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Abstract

Masked diffusion models (MDM) are powerful generative models for discrete data
that generate samples by progressively unmasking tokens in a sequence. Each token
can take one of two states: masked or unmasked. We observe that token sequences
often remain unchanged between consecutive sampling steps; consequently, the
model repeatedly processes identical inputs, leading to redundant computation.
To address this inefficiency, we propose the Partial masking scheme (Prime),
which augments MDM by allowing tokens to take intermediate states interpolated
between the masked and unmasked states. This design enables the model to
make predictions based on partially observed token information, and facilitates
a fine-grained denoising process. We derive a variational training objective and
introduce a simple architectural design to accommodate intermediate-state inputs.
Our method demonstrates superior performance across a diverse set of generative
modeling tasks. On text data, it achieves a perplexity of 15.36 on OpenWebText,
outperforming previous MDM (21.52), autoregressive models (17.54), and their
hybrid variants (17.58), without relying on an autoregressive formulation. On
image data, it attains competitive FID scores of 3.26 on CIFAR-10 and 6.98 on
ImageNet-32, comparable to leading continuous generative models.

1 Introduction
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Figure 1: Number of idle steps during the
reverse diffusion processes of MDM and
MDM-Prime. The results are averaged over
ten runs. ℓ is the sub-token sequence length.

Discrete data generation has been a central focus of
probabilistic modeling since the early development of
neural networks [1–3]. The goal is to build a model ca-
pable of generating sequences of symbolic units, known
as tokens, which can represent words in natural lan-
guage data or pixels in images. The field has been
largely shaped by autoregressive models (ARM) (e.g.,
[4–6]), which capture the distribution of sequence data
by factorizing it according to a prespecified left-to-
right order. Recently, promising results from [7, 8]
have demonstrated that order-agnostic models, such as
masked diffusion models (MDM) (e.g., [7–10]), can
be effectively extended to large-scale generation tasks,
opening a new venue for discrete generative modeling.

Masked diffusion models are latent-variable generative
models that introduce noise by progressively masking
tokens within a sequence over time. During the reverse diffusion process, masked tokens are
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(a) Standard Masked Diffusion (b) Masked Diffusion with Prime (Ours)
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Figure 2: An illustrative example of (a) standard MDM and (b) MDM-Prime. Each token and
its corresponding sub-token sequence (constructed via base-b encoding) can take one of three
states: unmasked, masked, or intermediate. The masked and intermediate states serve as the latent
representations produced by the forward diffusion process. This example contains C = 4 possible
token classes, labeled as ‘bird’, ‘cat’, ‘dog’, and ‘frog’. ℓ = 2 indicates that each token is represented
using two sub-tokens, and b = ℓ

√
C = 2 denotes the number of classes per sub-token. The symbol m

represents a masked token or a masked sub-token. The bottom-right sections of (a) and (b) illustrate
the state transition trees. MDM-Prime supports transitions through intermediate states while retaining
the ability to directly reach unmasked states. The bottom-left portions depict the sampling process
for a token sequence of length L = 4. In (a), an idle step occurs between steps 3 and 4. In contrast,
(b) demonstrates a sampling process without idle steps, which leads to improved model utilization.

incrementally unmasked according to a predefined ratio. Each token takes one of two states, masked
or unmasked. This binary representation introduces an inefficiency; the entire sequence often remains
unchanged across consecutive sampling steps, causing the model to repeatedly process the same
input. This phenomenon is illustrated in the green curve in Fig. 1, which quantifies the number of
such idle steps by simulating the reverse diffusion process of an MDM [9]. The figure shows that
37% of the 1,024 steps produce no update to the sequence during the reverse diffusion process. This
inefficiency motivates our investigation of redefining the diffusion process to transform these idle
steps into informative updates for improving the utilization of the model during generation.

We propose a simple yet effective solution that allows each token to take an intermediate state, which
represents the interpolation between the masked and unmasked states, in the diffusion process. We
refer to this method as the Partial masking scheme (Prime), and denote MDM augmented with Prime
as MDM-Prime. Prime represents each token as a sequence of sub-tokens using a base-b encoding,
with masking performed at the sub-token level. Since sub-tokens can be masked independently
during the forward diffusion process, this method introduces intermediate states that partially reveal
token information. An illustrative example is shown in the top of Fig. 2, where unmasked states
‘0-3’ are first encoded as ‘00-11’, and the intermediate states are obtained by masking one of the
sub-tokens in the sub-token sequence. The intermediate states enable MDM-Prime to perform a
fine-grained denoising process. For example, as illustrated in the ‘State Transition Tree’ of Fig. 2 (b),
a four-choice prediction can be decomposed into two binary decisions during the sampling process
(e.g., mm→m1→11). Compared to standard MDM transitions (i.e., Fig. 2 (a)), MDM-Prime is capable
of making predictions based on partially observed token information while deferring the final token
revelation until later sampling steps. With its ability to transition through intermediate states, MDM-
Prime demonstrates improved model utilization during sampling, as reflected in the reduced number
of idle steps in Fig. 1 (i.e., the purple curves). This in turn leads to enhanced performance, as later
presented in Section 4. The contributions of this work are as follows:

• We propose MDM-Prime, a generalized MDM framework that enables intermediate token transi-
tions. This framework can be optimized through a variational upper bound, which approximates
the negative log-likelihood.

