprehensive enhancement.

1To promote parameter efficiency, we approximate the transfor-
mation matrix T using the product of two low-rank matrices.



Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All
Acc Acc Mcc Acc/F1 Acc Acc Acc Corr Ave.

Full FT 184M 89.90 95.63 69.19 92.40/89.80 94.03 83.75 89.46 91.60 88.42
BitFit 0.1M 89.37 94.84 66.96 88.41/84.95 92.24 78.70 87.75 91.35 86.06
HAdapter 1.22M 90.13 95.53 68.64 91.91/89.27 94.11 84.48 89.95 91.48 88.39
PAdapter 1.18M 90.33 95.61 68.77 92.04/89.40 94.29 85.20 89.46 91.54 88.52
LoRAr=8 1.33M 90.65 94.95 69.82 91.99/89.38 93.87 85.20 89.95 91.60 88.60
AdaLoRA 1.27M 90.76 96.10 71.45 92.23/89.74 94.55 88.09 90.69 91.84 89.49
LoRATRF 0.88M 90.87 95.99 71.61 92.00/89.75 94.69 87.73 91.18 91.89 89.52

Table 1: Results with DeBERTaV3-base on GLUE development set. Best performances are highlighted in bold. Full FT,
HAdapter and PAdapter represent full fine-tuning, Houlsby adapter, and Pfeiffer adapter respectively. We report baseline results
directly from (Zhang et al. 2023a). We run the experiment on 5 different random seeds and report the mean.

Experimental Setup
Datasets
General Language Understanding Evaluation:
GLUE (Wang et al. 2019) is a generalized natural lan-
guage understanding assessment benchmark that includes
a variety of tasks such as natural language inference,
sentiment analysis, and sentence similarity evaluation,
from which we select eight tasks for systematic evaluation,
including Corpus of Linguistic Acceptability (CoLA),
Multi-Genre Natural Language Inference (MNLI), Mi-
crosoft Research Paraphrase Corpus (MRPC), Question
Natural Language Inference (QNLI), Quora Question Pairs
(QQP), Recognizing Textual Entailment (RTE), Stanford
Sentiment Treebank (SST-2), Semantic Textual Similarity
Benchmark (STS-B).

Mathematical Reasoning: (1) GSM8K (Cobbe et al.
2021) dataset consists of high quality linguistically diverse
grade school math word problems, (2) SVAMP (Patel, Bhat-
tamishra, and Goyal 2021) benchmark consists of one-
unknown arithmetic word problems, (3) AddSub (Hosseini
et al. 2014) is a specialized dataset designed for evaluating
algorithms.

Commonsense Reasoning: (1) BoolQ (Clark et al. 2019)
dataset is a question-answering dataset for yes/no questions
containing 15942 examples. (2) PIQA (Bisk et al. 2020)
dataset of questions with two solutions requiring physical
commonsense to answer; (3) SIQA (Sap et al. 2019) focuses
on reasoning about people’s actions and their social impli-
cations; (4) HellaSwag (Zellers et al. 2019) is a challenging
dataset, which contains questions to select the best endings
to complete sentences.

Baselines
We compare our methods to Full fine-tuning, Bitfit, Adapter
tuning, LoRA and AdaLoRA. Bitfit (Ben Zaken, Gold-
berg, and Ravfogel 2022) fine-tunes bias vectors. Houlsby
adapter (Houlsby et al. 2019) is inserted between
the self-attention module and the FFN module. Pfeiffer
adapter (Pfeiffer et al. 2021) inserts the adapter after FFN
modules and LayerNorm modules. LoRA (Hu et al. 2022)
parameterizes incremental updates by two small matrices.

AdaLoRA (Zhang et al. 2023a) expresses the low-rank mul-
tiplication of LoRA. In empirical, we find that applying
LoRA to Wv, Wf1 and Wf2 matrices can achieve the best
performance (Please see Different Choices of Modules to
Adapt Section).

Implementation Details
We implement our method for fine-tuning DeBERTaV3-
base (He, Gao, and Chen 2022) and large language model
LLaMA-7B (Touvron et al. 2023). LoRA (Hu et al. 2022)
scales ∆W by α/r where α is a constant in r. As a result,
the magnitude of output can be consistent given different r.
It reduces the efforts of retuning learning rate when varying
r. Typically α is set as 16 or 32 and never tuned.

Evaluation
For the GLUE benchmark, we report both accuracy and F1
for QQP in GLUE. For STS-B, we report the average corre-
lation. For CoLA, we report Matthews correlation. For all re-
maining sub-tasks in GLUE, we report accuracy. For mathe-
matical and commonsense reasoning datasets, we report ac-
curacy.

