
Under review as a conference paper at ICLR 2023

UNDERSTANDING PRUNING AT INITIALIZATION:
AN EFFECTIVE NODE-PATH BALANCING PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning at initialization (PaI) methods aim to remove weights of neural networks
before training in pursuit of reducing training costs. While current PaI methods
are promising and outperform random pruning, much work remains to be done
to understand and improve PaI methods to achieve the performance of pruning
after training. In particular, recent studies (Frankle et al., 2021; Su et al., 2020)
present empirical evidence for the potential of PaI, and show intriguing proper-
ties like layerwise random shuffling connections of pruned networks preserves or
even improves the performance. Our paper gives new perspectives on PaI from
the geometry of subnetwork configurations. We propose to use two quantities
to probe the shape of subnetworks: the numbers of effective paths and effective
nodes (or channels). Using these numbers, we provide a principled framework to
better understand PaI methods. Our main findings are: (i) the width of subnet-
works matters in regular sparsity levels (< 99%) - this matches the competitive
performance of shuffled layerwise subnetworks; (ii) node-path balancing plays
a critical role in the quality of PaI subnetworks, especially in extreme sparsity
regimes. These innovate an important direction to network pruning that takes into
account the subnetwork topology itself. To illustrate the promise of this direction,
we present a fairly naive method based on SynFlow (Tanaka et al., 2020) and con-
duct extensive experiments on different architectures and datasets to demonstrate
its effectiveness.

1 INTRODUCTION

Deep neural networks have achieved state-of-the-art performance in a wide range of machine learn-
ing applications (Brown et al., 2020; Dosovitskiy et al., 2021; Ramesh et al., 2021; Radford et al.,
2021). However, the huge computational resource requirements limit their applications, especially
in edge computing and other future smart cyber-physical systems (Hinton et al., 2015; Zhao et al.,
2019; Price & Tanner, 2021; Yuan et al., 2021; Bithika et al., 2022). To overcome this issue, there
has been a number of attempts to reduce the size of such networks without compromising their
performance, among which pruning enjoys a significant interest (Hoefler et al., 2021; Deng et al.,
2020; Cheng et al., 2018). A rationale for this direction is the work of Frankle & Carbin (2018), in
which the authors provide empirical evidences on the existence of sparse subnetworks that can be
trained from scratch and achieve similar performance to the original network, referred to as the Lot-
tery Tickets. However, standard methods for finding such subnetworks typically involve the costly
pre-training and iterative magnitude pruning process.

This issue raises an intriguing research question: How to identify sparse, trainable subnetworks at
initialization without pre-training? Specifically, a successful pruning before training method can sig-
nificantly reduce both the cost of memory and runtime, without sacrificing performance much (Wang
et al., 2022). This would make neural networks applicable even in scenarios with scarce comput-
ing resources (Alizadeh et al., 2022; Yuan et al., 2021). As such, many methods for PaI have been
proposed (Lee et al., 2019; Tanaka et al., 2020; de Jorge et al., 2021; Wang et al., 2020; Alizadeh
et al., 2022). While these methods are based on a number of intuitions (e.g., leveraging the gradient
information), they typically measure the importance of network parameters. More recently, Frankle
et al. (2021); Su et al. (2020) observe a rather surprising phenomenon: for PaI methods, layerwise
shuffling connections of pruned subnetworks does not reduce the network’s performance. A surpris-
ing consequence is that layerwise sparsity ratios are more important than weight-level importance
scores of the subnetwork (Frankle et al., 2021). This indicates that in searching for good subnet-

1

Under review as a conference paper at ICLR 2023

works at initialization, the topology of subnetworks, in particular the number of input-output paths
and active nodes, plays a vital role and should be investigated more extensively.

While the findings of previous works Frankle et al. (2021); Su et al. (2020) indicate that PaI methods
are insensitive to random shuffling, we find this is not true in the extreme sparsity regime (> 99%)
in which the number of effective connections in subnetworks are vulnerable to changes to shuffling.
In layerwise shuffling experiments (see Section 3.3), shuffling connections results in more effec-
tive nodes but substantially fewer input-output paths. In normal sparsity levels, shuffling weights
in regular sparsities can maintain and even increase effective parameters (Frankle et al., 2021) and
the number of activated nodes (Patil & Dovrolis, 2021). Having more effective nodes after shuf-
fling helps the representation capacity of subnetworks enhance while the number of effective paths
is enough for preserving the information flow, leading to competitive or even better performance
of shuffled subnetworks (Section 3.3). However, we empirically show that in the extreme sparsity
levels, while shuffling still more or less preserves the number of remaining attached nodes, the per-
formance of shuffled subnetworks may drop significantly, compared to the unshuffled counterpart.
This is because the information flow is hampered due to the significant decrease of the input-output
paths. These findings suggest that separately considering effective paths or nodes is inadequate to
fully capture behaviors of subnetworks generated by PaI methods.

850 860 870 880 890 900 910
The number of effective nodes

35000

36000

37000

38000

39000

40000

Th
e

nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s

Sparsity 95%
Accuracy (%)

86
87
88
89
90
91

Figure 1: Toy experiment with 100 subnetworks
randomly generated from the base MLP network.

In addition, we design a simple toy experiment
in which an MLP network is considered as a
base architecture. We then randomly generate
100 subnetworks at the same sparsity level 95%
while ensuring that all nodes in input and out-
put layers are activated, all networks are trained
to converge with the same setting and tested on
MNIST dataset (more details in Appendix I).
As depicted in Figure 1, these subnetworks
have different effective nodes and paths. We
observe that subnetworks with higher in both
the number of nodes and paths tend to have bet-
ter performance. This highlights the essential
role of simultaneously considering both node
and path in the success of designing subnetworks at initialization.

To overcome this issue, we introduce a novel framework that combines metrics mentioned in pre-
vious works (Tanaka et al., 2020; Patil & Dovrolis, 2021; Frankle et al., 2021) to provide a more
accurate explanation of the performance of different approaches. In particular, we propose the joint
usage of both the number of input-output paths (a.k.a. effective paths) and activated (i.e., effective)
nodes to explain different behaviors of PaI methods in a more comprehensive way (see Section 3.3
for more details). We also demonstrate the usefulness of this framework as follows: With a simple
modification in the base of the iterative pruning algorithm, we show that if we maintain both the
effective path and node level high simultaneously, the quality of subnetworks will be enhanced.

In summary, our main contributions are:

• We propose to systematically use the topology of subnetworks, particularly the number
of effective nodes and paths, as proxies for the performance of PaI methods (Section 3).
We revisit the layerwise shuffling sanity check on subnetworks produced by existing PaI
methods and provide unified explanations for their behaviors based on these metrics in a
wide range of sparsities (Section 3.3).

• We discover a new relation between the proposed metrics and the performance of sub-
networks, termed the Node-Path Balancing Principle, that suggests a nontrivial balance
between nodes and paths is necessary for optimal performance of PaI methods (Section 4).
We introduce a simple modification of SynFlow (Tanaka et al., 2020) to give a proof-of-
concept for our principle. We perform extensive experiments to show that better balancing
this trade-off in pruned networks leads to improved performance (Section 5).

