
SEARCHING FOR HIGH-VALUE MOLECULES USING
REINFORCEMENT LEARNING AND TRANSFORMERS

Raj Ghugare1,2 Santiago Miret 3 Adriana Hugessen1,2

Mariano Phielipp3 Glen Berseth1,2

1Université de Montréal 2Mila - Quebec AI Institute 3Intel Labs
raj.ghugare@mila.quebec , santiago.miret@intel.com,

adriana.knatchbull-hugessen@mila.quebec

ABSTRACT

Reinforcement learning (RL) over text representations can be effective for finding
high-value policies that can search over graphs. However, RL requires careful
structuring of the search space and algorithm design to be effective in this
challenge. Through extensive experiments, we explore how different design
choices for text grammar and algorithmic choices for training can affect an RL
policy’s ability to generate molecules with desired properties. We arrive at a new
RL-based molecular design algorithm (ChemRLformer) and perform a thorough
analysis using 25 molecule design tasks, including computationally complex
protein docking simulations. From this analysis, we discover unique insights
in this problem space and show that ChemRLformer achieves state-of-the-art
performance while being more straightforward than prior work by demystifying
which design choices are actually helpful for text-based molecule design.

1 INTRODUCTION

Molecular discovery can have a significant impact on our society, however, the vast search space
makes it challenging to find high-value molecules. The potential of reinforcement learning (RL)
methods to discover new, high-value molecules has resulted in a series of research work performed
by RL researchers focusing on learning policies as graph neural networks (GNNs) (You et al., 2018;
Zhou et al., 2019; Jin et al., 2020; Fu et al., 2022; Yang et al., 2021; Bengio et al., 2021). In this
formulation, the RL policy is trained to add atoms and bonds to a molecular graph representation.
In this formulation there is a one-to-one mapping between molecules and their graph representation,
making it easier to construct state and action spaces with Markovian dynamics. However, the action
space in the graph formulation is vast as it consists of the product of candidate attachment positions
and candidate attachment sequences. Graph-based data structures (such as adjacency matrices,
trees, etc.) are a powerful representation used to describe a number of design problems, including
social networks (Tan et al., 2019), transportation networks (Wang and Tang, 2021), recommendation
systems (Chen et al., 2021b), and combinatorial optimization problems (Khadka et al., 2020; Miret
et al., 2022) have been popular in this design space. However, GNNs are often difficult to train
(Chen et al., 2022) and cannot readily take advantage of large-scale text data sets that effectively
describe molecular structures and properties.

In order to take advantage of the richness of text-based representations for molecules, one can
formulate the molecular search problem as the construction of tokens in a sequence that become
a molecular text. The molecular texts formulated by common text-based representations, such as
SMILES (Weininger, 1988) and SELFIES (Krenn et al., 2020), can then be converted into molecular
graphs with cheminformatics libraries (Landrum et al., 2013) using their respective encoding and
decoding rules. However, the text-based representation can be more difficult to formulate as an
MDP since there is not always an exact one-to-one mapping between texts and molecules. In
fact, the text-to-molecule conversion can be many-to-one, where the complexity of the dynamics
in the MDP given by many-to-one mappings is non-trivial. On the other hand, the action space in
molecular text design can be significantly reduced given the rules of text construction imposed by
a given representation. Moreover, formulating molecule discovery as sequence-generation has the
potential to capitalize on recent successes in natural language modeling (Brown et al., 2020a).

1

In this paper, we perform a detailed empirical study of molecular discovery using text-based RL
across more than 25 molecular properties relevant for drug-discovery, including docking simulation
for molecular ligands (Garcı́a-Ortegón et al., 2022; Huang et al., 2022) and develop our own
algorithm (ChemRLformer) based on state-of-the-art literature as shown in Table 1. In our
experiments, we evaluate two molecular text representations (SMILES, SELFIES) and the use of
three neural network architectures (Multi-Layer Perceptron (Bengio et al., 2003), Recurrent Neural
Network (Schmidt, 2019), Transformer (Vaswani et al., 2017)) pretrained on 5 datasets of varying
quality and sizes. We create ChemRLformer that achieves the highest performance across these
tasks while being much simpler than previous text-based RL algorithms (Blaschke et al., 2020a;
Gao et al., 2022b). Via our detailed ablation study, we construct ChemRLformer and find that
pretraining on aligned datasets can significantly improve performance across all molecular design
tasks, even exceeding the performance of agents pretrained on 100 times larger datasets. We also
show that targeted algorithmic design, such as hill-climbing in the replay buffer and regularization,
further increases the performance of ChemRLformer. To the best of our knowledge, ChemRLformer
is the largest analysis of text-based RL methods for molecule discovery.

Table 1: Table showing conceptual comparisons of various text based molecular optimization
methods. ChemRLformer combines the most successful elements of prior work.

Method Text Representation RL Architecture Pretraining Algorithmic Components

SMILES-VAE (Gómez-Bombarelli et al., 2018) SMILES ✗ VAE ✓ Maximum Likelihood
SMILES-LSTM (Brown et al., 2019) SMILES ✗ LSTM ✓ Maximum Likelihood

BOSS (Moss et al., 2020) SMILES ✗ VAE ✗ Bayesian Optimization
REINVENT (Blaschke et al., 2020a) SMILES ✓ GRU ✓ Replay buffer, KL

REINVENT 2.0 (Blaschke et al., 2020b) SMILES ✓ GRU ✓ HC-Replay buffer, Log p, KL
Taiga 2.0 (Mazuz et al., 2023) SMILES ✓ TRANSFORMER ✓ policy gradients
MolGPT (Bagal et al., 2021) SMILES ✓ TRANSFORMER ✓ policy gradients

STONED (Nigam et al., 2021) SELFIES ✗ FC ✗ Genetic algorithm
Pasithea (Shen et al., 2021) SELFIES ✗ FC ✗ Deep dreaming

ChemRLformer (Ours) SMILES, SELFIES ✓ Transformer, FC ✓ Replay buffer, KL

2 RELATED WORK

RL for Design and Discovery: Many methods in diverse fields leverage RL to help augment a prior
design method to improve performance (Yu et al., 2018; Schaff et al., 2019). Other methods have
explicitly included the design process in the RL loop by training design problems together (Chen
et al., 2021a; Ha, 2019; Luck et al., 2020; Kumar et al., 2022) with most prior work focusing on
robot and agent design, not molecular design. Our molecular design work creates an autoregressive
structure that grows the size of the state as the agent acts in the environment.

Molecular Discovery Using Sequence-Based Methods: Sequence-based methods treat molecular
design as a sequence of tokens that get concatenated in order. Generative models for sequence-based
methods span a diverse range, including variational autoencoders (VAEs) (Gómez-Bombarelli et al.,
2018; Alperstein et al., 2019), recurrent neural networks (RNNs) (Gupta et al., 2018; Bjerrum and
Threlfall, 2017; Grisoni et al., 2020; Flam-Shepherd et al., 2022) and transformer models(Wang
et al., 2019; Fabian et al., 2020; Edwards et al., 2022a; Zeng et al., 2022; Taylor et al., 2022). The
general procedure for all the above methods is to perform self-supervised generative learning to
sample molecules similar to the original dataset. MoLRL can also make use of pretrained generative
models, which we then fine-tune using reinforcement learning to produce enhanced molecules.

Molecular Discovery Using Search-Based Methods: Although sequence-based molecule
generation methods often provide a more structured way of learning molecular distributions, search-
based methods generally have the advantage of being able to directly find molecules based on
a desired property. Although a wide range of graph-based RL methods (You et al., 2018; Zhou
et al., 2019; Jin et al., 2020; Fu et al., 2022; Yang et al., 2021; Bengio et al., 2021) for optimizing
molecules exist, graph-based state representations introduce significant complexity to the RL
problem formulation, both in the transition dynamics and action space. By contrast, text-based
methods are simpler and also relatively under-explored, motivating our focus on these methods in
this work. Moreover, recent work (Cieplinski et al., 2021; Gao et al., 2022b) has shown that an older
text-based method REINVENT (Olivecrona et al., 2017) outperforms more complex graph-based
RL methods. Some limited extensions to Olivecrona et al. (2017) have been explored, including

2

experimenting with a newer molecular grammar designed for robust molecule generation (Gao et al.,
2022b). However, there has been limited work proposing the use of language models and text-based
RL for molecular discovery. Additionally, there have been limited efforts to incorporate recent
advancements from the language modeling domain into these methods. For example, the a character-
level LSTM network architecture used in Olivecrona et al. (2017), has not been revisited despite
significant recent advances in sequence modeling (Vaswani et al., 2017; Brown et al., 2020b).

3 BACKGROUND

The algorithms detailed in this paper are built on top of a foundation of reinforcement learning,
text-based molecule representations, and language modeling.

Reinforcement Learning: Reinforcement learning can be used to learn policies for sequential
decision-making problems. Policies are optimized based on an environment that is described as
a Markov Decision Process (MDP). A discrete MDP is defined by the tuple ⟨S,A, T , r, γ⟩ where
S is the state space, A is the action space, T : S × A × S ′ → [0, 1] is the transition function,
r : S ×A → R is the reward function and γ is the discount rate.

For actions at ∈ A and states st ∈ S, the goal of reinforcement learning is to learn a policy πθ(at|st)
which maps states to actions, such that:

πθ(at|st) = argmax
θ

Ep(τ |θ)

[
T∑

t=0

γtr(st, at)

]
(1)

where p(τ |θ) is the distribution over trajectories induced by πθ and the transition function T .