• We present a simple implementation of MDM-Prime built upon the standard MDM architecture.
Our design requires only minor modifications to the input embedding layer of the standard MDM.
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• We demonstrate that MDM-Prime achieves superior performance on both image and text generation
tasks. On the OpenWebText dataset [11], MDM-Prime attains an evaluation perplexity of 15.36,
outperforming ARM (17.54), MDM [7, 9, 10, 12] (21.52), and their hybrid variants [12, 13]
(17.58). To the best of our knowledge, this is the first MDM-based approach to surpass ARM
without relying on the autoregressive formulation. Furthermore, MDM-Prime achieves FID
scores [14] of 3.26 on CIFAR-10 [15] and 6.98 on ImageNet-32 [16], demonstrating competitive
performance comparable to leading continuous generative modeling methods [17–19].

2 Background

We first provide background on continuous-time masked diffusion processes. Section 2.1 describes
the forward process, while Section 2.2 elaborates on the reverse process.

2.1 Forward Diffusion Process

Let X ≜ {0, · · · , C − 1} denote a set of C tokens, and let x = [x1, · · · , xL] ∈ XL be a sequence
of tokens with length L, where the superscript indicates the index of each token. Let x0 denote
the sample drawn from a data distribution pdata, which is defined as a probability mass function
(pmf) over XL. Given a continuous time variable t ∈ [0, 1], the latent variable introduced by
the forward diffusion process is denoted as xt ∈ (X ∪ {m})L ≜ X̃L, where m represents the
masked token. In addition, let δx′(x) be the Kronecker delta function, which equals 1 if x = x′

and 0 otherwise. The forward diffusion process is performed through an element-wise conditional
sampler q(xt|x0) =

∏L
i=1 q(x

i
t|xi

0) constructed by interpolating between δm(·) and δxi
0
(·), defined

as follows [9, 10, 20]:
q(xi

t|xi
0) = (1− αt)δm(x

i
t) + αtδxi

0
(xi

t), (1)

where αt ∈ [0, 1] is a strictly decreasing scheduling function with boundary conditions α0 ≈ 1 and
α1 ≈ 0. Intuitively, each perturbed token xi

t retains the original value xi
0 with probability αt, and is

replaced by m with probability 1 − αt. At time t = 1, the latent variable x1 = [m, · · · , m] consists
entirely of masked tokens, exhibiting no randomness and revealing no information about x0. This
process can also be interpreted as decreasing the mutual information between xi

t and xi
0 over time

according to αt [21, 20] (i.e., I(xi
t;x

i
0) = αtH(xi

0), where H(xi
0) denotes the entropy of xi

0) as
explained in Appendix A.1.2. Based on Eq. (1), the forward diffusion process can be accomplished
by first drawing a data sample x0 ∼ pdata(·) and then applying masking to obtain xt ∼ q(·|x0).

2.2 Reverse Diffusion Process

Let s and t be two time variables that satisfy 0 ≤ s < t ≤ 1. The reverse diffusion process is
performed by iterating through p(xs|xt), starting from x1. The distribution p(xs|xt) can be derived
using the conditional distributions q(xt|xs) and q(xs|xt,x0). In particular, the transition distribution
q(xt|xs) =

∏L
i=1 q(x

i
t|xi

s) is defined to be absorbing [20] on the masked state (i.e., a masked token
remains masked from s to t), and is derived from Eq. (1) as follows [10]:

q(xi
t|xi

s) =

{
αs−αt

αs
δm(x

i
t) +

αt

αs
δxi

s
(xi

t) if xi
s ∈ X ,

δxi
s
(xi

t) if xi
s = m.

(2)

Based on Eqs. (1) and (2), the posterior distribution q(xs|xt,x0) =
∏L

i=1 q(x
i
s|xi

t, x
i
0) can be derived

using Bayes’ rule and the Markov property of the diffusion process, and is expressed as [9, 10]:

q(xi
s|xi

t, x
i
0) =

{
δxi

t
(xi

s) if xi
t ∈ X ,

1−αs

1−αt
δm(x

i
s) +

αs−αt

1−αt
δxi

0
(xi

s) if xi
t = m.

(3)

Eq. (3) indicates that, given xi
0 and observing a masked token xi

t = m, the reverse process transitions
the masked token to its original value xi

0 with probability αs−αt

1−αt
or retains its value with probability

1−αs

1−αt
. For the unmasked token xi

t ∈ X , its value remains unchanged for the remaining steps.