• Our framework opens a novel research direction that advocates taking into account both
paths and nodes in the design of PaI methods. More precisely, while the regular sparsity
regime places effective nodes in a higher priority than effective paths, extremely sparse
subnetworks demand a more delicate balance between these two metrics (Section 5).

2

Under review as a conference paper at ICLR 2023

2 RELATED WORK

Neural Network Pruning. Neural network pruning methods (LeCun et al., 1989; Hassibi et al.,
1993; Han et al., 2015) traditionally focus on pruning trained models based on pre-defined criteria,
and then resulting subnetworks will be fine-tuned to converge. Recently, Frankle & Carbin (2018);
Frankle et al. (2020) empirically show the existence of randomly initialized subnetworks (lottery
tickets) which when trained from scratch or in early training iterations, that can achieve competitive
performance with their dense counterparts. Unfortunately, finding lottery tickets is highly overhead
due to the train and prune cycle. Gradual pruning methods (Zhu & Gupta, 2017; Gale et al., 2019)
interleave the pruning and training, which are usually cheaper than pruning after training, but the
network still needs to be trained to choose the ideal sparse subnetwork. Pruning before training
methods (Lee et al., 2019; Wang et al., 2020; Patil & Dovrolis, 2021; Tanaka et al., 2020; Alizadeh
et al., 2022) determine subnetworks by the network initialization, gradient information, and network
topology. However, experimentally results done by Frankle et al. (2021); Su et al. (2020) show that
proposed PaI criteria are not essential for obtaining a subnetwork with good performance.

Pruning and network shape. Since PaI methods do not utilize training data or use only negligible
portions of data to obtain gradient information without training, the configuration of nodes and con-
nections is an essential source of information for optimizing the performance of pruned networks. It
turns out that some PaI methods implicitly optimize certain aspects of network shape. In particular,
SynFlow(Tanaka et al., 2020) preserves the number of input-output paths as synaptic strength, but
often creates more isolated neurons in pruned networks. The works of Patil & Dovrolis (2021) and
Gebhart et al. (2021) aim to preserve proxies in terms of path kernels which are also directly related
to the shape of subnetworks. Furthermore, while PHEW (Patil & Dovrolis, 2021) additionally im-
plements random walks to increase the number of effective nodes, it unintentionally decreases the
number of input-output paths. Our new point of view on node-path balancing would be helpful to
systematically optimize network configuration for better performance. Other works also consider
the number of effective nodes and effective paths to capture the capacity of pruned subnetworks
(Wang et al., 2020; Naji et al., 2021) where these numbers are considered separately.

Extreme Sparse Network. In the context of extreme sparsity (Cho et al., 2021; Price & Tanner,
2021), the network density is less than 1%. Cho et al. (2021) associate two works from Lee et al.
(2019); Zhou et al. (2019) for learning the masking during training. Tanaka et al. (2020); de Jorge
et al. (2021); Vysogorets & Kempe (2021) leverage iterative pruning to keep subnetworks from layer
collapse in super sparsity cases. Price & Tanner (2021) only require an extremely small amount
of trainable parameters associated with a freeze fully connected network, which helps the model
performs well on extreme sparsity settings. This suggests that preserving information flow through
network connections plays a crucial role in intense sparse networks.

3 METHODOLOGY

3.1 PRUNING AT INITIALIZATION METHODS

Given a neural network, we first devide the network into layers: ℓ = 0 is the input layer, then for
each layer ℓ ∈ {1, 2, . . . , L}, we flatten the weights on the connections from layer ℓ − 1 to layer ℓ
into a weight vector wℓ ∈ Rdℓ , where dℓ is the number of connections from layer ℓ−1 to layer ℓ. Let
w = (w1, . . . , wL) denote the set of weights. Pruning generates binary mask vectors mℓ ∈ {0, 1}dℓ

yielding sparse neural networks with sparse weights mℓ ⊙ wℓ - the elementwise product of masks
and weights. Sparsity is defined as the fraction of weights being removed: s = 1−

∑
mℓ∑
dℓ

∈ [0, 1].

A pruning method usually consists of two operations: score and remove, where score takes as input
weights of the network, and outputs an important score for each weights: zℓ = score(wℓ) ∈ Rℓ;
then remove takes as input the scores z = (z1, . . . , zL) and the sparsity s, and outputs the masks
mℓ with overall sparsity s. Pruning can be done in one-shot or iteratively. For one-shot pruning,
we only generate the scores once, then prune the network upto sparsity s. For iterative pruning, we
repeat the processes of score, then prune from sparsity s(t−1)/T to sparsity st/T iteratively T times.

Random. This method assigns each connection with a random score from a uniform distribution
U(0, 1). Random pruning empirically prunes each layer to target sparsity s (Liu et al., 2022).

3

Under review as a conference paper at ICLR 2023

3
2
4

1

7
6
8

5
0 0 0
0 0 0

00 1 0
0 1 1

0
5

4
8

2 1 0 0
0 1 0
0 0 0

0 0 0
0 0 0

00 0 0
0 0 0

00 0 0
0 0 0
0 0 0

c
b
d

a

0
0
0

0

Figure 2: An example of effective paths and effective nodes.

SNIP. SNIP was introduced by Lee et al. (2019) with the pruning objective of reducing connection
sensitivity to the training loss. One passes a mini-batch of data through the network and compute
the score z for weight w of SNIP as z = |w ⊙∇wL|.
Iterative SNIP. This is an iterative variant of SNIP (de Jorge et al., 2021) with the same important
score. But, iterative SNIP gradually prunes the remaining weights with lowest scores from sparsity
s

t−1
T to sparsity s

t
T iteratively T times for t = 1, 2, . . . , T .

SynFlow. SynFlow (Tanaka et al., 2020) is an iterative and data-agnostic PaI method. The pruning
objective of SynFlow is to make the network remains connected until the most extreme possible
sparsity. The weight scores are computed as follows. One first replaces all weights in the network
by their absolute values. Then, an 1 input tensor is passed through the network, and one computes
the sum of the logits as R = 1⊤(

∏L
ℓ=1 |wℓ|)1. Finally, the score of weight w is computed as

z = |w ⊙∇wR|. SynFlow prunes the network iteratively T times.

PHEW. PHEW (Patil & Dovrolis, 2021) is also an iterative and data-independent PaI method. It
selects a set of input-output paths to be preserved. These paths are chosen through random walks,
biased towards higher-weight magnitudes. The selection start from a unit that is selected through
round robin procedure. This process continues until the subnetwork achieves the predefined sparsity.

3.2 METRIC DEFINITION

In a sparse network, it is intuitively clear that one should arrange the connections into a configuration
neither too thin nor too spread-out to have good information propagation during training. For a better
measurement, we propose using two metrics to evaluate the quality of subnetworks. Please refer to
Appendix B for detailed discussions and Python code for calculating the metrics.

Effective path. We define a path to be effective if it connects an input node to an output node
without interruption (see Figure 2). Metrics based on paths are mentioned in Tanaka et al. (2020);
Gebhart et al. (2021) as l1 and l2 path norms, respectively. In this paper, we only take into account
the number of paths.