Text representations for molecules: Molecules are most naturally described using a graph
structure of atoms and bonds. However, graph-based deep learning models can be difficult to train,
especially at large scale (Dwivedi et al., 2022; Geisler et al., 2023). Recent works have proposed a
variety of text representations for molecules (Weininger, 1988; Krenn et al., 2020; Heller et al., 2013;
Krenn et al., 2022; Cheng et al., 2023), each having their distinct advantages and shortcomings.
In this study, we focus on the two most commonly used representations: SMILES (Weininger,
1988) and SELFIES (Krenn et al., 2020). Any text representation for molecules consists of a set
of valid tokens, which may represent individual atoms or special characters that imply the presence
of certain structures, as well as the encoding and decoding rules needed to convert between the text
representation and the graph representation of a molecule. Valid texts under a grammar are those
which respect both the vocabulary and the encoding/decoding rules for that grammar and, hence, can
be converted into a graph representation of a molecule. SELFIES, which was developed in response
to the tendency for SMILES-based deep learning models (Gó mez-Bombarelli et al., 2018; Jin et al.,
2018) to generate invalid molecular texts, has the useful property of providing a conversion for any
text into a graph corresponding to a molecule, provided the tokens in the text respect the SELFIES
vocabulary. For example, the text representation of Benzene in SMILES is C1=CC=CC=C1 while
in SELFIES one possible representation is [C][=C][C][=C][C][=C][Ring1][=Branch1].

Language modeling: Language modeling often relies on the self-supervised task of next-token
prediction for model pretraining. The general framework for next-token prediction is to train a
model to predict the next token in a sequence autoregressively, i.e. given the previous tokens in the
sequence (left context). Many architectures to handle sequential data have been proposed: Recurrent
Neural Networks (RNNs) (Hochreiter and Schmidhuber, 1997; Rumelhart and McClelland, 1987)
are a class of models used in sequence modeling which use recursive connections in hidden layers
to accumulate the left context for next-token prediction. Transformers are a more recent architecture
that instead use a self-attention mechanism (Vaswani et al., 2017) to capture dependencies between
all tokens in a sequence. For next-token prediction tasks, attention masking is used to enforce left
context, meaning that representations for tokens later in the sequence are only allowed to attend to
previous tokens in the sequence. In Section 4 we outline how we pretrain an autoregressive sequence
model to predict sequences of known molecules.

3

cc 1 c

cc c 1 c c c c cc 1 cc 1 cc 1 c ccc 1 cc ccc 1BOS

c c c EOS

Policy

Benzene
(C6 H6)

States

Actions

Figure 1: Autoregressively generating a benzene molecule.: An autoregressive model for
sequence generation can be viewed as an RL policy where the actions at are the next tokens to
append to the sequence and the state is the concatenation of all actions taken up to time t − 1. A
special end-of-sequence token can terminate the episode early at time T . The text at time sT is then
converted into a molecule based on the text-representation grammar and then scored according to a
scoring function that measures the alignment of the molecule with the desired properties informed
by the application. Hydrogen atoms are added at the end to complete the structure.

4 CHEMRLFORMER GENERATING MOLECULAR STRINGS VIA
REINFORCEMENT LEARNING

The space of drug-like molecules is vast, and reinforcement learning methods hold great promise
in improving the speed and reducing the cost of drug discovery. In this section, we describe
ChemRLformer and how combining language models and tools from RL produces a sota algorithm.

MDP for molecule generation: The vocabulary and grammar for text representations of
molecules can be interpreted as an MDP as described in Section 3, where the states st correspond to
a variable length text of accumulating tokens, and the actions at correspond to vocabulary defined
by the text-representation. The transition function is a deterministic function where the action at
taken by the agent is appended to the end of the state st resulting in st+1 using the dynamics
st+1 = [st, at] ← T (st, at). However, the corresponding transition function induced in the graph
representation of molecules is more complex as it is determined by the encoding/decoding rules of
the chosen text representation. For example, in the SMILES grammar, a random concatenation of
tokens may not correspond to a valid molecule, while the SELFIES grammar is constructed such
that any ordering of its tokens is encoded as a valid molecule.

Finally, the reward functionR scores molecules according to their alignment with desired chemical
properties, which can involve complex material simulations. The underlying property computation
of the reward function further informs the dynamics of the MDP imposed by text representation.
For example, docking scores are used to estimate the binding affinity between ligands and protein
targets. We discuss reward functions for molecules in more detail in section Section 5.

Pretraining policies for molecule discovery. To advance effectively within this vast search space,
we make use of datasets containing a large number of drug-like molecules in text format (Irwin et al.,
2012; Sterling and Irwin, 2015b; Mendez et al., 2019). This data is used to train an autoregressive
model to predict tokens that conform to the grammar for drug-like molecules, instead of the random
texts that are generated from a randomly initialized policy, thereby significantly simplifying the
exploration problem. In particular, we pretrain a network pϕ on the self-supervised objective of
next-token prediction. Although large language models can be trained with other objectives, such as
corrupted text reconstruction (Edwards et al., 2022b), these models are not a good fit for our purposes
since they cannot generate diverse and valid molecules without access to carefully designed prompts.

min
θ

EA∼D

[
H∑
t=1

− log pθ(at = At | At−1, · · ·A0)

]
. (2)

In practice a minibatch of sequences {A1, · · · , Am} are sampled from the prior dataset D to
evaluate the loss function in Equation 2, and the parameters are trained using gradient descent.

4

4.1 RL FOR MOLECULE GENERATION

To generate a molecule, a ChemRLformer policy πθ(at | st) is allowed to autoregressively sample
tokens for a fixed number of timesteps H . The start state s0 is always a beginning-of-sequence token
[BOS], and the agent can terminate early by taking the end-of-sequence action [EOS]. Figure 1,
shows how an RL policy can construct a Benzene molecule. Since we are only interested in the
properties of the final molecule, there are no intermediate rewards and the goal of the RL policy is to
maximize the expected scalar reward corresponding to the final constructed molecule, r(sT). Thus,
assuming a discount rate γ = 11, Equation 1 can be rewritten more simply as:

max
θ

EsT∼πθ [r(sT)] (3)

where sT = [BOS][a0][a1] · · · [EOS], is sampled autoregressively from the policy.

Our experiments use the policy gradient algorithm (Sutton et al., 1999b) to train the RL
policy because it is known to achieve state-of-the-art performance amongst RL for molecular
optimization (Olivecrona et al., 2017). Deep RL policies are able to learn the non-linear global
structures of molecular texts which, as we show in section 5, enables them to generalize to novel
and diverse molecules. However, training RL policies from scratch is time-consuming and can
make the exploration problem infeasibly difficult. Next, we explain how we adapt recent language
modelling techniques to pretrain the RL policy.

RL fine-tuning The pretrained model can directly be used to sample novel drug-like molecules.
These molecules, however, are not optimized for any particular property. Note that given our
definition of the state st as the concatenated history of all previous actions, this pretrained network
is exactly analogous to the policy network in Equation 1. Hence, by initializing πθ = pϕ, and
θ = ϕ, we can fine-tune this pretrained network by optimizing Equation 1 via the policy gradient
algorithm - REINFORCE (Sutton et al., 1999a). We need only to define a reward function r(sT)
which scores molecules according to their alignment with the desired properties. In the following
experiments, we show that this fine-tuning is vital for ChemRLformer to sample better molecules.
We also highlight the importance of pretraining and study how the size and quality of the prior data
affect the downstream ability of RL to search for high-value molecules.

5 EXPERIMENTAL RESULTS

Our proposed algorithm ChemRLformer uses the best combinations of choices resulting from
assessing the performance across three dimensions: (1) what pretraining factors are important to
improve RL for molecular discovery (Section 5.2), (2) how the use of recent text-based molecule
grammars facilitates downstream RL exploration (Section 5.3); and, lastly, (3) which specific
algorithmic changes are necessary to improve RL performance (Section 5.4).

5.1 EXPERIMENTAL SETUP

Tasks. We evaluate ChemRLformer against five different docking targets (Alhossary et al., 2015)
(fa7, parp1, 5ht1b, jak2, and braf) previously explored in the literature (Yang et al., 2021; Lee
et al., 2023). The docking scores used to estimate the binding affinity between ligands and
protein targets are a complex function of the global molecular structure and have been proposed as
chemically relevant benchmarks for molecule design algorithms (Cieplinski et al., 2021; Tripp et al.,
2022). In addition to the docking targets, we also evaluate on 22 pharmaceutically-relevant oracle
functions (Huang et al., 2021; Gao et al., 2022b; Brown et al., 2019) (pytdc tasks), which include
tasks such as optimizing proxies of bioactivity, similarity to target molecules, and combinations of
multiple physiochemical drug properties.

Evaluation metrics. We design our evaluation procedure with the final goal of identifying the
best candidates to test in a wet lab. To discover such high-value candidate molecules, we use sota
simulators that assign rewards to molecules by performing complex docking simulations (Alhossary
et al., 2015) or using proxy models and chemical rules (Huang et al., 2021). Previous works limit the

1Because we operate in a finite MDP, a discount factor of 1 gives us an unbiased estimate of the true
objective.