Since p(xs|xt) = Ep(x0|xt)[q(xs|xt,x0)] [20], the reverse diffusion process can be performed by
first drawing x0 ∼ p(·|xt) and then sampling xs ∼ q(·|xt,x0). Many recent works [8–10, 20, 22–
24] choose to model p(x0|xt) as pθ(x0|xt), where θ denotes the model parameters. To facilitate
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computational efficiency, this distribution is typically factorized as pθ(x0|xt) =
∏L

i=1 pθ(x
i
0|xt) [8–

10, 20, 22–24]. The parameter θ can be optimized by estimating the negative log-likelihood
− log pθ(x0) using a variational upper bound, written as [9, 10]:

Lvb(x0; θ) =

∫ 1

0

α′
t

1− αt
Eq(xt|x0)

[
L∑

i=1

log pθ(x
i
0|xt)

]
dt, (4)

where α′
t =

d
dtαt. This objective specifies a cross-entropy loss, weighted by the coefficient α′

t

1−αt
,

and satisfies Lvb(x0; θ) ≥ − log pθ(x0) [9, 10]. In addition, since unmasked elements in xt retain
their values over time according to Eq. (3), the carry-over parameterization [9] (also referred to as
the mean parameterization in [10]) can be applied by explicitly setting the corresponding entries in
x0 to the unmasked values in xt. Formally, this is expressed as pθ(xi

0|xt) ≜ δxi
t
(xi

0) for position i

where xi
t ∈ X . This technique ensures that the model avoids redundant predictions on unmasked

elements, and therefore can effectively reduce Lvb [9].

3 Methodology

In this section, we introduce a new MDM framework that incorporates the Partial masking scheme
(Prime), referred to as MDM-Prime. We begin by introducing an invertible function for constructing
sub-token sequences and define a novel masked diffusion process over these sub-tokens, which enables
intermediate state transitions and reduces the number of idle steps (Section 3.1). We then propose a
novel parameterization that captures sub-token dependencies via joint probability distributions, and
describe a simple model architecture design that operates over sub-token inputs (Section 3.2).

3.1 Discrete Diffusion via Partial Masking

The core idea of Prime is to represent each token xi
0 with a sub-token sequence yi

0 = [yi,10 , · · · , yi,ℓ0 ],
allowing the creation of intermediate states during the element-wise masking of the forward diffusion
process (i.e., Eq. (1)). Given a target length ℓ > 1, this can be achieved through the use of an
invertible function f , which maps each token xi

0 ∈ X to its base-b encoding yi
0 ∈ Yℓ (i.e., a sequence

of ℓ sub-tokens), where Y ≜ {0, · · · , b− 1} denotes the set of sub-tokens with b = ⌈ ℓ
√
C⌉ ∈ N.

Data pmf

Param. pmf =
=

Figure 3: Illustration of the data and parame-
terized pmf with an invertible f . ‘Param. pmf’
denotes the parameterized pmf captured using an
MDM with parameter θ. In this example, ℓ = 2.

The invertibility of f enables the likeli-
hood to be defined on the set of sub-tokens
Y . For convenience, we slightly abuse no-
tation and extend f to accept vector inputs:
f(x0) ≜ [f(x1

0), · · · , f(xL
0 )] = [y1

0 , · · · ,yL
0 ] =

[(y1,10 , · · · , y1,ℓ0 ), · · · , (yL,1
0 , · · · , yL,ℓ

0 )] = y0.
Its inverse is denoted as f−1. Under this trans-
formation, the pmf of the data, pdata(x0), can be
equivalently written as pdata ◦ f−1(y0) according
to the change-of-variable principle. Rather than di-
rectly modeling x0, we model y0 through MDM,
and reconstruct x0 using f−1(y0), resulting in a parameterized pmf pθ(y0) = pθ ◦ f(x0). An
illustrative example is provided in Fig. 3.

To learn pθ(y0) using MDM, each data point x0 is first transformed into y0 = f(x0), and its
corresponding latent variable yt is sampled from q(yt|y0) =

∏L
i=1

∏ℓ
j=1 q(y

i,j
t |yi,j0 ) according to

Eq. (1) by substituting x’s with y’s. The reverse diffusion process is parameterized by pθ(y0|yt) =∏L
i=1 pθ(y

i
0|yt), and the model is trained to minimize the loss Lvb(y0; θ) as in Eq. (4):

Lvb(y0; θ) =

∫ 1

0

α′
t

1− αt
Eq(yt|y0)

[
L∑

i=1

log pθ(y
i
0|yt)

]
dt. (5)

Section 3.2 provides details on the parameterization of pθ(yi
0|yt), while Appendix A.2.1 shows that

Eq. (5) defines a variational bound that approximates negative log-likelihood (NLL).
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Figure 4: Distributions modeled by MDM-Prime using
(a) independent and (b) joint parameterizations. Models
are trained on a two-dimensional synthetic dataset with
x0 ∈ [0, · · · , 511]2 representing the coordinate of the figure
(512× 512). Brighter regions indicate higher probabilities.
Experimental details are offered in Appendix A.4.1.
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Figure 5: An illustration of the
proposed carry-over parameterization
technique. In this example, C = 7,
ℓ = 3, and b = 2. The condi-
tional distribution pθ(y

i
0|yt) is defined

in Eq. (7). Softmax distributions are
formed by normalizing the correspond-
ing logit outputs highlighted in yellow.