Main Results
Natural Language Understanding
We compare LoRATRF with various baselines. Table 1
shows experimental results on the GLUE development set.
We see that LoRATRF achieves better or on par perfor-
mance compared with existing approaches on all datasets.
For example, our method attains an accuracy of 71.61% on
CoLA, surpassing AdaLoRA baseline by 0.2%, all while
utilizing fewer parameters (0.88M compared to 1.27M).
Among the baseline methods, the AdaLoRA method per-
forms the best, which may be because it designs a method
to dynamically allocate the rank of LoRA in different lay-
ers based on their importance. For all tasks except QQP, our
method demonstrates different degrees of performance en-
hancement. These experiments verify the general applica-
bility of our method to the NLU tasks.

Commonsense and Mathematical Reasoning
We also conduct experiments on the Mathematical and Com-
monsense Reasoning task using LLaMA-7B (Touvron et al.



LLM Method GSM8K AddSub SVAMP HellaSwag BoolQ PIQA SIQA
GPT-3.5 56.4 85.3 69.9 78.5 73.1 85.4 68.5

LLaMA-7B

Prefix 24.4 57.0 38.1 42.1 64.3 76.8 73.9
Series 33.3 80.0 52.3 67.9 63.0 79.2 76.3

Parallel 35.3 86.6 49.6 69.8 67.9 76.4 78.8
LoRA 37.5 83.3 52.1 78.1 68.9 80.7 77.4
DoRA 38.4 84.2 52.7 84.8 68.5 82.9 79.6

LoRATRF 38.6 84.1 53.0 82.4 69.6 83.5 78.4

Table 2: Comparison results of different methods based on LLaMA-7B on reasoning datasets. We report some baseline results
directly from (Liu et al. 2024) and (Hu et al. 2023).

2023). We use the same rank size (r=32) as the baseline
method and only apply the LoRA module to output pro-
jection (Wo) in the self-attention, and two weight matrices
(Wf1 ,Wf2 ) in two-layer FFNs. Comparison results are re-
ported in Table 2. Notably, in the LLaMA-7B model, where
DoRA exceeds the performance of other baselines, which
may be due to DoRA decomposes weights for enhanced
learning capacity. LoRATRF attains an accuracy of 85.6%
on HellaSwag, surpassing DoRA baseline by 0.8%. To sum
up, LoRATRF achieves the best performance in GSM8K.
The results show that our method maintains its effectiveness
in LLM, and further illuminate the significance of enhancing
task-related features.

Quantitative Analysis

Different Choices of Modules to Adapt

We study the choices of modules to adapt for our method
on SVAMP. We choose possible modules to adapt within
query/key/value projection (Wq,Wk,Wv), output projec-
tion (Wo) in the self-attention, and two weight matrices
(Wf1 ,Wf2 ) in two-layer FFNs. We hold the number of train-
able parameters at the same level. Figure 2 shows the per-
formance when fine-tuning specific modules, which demon-
strates that adapting Wf1 , Wf2 and Wo yields the highest
performance.

Wq Wk Wv Wo Wf1 Wf2 Wq,Wv Wf1,Wf2,Wo
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Figure 2: Testing performance of LLaMA-7B on SVAMP
with different adapted modules.

Robustness of LoRATRF towards different rank
settings
This section explores the impact of various rank configura-
tions on LoRATRF and LoRA by adjusting r within the set
{4, 8, 16, 32} and assessing the performance of the fine-
tuned LLaMA-7B on commonsense reasoning dataset Hel-
laSwag. The average accuracies of LoRA and LoRATRF
across different ranks are depicted in Figure 3. From Fig-
ure 3, we can observe that LoRATRF consistently surpasses
LoRA across all rank configurations. Notably, the perfor-
mance gap widens for ranks below 8, where LoRA’s average
accuracies drop to 59.3% for r = 8 and 51.2% for r = 4. In
contrast, LoRATRF retains a notable accuracy of 73.9% for
r = 8 and 70.5% for r = 4, demonstrating its resilience and
consistently superior performance over LoRA regardless of
the rank setting.
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Figure 3: Testing performance of LLaMA-7B on HellaSwag
with different rank settings.

Conclusion
In this work, we propose Low-Rank Adaptation with Task-
Relevant Feature Enhancement, a novel approach aimed at
bridging the performance gap between LoRA and full fine-
tuning on complex tasks. We introduce task-aware filters to
improve performance by prioritizing task-relevant features.
Experiments on diverse benchmarks with different settings
confirm the effectiveness of our method.
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