Effective node/channel. An effective node/channel is one that at least one effective path goes
through it (demonstrated as the right part in Figure 2). This concept is also considered in works of
Patil & Dovrolis (2021); Frankle et al. (2021). For convolutional layers, we consider a kernel as a
connection, and a channel as a node, and then convert the convolutional layer into a fully connected
layer. An illustrative example can be found in Figure 2.

In the following sections, we compute and visualize the ratio of these metrics. In particular, we take
logarithm scale of the number of effective paths and calculate the ratio of the pruned network and the
dense ones, since effective paths have very large values. With effective nodes, we simply compute
the ratio of the number of effective nodes between after and before pruning.

3.3 LAYERWISE SHUFFLING PHENOMENON

In this section, we investigate the intriguing phenomenon that layer-wise reshuffling the subnetwork
found by PaI methods still produces competitive accuracy (Frankle et al., 2021; Su et al., 2020).
Based on metrics, we provide a new way to understand why reshuffling subnetworks work and
when they fail. We first use three PaI methods, i.e., SNIP (Lee et al., 2019), SynFlow (Tanaka et al.,
2020), and PHEW (Patil & Dovrolis, 2021), to find the subnetworks. Then, we randomly shuffle

4

Under review as a conference paper at ICLR 2023

SN
IP

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

Sy
nF

lo
w

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

PH
E

W

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio
Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

O
ur

s

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
Sparsity (%)

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

SNIP
SynFlow
PHEW
Ours

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

SNIP
SynFlow
PHEW
Ours

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
Sparsity (%)

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

SNIP
SynFlow
PHEW
Ours

Figure 3: Layerwise shuffling results on various sparse subnetworks of ResNet20 produced by SNIP,
SynFlow, and PHEW at initialization on CIFAR-10.

the pruning mask ml. All the subnetworks (both unmodified and shuffled) are trained in the same
setting. Finally, we calculate metrics and visualize the average scores in Figure 3.

In SNIP and SynFlow, the number of effective nodes drops significantly as sparsity increases, es-
pecially SynFlow by using iterative pruning procedure. After reshuffling, the connections are dis-
tributed uniformly in each layer. As a result, the number of effective nodes increases leading to
essentially wider subnetworks while the number of effective paths decreases. In contrast, PHEW
focuses on increasing the number of effective nodes by gradually adding new paths such that the
network is as wide as possible. Consequently, reshuffling hurts the concrete network configuration,
then reduces both the number of effective nodes and effective paths as sparsity is higher.

In normal sparsity cases, layerwise shuffled subnetworks show competitive performance or even bet-
ter (with SynFlow and SNIP) compared with unmodified ones. In addition to the explanation based
on the effective connection preservation from Frankle et al. (2021), we provide a more comprehen-
sive heuristic reason to understand this phenomenon. In particular, at these sparsities (below ratio
99%), shuffled subnetworks with SynFlow and SNIP still ensure the information flow from input
to output through enough effective paths, meanwhile the representation capacity of subnetworks is
increased due to the growth in the number of effective nodes. In more detail, Figure 3 shows that
the number of effective nodes and effective paths of shuffled layerwise subnetworks produced by
SynFlow and SNIP are similar to unmodified subnetworks of PHEW with corresponding sparsities.
It suggests that the effective network width is more vital in normal sparsity when the number of
input-output paths is still enough to transfer information.

However, in the extreme sparsity regime, random shuffling significantly reduces the performance of
the subnetworks. Along with the reduction of the number of effective parameters (see Appendix C),
the number of input-output paths decreases substantially when the network becomes more sparse.
Even though layerwisely shuffled networks become wider, the limited number of effective paths
hinders the information flows in the subnetworks. These explain why the accuracy of shuffled sub-
networks is much lower than the unmodified ones in intensive sparsities.

These observations indicate that increasing the number of effective paths (SynFlow) or effective
nodes (PHEW) alone is not sufficient in the design of PaI methods. We hypothesize that to have
better subnetworks, the number of effective paths and effective nodes should be concurrently con-

5

Under review as a conference paper at ICLR 2023

sidered. If we balance these two metrics well, the performance after training of subnetworks will be
enhanced, especially in extreme sparsity levels (see the last row of Figure 3).

4 NODE-PATH BALANCING PRINCIPLE

From observations in Section 3.3 and toy example in Appendix I, both effective paths and nodes
have shown their critical roles in the performance of subnetworks. We now formally state the
Node-Path Balancing Principle.

Node-Path Balancing Principle: The combination of both the numbers of effective nodes and
effective paths is a proxy to potential performance of subnetworks under pruning. A pruning at
initialization method which produces pruned subnetworks with too many effective paths (resp. ef-
fective nodes) will has less than necessary the number of effective nodes (resp. effective paths), and
consequentially has suboptimal performance. It is necessary to balance the numbers of effective
nodes and effective paths for better performance of pruned subnetworks.

Algorithm 1 Iterative pruning algorithm to find a pruning mask
1: Inputs: Final sparsity s, number of pruning steps T , weights winit, ∆t, Tmax

2: Obtain sparsity {st}t=1:T at each pruning iteration
3: Define intial mask m0 = 1
4: w0 = winit ⊙m0

5: for t = 0, . . . , T − 1 do
6: if t%∆t = 0 and Tmax < t then
7: Find mt by Random pruning with sparsity st
8: else
9: Find mt by SynFlow pruning with sparsity st

10: end if
11: wt = wt−1 ⊙mt

12: end for
13: Return: wT

Proposed Method. Here, we describe a modification of the iterative pruning algorithm that better
satisfies the Node-Path Balancing Principle. We choose SynFlow (Tanaka et al., 2020) as the base
method since it solely focuses on optimizing effective paths, hence, the node-path balancing effect,
resulted from our modifications, will be easy to observe. Leveraging the iterative pruning procedure
of SynFlow, we introduce a new pruning scheduler to balance effective nodes and paths by perform-
ing random pruning at several pruning iterations. We arbitrarily replace the pruning criterion in some
early iterations with random pruning. The justification for doing this is based on the intuition that in
iterative pruning methods like SynFlow if a node has some pruned connections (low-degree node)
in the initial few iterations it has a higher likelihood of being detached in later iterations (Patil &
Dovrolis, 2021). Therefore, our method helps low-degree nodes avoid being removed at subsequent
iterations since it randomly eliminates connections to high-degree units.