This new diffusion process operates on an augmented set Ỹ ≜ Y∪{m}. For each token, the number of
intermediate states introduced by f and the diffusion process is given by |Ỹℓ|−|X̃ | = (b+1)ℓ−(C+1).
Proposition A.3 ensures that this number is always positive. This property allows MDM-Prime
to learn smooth transitions via a rich set of intermediate states. Moreover, Proposition A.1 and
Eq. (A5) formally establish that the number of idle steps decreases as ℓ increases, which guarantees
an improved model utilization of MDM-Prime during the reverse diffusion process.

3.2 Parameterization

In this section, we discuss our implementation for pθ(yi
0|yt), which comprises a decoder for modeling

the distribution of yi
0 and an encoder for processing the input yt. We begin by outlining the decoder

design, followed by a description of the encoder.

Decoder Design via Joint Probability. A straightforward approach to implementing pθ(y
i
0|yt)

is to factorize it as
∏ℓ

j=1 pθ(y
i,j
0 |yt), modeling each component with a softmax distribution. While

this factorization allows for easy application of the carry-over parameterization [9, 10] (discussed
in Section 2.2), it introduces two key challenges: (1) an independence assumption and (2) potential
generation of invalid samples. First, the factorized form pθ(y

i
0|yt) =

∏ℓ
j=1 pθ(y

i,j
0 |yt) imposes

an additional independence assumption across sub-tokens, preventing the model from capturing
dependencies between them. As shown in Fig. 4 (a), increasing the sub-token sequence length ℓ leads
to a deterioration in the sampling distribution due to this limitation. Second, since f is defined as
an injective function but not necessarily bijective (i.e., |f(X )| ≤ |Yℓ|), some samples y0 produced
by such a factorized model may not correspond to any valid x0 under the inverse mapping f−1.
For instance, when encoding the GPT-2 [5] vocabulary of C = 50, 257 classes with ℓ = 4 and
b = ⌈ ℓ

√
C⌉ = 15, the model may generate invalid sub-token sequences such as yi

0 = (14, 14, 14, 14)
during inference time, even though there is no corresponding xi

0 = 50, 624 for decoding.

To address these two issues, we propose to model the joint distributions pθ(yi
0|yt) of a sequence of

ℓ sub-tokens while explicitly zeroing out the probability mass assigned to invalid samples. This is
achieved by parameterizing only the logits of base-b encoding yi

0 ∈ f(X ) that correspond to a valid
xi
0 ∈ X , which results in exactly C entries in the logit outputs for each position i ∈ {1, · · · , L}.

Based on the above joint probability design, to further support carry-over parameterization for MDM-
Prime, the element-wise distribution should be defined as pθ(y

i,j
0 |yt) ≜ δyi,j

t
(yi,j0 ) for all position

i, j where yi,jt ∈ Y (following the end of Section 2.2). Since we parameterize the joint distribution as
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pθ(y
i
0|yt) = pθ(y

i,1
0 , · · · , yi,ℓ0 |yt), this condition is imposed on the marginal distribution as follows:

pθ(y
i,j
0 |yt) =

∑
yi,1
0 , ··· , yi,j−1

0 , yi,j+1
0 , ··· , yi,ℓ

0 ∈Y

pθ(y
i,1
0 , · · · , yi,ℓ0 |yt) ≜ δyi,j

t
(yi,j0 ). (6)

To meet this condition, the probabilities of yi
0 with any element yi,j0 that is inconsistent with yi,jt

should be explicitly set to zero. The parameterized probability can thus be defined as follows:

pθ(y
i
0|yt) =

{
exp(Eθ(y

i
0|yt))∑

yi∈V(yi
t)

exp(Eθ(yi|yt))
, if yi

0 ∈ V(yi
t),

0, if yi
0 /∈ V(yi

t),
(7)

where V(yi
t) ≜ {yi = [yi,1, · · · , yi,ℓ] ∈ f(X ) s.t. (yi,j = yi,jt ) ∨ (yi,jt = m)} denotes a set of

outputs that is consistent with yi,jt , and Eθ : Yℓ × Ỹℓ×L → R is a scalar logit. Proposition A.4
guarantees the correctness of this parameterization (i.e., Eq. (7) satisfies Eq. (6)). Consider a simple
example where C = 7, ℓ = 3, and b = 2, then V(yi

t) corresponds to the following sets:

• If yi
t = (m, m, m), then V(yi

t) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}
• If yi

t = (0, m, m), then V(yi
t) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}

• If yi
t = (0, 0, m), then V(yi

t) = {(0, 0, 0), (0, 0, 1)}
Note that (1, 1, 1) is invalid since C = 7 in this case. Some illustrative examples of pθ(yi

0|yt) are
provided in Fig. 5. As the reverse diffusion process progresses, the number of unmasked sub-tokens
in yi

t increases, leading to a substantial reduction in |V(yi
t)|. This results in a decreasing number of

candidate classes of yi
0 over time, and thus explicitly reducing uncertainty in the prediction task. From

an implementation perspective, Eq. (7) can be efficiently derived using precomputed filters indexed
by yi,jt . During the forward pass of the model, the logits of yi

0 /∈ V(yi
t) are excluded according to

these filters. Further implementation details are provided in Appendix A.2.3 and Fig. A2.