5

number of molecules sampled during evaluation to around 3000 for docking tasks (Garcı́a-Ortegón
et al., 2022; Yang et al., 2021; Lee et al., 2023) and 10000 for pytdc tasks (Gao et al., 2022b; Brown
et al., 2019) due to the computational cost associated with these reward simulators. We allow up to
25000 unique oracle calls and up to 40000 total oracle calls (allowing repeats). We argue this better
reflects the lower cost and availability of computing resources relative to wet-lab resources. From
all the sampled molecules, the average score of the top-k (k = 1, 10, 100) molecules is used as a
performance metric. These top groups are an estimate of the algorithm’s ability to discover a group
of top-quality candidates that could be given to a wet lab for thorough testing. We report pytdc
scores on a normalized basis between zero and one by default. Next, we normalize all docking
scores by dividing them by -20 in our experiments. Additionally, we report diversity (Div.), defined
as the averaged internal distance of the top 100 molecules, and redundancy (Red.), defined as the
total number of oracle calls that an agent makes for an already evaluated molecule.

Pretraining. We study how the quality and size of prior data affect the downstream RL
performance of ChemRLformer by pretraining a GPT (Radford et al., 2018) style transformer model
on five datasets of varying sizes and quality and using the pretrained model as an initialization for the
RL agent’s policy network. See Table 2 for the name, size, and description of all datasets used in our
work. We also rank all datasets based on their quality on docking and pytdc tasks. We determine
the quality of a dataset by the performance of molecules sampled from the model pretrained on that
dataset. The quality of ChemRLformer’s pretrained model is evaluated using the top-100 molecules
sampled by the pretrained model under the same evaluation setup in Appendix A.2. By default, these
open-sourced datasets contain a large number of drug-like molecules in SMILES format. For our
experiments, we also convert all datasets to the SELFIES format. Lastly, three different architectures
are compared: fully-connected (FC), recurrent (RNN) - a GRU and transformer - GPT style
autoregressive model, and compare them on downstream RL tasks.

Table 2: Description of molecular datasets used for pretraining: Datasets are ranked according
to procedure described in Section 5.1. Two datasets have the same rank if their average performance
lies inside one standard error of the other. The datasets are drawn from a subset of the Zinc (Sterling
and Irwin, 2015b; Irwin et al., 2022) and ChemBL (Gaulton et al., 2012) databases.

Dataset Size Docking Rank Pytdc Rank Description

CHEMBL 1.2 M 1 1 Manually curated database of bioactive
molecules with drug-like properties (Gaulton et al., 2012).

ZINC 250K 250 K 2 2 ZINC database molecules curated for their
pharmaceutical relevance and popularity (Gao et al., 2022b).

ZINC 1M 1 M 3 3 Random molecules from ≈ 1.5 billion
ZINC 10M 10 M 3 4 molecules from the ZINC database (Sterling and Irwin, 2015a).
ZINC 100M 100 M 3 4 ZINC 1M ⊂ ZINC 10M ⊂ ZINC100M.

All of our experiments on pytdc tasks are run across 5 random seeds. Since docking simulations are
expensive and time consuming, we run all docking experiments across 3 random seeds. Experiments
with different seeds use the same pretrained model which is only pretrained once for every dataset.
Additional details about the task rewards, evaluation metrics, and the pretraining datasets and models
are discussed in Appendix A.1, A.2, and A.3 respectively.

5.2 HOW DOES PRIOR DATA AFFECT THE FINAL PERFORMANCE OF CHEMRLFORMER?

In this section, we pretrain the REINFORCE policy on datasets of varying size and quality
from Table 2. Our datasets vary from small (250K) to very large (100M) sizes. Due to the
parallelizability of training on larger datasets, we use the transformer policy architecture for all
experiments in this section. In natural language processing (NLP), pretraining transformer models
on large and diverse unlabelled datasets have been found to perform well on downstream tasks using
few-shot labeled data (Brown et al., 2020b). Yet, our results in Figure 2b indicate that the quality
of the prior dataset matters more than its size. We compares the scores of the molecules generated
by the policy after pretraining and after RL training. Figure 2 shows that the molecules sampled
after pretraining on the ChEMBL dataset achieves higher scores, and hence is more aligned with
both the pytdc and the docking tasks. As a result, the RL agent pretrained on the ChEMBL dataset
outperforms all other agents, including the ones trained on 100 times more data.

6

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
o
re

Pretraining performance on PYTDC RL performance after pretraining

CHEMBL ZINC 250K ZINC 1M ZINC 10M ZINC 100M

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
o
re

(a) Performance on SMILES-based molecular design with pretraining (left) and with pretraining and RL (right).CHEMBL ZINC 250K ZINC 1M ZINC 10M ZINC 100M

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
o
re

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
o
re

RL performance on Augmented Docking after pretrainingDocking after pretraining

(b) Performance on SMILES-based molecular docking with pretraining (left) and with pretrainig and RL
(right). Section 5.2 describes augmented docking setting with additional experiments shown in Appendix A.3.
Div. and Red. are the diversity and redundancy scores described in section 5.1 respectively.

Figure 2: On the left pretrained performance on SMILES-based ChemRLformer. Higher-quality
datasets, such as ChemBL lead to higher-performance for both pytdc and augmented docking. On
the right is the performance after RL training. RL has a substantial benefit for pytdc tasks, while for
docking tasks an augmented docking score is used to avoid reward hacking, see Figure 4 for details.

Results may seem surprising from an NLP perspective, but they make sense when viewed from an
RL perspective. Pretraining using next token prediction Equation (2), is analogous to behavior
cloning in this context, where the performance depends largely on the quality of the offline
dataset (Ross et al., 2011; Ho and Ermon, 2016). These results suggest that ChemRLformer might
benefit from better pretraining objectives, that go beyond simple imitation learning, when trained on
large and diverse offline datasets (Kumar et al., 2023; Farebrother et al., 2023).

5.3 TEXT REPRESENTATIONS AND ARCHITECTURES FOR CHEMRLFORMER

Starting with a REINFORCE agent, we isolate the effect of various text representations for
molecules and policy network architectures on performance. All experiments in this section use
ZINC-250k dataset for pretraining. Similar results obtained for other datasets are shared in the
following sections. Whenever we show normalized results across different experiments, we add the
individual plots in Appendix C.1.

Text representations. In Figure 3 we compare ChemRLformer agents using different
architectures and tasks across environments that base their dynamics on SELFIES and SMILES.
The results show normalized scores across all architectures. Consistent with prior work (Gao et al.,
2022b) we find that SMILES-based polices generally outperforms SELFIES-based policies. On
all pytdc tasks and architectures, ChemRLformer agents based on SMILES consistently achieve
better rewards when compared to SELFIES-based agents across all reward metrics. Although more
subtle, we observe a similar theme in the docking tasks where SMILES achieves higher rewards
than SELFIES on all top-K metrics. Another consistent theme in the results is that even though the
diversity of top-100 molecules obtained by SELFIES is higher, the redundancy of SELFIES agents
is higher as well. This means that SELFIES-based ChemRLformer agents explore a much smaller
region of the molecular space. These results suggest that the rules which allow SELFIES strings to
always be converted into a valid molecule can actually be detrimental to the agent’s exploration and
search for high-value molecules, more details in Appendix C.1.

Architectures. The results in Figure 4 show that the transformer and RNN have similar
performance on all tasks. On the pytdc tasks, FC achieves worse performance than other

7

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

PYTDC

SELFIES SMILES

Top 1 Top 10 Top 100 Div. Red.
0.0

0.5

1.0

DOCKING

Figure 3: Comparison between SELFIES and SMILES: The SELFIES representation makes
it relatively difficult for ChemRLformer agents to explore effectively leading to generally lower
performance on pytdc and docking while scoring higher on diversity. Scores are reported for the
transformer model and are averaged across all reward functions.

architectures specially made to handle strings, as expected. However, on docking tasks, FC
obtains unusually high rewards. We find that this method performs a type of reward function
hacking (Amodei et al., 2016; Skalse et al., 2022; Everitt, 2019) by exploiting a corner case of
the docking-based reward function which provides high rewards for long strings of Carbon and
Nitrogen atoms together. To evade the reward hacking of docking scores, we constructed an
augmented docking score function with commonly used oracles (QED and SA scores) based on
previous work (Lee et al., 2023) (See Appendix A.3 for more details). This finding shows that the
REINFORCE agent can search the space well and, in this case, can be used to expose issues with
the current design of reward functions.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

sc
or

e

PYTDC
FC RNN Transformers

Top 1 Top 10 Top 100 Div. Red.
0.00

0.75

1.50

DOCKING

Figure 4: Comparison of different policy architectures: No single architecture clearly
outperforms for molecular ChemRLformer. Although FC does better on the docking tasks, our
analysis shows that it learns to exploit the docking function as opposed to designing high-value
molecules. More details about ways to tackle this issue are given in Appendix C.3. Additional
experiments for comparing transformers and RNNs are shown in Appendix C.5. These experiments
use the smiles text representation.

5.4 REVISITING RL ALGORITHM DESIGN CHOICES FOR CHEMRLFORMER.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

PYTDC
Hill Climb Replay Buffer Replay Buffer No Replay Buffer

Figure 5: Hill climbing buffer lead to 13%
improvement in Top-100 rewards.