Specifically, we introduce two additional hyperparameters ∆t and Tmax, which means in the first
Tmax pruning iteration, we use random pruning after each (∆t − 1) steps. The pseudo-code is in
Algorithm 1. Adjusting these two hyperparameters leads to different configurations of subnetworks.
Intuitively, a large Tmax easily drives subnetworks to layer-collapse since the pruner randomly re-
moves important connections when the network is in intensive sparsity, which destroys a large num-
ber of input-output paths. While randomly pruning the network when it is in normal sparsities may
increase the subnetwork’s width because it fortuitously prunes edges to high-degree nodes. More
investigations on pruning scheduler are provided in Section 5.4 and Appendix G.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Architectures and Datasets. Our main experiments are conducted with CIFAR-10 and Tiny-
Imagenet datasets. With CIFAR-10, we use ResNet-20 and VGG-19 from Tanaka et al. (2020).
For Tiny-ImageNet, we utilize ResNet-18 with 18 layers adapted from Tanaka et al. (2020). We

6

Under review as a conference paper at ICLR 2023

treat all of the weights from convolutional and linear layers of these networks are prunable parame-
ters, but we do not prune the biases nor the weights in the batch normalization layers. We run five
seeds with CIFAR-10 experiments and three seeds with experiments on Tiny-Imagenet. We take the
average value of the results and plot them in visualizations. More details are in Appendix A.

5.2 EXPERIMENT ON REGULAR SPARSITIES

In Figure 4, we show the results of different PaI methods with varied conventional sparsities on three
settings: VGG-19 on CIFAR-10, ResNet-20 on CIFAR-10 and ResNet-18 on Tiny-Imagenet. In all
settings, we use ∆t = 2 and Tmax = 15 for our method. Our main observations are below.

Effective node is more important in the normal sparsity regime. In normal sparsities (< 99%),
PHEW, a data-agnostic method, consistently performs better than other data-independent methods
like SynFlow and Random, as well as data-dependent methods like SNIP and Iter-SNIP. The second
column in Figure 4 shows that PHEW produces wider subnetworks associated with adequate num-
ber of input-output paths (ratios > 40%) which attributes to its superior performance. Specifically,
broader width enhances the representation potential of the subnetworks while having enough effec-
tive paths preserves the information flow in the network Patil & Dovrolis (2021). These two factors
together contribute to efficient training of pruned subnetworks leading to higher accuracy.

With the same number of effective nodes, the higher the number of effective paths, the better perfor-
mance subnetworks will reach after training. In Tiny-Imagenet experiments, our methods, Random,
and PHEW produce subnetworks with all nodes activated up to sparsity 99.00%. However, subnet-
works generated by our method have slightly higher effective paths than PHEW and are significantly
higher than that of Random, which results in improved performances. This behavior also happens in
experiments with ResNet-20 where our method and SNIP have the same number of activated units
but Ours has more input-output paths.

V
G

G
19

C
IF

A
R

-1
0

43.77 68.38 82.22 90.00 96.84 99.00
0.4

0.5

0.6

0.7

0.8

0.9

Ef
fe

ct
iv

e
pa

th
 ra

tio

43.77 68.38 82.22 90.00 96.84 99.00
0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

43.77 68.38 82.22 90.00 96.84 99.00
82

84

86

88

90

92
To

p-
1

Ac
cu

ra
cy

 (%
)

R
es

N
et

20
C

IF
A

R
-1

0

43.77 68.38 82.22 90.00 96.84 99.00
0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

43.77 68.38 82.22 90.00 96.84 99.00
0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

43.77 68.38 82.22 90.00 96.84 99.00

40

50

60

70

80

90

To
p-

1
Ac

cu
ra

cy
 (%

)

R
es

N
et

18
Ti

ny
-I

m
ag

en
et

43.77 68.38 82.22 90.00 96.84 99.00
Sparsity (%)

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

th
 ra

tio

43.77 68.38 82.22 90.00 96.84 99.00
Sparsity (%)

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

43.77 68.38 82.22 90.00 96.84 99.00
Sparsity (%)

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

Random SNIP SynFlow Iter-SNIP PHEW Ours Dense

Figure 4: The ratio of effective paths (after log scale), nodes after and before pruning, and the
corresponding accuracy of different PaI methods on three datasets in the regular sparsity regimes.

5.3 EXPERIMENT ON EXTREME SPARSITIES

In Figure 5, we show the results of different PaI methods with intensive sparsities. We summarize
our main observations below.

7

Under review as a conference paper at ICLR 2023

Extremely sparse subnetworks prefer effective paths to effective nodes. In extreme sparsities
(> 99%), with very limited parameters, despite the higher effective nodes, PHEW, SNIP, and Ran-
dom prunings start performing poorly than iterative pruning methods like SynFlow and Iter-SNIP
(see the first two rows in Figure 5). We hypothesize that it is because both PHEW and Random
pruning produce small numbers of input-output paths (the effective path ratios are below 10%)
which makes the pruned subnetworks contain great number of straight paths (lacks criss-cross con-
nections). This hinders the optimization of subnetworks. However, if we better balance the trade-off
between effective nodes and effective paths, the accuracy increases. For example, with experiments
on CIFAR-10, our method increases subnetworks width compared with SynFlow and Iter-SNIP
while the number of effective paths is much higher than PHEW. Therefore, the performance of
pruned networks after training is enhanced. Further discussions can be found in Appendix D.

With similar numbers of effective paths in extreme sparsities, subnetworks that have more effective
nodes show better performance. We want to highlight that it is intractable to force two methods
to generate subnetworks with the same number of effective paths given a sparse ratio. Therefore,
we select some subnetworks having similar input-output paths in experiments. In experiments with
ResNet-20 on CIFAR-10 (the second row in Figure 5), our method and Iter-SNIP produce two
subnetworks with similar numbers of effective paths in sparsities from 99.00% to 99.90%. However,
our method produces broader subnetworks, which induces better performance.

V
G

G
19

C
IF

A
R

-1
0

99.00 99.44 99.68 99.82 99.90 99.94 99.99
0.0

0.2

0.4

0.6

Ef
fe

ct
iv

e
pa

th
 ra

tio

99.00 99.44 99.68 99.82 99.90 99.94 99.99
0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

99.00 99.44 99.68 99.82 99.90 99.94 99.99
50

60

70

80

90

To
p-

1
Ac

cu
ra

cy
 (%

)

R
es

N
et

20
C

IF
A

R
-1

0

99.00 99.44 99.68 99.82 99.90 99.94 99.99
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ef
fe

ct
iv

e
pa

th
 ra

tio

99.00 99.44 99.68 99.82 99.90 99.94 99.99
0.0

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
no

de
 ra

tio

99.00 99.44 99.68 99.82 99.90 99.94 99.99

20

40

60

80
To

p-
1

Ac
cu

ra
cy

 (%
)

R
es

N
et

18
Ti

ny
-I

m
ag

en
et

99.00 99.44 99.68 99.82 99.90 99.94 99.99
Sparsity (%)

0.2

0.4

0.6

Ef
fe

ct
iv

e
pa

th
 ra

tio

99.00 99.44 99.68 99.82 99.90 99.94 99.99
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

99.00 99.44 99.68 99.82 99.90 99.94 99.99
Sparsity (%)

0

20

40

60

To
p-

1
Ac

cu
ra

cy
 (%

)

Random SNIP SynFlow Iter-SNIP PHEW Ours Dense

Figure 5: The ratio of effective paths (after log scale), nodes after and before pruning, and the
corresponding accuracy of different PaI methods on three datasets in the extreme sparsity regimes.