(a) MDM-Prime Architecture

…

Neural Network (𝜃)

(b) Standard MDM Architecture

…

Embedding Lookup Table (𝜃)

Lo
gi
ts…

Neural Network (𝜃)

…

Concatenation

…

Embedding Lookup Table (𝜃)

Lo
gi
ts

Figure 6: Comparison between (a) MDM-Prime and
(b) standard MDM architectures. The embedding
lookup table in (a) has fewer learnable parameters
since |Ỹ| < |X̃ | and D/ℓ < D.

Encoder Design for Processing Sub-tokens.
In contrast to the decoder, where the distri-
bution over sub-tokens yi

0 ∈ f(X ) is repre-
sented jointly using logit outputs with C en-
tries (see Figs. 5 and 6), the encoder receives
noised inputs yi

t that lie in the augmented set
Ỹℓ. Since the size of this set, |Ỹℓ|, may grow
with ℓ and typically exhibits |Ỹℓ| ≫ C (also
see Appendix A.2.2), creating an embedding
lookup table for yi

t is impractical due to the
resulting growth in the number of parameters
in it. To address this issue, we propose to
model each sub-token embedding separately
(i.e., creating a lookup table for individual
yi,jt ∈ Ỹ), followed by a merging operation
to produce a token embedding.

In our approach, a simple merging operation
based on concatenation is employed. Let D
denote the dimensionality of the token embed-
ding vector. Each sub-token is first embedded
into a vector of size D/ℓ, and the resulting ℓ embeddings are concatenated to form a D-dimensional
token embedding vector. This token embedding can then be processed by an arbitrary downstream
neural network, which allows us to reuse the standard MDM architecture. A comparison between
this design and a standard MDM architecture is shown in Fig. 6. Alternative merging strategies, such
as the Perceiver [25] cross-attention mechanism, are discussed and evaluated in Appendices A.3
and A.5.2, where we show that simple concatenation yields the best performance.

In summary, adapting a standard MDM to MDM-Prime requires only minimal architectural modifica-
tions on the embedding layer. This simple strategy preserves the overall architectural design of the
standard MDM, enabling a fair comparison with our baseline in the following experiments.
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Table 1: Zero-shot validation perplexities evaluated on seven textual datasets. Lower values corre-
spond to better performance. Methods marked with * incorporate an autoregressive formulation.
MDLM-Prime exhibits improved results on LAMBADA, PTB, and ArXiv.

LAMBADA WikiText PTB LM1B AG News PubMed ArXiv
ARM* [9] 51.28 25.75 82.05 51.25 52.09 49.01 41.73

BD3-LM* [13] ≤50.03 ≤31.31 ≤96.81 ≤60.88 ≤61.67 ≤42.52 ≤39.20
EDLM-coAR* [12] ≤50.04 ≤28.31 ≤89.73 ≤60.23 ≤57.94 ≤46.31 ≤39.02

SEDD [7] ≤49.86 ≤34.28 ≤100.09 ≤68.20 ≤62.09 ≤41.89 ≤38.48
EDLM-NCE [12] ≤46.92 ≤30.77 ≤93.21 ≤63.19 ≤60.02 ≤41.80 ≤36.63

MDLM [9] ≤47.52 ≤32.83 ≤95.26 ≤67.01 ≤61.15 ≤41.89 ≤37.37
MDLM-Prime (ℓ = 2) ≤30.91 ≤27.93 ≤74.81 ≤55.50 ≤63.21 ≤33.32 ≤25.44
MDLM-Prime (ℓ = 3) ≤27.75 ≤27.42 ≤60.13 ≤42.69 ≤62.58 ≤41.14 ≤24.71
MDLM-Prime (ℓ = 4) ≤24.44 ≤23.86 ≤53.98 ≤38.02 ≤59.44 ≤48.64 ≤25.83
MDLM-Prime (ℓ = 6) ≤25.80 ≤26.87 ≤62.62 ≤45.36 ≤60.16 ≤59.09 ≤25.19
MDLM-Prime (ℓ = 8) ≤25.23 ≤25.77 ≤53.77 ≤38.00 ≤64.89 ≤54.50 ≤25.79

4 Experiments

This section presents empirical evaluations to examine the effectiveness of the proposed method. We
first report results in the text generation domain in Section 4.1. Then, we provide comparisons on the
image generation benchmarks in Section 4.2.