Replay buffers and hill climbing. In
off-policy deep RL, a replay buffer is
generally used to store and reuse previous
trajectories for training. Although text-based
RL algorithms are trained on-policy, prior work
has proposed using a replay buffer to improve
performance Blaschke et al. (2020b). Standard
replay buffers Mnih et al. (2013) throw away
the oldest trajectories as newer ones arrive.
But many text-based RL algorithms propose to
use hill-climb replay buffers, that randomly sample a batch of molecules from the highest scoring
molecules seen so far and add them to the current mini batch Thomas et al. (2022). In Figure 5, we
see that using the hill-climb buffer results in a significant performance boost for ChemRLformer,
whereas using a standard buffer does not contribute much. Notably, the use of a hill-climb
replay buffer reduces diversity and increases redundancy quite substantially. The following two
experiments involve combining regularisation terms with the RL objective in Equation 3. The
coefficients on these extra terms can largely affect the final performance. To make a fair comparison,

8

we perform hyper-parameter tuning over six different values for every new regularisation term with
details provided in Appendix B.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

sc
or

e

PYTDC
KL Prior No KL Prior

Figure 6: Our experiments show little difference in
performance for multiple KL regularization terms.

Should the policy to stay close to the
pretrained model? Pretrained models carry
information on how to build valid drug-like
molecules. To ensure that ChemRLformer
agents do not stray far away from the space of
valid drug-like molecules during exploration,
Olivecrona et al. (2017); Gao et al. (2022b)
constrain the KL divergence between the policy
and the pretrained model by adding a KL
penalty to the policy gradient loss function in
Equation (3). Prior works show that adding this penalty helps the agent achieve better sample
efficiency (Gao et al., 2022b). Yet, our results in Figure 6 suggest that, when you increase the
number of oracle calls in simulation, adding this penalty does not yield any additional benefit while
substantially increasing the GPU memory requirement, especially when using larger models. Since
invalid molecules correspond to zero rewards, the ChemRLformer agent is able to learn to avoid
invalid structures on its own merit.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50
sc

o
re

PYTDC

LogP Entropy No Regularization

Figure 7: Different likelihood penalization
for exploration. Log P regularization is a
better choice for efficient exploration for
ChemRLformer.

Regularizing the policy’s likelihood for exploration.
RL agents classically face an exploration-exploitation
dilemma, which can lead to agents getting stuck in
sub-optimal local maxima when not well balanced.
ChemRLformer agents are not immune to this dilemma.
Upon encountering good, but sub-optimal molecules, an
agent may adjust its policy to increase the likelihood
of sampling these sub-optimal molecules and, without
sufficient exploration, fail to discover higher-value
regions of policy space. This can be particularly
detrimental during the initial learning stages.

To combat this issue, entropy regularisation, which adds
a log π(s) term to the RL loss, has been proposed (Haarnoja et al., 2018). This encourages the RL
policy to explore states with lower likelihood values. Similarly (Olivecrona et al., 2017) adds a Log
p regularizer, which penalizes higher likelihood values by adding a−1/ log π(s) term to the RL loss.
In Figure 7, our results show that although an entropy regularizer leads to lesser redundancy, the Log
p regularizer boosts performance significantly by exploring more efficiently. The Log p regularizer
only penalizes the agent for being extremely certain (likelihood tends to−−−−→ 1) about its actions, and is
mostly agnostic for lower likelihood values. This penalty is a much better choice for ChemRLformer
as it only activates when stuck in a local optimum of molecular space.

6 CONCLUSION AND FUTURE WORK

We present ChemRLformer that resulted from our empirical study of multiple algorithmic
components of text-based molecular design. For future practitioners, our method suggests the
following philosophy: (1) Using SMILES is a better choice than SELFIES. (2) When collecting
data for pretraining, the quality of molecules matter much more than the number of molecules. (3)
Both transformer and RNN architectures achieve similar performance across all tasks using current
datasets. (4) Incorporating components such as a hill-climb buffer and Log P regularization yields
substantial performance improvements. Conversely, introducing KL regularization or opting for
more intricate actor-critic algorithms may result in diminished performance, at the cost of more
hyperparameters and memory resources. While our analysis focused on model-free RL algorithms,
learning a reward model in a sample efficient manner is an exciting area of future work. Our analysis
also shows that RL agents were able to hack the reward functions suggesting that there is space to
improve on the metrics used for molecule quality.

9

REFERENCES

Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,
and reliable molecular docking with QuickVina 2. Bioinformatics, 31(13):2214–2216, 02 2015.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btv082. URL https://doi.org/10.1093/
bioinformatics/btv082.

Zaccary Alperstein, Artem Cherkasov, and Jason Tyler Rolfe. All smiles variational autoencoder.
arXiv preprint arXiv:1905.13343, 2019.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Viraj Bagal, Rishal Aggarwal, P K Vinod, and U. Priyakumar. Molgpt: Molecular generation using
a transformer-decoder model. Journal of Chemical Information and Modeling, 62, 10 2021. doi:
10.1021/acs.jcim.1c00600.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation, 2021. URL
https://arxiv.org/abs/2106.04399.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. J. Mach. Learn. Res., 3(null):1137–1155, mar 2003. ISSN 1532-4435.

Mostapha Benhenda. Chemgan challenge for drug discovery: can ai reproduce natural chemical
diversity?, 2017.

Esben Jannik Bjerrum and Richard Threlfall. Molecular generation with recurrent neural networks
(rnns). arXiv preprint arXiv:1705.04612, 2017.

Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan, Ola
Engkvist, Kostas Papadopoulos, and Atanas Patronov. Reinvent 2.0: an ai tool for de novo drug
design. Journal of chemical information and modeling, 60(12):5918–5922, 2020a.

Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan, Ola
Engkvist, Kostas Papadopoulos, and Atanas Patronov. Reinvent 2.0: An ai tool for de novo drug
design. Journal of Chemical Information and Modeling, 60, 10 2020b. doi: 10.1021/acs.jcim.
0c00915.

Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. GuacaMol:
Benchmarking models for de novo molecular design. Journal of Chemical Information and
Modeling, 59(3):1096–1108, mar 2019. doi: 10.1021/acs.jcim.8b00839. URL https://doi.
org/10.1021%2Facs.jcim.8b00839.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners.
In H Larochelle, M Ranzato, R Hadsell, M F Balcan, and H Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020b.

10

https://doi.org/10.1093/bioinformatics/btv082
https://doi.org/10.1093/bioinformatics/btv082
https://arxiv.org/abs/2106.04399
https://doi.org/10.1021%2Facs.jcim.8b00839
https://doi.org/10.1021%2Facs.jcim.8b00839
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Tianjian Chen, Zhanpeng He, and Matei Ciocarlie. Hardware as policy: Mechanical and
computational Co-Optimization using deep reinforcement learning. In Jens Kober, Fabio Ramos,
and Claire Tomlin, editors, Proceedings of the 2020 Conference on Robot Learning, volume 155
of Proceedings of Machine Learning Research, pages 1158–1173. PMLR, 2021a.

Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and Zhangyang
Wang. Bag of tricks for training deeper graph neural networks: A comprehensive benchmark
study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Xiaocong Chen, Lina Yao, Julian McAuley, Guanglin Zhou, and Xianzhi Wang. A survey of deep
reinforcement learning in recommender systems: A systematic review and future directions. arXiv
preprint arXiv:2109.03540, 2021b.

Austin H Cheng, Andy Cai, Santiago Miret, Gustavo Malkomes, Mariano Phielipp, and Alán
Aspuru-Guzik. Group selfies: a robust fragment-based molecular string representation. Digital
Discovery, 2023.

Petros Christodoulou. Soft actor-critic for discrete action settings, 2019.

Tobiasz Cieplinski, Tomasz Danel, Sabina Podlewska, and Stanislaw Jastrzebski. We should at least
be able to design molecules that dock well, 2021.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks, 2022.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
between molecules and natural language. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pages 375–413, Abu Dhabi, United Arab
Emirates, December 2022a. Association for Computational Linguistics. URL https://
aclanthology.org/2022.emnlp-main.26.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
between molecules and natural language, 2022b.

Tom Everitt. Towards safe artificial general intelligence. PhD thesis, The Australian National
University (Australia), 2019.

Benedek Fabian, Thomas Edlich, Héléna Gaspar, Marwin Segler, Joshua Meyers, Marco Fiscato,
and Mohamed Ahmed. Molecular representation learning with language models and domain-
relevant auxiliary tasks. arXiv preprint arXiv:2011.13230, 2020.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G. Bellemare. Proto-value networks: Scaling representation
learning with auxiliary tasks, 2023.

Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Language models can learn complex
molecular distributions. Nature Communications, 13(1):3293, 2022.

Tianfan Fu, Cao Xiao, Lucas M. Glass, and Jimeng Sun. Moler: Incorporate molecule-level reward
to enhance deep generative model for molecule optimization. IEEE Transactions on Knowledge
and Data Engineering, 34(11):5459–5471, 2022. doi: 10.1109/TKDE.2021.3052150.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization, 2022a.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor W. Coley. Sample efficiency matters: A
benchmark for practical molecular optimization, 2022b.

Miguel Garcı́a-Ortegón, Gregor NC Simm, Austin J Tripp, José Miguel Hernández-Lobato, Andreas
Bender, and Sergio Bacallado. Dockstring: easy molecular docking yields better benchmarks for
ligand design. Journal of chemical information and modeling, 62(15):3486–3502, 2022.

Anna Gaulton, Louisa J. Bellis, A. Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey,
Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P.
Overington. Chembl: A large-scale bioactivity database for drug discovery. Nucleic Acids
Research, 40(D1):D1100–D1107, January 2012. ISSN 0305-1048. doi: 10.1093/nar/gkr777.