The above experimental results bolster our Node-Path Balancing Principle. In particular, these find-
ings indicate that pruning neural networks in the regular sparsity regime should give more consid-
eration to the number of effective neurons since the information flow is conserved by the sufficient
number of input-output paths. Meanwhile, when the sparsity level becomes more extreme, a delicate
balance between the number of paths and nodes leads to gains in performance of subnetworks.

5.4 EXPERIMENTAL RESULTS WITH DIFFERENT PRUNING SCHEDULERS

In this part, we investigate how different choices of the scheduler in our method affect the perfor-
mance of subnetworks through two hyperparameters: ∆t and Tmax. We first vary Tmax = {10, 15},
∆t = {2, 3} to add more random pruning in early iterations with the goal of avoiding layer-collapse
in extremely sparse ratios. We also change the value of Tmax = {15, 20, 30, 40, 50, 60, 70, 80, 90}

8

Under review as a conference paper at ICLR 2023

with the fixed ∆t = 5 to investigate how Tmax affects the subnetwork’s structure. We visualized
selected results in Figure 6 and more in Appendix G. Our main observations are as follows.

Applying random pruning during the pruning process creates large-width subnetworks in regular
sparsity levels. In SynFlow, if a neuron loses some connections in previous pruning iterations, it
has a high probability to be pruned in subsequent iterations as result of the decrease in the number
of pathways that pass through that unit. Therefore, higher Tmax allows the pruner to remove edges
connecting to units that have more connections. This implicitly constructs wider subnetworks as
shown in Figure 6 and Appendix G.

In extreme sparsity regimes, a large Tmax significantly reduces the number of effective paths. When
the subnetwork achieves a specific high sparsity, randomly removing connections in the subnetwork
is more likely to destroy effective paths. This is presented in Figure 6 when Tmax = 50 or even
more severe with higher Tmax = 80.

Frequently using random pruning in the early stage of pruning generates subnetworks with better
performance in extreme sparsities. At the first few pruning iterations, subnetworks have high density,
thus, randomly eliminating edges has less influence on preventing substantial drop of the number of
effective paths. Moreover, it has effects on growing the chance of being kept for low-degree nodes.
This is supported by the experimental results of red and blue lines in Figure 6.

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

5-50 5-80 2-10 2-15 SynFlow Dense

Figure 6: Scheduler ablation with ResNet-20 on CIFAR-10. We vary the value of ∆t and Tmax and
name schedulers as ∆t-Tmax.

6 CONCLUSION

In this work, we propose a new framework to study PaI methods via systematic uses of the config-
uration of pruned subnetworks based on two different metrics: the number of effective paths and
the number of effective nodes of subnetworks. As proxies to performance of pruned networks of
PaI methods, we use these two metrics in combination. We discover a new relation between these
metrics, called Node-Path Balancing Principle, which guides the understanding and optimization of
PaI methods. We then propose a simple method to demonstrate that nontrivial balancing of num-
bers of effective paths and nodes can lead to improved performance of PaI methods. Our framework
provides unified explanations for the intriguing Layerwise Connection Reshuffling Phenomenon (Su
et al., 2020; Frankle et al., 2021) of subnetworks produced by PaI methods in normal pruning spar-
sity regime, as well as the failure of this phenomenon in extreme sparsity levels. Our findings are
supported by extensive experiments on different model architectures and datasets. Our new perspec-
tive based on configuration of subnetworks, in terms of effective nodes and effective paths, provide
new insights to the working mechanism of PaI methods, and opens new research directions on neural
network pruning methods, as well as designs of sparse neural network.

In particular, our framework directly calls for attention to optimizing the number of effective nodes
and effective paths. Guiding by the Node-Path Balancing Principle, our goal is to optimize the num-
ber of activated nodes and paths at given sparsity levels without using data. A potential approach
is to consider the pruning problem as a multi-objective optimization problem. More precisely, our
problem becomes given an architecture, find the optimal balance between effective paths and effec-
tive nodes with a given number of parameters. This is a non-trivial problem, but with the advances
from multi-objective optimization literature, there are many promising approaches.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas Donald Lane. Zero-
cost proxies for lightweight {nas}. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=0cmMMy8J5q.

Milad Alizadeh, Shyam A. Tailor, Luisa M Zintgraf, Joost van Amersfoort, Sebastian Farquhar,
Nicholas Donald Lane, and Yarin Gal. Prospect pruning: Finding trainable weights at initializa-
tion using meta-gradients. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=AIgn9uwfcD1.

Pal Bithika, Biswas Arindam, Kolay Sudeshna, Mitra Pabitra, and Basu Biswajit. A study on the
ramanujan graph property of winning lottery tickets. In International Conference on Machine
Learning, volume 162, pp. 17186–17201, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 35
(1):126–136, 2018.

Minsu Cho, Ameya Joshi, and Chinmay Hegde. Espn: Extremely sparse pruned networks. In 2021
IEEE Data Science and Learning Workshop (DSLW), pp. 1–8. IEEE, 2021.

Pau de Jorge, Amartya Sanyal, Harkirat Behl, Philip Torr, Grégory Rogez, and Puneet K. Dokania.
Progressive skeletonization: Trimming more fat from a network at initialization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=9GsFOUyUPi.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):
485–532, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural net-
works at initialization: Why are we missing the mark? In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Thomas Gebhart, Udit Saxena, and Paul Schrater. A unified paths perspective for pruning at initial-
ization. ArXiv, abs/2101.10552, 2021.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

10

https://openreview.net/forum?id=0cmMMy8J5q
https://openreview.net/forum?id=AIgn9uwfcD1
https://openreview.net/forum?id=9GsFOUyUPi
https://openreview.net/forum?id=9GsFOUyUPi
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=Ig-VyQc-MLK

Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. J. Mach.
Learn. Res., 22(1), jan 2021.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=B1VZqjAcYX.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang
Wang, and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the
most naive baseline for sparse training. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=VBZJ_3tz-t.

Seyed Majid Naji, Azra Abtahi, and Farokh Marvasti. Efficient sparse artificial neural networks.
ArXiv, abs/2103.07674, 2021.

Shreyas Malakarjun Patil and Constantine Dovrolis. Phew: Constructing sparse networks that learn
fast and generalize well without training data. In International Conference on Machine Learning,
pp. 8432–8442. PMLR, 2021.

Ilan Price and Jared Tanner. Dense for the price of sparse: Improved performance of sparsely
initialized networks via a subspace offset. In International Conference on Machine Learning, pp.
8620–8629. PMLR, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Kartik Sreenivasan, Jy yong Sohn, Liu Yang, Matthew Grinde, Alliot Nagle, Hongyi Wang, Eric
Xing, Kangwook Lee, and Dimitris Papailiopoulos. Rare gems: Finding lottery tickets at ini-
tialization. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=Jpxd93u2vK-.

Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang, and Jason D Lee.
Sanity-checking pruning methods: Random tickets can win the jackpot. Advances in Neural
Information Processing Systems, 33:20390–20401, 2020.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377–6389, 2020.

Artem Vysogorets and Julia Kempe. Connectivity matters: Neural network pruning through the lens
of effective sparsity. arXiv preprint arXiv:2107.02306, 2021.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgsACVKPH.