4.1 Text Generation

Configuration. In this set of experiments, models are trained on the OpenWebText (OWT)
dataset [11]. The data are tokenized using the GPT-2 tokenizer [5], which defines L = 1, 024 and
C = 50, 257. The Masked Diffusion Language Model (MDLM) [9] is adopted as our baseline, and the
experimental setup is consistent with [9]. Prime with different ℓ is applied to enhance its performance,
and our method is denoted as MDLM-Prime in this section. We also include comparisons with
several recent works [7, 10, 12, 13]. In MDLM [9], MDLM-Prime, and all other recent methods [7,
9, 10, 12, 13], the core model architecture, i.e., the ‘Neural Network (θ)’ component in Fig. 6, is a
diffusion transformer (DiT-B) [26] with rotary positional embeddings [27]. The model contains 130M
non-embedding parameters. No temperature is applied to the output probabilities during training and
test time. Detailed hyperparameters are offered in Appendix A.4.3. Additional results, including
ablation studies and efficiency evaluation, are provided in Appendices A.5.2 and A.5.5.

Table 2: PPL and ISR evaluation on OWT.
Methods marked with * incorporate an
autoregressive formulation. The symbol ↓
represents that lower values correspond to
better performance. MDLM-Prime with
ℓ ≥ 3 outperforms prior methods.

PPL (↓) ISR
ARM* [9] 17.54 -

BD3-LMs* [13] ≤20.73 -
EDLM-coAR* [12] ≤17.58 -

SEDD [7] ≤24.10 -
GenMD4 [10] ≤21.80 -

EDLM-NCE [12] ≤21.52 -
MDLM [9] ≤22.98 36.77%

MDLM-Prime (ℓ = 2) ≤17.90 13.52%
MDLM-Prime (ℓ = 3) ≤16.36 4.97%
MDLM-Prime (ℓ = 4) ≤15.62 1.83%
MDLM-Prime (ℓ = 6) ≤15.36 0.25%
MDLM-Prime (ℓ = 8) ≤15.48 0.03%

Improvements to Likelihood Evaluation. We eval-
uate the models’ ability to capture the data distribution
using the perplexity (PPL) metric [28]. Table 2 reports
PPL on OWT, along with the idle step ratio (ISR), which
is defined as the proportion of idle steps relative to the
total sampling steps and is computed using Eq. (A6). We
observe that as ℓ increases, MDLM-Prime achieves lower
PPL, with performance converging when ℓ ≥ 4. Since
ISR also converges when ℓ ≥ 4, this trend suggests
that ISR can serve as an indicator of improved likeli-
hood modeling ability. We provide a further analysis of
the relationship between performance and ISR, with a
guideline for selecting ℓ, in Appendix A.2.4. Moreover,
MDLM-Prime with ℓ ≥ 3 outperforms ARM, MDM-
based approaches [7, 9, 10, 12], and their hybrid vari-
ants [13, 12] by a noticeable margin in terms of PPL,
indicating that incorporating intermediate state repre-
sentations allows MDLM-Prime to model data likeli-
hood more effectively. Instead of following recent ap-
proaches [12, 13] that leverage an autoregressive formulation to enhance MDM performance, MDLM-
Prime maintains an order-agnostic framework while achieving superior performance on textual data.

Improvements to Generalizability to Unseen Text Data. With the models trained on OWT, we
then examine their generalizability to unseen textual datasets. To assess the models’ generalizability

7



Table 3: FID and IS evaluation on CIFAR-10. The
arrow symbols ↑ / ↓ represent that higher / lower
results correspond to better performance.

CIFAR-10
Discrete

Method FID (↓) IS (↑)
MDM (NFE=512) 4.66 9.09
MDM-Mixture (NFE=512) 4.80 9.22
MDM-Prime (NFE=512) 3.26 9.67
PixelCNN [35] 65.93 4.60
D3PM Absorb [20] (NFE=1,000) 30.97 6.78
D3PM Gauss. [20] (NFE=1,000) 7.34 8.56
CTDD-DG [36] (NFE=1,000) 7.86 8.91
Tau-LDR [22] (NFE=1,000) 3.74 9.49
Discrete FM [23] (NFE=1,024) 3.63 -

Continuous
NCSN [37] 25.32 8.87
Continuous FM [38] 6.35 -
Bit Diffusion [39] 3.48 -
StyleGAN+ADA [17] 3.26 9.74
DDPM [18] 3.17 9.46

Table 4: FID and IS evaluation on ImageNet-32.
The arrow symbols ↑ / ↓ represent that higher /
lower results correspond to better performance.