11

https://aclanthology.org/2022.emnlp-main.26
https://aclanthology.org/2022.emnlp-main.26

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale, 2023.

Rafael Gó mez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central Science, 4(2):268–276, jan 2018.
doi: 10.1021/acscentsci.7b00572. URL https://doi.org/10.1021%2Facscentsci.
7b00572.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

Francesca Grisoni, Michael Moret, Robin Lingwood, and Gisbert Schneider. Bidirectional molecule
generation with recurrent neural networks. Journal of chemical information and modeling, 60(3):
1175–1183, 2020.

Anvita Gupta, Alex T Müller, Berend JH Huisman, Jens A Fuchs, Petra Schneider, and Gisbert
Schneider. Generative recurrent networks for de novo drug design. Molecular informatics, 37
(1-2):1700111, 2018.

David Ha. Reinforcement learning for improving agent design. Artif. Life, 25(4):352–365,
November 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

Stephen Heller, Alan McNaught, Stephen Stein, Dmitrii Tchekhovskoi, and Igor Pletnev. Inchi-the
worldwide chemical structure identifier standard. Journal of cheminformatics, 5(1):1–9, 2013.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W.
Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine
learning datasets and tasks for drug discovery and development, 2021.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley,
Cao Xiao, Jimeng Sun, and Marinka Zitnik. Artificial intelligence foundation for therapeutic
science. Nature Chemical Biology, 18(10):1033–1036, 2022.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling, 52
(7):1757–1768, 2012.

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-
trained transformer for computational chemistry. Machine Learning: Science and Technology, 3
(1):015022, 2022.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation, 2018. URL https://arxiv.org/abs/1802.04364.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

12

https://doi.org/10.1021%2Facscentsci.7b00572
https://doi.org/10.1021%2Facscentsci.7b00572
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1802.04364

Shauharda Khadka, Estelle Aflalo, Mattias Marder, Avrech Ben-David, Santiago Miret, Shie
Mannor, Tamir Hazan, Hanlin Tang, and Somdeb Majumdar. Optimizing memory placement
using evolutionary graph reinforcement learning. arXiv preprint arXiv:2007.07298, 2020.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik.
Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation.
Machine Learning: Science and Technology, 1(4):045024, oct 2020. doi: 10.1088/2632-2153/
aba947. URL https://doi.org/10.1088%2F2632-2153%2Faba947.

Mario Krenn, Qianxiang Ai, Senja Barthel, Nessa Carson, Angelo Frei, Nathan C Frey, Pascal
Friederich, Théophile Gaudin, Alberto Alexander Gayle, Kevin Maik Jablonka, et al. Selfies and
the future of molecular string representations. Patterns, 3(10):100588, 2022.

Aviral Kumar, Amir Yazdanbakhsh, Milad Hashemi, Kevin Swersky, and Sergey Levine. Data-
driven offline optimization for architecting hardware accelerators, 2022.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes, 2023.

Greg Landrum et al. Rdkit: A software suite for cheminformatics, computational chemistry, and
predictive modeling. Greg Landrum, 8, 2013.

Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
distribution generation, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.

Kevin Sebastian Luck, Heni Ben Amor, and Roberto Calandra. Data-efficient Co-Adaptation of
morphology and behaviour with deep reinforcement learning. In Leslie Pack Kaelbling, Danica
Kragic, and Komei Sugiura, editors, Proceedings of the Conference on Robot Learning, volume
100 of Proceedings of Machine Learning Research, pages 854–869. PMLR, 2020.

Eyal Mazuz, Guy Shtar, Bracha Shapira, and Lior Rokach. Molecule generation using transformers
and policy gradient reinforcement learning. Scientific Reports, 13, 05 2023. doi: 10.1038/
s41598-023-35648-w.

David Mendez, Anna Gaulton, A Patrı́cia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
Marı́a Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał Nowotka, et al. Chembl:
towards direct deposition of bioassay data. Nucleic acids research, 47(D1):D930–D940, 2019.

Santiago Miret, Vui Seng Chua, Mattias Marder, Mariano Phiellip, Nilesh Jain, and
Somdeb Majumdar. Neuroevolution-enhanced multi-objective optimization for mixed-precision
quantization. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
1057–1065, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Henry B. Moss, Daniel Beck, Javier Gonzalez, David S. Leslie, and Paul Rayson. Boss: Bayesian
optimization over string spaces, 2020.

AkshatKumar Nigam, Robert Pollice, and Alan Aspuru-Guzik. Janus: Parallel tempered genetic
algorithm guided by deep neural networks for inverse molecular design, 2021.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de novo
design through deep reinforcement learning, 2017.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

13

https://doi.org/10.1088%2F2632-2153%2Faba947

Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant M.
Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M.
Botvinick, Nicolas Heess, and Raia Hadsell. Stabilizing transformers for reinforcement learning,
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning, 2011.

David E. Rumelhart and James L. McClelland. Learning Internal Representations by Error
Propagation, pages 318–362. MIT Press, 1987.

Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R Walter. Jointly learning to construct
and control agents using deep reinforcement learning. In 2019 International Conference on
Robotics and Automation (ICRA), pages 9798–9805. ieeexplore.ieee.org, May 2019.

Robin M Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview. arXiv
preprint arXiv:1912.05911, 2019.

Cynthia Shen, Mario Krenn, Sagi Eppel, and Alá n Aspuru-Guzik. Deep molecular dreaming:
inverse machine learning for de-novo molecular design and interpretability with surjective
representations. Machine Learning: Science and Technology, 2(3):03LT02, jul 2021.
doi: 10.1088/2632-2153/ac09d6. URL https://doi.org/10.1088%2F2632-2153%
2Fac09d6.

Joar Skalse, Nikolaus HR Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward hacking. arXiv preprint arXiv:2209.13085, 2022.

Teague Sterling and John Irwin. Zinc 15 - ligand discovery for everyone. Journal of chemical
information and modeling, 55, 10 2015a. doi: 10.1021/acs.jcim.5b00559.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015b.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems, volume 12. MIT Press,
1999a. URL https://proceedings.neurips.cc/paper_files/paper/1999/
file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, NIPS’99, page 1057–1063, Cambridge,
MA, USA, 1999b. MIT Press.

Qiaoyu Tan, Ninghao Liu, and Xia Hu. Deep representation learning for social network analysis.
Frontiers in big Data, 2:2, 2019.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
science. arXiv preprint arXiv:2211.09085, 2022.

Morgan Thomas, Noel O’Boyle, Andreas Bender, and Chris Graaf. Augmented hill-climb increases
reinforcement learning efficiency for language-based de novo molecule generation. Journal of
Cheminformatics, 14, 10 2022. doi: 10.1186/s13321-022-00646-z.

14

https://doi.org/10.1088%2F2632-2153%2Fac09d6
https://doi.org/10.1088%2F2632-2153%2Fac09d6
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

Austin Tripp, Wenlin Chen, and José Miguel Hernández-Lobato. An evaluation framework for the
objective functions of de novo drug design benchmarks. In ICLR2022 Machine Learning for Drug
Discovery, 2022. URL https://openreview.net/forum?id=W1tcNQNG1S.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Qi Wang and Chunlei Tang. Deep reinforcement learning for transportation network combinatorial
optimization: A survey. Knowledge-Based Systems, 233:107526, 2021.

Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. Smiles-bert: large
scale unsupervised pre-training for molecular property prediction. In Proceedings of the 10th
ACM international conference on bioinformatics, computational biology and health informatics,
pages 429–436, 2019.

David Weininger. Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28(1):31–36, feb 1988. ISSN 0095-
2338. doi: 10.1021/ci00057a005. URL https://doi.org/10.1021/ci00057a005.

Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead
discovery with explorative rl and fragment-based molecule generation, 2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning, 2021.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation, 2018. URL https://arxiv.org/
abs/1806.02473.

Wenhao Yu, C. Karen Liu, and Greg Turk. Policy transfer with strategy optimization, 2018.

Zhenni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun. A deep-learning system bridging molecule
structure and biomedical text with comprehension comparable to human professionals. Nature
communications, 13(862), 2022.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific Reports, 9(1), jul 2019. doi: 10.1038/
s41598-019-47148-x. URL https://doi.org/10.1038%2Fs41598-019-47148-x.

15

https://openreview.net/forum?id=W1tcNQNG1S
https://doi.org/10.1021/ci00057a005
https://arxiv.org/abs/1806.02473
https://arxiv.org/abs/1806.02473
https://doi.org/10.1038%2Fs41598-019-47148-x

Outline of Appendices. In Appendix A we provide details about the experimental setup.
In Appendix B we describe our hyperparameter tuning strategy. In Appendix F we include additional
results from our experiments.

A EXPERIMENTAL SETUP

In this section, we provide additional details about the tasks, evaluation metrics and pretraining
models and data used in our work.

A.1 TASKS

Pydtc tasks. These tasks are a set of 21 pharmaceutically-relevant oracle functions, which have
been commonly used in prior work (Brown et al., 2019; Gao et al., 2022b; Huang et al., 2021) for
evaluating performance across molecular discovery algorithms:

• QED: A quantitative estimate of drug-likeness calculated using a set of rules.

• DRD2, GSK3β, and JNK3: Classical machine learning models (SVMs and random forests)
that provide an estimate of properties like target affinity or susceptibility towards a disorder.

• Celecoxib, Troglitazone, and Thiothixene rediscovery: An estimate of smiles text
similarity, based on tanimoto metric, towards a target molecule.