11

https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=VBZJ_3tz-t
https://openreview.net/forum?id=Jpxd93u2vK-
https://openreview.net/forum?id=Jpxd93u2vK-
https://openreview.net/forum?id=SkgsACVKPH

Under review as a conference paper at ICLR 2023

Huan Wang, Can Qin, Yue Bai, Yulun Zhang, and Yun Fu. Recent advances on neural network
pruning at initialization. In Luc De Raedt (ed.), Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.
5638–5645. ijcai.org, 2022. doi: 10.24963/ijcai.2022/786. URL https://doi.org/10.
24963/ijcai.2022/786.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34:20838–20850,
2021.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? 2019.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In International conference on
machine learning, pp. 7543–7552. PMLR, 2019.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. Advances in neural information processing systems, 32, 2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

12

https://doi.org/10.24963/ijcai.2022/786
https://doi.org/10.24963/ijcai.2022/786
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

Under review as a conference paper at ICLR 2023

A EXPERIMENT DETAILS

In this section, along with pruning at initialization (PaI) methods in the main text, we provide ex-
perimental results with GraSP (Wang et al., 2020). In particular, GraSP is another gradient-based
pruning PaI that aims to preserve the gradient flow of sparse networks obtained by pruning. The
score z of weight w in GraSP is computed as z = −w ⊙ (H∇wL), where H is the Hessian of the
training loss after passing a mini-batch of data through the network.

We describe our experiment settings on architectures and datasets. We conduct experiments on a
single GTX 3090Ti and use Pytorch library. We adapt Tanaka et al. (2020) source code 1 for SNIP,
GraSP, SynFlow, and Random, and change the prune epochs to 100 for Iterative SNIP instead of 1
in SNIP. And we use the official code 2 of Patil & Dovrolis (2021) for PHEW.

Datasets. Our main experiments are conducted with CIFAR-10 and Tiny-Imagenet datasets, where:

• CIFAR-10 is augmented by normalizing per-channel, randomly flipping horizontally.
• Tiny-ImageNet is augmented by normalizing per channel, cropping to 64x64, and randomly

flipping horizontally.

Architectures. We use three different networks:

• VGG-19 is a CIFAR-10 network used in SynFlow (Tanaka et al., 2020). We choose a
batch-normalization version.

• ResNet-20 is a 20-layer CIFAR-10 version of ResNet created by He et al. (2016). This
version has added batch normalization layers before each activation function.

• ResNet-18 is a ImageNet version with 18 layers adapted from SynFlow (Tanaka et al.,
2020). The first convolution has kernel size 3x3 (instead of 7x7) and max-pooling layer
that follows has been removed.

We treat all of the weights from convolutional and linear layers of these networks are prunable pa-
rameters, but we do not prune the biases nor the weights in the batch normalization layers. The
weights in convolutional and linear layers are initialized with Kaiming normal, while biases are ini-
tialized to be zero. We run five seeds with CIFAR-10 experiments and three seeds with experiments
on Tiny-Imagenet.

Training details With Iterative pruning methods SNIP and SynFlow, we use 100 pruning epochs.
With methods using training data like SNIP, GraSP, and Iterative-SNIP, we randomly select 10
samples for each class, particularly, 100 data points for CIFAR-10, 2000 data samples for Tiny-
ImageNet. Other hyperparameters are chosen as follow:

Table 1: Summary of the architectures, datasets, and hyperparameters used in experiments.
Network Dataset Epochs Batch Optimizer Momentum LR LR Drop, Epoch Weight Decay

VGG-19 CIFAR-10 160 128 SGD 0.9 0.1 10x, [60,120] 0.0001
ResNet-20 CIFAR-10 160 128 SGD 0.9 0.1 10x, [60,120] 0.0001
ResNet-18 Tiny-ImageNet 100 128 SGD 0.9 0.01 10x, [30,60,80] 0.0001

1https://github.com/ganguli-lab/Synaptic-Flow
2https://github.com/ShreyasMalakarjunPatil/PHEW

13

Under review as a conference paper at ICLR 2023

B EFFECTIVE METRICS CALCULATION

Effective path. To exactly compute the number of effective paths, we remove the batch nor-
malization layers, we initialize all the remaining parameters to 1. Then, we put the input vec-
tor one to the network, and the number of effective paths is the sum of logits on the output layer
R = 1⊤(

∏L
ℓ=1 |wℓ|)1.

More precisely, we face problems with pooling layers in convolutional neural networks. With max
pooling layer, we simply do not modify the output of this layer. At that time, the result is the
maximum number of paths in subnetworks. With average pooling layer, since all inputs of this layer
contribute to the output, we change the average operator to the sum operator to exactly compute the
number of effective paths. We all use ReLU activation functions in computing this metric since this
function does not affect the results of calculations.

Effective parameter. We follow Frankle et al. (2021) when identifying which is effective param-
eter. Similar to computing effective paths, we make further steps. After having the sum of logits, we
compute the gradients of this sum with respect to weights ∇wR. Then, if an unpruned weight has
a non-zero gradient, it is effective and vice versa. Effective parameters are dense edges that connect
two effective nodes as visualized in Figure 2.

Effective node/channel. With fully connected layers, if all connections to one node or out of one
node are pruned, this node is pruned node. If there exist connections to a node but all of these con-
nections are ineffective, then this node becomes ineffective In convolutional layers, instead of nodes,
we have channels. We consider a kernel as a connection, a channel as a node, and then convert the
convolutional layer into a fully connected layer. The connection is pruned if and only if all param-
eters in the corresponding kernel are removed. Finally, identifying the effective nodes/channels is
similar to the way in fully connected layers.

1 def metric_calculation(model, mask):
2 """
3 model: network architecture
4 mask: mask for subnetwork
5 """
6 n_eff_paths = 0
7 n_eff_nodes = 0
8 n_eff_params = 0
9

10 # Initialize network with pruned weight = 0 and kept weight = 1
11 for name, param in model.named_parameters():
12 param.copy_(mask[name])
13

14 x = torch.ones((1,c,h,w)) # c: channel - h: height - w: width
15 y = model(x)
16 sum_logits = y.sum()
17

18 n_eff_paths = sum_logits.item()
19

20 sum_logits.backward()
21 with torch.no_grad():
22 for name, param in model.named_parameters():
23 eff_param = torch.where(param.grad.data!=0, 1, 0)
24 n_eff_params += torch.sum(eff_param)
25

26 eff_in_node = torch.where(torch.sum(eff_param,d=0)>0, 1, 0)
27 n_eff_nodes += torch.sum(eff_in_node)
28

29 # with output layer
30 eff_out_node = torch.where(y>0, 1, 0)
31 n_eff_nodes += torch.sum(eff_out_node)
32

33 return n_eff_paths, n_eff_nodes, n_eff_params

Listing 1: Metric calculation example in fully connected neural networks

14

Under review as a conference paper at ICLR 2023

C LAYERWISE SHUFFLING EXPERIMENTS

With each setting, at each sparsity ratio, we seek subnetworks with 5 different seeds, and with each
seed, we randomly shuffle the subnetwork two times. In addition to effective path ratios and effective
node ratios, we compute the number of effective parameters after pruning and the actual remaining
ones, then calculate the ratio between these two values.