ImageNet-32
Discrete

Method FID (↓) IS (↑)
MDM (NFE=1,024) 7.91 11.60
MDM-Mixture (NFE=1,024) 8.08 11.56
MDM-Prime (NFE=1,024) 6.98 11.65

Continuous
QC-NCSN++ [40] 19.62 9.94
NDM [41] 17.02 -
DDPM [18] 16.18 -
MSGAN [42] 12.30 -
i-DODE (SP) [43] 10.31 -
i-DODE (VP) [43] 9.09 -
Stochastic Interp. [44] 8.49 -
Soft Trunc. DDPM [45] 8.42 11.82
ScoreFlow (subVP) [19] 8.87 -
ScoreFlow (VP) [19] 8.34 -
Continuous FM [38] 5.02 -

across diverse text domains, we report PPL on a suite of commonly used zero-shot benchmarks,
including LAMBADA [29], WikiText [30], Penn Treebank (PTB) [31], 1 Billion Word Benchmark
(LM1B) [32], AG News [33], and Scientific Papers (PubMed and ArXiv subsets [34]). The results
are reported in Table 1. MDLM-Prime exhibits superior results on LAMBADA, PTB, and ArXiv,
and achieves comparable performance to ARM on WikiText. While it underperforms ARM on AG
News, the overall results highlight its superior generalizability across multiple domains. Furthermore,
our ablation study in Appendix A.5.2 reveals that the carry-over parameterization plays an important
role in enhancing zero-shot performance, offering improvements on both LAMBADA and PubMed.

4.2 Image Generation

Configuration. In this set of experiments, models are trained and evaluated on the CIFAR-10 [15]
and ImageNet-32 [16] datasets. For both datasets, the dimensionality is set to L = 32 × 32 × 3,
with C = 256 corresponding to pixel intensity values. The core model architecture is adapted
from the ablated diffusion model (ADM) [46], which contains 114M parameters and is the same as
that used in [23]. Sample quality is evaluated using the widely adopted Fréchet Inception Distance
(FID) [14] and Inception Score (IS) [47] metrics. Experimental details are provided in Appendix A.4.2.
Additional results are presented in Appendices A.5.5 and A.5.6.
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Figure 7: FID and ISR evaluated under different ℓ
on CIFAR-10. NFE denotes the number of function
evaluations during sampling.

Improvements to Sample Quality. We
first compare MDM-Prime with varying val-
ues of ℓ against the baseline configuration (i.e.,
ℓ = 1). Due to the relatively small number of
classes in the image experiments, we addition-
ally explore the case of ℓ = 2/3, where pixel
values are merged into super-pixels, resulting
in b = 2/3

√
256 = 4, 096 discrete classes in

one of the experimental settings. As shown in
Fig. 7, the configuration with ℓ = 2 achieves
the best FID scores and exhibits a relatively
low ISR compared to that of ℓ = 1 and 2/3.
While the settings with ℓ = 3 and ℓ = 4 per-
form comparably to the baseline, we observe
that models with lower ISR are less sensitive to the number of function evaluations (NFE) during
sampling, as reflected by the smaller FID performance gaps between NFE=128 and 512.
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The benchmark results are reported in Tables 3 and 4, which include two baselines, MDM and
MDM-Mixture, as well as several existing generative modeling approaches [17–20, 22, 23, 35–45].
The MDM baseline corresponds to the standard configuration with ℓ = 1, while MDM-Mixture
extends this baseline by incorporating a mixture distribution using an auxiliary variable, similar
to [48]. In this comparison, MDM-Prime adopts ℓ = 2.

As shown in the tables, MDM and MDM-Mixture are inferior to MDM-Prime. On CIFAR-10,
MDM-Prime achieves better results than the other discrete generative models while requiring fewer
NFE, and attains performance comparable to StyleGAN+ADA [17]. On ImageNet-32, MDM-Prime
demonstrates improved performance over existing continuous diffusion and score-based models (i.e.,
[18, 19, 40, 41, 43–45]), achieving an FID improvement of 1.36 over ScoreFlow (VP) [19].

C
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n

Im
pu
ta
tio
n

Figure 8: Imputation results with conditional
images obtained from CIFAR-10. MDM-Prime
generates visually coherent image variants.
More examples are provided in Appendix A.5.5.

Imputation under Partial Masking. To fur-
ther evaluate MDM-Prime’s capability for condi-
tional image generation, we conduct experiments
on image imputation. In contrast to text generation,
where the positional index j of a sub-token yi,j0
lacks explicit semantic interpretation, sub-token
positions in the image domain have a direct influ-
ence on the resulting pixel values. Specifically, the
first sub-token yi,10 has the greatest impact on deter-
mining the final pixel intensity. In this experiment,
each conditional image (denoted as ‘Condition’ in
Fig. 8) is first encoded into its corresponding sub-
token representation. The first sub-token is retained, while the remaining sub-tokens are masked
and subsequently predicted by our model. Some generated examples are shown in the ‘Imputation’
section of Fig. 8. The results demonstrate that our method can generate visually coherent images
conditioned on the preserved sub-tokens, highlighting its effectiveness in controlled image synthesis.

5 Related Works

The general framework of discrete diffusion models was first introduced by [21], where the authors
explored modeling binary data using a diffusion process. This framework was extended to real-
world applications, such as text and image generation, by the authors in [20], who proposed various
perturbation strategies to implement diffusion processes with discrete noise. The authors in [22]
proposed generalizing this framework as Continuous-Time Markov Chains (CTMC). Inspired by the
success of scaling MDM for text generation [7], some works [9, 10, 49] explored simplifications of
the training objective of discrete diffusion models with latent variables represented using masked
tokens. Other studies [23, 50] investigated learning approaches based on a broader class of latent
representations formulated through flow matching.