• Albuterol and Mestranol similarity: Generate molecules similar to a target molecule.

• Isomers c7h8n2o2 and isomers c9h10n2o2pf2cl: Generate molecules corresponding to a
target molecular formula.

• Median1 and Median2: Generate molecules that are maximally similar to several target
molecules.

• Osimertinib mpo, fexofenadine mpo, ranolazine mpo, perindopril mpo, amlodipine mpo,
sitagliptin mpo, zaleplon mpo: Generate molecules that maximize multiple properties of a
targeted drug.

• valsartan smarts: Generate molecules that contain a certain SMARTS pattern and certain
physicochemical properties.

Most of these tasks are from the GuacaMol benchmark (Brown et al., 2019). All oracles are
calculated using the Python API provided by Therapeutics Data Commons (Huang et al., 2021)
and more details for these tasks can be found on their website.

Docking tasks. We used QuickVina 2 (Alhossary et al., 2015) for calculating docking scores using
the same default configuration parameters as prior works (Yang et al., 2021; Lee et al., 2023). For
example, we used exhaustiveness = 1, and modes = 10. We choose 5 different protein targets
to calculate docking scores: fa7 (FA7), parp1 (PARP-1), 5ht1b (5-HT1B), jak2 (JAK-2), and braf
(BRAF). These targets were chosen by (Yang et al., 2021; Lee et al., 2023) because the docking
simulators for these targets work fairly well when compared to the ground truth. In our experiments
in Section 5.3, we found that text-based RL algorithms were easily able to produce chemically
trivial molecules that have very high docking scores. To understand the complexity of computing
docking scores, we report the time taken to dock 1000 molecules in parallel using 12 CPUs table 3.
We also provide the time taken to run the RL algorithm on these 1000 molecules after their docking
scores are available.

Table 3: Time complexity of docking score evaluation : More than half the running time is spent evaluating
the docking scores.

Number of molecules Docking time RL update time

1000 130 seconds 74 seconds

16

https://tdcommons.ai/functions/oracles/

Augmented docking tasks. In our results for the standard docking tasks (Figure 3 and Figure 4),
we found that using the simulated docking scores as rewards did not lead to chemically relevant
molecules. Text-based RL algorithms were able to exploit their state and action spaces to design
chemically trivial molecules that have very high docking scores. To tackle this issue of undesirable
reward hacking, we tried a reward function based on prior works (Garcı́a-Ortegón et al., 2022; Lee
et al., 2023) that combine objectives for drug-like, and synthesizable molecules with docking scores.
We call tasks corresponding to this new reward function as augmented docking tasks. Concretely,
we chose the same reward function from (Lee et al., 2023)

r(s) = −DS(s)/20× QED(s)× (10− SA(s))/9, (4)

Where DS is the docking score, QED and SA are quantitative estimates of drug likeness and
synthesizablity respectively.

A.2 EVALUATION METRICS

Most of the metrics we use are described in detail in Section 5.1. Here, we provide additional
details about the diversity metric. We calculate the diversity of the top 100 molecules sampled by
the algorithm, where higher diversity is considered better given that it increases the chances for
success in further wet lab experiments. In our experiments, we use the diversity evaluator from
TDC (Huang et al., 2021), which defines the diversity of a set of molecules as the average pairwise
Tanimoto similarity between Morgan fingerprints of the molecules. See Section 2 of (Benhenda,
2017) for exact details of how Tanimoto similarity is calculated.

A.3 PRETRAINING

In this section, we provide more details about the pretraining datasets and models used in our
experiments.

Pretraining datasets. The ZINC 250k dataset contains approximately 250k molecules from the
ZINC database (Irwin et al., 2012), chosen for their pharmaceutical relevance, moderate size,
and popularity (Gao et al., 2022b). The CHEMBL dataset (Mendez et al., 2019) consists of
approximately 2M manually curated drug-like molecules. The other 3 datasets consist of randomly
selected subsets of the ZINC-15 dataset (Sterling and Irwin, 2015b) that obey some chemically
imposed mild constraints (Irwin et al., 2022). We test three subsets of different sizes: (1) ZINC 1M
(2) ZINC 10M, and (3) ZINC 100M, to test the impact of scaling the size of pre-training data. These
datasets and data-subsets, including their vocabularies, will be shared in an easily accessible format
upon acceptance.

Removing outliers and unusual non drug-like compounds helps to keep the vocabulary small and
improves the quality of the generative model (Blaschke et al., 2020a). To achieve this, we filter all
datasets by removing molecules which contain 1) less than 10 or more than 50 heavy atoms and
2) molecules other than Carbon, Nitrogen, Oxygen, Fluorine, Silicon, Chlorine and Bromine. We
also canonicalize and sanitize all molecules using RDKIT (Landrum et al., 2013). For experiments
that apply SELFIES, we convert all datasets to SELFIES using the Python API provided by (Krenn
et al., 2020) (Version: 2.1.1).

Apart from the experiments shown in the main paper, Appendix C.2 contains additional experiments
comparing text-based RL agents across different pretraining datasets.

Pretraining models. In Table 4 we provide details about the pretraining modes which we use in
our experiments. Upon acceptance, we will open-source our code and release the pretrained weights
to support reproducible research.

We select network sizes that have been commonly used in RL (Blaschke et al., 2020a; Yarats et al.,
2021). Although conducting a study of scaling the model size (Kaplan et al., 2020) is out of the
scope of our work, we believe that it is a promising direction for future.

Since the fully connected model can only take fixed length inputs, we always input a molecular text
padded to a certain maximum length (we used length 100 in our experiments). This padding is done

17

Table 4: Description of model architectures used for pretraining

Model Number of Parameters Description

FC 1.07× 107
FC is a fully connected neural network
with 3 hidden layers of 1024 size each.

RNN 4.17× 106
RNN is a recurrent network which consists of

3 GRU layers of hidden sizes 512 each.

TRANSFORMER 4.78× 106
GPT (Brown et al., 2020b) style transformer with 6 layers,

16 heads and 256 embedding dimensions.

using a special token [PAD] to convey that corresponding tokens should not be considered while
deciding the value of the text.

Pretraining experimental details. We pretrain FC, RNN and transformer architectures on the
ZINC 250K dataset and pretrain a transformer on all other datasets. All models are pretrained using
the PyTorch (Paszke et al., 2019) framework. All models used an initial learning rate of 1e−3, with
a cosine learning rate schedule (Loshchilov and Hutter, 2017). FC and RNNs used a batch size of
128 and were trained for 10 epochs. All transformers were trained for 5 epochs, with the largest
batch size that we could fit in the memory of a single NVIDIA RTX A6000 GPU, for example, a
batch size of 2048 for pretraining the transformer on ZINC 100M dataset. We made sure that all
models were trained until convergence. On the ZINC 250K SMILES dataset, the FC, the RNN and
the transformer model achieved a validation loss of 29.417, 22.507, and 22.923 respectively.

A.4 RL FINETUNING

The pretrained model is further trained using the policy gradient algorithm, REINFORCE (Sutton
et al., 1999b). Given the reward function r(sH) corresponding to the text sT , this algorithm
optimizes the loss function

min
θ

J(θ) = −

[
H∑
t=1

log pθ(at = At | At−1, · · ·A0)r(sH = [A0, · · ·AH])

]
, (5)

where At is the token sampled by the agent at time-step t.

A.5 REPLAY BUFFER

Although REINFORCE is an on policy method, we investigate the use of replay buffer to improve
its sample efficieny Blaschke et al. (2020b). To do this, we store recent molecules sampled by the
agent in a replay buffer. In our experiments we store the 100 most recent molecules. At every
training update, we append a small batch of molecules sampled from the replay buffer to the on-
policy batch of molecules. The entire new batch is used to update the policy using the policy
gradient appendix A.4.

B HYPERPARAMETER TUNING

We conduct a common hyperparameter tuning strategy for all experiments. Specifically, we conduct
hyperparameter tuning for

• Learning rate for different architectures Figure 4 and text grammars Figure 3.

• Coefficients for different likelihood regularizations Figure 7.

• Coefficients for KL regularization loss term Figure 6.

We select three tasks from the pytdc tasks, i.e., troglitazone rediscovery, sitagliptin mpo, and
median2 for hyperparameter tuning. For each hyperparameter, we select a set of 5 evenly spaced

18

realistic values and run 5 random seeds of RL experiments per hyperparameter value. We select the
hyperparameter value that achieves the best average score of the top-100 molecules as the final value
for running all the experiments. We report the hyperparamters used for the policy gradient training
in table 5.

Table 5: Hyperparamters

Name Value

Maximum number of unique molecules 25000

Learning rate 5.00× 10−4 RNN and FC
1.00× 10−4 Transformer

Batch size 64

Log p coefficient 5

KL coefficient 1.00× 10−3

C RESULTS

C.1 TEXT REPRESENTATIONS AND ARCHITECTURES FOR RL

Here, we present additional results from subsection 5.3. Figure 8 shows that SMILES are a better
molecular grammar when compared to SELFIES across all architectures, for the text based RL
algorithms that we consider. Figure 9 compares various architectures, while keeping the molecular
grammar fixed to SELFIES. The results in Figure 9 reflect our findings in Figure 4 that no single
architecture clearly outperforms for molecular text-based RL. It also shows the reward hacking
behavior of the docking tasks by the FC based RL agent.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

Transformer

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75
RNN

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

FC

SELFIES SMILES

(a) PYTDC.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

1.00

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

1.00

1.25

1.50

(b) DOCKING.