Similar to Frankle et al. (2021) results, the performance and the number of effective parameters of
high-density subnetworks after permuting the connections are similar to or even higher (in SNIP)
than the unmodified ones. However, when the sparsity level becomes more intensive, the configu-
ration of subnetworks is more concrete. Randomly rearranging connections within layers destroys
this strict structure by detaching important edges, which drastically reduces the number of effective
paths. The shuffled subnetworks lack input-output paths to transfer information during training,
leading to a drop in performance compared with unmodified ones.

SN
IP

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

Sy
nF

lo
w

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

1.0
Ef

fe
ct

iv
e

pa
ra

m
et

er
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

PH
E

W

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)
Shuffled Layer-wise
Unmodified

O
ur

s

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

Sparsity (%)

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

SNIP
SynFlow
PHEW
Ours

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

SNIP
SynFlow
PHEW
Ours

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

Sparsity (%)

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

SNIP
SynFlow
PHEW
Ours

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

Sparsity (%)

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

SNIP
SynFlow
PHEW
Ours

Figure 7: Layerwise shuffling results on various sparse subnetworks of ResNet20 produced SNIP,
SynFlow, and PHEW at initialization on CIFAR-10.

SN
IP

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

3
4
5
6
7
8

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.7

0.8

0.9

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

60

70

80

90

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

Sy
nF

lo
w

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

2

4

6

8

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.80

0.85

0.90

0.95

1.00

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

75

80

85

90

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

Figure 8: Layerwise shuffling results on various sparse subnetworks of VGG19 produced by SNIP
an SynFlow at initialization on CIFAR-10.

15

Under review as a conference paper at ICLR 2023

D DIFFERENT SPARSITY REGIMES EXPERIMENTS INCLUDING GRASP

We report the min/average/max value of multiple runs and also the results of GraSP method in
this Appendix to avoid ambiguity in the main text. Interestingly, GraSP tends to produce broader
subnetworks compared with SNIP or SynFlow since GraSP’s goal is preserving gradient flow after
pruning (Wang et al., 2020). Iterative pruning methods like ours, SynFlow, and PHEW generate
subnetworks with low variance in terms of number of effective paths and nodes and accuracy after
training as well. When sparsity becomes more extremely, effective parameters (Figure 11) and effec-
tive paths (Figure 10) of one-shot pruning methods like SNIP, GraSP or Random drop significantly,
which drives to decrease in the performance.

With ResNet-18 on Tiny-Imagenet experiments, PHEW and our method still preserve a relatively
large number of effective paths (> 30%) in extremely sparse ratios (up to sparsity 99.82%), which
ensures the information transfers well in the sparse networks. Therefore, both perform better than
path preserving methods like SynFlow and Iter-SNIP.

V
G

G
19

C
IF

A
R

-1
0

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

0.4

0.5

0.6

0.7

0.8

0.9

Ef
fe

ct
iv

e
pa

th
 ra

tio

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

82

84

86

88

90

92

To
p-

1
Ac

cu
ra

cy
 (%

)

R
es

N
et

20
C

IF
A

R
-1

0

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ef
fe

ct
iv

e
pa

th
 ra

tio

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

20

30

40

50

60

70

80

90
To

p-
1

Ac
cu

ra
cy

 (%
)

R
es

N
et

18
Ti

ny
-I

m
ag

en
et

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

Sparsity (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
iv

e
pa

th
 ra

tio

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

Sparsity (%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

43
.77

68
.38

82
.22

90
.00

96
.84

99
.00

Sparsity (%)

25

30

35

40

45

50

55

60

To
p-

1
Ac

cu
ra

cy
 (%

)

Random SNIP GraSP SynFlow Iter-SNIP PHEW Ours Dense

Figure 9: The ratio of effective paths (after log scale), nodes after and before pruning, and the
corresponding accuracy of different PaI methods on three datasets in the regular sparsity regime.

16

Under review as a conference paper at ICLR 2023

V
G

G
19

C
IF

A
R

-1
0

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ef
fe

ct
iv

e
pa

th
 ra

tio

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

50

55

60

65

70

75

80

85

90

95

To
p-

1
Ac

cu
ra

cy
 (%

)

R
es

N
et

20
C

IF
A

R
-1

0

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ef
fe

ct
iv

e
pa

th
 ra

tio

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

0.0

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
no

de
 ra

tio

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

10

20

30

40

50

60

70

80

90

To
p-

1
Ac

cu
ra

cy
 (%

)

R
es

N
et

18
Ti

ny
-I

m
ag

en
et

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

Sparsity (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ef
fe

ct
iv

e
pa

th
 ra

tio

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

99
.00

99
.44

99
.68

99
.82

99
.90

99
.94

99
.99

Sparsity (%)

0

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

Random SNIP GraSP SynFlow Iter-SNIP PHEW Ours Dense

Figure 10: The ratio of effective paths (after log scale), nodes after and before pruning, and the
corresponding accuracy of different PaI methods on three datasets in the extreme sparsity regime.

17

Under review as a conference paper at ICLR 2023

E EFFECTIVE PARAMETER RATIOS

V
G

G
19

C
IF

A
R

-1
0

43.77 68.38 82.22 90.00 96.84 99.00 99.44 99.68 99.82 99.90 99.94 99.99
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0
Ef

fe
ct

iv
e

pa
ra

m
et

er
 ra

tio

Random SNIP GraSP SynFlow Iter-SNIP PHEW Ours

R
es

N
et

20
C

IF
A

R
-1

0

43.77 68.38 82.22 90.00 96.84 99.00 99.44 99.68 99.82 99.90 99.94 99.99
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Random SNIP GraSP SynFlow Iter-SNIP PHEW Ours

R
es

N
et

18
Ti

ny
-I

m
ag

en
et

43.77 68.38 82.22 90.00 96.84 99.00 99.44 99.68 99.82 99.90 99.94 99.99
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Random SNIP GraSP SynFlow Iter-SNIP PHEW Ours

Figure 11: The ratio of effective parameters and unpruned parameters with different PaI methods on
three datasets in varied sparsity regimes.

18

Under review as a conference paper at ICLR 2023

F EFFECTIVE NODES AT EACH LAYER

In Figure 12, we visualize the number of activated channels/nodes in each hidden layer of networks
in different sparsities and settings. As mentioned, PHEW gradually adds new input-output paths
such that nodes are activated as highly as possible. This is why PHEW consistently creates wider
subnetworks. Except PHEW, iterative pruning methods (Iterative SNIP and SynFlow) tend to prune
nodes more in later hidden layers compared with SNIP and GraSP because convolution layers at the
top usually learn highly sparse features and thus more weights can be pruned (Wang et al., 2020;
Zhang et al., 2019). We believe that further investigations into the configuration of hidden layers
bring insightful knowledge to understand the success of PaI methods.