Figure 8: Comparison between SELFIES and SMILES across different architectures. These figures
are the individual plots corresponding to the normalised plot show in Figure 3.

The reason for lower value molecules for SELFIES environments can be explained by the SELFIES
grammar that induces a flat optimization landscape. Many SELFIES strings can correspond to the
same molecule, and in fact, once an invalid action is taken, any subsequent sequence of tokens will
be ignored on the resulting molecule. This makes exploration of new molecules difficult (Krenn
et al., 2020; Gao et al., 2022b). On the other hand, the benefit of SELFIES over SMILES in

19

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75
sc

or
e

pytdc
FC RNN Transformers

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

1.00

1.25

1.50
docking

Figure 9: Comparison of different policy architectures (SELFIES): No single architecture
clearly outperforms for molecular text-based RL. Although FC does better on the docking tasks,
our analysis shows that it learns to exploit the docking function as opposed to designing high-value
molecules.

eliminating invalid molecule generation is mitigated by our pretraining process, which initializes
SMILES-based policies with a strong bias toward generating valid molecules. Overall, we find
that SMILES-based policies, when combined with pretraining, are more effective at exploring and
finding high-value molecules.

C.2 PRETRAINING FOR RL

Figure 2 (right) shows the top docking scores obtained by RL agents pre-trained on different datasets
when trained with on the augmented docking tasks. In Figure 10, we show the actual augmented
rewards obtained by the RL agent. These results suggest that the augmented docking score is a
complex reward function as the RL agent is achieved minimal improvement over the prior agent. To
verify this hypothesis, we increased the molecule budget of the RL agent by 10 times. We indeed
see that RL agents corresponding to all prior-datasets exhibit considerable improvement. Text-based
RL algorithms learn to search more efficiently when provided with more compute.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

AUGMENTED DOCKING

CHEMBL ZINC 250K ZINC 1M ZINC 10M ZINC 100M

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

Figure 10: This figure shows the augmented rewards obtained by the RL agents (Top) and data
quality (Bottom) of different datasets. See subsection A.1 for how the augmented reward is
calculated.

20

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

1.00

1.25
sc

or
e

AUGMENTED DOCKING
CHEMBL ZINC 250K ZINC 1M ZINC 10M ZINC 100M

Figure 11: This figure shows the augmented rewards obtained by the RL agents trained for 10 times
more molecules.

C.3 REWARD HACKING

Figure 4 and Figure 9 show that text-based RL agents that are trained using fully connected neural
networks are able to obtain unusually high rewards. This is probably because it is easier for
FC agents to find actions that exploit the local structure of the reward function as RNNs and
Transformers are inductively biased to find global solutions. This highlights an undesirable type
of reward function hacking by the FC agent which provides high rewards for molecules with long
strings of Carbon and Nitrogen atoms together. Similar to prior work (Lee et al., 2023), we augment
the docking scores with objectives for drug-like and synthesizable molecules. See Appendix A for
details of this task and Figure 2 and Figure 10 for results corresponding to this task. Our initial
results on this task (Figure 2 and Figure 10) suggested that the augmented reward function was
more aligned towards chemically relevant molecules. We also noticed that the RL agents were not
able to improve a lot over the prior baselines for this task. To verify whether the low performance
of RL agents was because of less training data or the augmented reward function was indeed a more
realistic and robust reward function, we repeated the experiments in Figure 10 with a ten times
higher training budget. Given more data, all RL agents showed considerable improvements over
the priors. This experiment also revealed that the agents pre-trained on ZINC 1M, ZINC 10M and
ZINC 100M, were able to exploit the reward function to generate unrealistic yet highly rewarding
molecules. These molecules have unusually low docking scores (less than -20). Our results highlight
the need for an aligned and a more robust reward function to generate molecules for docking protein
targets.

C.4 ADDITIONAL RESULTS FOR THE IMPORTANCE OF ALGORITHMIC CHOICES FOR
TEXT-BASED RL.

Section 5.4 compares various algorithmic components like replay buffers, hill climbing, KL
regularisation towards the pretrained policy, and likelihood penalties and show results for PYTDC
tasks. In this section, we repeat all the experiments from Section 5.4 on augmented docking tasks as
well and reach the same conclusions. In Figure 15 we see that using the hill-climb buffer results in a
significant performance boost, whereas using a standard buffer does not contribute much. Figure 16
shows that Log P regularization is a better choice for efficient exploration when it comes to text-
based RL algorithms. In Figure 17 show that penalising the policy to move away from the pretrained
policy does not improve performance.

C.5 INSTABILITY OF TRANSFORMERS FOR ONLINE RL.

Many works (Parisotto et al., 2019) have pointed out the instability of training transformers using
online reinforcement learning. To understand this in the context of text based RL, we compare a
transformer and an RNN based agent on the augmented docking task. To probe whether pronounced
effects of this instability are seen, we train both agents for 10 times more molecules (250K

21

Table 6: Performance of ChemRLformer across all PyTDC tasks.

Target Avg Top1 Avg Top10 Avg Top100 Diversity top100 Redundant count

drd2 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.465 (0.052) 29907.0 (1689.767)
qed 0.948 (0.000) 0.948 (0.000) 0.948 (0.000) 0.639 (0.064) 26802.6 (460.301)
jnk3 0.896 (0.096) 0.892 (0.095) 0.883 (0.095) 0.348 (0.094) 29844.8 (3249.365)
gsk3b 1.000 (0.000) 0.997 (0.004) 0.992 (0.006) 0.407 (0.030) 26923.4 (2663.734)
celecoxib rediscovery 1.000 (0.000) 0.889 (0.007) 0.847 (0.006) 0.285 (0.031) 28856.6 (1903.692)
troglitazone rediscovery 0.654 (0.098) 0.643 (0.089) 0.627 (0.082) 0.364 (0.035) 27425.4 (891.261)
thiothixene rediscovery 0.669 (0.005) 0.669 (0.005) 0.649 (0.006) 0.403 (0.012) 29158.4 (1492.667)
albuterol similarity 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.529 (0.034) 31551.2 (1310.567)
mestranol similarity 0.883 (0.124) 0.873 (0.122) 0.825 (0.109) 0.371 (0.029) 30395.2 (1516.911)
isomers c7h8n2o2 1.000 (0.000) 1.000 (0.000) 0.950 (0.031) 0.781 (0.056) 33245.4 (1393.527)
isomers c9h10n2o2pf2cl 0.931 (0.007) 0.925 (0.009) 0.904 (0.014) 0.598 (0.073) 31457.4 (1893.718)
median1 0.415 (0.030) 0.395 (0.027) 0.379 (0.019) 0.425 (0.050) 27805.4 (1172.183)
median2 0.353 (0.033) 0.347 (0.031) 0.337 (0.027) 0.323 (0.045) 25513.0 (923.048)
osimertinib mpo 0.911 (0.005) 0.907 (0.005) 0.903 (0.005) 0.389 (0.033) 26083.6 (1287.568)
fexofenadine mpo 0.940 (0.020) 0.938 (0.021) 0.927 (0.019) 0.479 (0.034) 26143.0 (1100.390)
ranolazine mpo 0.879 (0.011) 0.876 (0.010) 0.872 (0.009) 0.351 (0.050) 23383.8 (1070.175)
perindopril mpo 0.637 (0.020) 0.635 (0.020) 0.632 (0.018) 0.410 (0.067) 26441.8 (938.579)
amlodipine mpo 0.827 (0.079) 0.827 (0.080) 0.817 (0.078) 0.340 (0.066) 28469.4 (1439.003)
sitagliptin mpo 0.573 (0.056) 0.566 (0.056) 0.547 (0.063) 0.611 (0.025) 30156.6 (1903.446)
zaleplon mpo 0.631 (0.019) 0.623 (0.021) 0.605 (0.021) 0.542 (0.065) 29838.2 (531.040)
valsartan smarts 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.880 (0.002) 0.0 (0.000)

normalised score 0.769 (0.010) 0.760 (0.010) 0.745 (0.009) 0.473 (0.008) 27114.3 (495.515)

Table 7: Performance of just the pretrained model across all PyTDC tasks

Target Avg Top1 Avg Top10 Avg Top100 Diversity top100 Redundant count

drd2 0.962 (0.022) 0.882 (0.018) 0.484 (0.011) 0.853 (0.002) 9.600 (4.224)
qed 0.948 (0.000) 0.947 (0.000) 0.944 (0.000) 0.853 (0.005) 9.600 (4.224)
jnk3 0.446 (0.153) 0.327 (0.034) 0.197 (0.004) 0.868 (0.004) 9.600 (4.224)
gsk3b 0.748 (0.061) 0.580 (0.027) 0.363 (0.011) 0.868 (0.002) 9.600 (4.224)
celecoxib rediscovery 0.444 (0.019) 0.399 (0.007) 0.342 (0.002) 0.829 (0.003) 9.600 (4.224)
troglitazone rediscovery 0.304 (0.016) 0.281 (0.004) 0.250 (0.001) 0.829 (0.002) 9.600 (4.224)
thiothixene rediscovery 0.382 (0.013) 0.353 (0.005) 0.310 (0.001) 0.806 (0.003) 9.600 (4.224)
albuterol similarity 0.605 (0.022) 0.561 (0.012) 0.487 (0.005) 0.847 (0.003) 9.600 (4.224)
mestranol similarity 0.486 (0.015) 0.448 (0.007) 0.388 (0.003) 0.833 (0.004) 9.600 (4.224)
isomers c7h8n2o2 0.948 (0.045) 0.839 (0.032) 0.556 (0.032) 0.900 (0.003) 9.600 (4.224)
isomers c9h10n2o2pf2cl 0.824 (0.029) 0.740 (0.019) 0.597 (0.011) 0.880 (0.003) 9.600 (4.224)
median1 0.285 (0.021) 0.240 (0.005) 0.198 (0.002) 0.852 (0.003) 9.600 (4.224)
median2 0.243 (0.013) 0.215 (0.004) 0.189 (0.001) 0.822 (0.002) 9.600 (4.224)
osimertinib mpo 0.812 (0.004) 0.799 (0.002) 0.771 (0.001) 0.843 (0.001) 9.600 (4.224)
fexofenadine mpo 0.723 (0.013) 0.702 (0.004) 0.670 (0.002) 0.838 (0.003) 9.600 (4.224)
ranolazine mpo 0.636 (0.020) 0.551 (0.012) 0.441 (0.010) 0.856 (0.003) 9.600 (4.224)
perindopril mpo 0.507 (0.021) 0.472 (0.009) 0.437 (0.003) 0.811 (0.002) 9.600 (4.224)
amlodipine mpo 0.629 (0.020) 0.580 (0.011) 0.521 (0.003) 0.814 (0.002) 9.600 (4.224)
sitagliptin mpo 0.438 (0.027) 0.378 (0.013) 0.284 (0.005) 0.858 (0.004) 9.600 (4.224)
zaleplon mpo 0.513 (0.013) 0.484 (0.005) 0.443 (0.003) 0.830 (0.002) 9.600 (4.224)
valsartan smarts 0.003 (0.007) 0.000 (0.001) 0.000 (0.000) 0.876 (0.004) 9.600 (4.224)

normalised score 0.566 (0.006) 0.513 (0.002) 0.422 (0.002) 0.846 (0.001) 9.600 (1.282)

22

Table 8: Performance of ChemRLformer across all docking tasks.

Target Avg Top1 Avg Top10 Avg Top100 Diversity top100 Redundant count

5ht1b 17.467 (4.742) 14.903 (2.295) 13.131 (1.374) 0.870 (0.019) 16221.333 (11267.121)
jak2 13.200 (1.158) 12.370 (0.790) 11.294 (0.700) 0.853 (0.031) 19294.333 (10886.657)
fa7 18.933 (5.949) 13.860 (1.549) 11.349 (0.699) 0.884 (0.017) 5334.000 (6029.172)
braf 21.700 (11.950) 16.817 (5.709) 12.366 (0.746) 0.888 (0.013) 13023.333 (6672.632)
parp1 21.867 (8.745) 16.680 (2.110) 14.310 (0.466) 0.869 (0.024) 15175.667 (10328.254)

normalised score 18.633 (2.823) 14.926 (1.121) 12.490 (0.397) 0.873 (0.010) 13809.733 (4172.842)

Table 9: Performance of the just the the pretrained model across all docking tasks.

Target Avg Top1 Avg Top10 Avg Top100 Diversity top100 Redundant count

5ht1b 12.700 (0.283) 12.250 (0.136) 11.557 (0.083) 0.866 (0.003) 11.333 (1.886)
jak2 11.867 (0.287) 11.193 (0.115) 10.510 (0.077) 0.874 (0.004) 11.000 (1.414)
fa7 10.167 (0.125) 9.837 (0.019) 9.241 (0.018) 0.873 (0.003) 11.667 (3.300)
braf 12.333 (0.125) 11.853 (0.047) 11.160 (0.091) 0.869 (0.004) 11.667 (1.247)
parp1 12.833 (0.047) 12.323 (0.042) 11.588 (0.039) 0.869 (0.001) 11.333 (4.028)

normalised score 11.980 (0.082) 11.491 (0.013) 10.811 (0.019) 0.870 (0.001) 11.400 (2.142)

molecules). In figure Figure 12, we see that both agents perform comparably across all docking
targets.

23

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

AUGMENTED DOCKING
RNN Transformers

Figure 12: A transformer and an RNN based RL agent trained for 10 times more molecules on
augmented docking scores.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

Algorithms
PPO REINFORCE (ours) PRIOR

Figure 13: Comparison with another RL algorithm PPO. To keep the evaluation fair, we
compared both the algorithms without the replay buffer and without the KL penalty. Both algorithms
used logp regularization. We made sure that both algorithms use the same pretrained policy. On the
molecular optimization tasks of PyTDC, our results indicate that vanilla policy gradient algorithms
are more stable than actor critic algorithms like PPO and achieve higher performance. We believe
this occurs because PPO learns a value function which is a difficult task when the reward function
is sparse. This is indeed the case for molecular optimization. The agent only gets non zero
rewards at the last step of the episode, when the molecule is scored. This makes the value function
learning highly biased. This results resonates with the findings of previous work in molecular
optimization (Cieplinski et al., 2021; Gao et al., 2022b).

24

Figure 14: Some ChemRLformer agents are able to obtain unusually high docking scores by stacking together
long chains and rings of sulphur, phosphorus or carbon atoms.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

AUGMENTED DOCKING
Hill Climb Replay Buffer Replay Buffer No Replay Buffer

Figure 15: Do replay buffers help?

D DISCUSSION WITH DOMAIN EXPERTS.

Domain experts find the versatility of ChemRLformer in solving multiple tasks, especially expensive
tasks like docking, useful for early-stage drug discovery. The reward-hacking insights are
particularly useful as they show the shortcomings of docking score evaluations and the need for
better evaluation, both in simulation and real-world experiments. We will add a deeper discussion
on domain expert and application perspectives in the camera-ready version.

E REINFORCEMENT LEARNING FROM HUMAN FEEDBACK.

In recent years, Reinforcement Learning from Human Feedback (RLHF) has become a popular
framework to train large language models to optimise a reward model. This reward model is meant
to represent human preferences over outcomes. The reward model is trained using a datasets of
sequence label pairs. These labels are provided by humans, depending on how good the sequence is.
This recipe has been successful to finetune large language models Ouyang et al. (2022); Gao et al.
(2022a).

While RLHF is a promising direction of future work, where chemists could interact and give
feedback to the RL agent to generate desirable molecules, one reason why this will be more difficult
in the space of molecular optimisation than natural language is that the expertise in chemistry is
much more rare. And given that training a reward model requires large amount of labels, the current
RLHF framework may not scale well for this use case. Right now, these experts are indirectly
performing RLHF by creating simulations (e.g. Autodock) which we use in our experiments. Even
with these simulations, which could be used to label unlimited molecules, we should focus on sample

25

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

AUGMENTED DOCKING
LogP Regularization Entropy Regularization No Regularization

Figure 16: Comparison of different likelihood penalization for efficient exploration

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

AUGMENTED DOCKING
KL Prior No KL Prior

Figure 17: Is KL regularisation with a prior necessary?

efficient RL algorithms. The reason being that the simulators aren’t perfect appendix C.3 and real
chemists will only be able to give feedback on a limited number of molecules.

F RESULTS

In this section, we add images of the top 5 molecules found by ChemRLformer on each of the
PyTDC tasks:

Figure 18: drd2.

26

Figure 19: qed.

Figure 20: jnk3.

Figure 21: gsk3b.

Figure 22: celecoxib rediscovery.

Figure 23: troglitazone rediscovery.

Figure 24: thiothixene rediscovery.

27

Figure 25: albuterol similarity.

Figure 26: mestranol similarity.

Figure 27: isomers c7h8n2o2.

Figure 28: isomers c9h10n2o2pf2cl.

Figure 29: median1.

Figure 30: median2.

28

Figure 31: osimertinib mpo.

Figure 32: fexofenadine mpo.

Figure 33: ranolazine mpo.

Figure 34: perindopril mpo.

Figure 35: amlodipine mpo.

Figure 36: sitagliptin mpo.

29

Figure 37: zaleplon mpo.

Figure 38: valsartan smarts.

Figure 39: deco hop.

Figure 40: scaffold hop.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

PYTDC
LogP Regularization Tuned Entropy Regularization No Regularization

Figure 41: We replicate the comparison in fig. 7 with an automatically tuned coefficient for
the entropy Haarnoja et al. (2018). We follow Christodoulou (2019) to set the target entropy as
−0.98 log(1/|A|), where |A| is equal to the number of tokens in the vocabulary. Adding this feature
does not improve the performance of entropy regularisation and as explained in section 5.4, Log P
regularisation performs much better.

30

	Introduction
	Related Work
	Background
	ChemRLformer Generating molecular strings via reinforcement learning
	RL for molecule generation

	Experimental Results
	Experimental Setup
	How does prior data affect the final performance of ChemRLformer?
	Text representations and architectures for ChemRLformer
	Revisiting RL Algorithm Design Choices for ChemRLformer.

	Conclusion and Future Work
	Experimental setup
	Tasks
	Evaluation metrics
	Pretraining
	RL finetuning
	Replay Buffer

	Hyperparameter tuning
	Results
	Text representations and architectures for RL
	Pretraining for RL
	Reward Hacking
	Additional results for the importance of algorithmic choices for text-based RL.
	Instability of transformers for online RL.

	Discussion with Domain experts.
	Reinforcement Learning from Human Feedback.
	Results