Sp
ar

si
ty

68
.3

8%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

VGG19 CIFAR10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10

20

30

40

50

60

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

ResNet20 CIFAR10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

ResNet18 TinyImagenet

Sp
ar

si
ty

90
.0

0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10

20

30

40

50

60

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

Sp
ar

si
ty

96
.8

4%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

200

300

400

500
Nu

m
be

r o
f r

em
ai

ni
ng

 n
od

es

Sp
ar

si
ty

99
.0

0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

10

20

30

40

50

60

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

Sp
ar

si
ty

99
.9

0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Hidden Layers

0

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Hidden Layers

0

10

20

30

40

50

60

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Hidden Layers

0

100

200

300

400

500

Nu
m

be
r o

f r
em

ai
ni

ng
 n

od
es

Figure 12: The number of effective nodes in each hidden layer of three settings on different sparsi-
ties.

19

Under review as a conference paper at ICLR 2023

G ADDITIONAL RESULTS ON SCHEDULER

We present ablations on the scheduler with different settings. The observations are consistent in the
main text. Higher Tmax tends to produce wider subnetworks in normal sparsities, but it drives to
layer-collapse in extensive sparsities. These experimental results one more time highlight our Node-
Path Balancing Principle that regular sparse subnetworks prefer effective nodes to effective paths
while subnetworks with extreme sparsity levels require a good balance between nodes and paths.

V
G

G
19

C
IF

A
R

-1
0

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

60

65

70

75

80

85

90

To
p-

1
Ac

cu
ra

cy
 (%

)

2-10 2-15 5-50 SynFlow Dense

R
es

N
et

20
C

IF
A

R
-1

0

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

10

20

30

40

50

60

70

80

90

To
p-

1
Ac

cu
ra

cy
 (%

)

5-50 5-80 2-10 2-15 SynFlow Dense

R
es

N
et

18
Ti

ny
-I

m
ag

en
et

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

68.38 96.84 99.44 99.82 99.94
Sparsity (%)

0

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

2-15 5-50 2-10 SynFlow Dense

Figure 13: Scheduler ablation on different settings.

20

Under review as a conference paper at ICLR 2023

H POTENTIAL FUTURE DIRECTIONS

Efficient Pruning Scheduler Based on the iterative pruning of SynFlow, we modify the pruning
schedule with two additional hyperparameters, which balances better between effective paths and
nodes. Adjusting these two drives to different architecture configurations as shown in Section 5.4.
However, we believe that if we take into account a more sophisticated pruning scheduler, the pruned
subnetwork will better satisfy the Node-Path Balancing Principle. From the view of the exploration
and exploitation trade-off, it opens a new approach to pruning at initialization problems. To improve
the effectiveness of the scheduler, we could borrow ideas from Reinforcement learning.

Optimize the Node-Path Balancing From the Node-Path Balancing Principle, our goal is to op-
timize the number of activated nodes and paths without using data given the sparsity. One possible
way is that switch the pruning problem to a multi-objective optimization problem. In particular, our
problem becomes given an architecture, maximizing both effective paths and effective nodes with
the constraint of the number of parameters. This is a non-trivial problem, but with the long-standing
development of optimization problems, there are many promising approaches.

Proxy for Evaluate Networks in Neuron Architecture Search Problem Neural Architecture
Search (NAS) is known as the process of automating architecture engineering which is the next
step in the automation of machine learning Elsken et al. (2019). One main problem of NAS is
computation overhead in estimating the performance of candidates Zoph & Le (2017); Zoph et al.
(2018). Recently, Abdelfattah et al. (2021) leverage pruning methods perform zero-cost proxies.
We believe our effective nodes and paths could be promising scores to evaluate the architecture
candidates in NAS.

21

Under review as a conference paper at ICLR 2023

I TOY EXPERIMENT

850 860 870 880 890 900 910
The number of effective nodes

35000

36000

37000

38000

39000

40000

Th
e

nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s

Sparsity 95%
Accuracy (%)

86
87
88
89
90
91

805 810 815 820 825 830 835 840
The number of effective nodes

31500

32000

32500

33000

33500

Th
e

nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s

Sparsity 97%
Accuracy (%)

48
54
60
66
72
78

Figure 14: The toy experiments on a MLP network with three hidden layers and MNIST dataset.
We sample 100 subnetworks with each two sparsity levels (95%, 97%)

In this experiment, we consider an MLP network with the numbers neurons in its layers are choosen
as 784 - 128 - 64 - 10 with sparsity level of 95% and 97%, respectively. We keep all the nodes
of input and output activated, other connections are randomly assigned into the network to create
sparse subnetworks. Different subnetworks have different numbers of effective paths and nodes. We
train all subnetworks with the same procedure to converge.

It is easy to see that subnetworks which have better balance between node and path tend to have
better performance given the same sparsity. This proves that taking number of effective nodes and
paths into account provides a novel insight in understanding PaI methods and then open new research
directions in designing network architectures.

22

Under review as a conference paper at ICLR 2023

J COMPARISON WITH RAREGEM AND LTH

6.1 6.2 6.3 6.4 6.5
Number of effective nodes (ln scale)

33

34

35

36

37

38

39

Nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

Sparsity 90.00%

Method
PHEW
SynFlow
LTH
RareGem
Ours

Accuracy (%)
84.94
85.37
86.18
87.41
91.3

5.00 5.25 5.50 5.75 6.00 6.25 6.50
Number of effective nodes (ln scale)

18

20

22

24

26

28

Nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

Sparsity 99%

Method
PHEW
SynFlow
RareGem
Ours

Accuracy (%)
66.05
67.17
70.44
72.22

Figure 15: Comparison with RareGem and LTH methods on three aspects the number of effective
nodes, paths and accuracy after training subnetworks.

We reproduce the results of LTH (Frankle & Carbin, 2018) and RareGem (Sreenivasan et al., 2022)
on CIFAR-10 with Resnet20 to figure out whether subnetworks produced by these methods support
our proposed principle or not. We compute the number of effective nodes and paths of subnetworks
generated by PHEW, SynFlow, LTH, RareGem, and Ours. We then visualize in the Figure 15.
We consider LTH as a upper bound and a optimal solution for balancing node-path. Through the
additional experiments, we observe that subnetwork near optimal solution in terms of effective nodes
and paths show better performance (accuracy after training). In extreme sparsity levels, RareGem
produce better node-path balanced subnetworks compared to others, leading to higher performance
of subnetworks. We strongly believe these results align with our principle and further support our
principle as a necessary condition for good PaI. We want to highlight that RareGem and LTH both
use dataset to produce subnetworks, and RareGem is 2x costly compared with data-agnostic PaI
methods since it requires a “gem mining” process.

23

	Introduction
	Related Work
	Methodology
	Pruning at Initialization methods
	Metric definition
	Layerwise Shuffling Phenomenon

	Node-Path Balancing Principle
	Experiment
	Experimental Settings
	Experiment on Regular Sparsities
	Experiment on Extreme Sparsities
	Experimental Results with different pruning schedulers

	Conclusion
	Experiment details
	Effective metrics calculation
	Layerwise Shuffling Experiments
	Different Sparsity Regimes Experiments including GraSP
	Effective Parameter Ratios
	Effective Nodes at Each Layer
	Additional Results on Scheduler
	Potential future directions
	Toy Experiment
	Comparison with RareGem and LTH