Building on the theoretical foundation of MDM, several enhancement techniques [12, 13, 23, 48, 51–
53] have been proposed. In [13], the authors proposed an interpolation between ARM and MDM to
capture the left-to-right structure in textual data. In [12], an ARM was employed as an energy-based
function to guide the sampling process of an MDM, resulting in improved performance. Other
works [23, 51, 52] modified the sampling process of MDM to selectively remask certain unmasked
predictions to enhance sample quality. In addition, the authors in [48, 53] explored distillation
techniques designed to reduce the number of sampling steps while maintaining sample quality.

Another line of research has explored the use of diffusion models with continuous noise distributions
(i.e., Gaussian) for modeling discrete data. Representative methods include [39, 54–58]. Among
these works, Bit Diffusion [39] shares similarities with our approach. In their method, discrete data
are first encoded into bit representations, and a continuous diffusion model (with Gaussian kernels)
is trained to generate these encodings. The generated outputs are then quantized back into discrete
tokens. However, due to its reliance on quantization, the model’s likelihood becomes intractable,
which leads to its inability to directly capture the distribution of discrete data.
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6 Conclusion

Scientific progress has continually reshaped our understanding of what constitutes the most basic
units of matter. Physicists initially believed that atoms were elementary units of matter. This view
changed with the discoveries of the electron, the atomic nucleus, and eventually the development
of the standard model [59], which describes fundamental particles, their interactions, and how they
combine to form atoms. In the context of generative models, we proposed Prime, a method to
decompose the elementary unit of discrete data–tokens–into fine-grained subcomponents. MDM-
Prime establishes a principled framework for perturbing and reconstructing discrete data using
sub-token representations. Experimental results on both text and image generation tasks demonstrated
that sub-token representations provide a more expressive modeling paradigm. We believe that this
framework holds potential for addressing real-world problems that require fine-grained and precise
modeling of discrete data.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims presented in the abstract and the introduction section reflect
the contributions of this paper. The key theoretical results are discussed in Section 3. The
experiments in Section 4 provide empirical justification for these claims. Finally, Section 6
summarizes both the theoretical and empirical contributions of this work.

Guidelines:
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A Appendix

In this appendix, we provide additional analyses and experiments. Section A.1 presents some
theoretical properties of masked diffusion models (MDM). Section A.2 offers an analysis of the
proposed Partial masking scheme (Prime). Section A.3 outlines a number of architectural designs of
MDM augmented with Prime (i.e., MDM-Prime). Section A.4 details the experimental configurations.
Section A.5 reports additional experimental results. Section A.6 summarizes the limitations of this
work. Finally, Section A.7 discusses the potential impacts of this work. The following table of
contents summarizes the structure of the main manuscript and this appendix.
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A.1 Analyses of Masked Diffusion Processes

In this section, we examine two properties of MDM. In Section A.1.1, we derive an analytical
expression for the expected number of idle steps in the reverse diffusion process. In Section A.1.2, we
show that the mutual information between the latent variables and data exhibits a linearly decaying
trend with respect to the scheduling function over time.

A.1.1 Expected Number of Idle Steps

In Section 1, we show that MDM may have significant number of idle steps during the sampling
process. In this section, we derive a closed-form formula for calculating the expected number of idle
steps and provide the reason why Prime must reduce this number.
Proposition A.1. Let L be the token sequence length, T be the total number of discretized timesteps
for the sampling process, and αt ∈ [0, 1] be a strictly decreasing scheduling function in t ∈ [0, 1].
Suppose the sampling timesteps are indexed by k ∈ {0, · · · , T − 1}, the expected number of idle
steps η, i.e., the entire token sequence remains unchanged between consecutive steps, is given by:

η =

T−1∑
k=0

[
1−

(
α1− k+1

T
− α1− k

T

)]L
. (A1)

Proof. At reverse step k → k+ 1, a token remains unchanged if it is already unmasked at t = 1− k
T

or it is masked at t = 1 − k
T while remaining masked t = 1 − k+1

T . According to the forward
diffusion process, the probability that a single token remains unchanged is given by:

α1− k
T︸ ︷︷ ︸

(i)

+(1− α1− k
T
)︸ ︷︷ ︸

(ii)

·
1− α1− k+1

T

1− α1− k
T︸ ︷︷ ︸

(iii)

= 1−
(
α1− k+1

T
− α1− k

T

)
, (A2)

where (i) is the probability of observing an unmasked token at time t = 1 − k
T (i.e., Eq. (1)), (ii)

is the probability of observing a masked token at time t = 1 − k
T (i.e., Eq. (1)), and (iii) is the

probability that the masked token remains masked at time t = 1− k+1
T (i.e., Eq. (3)). For all L tokens

to remain unchanged, the joint probability is
[
1−

(
α1− k+1

T
− α1− k

T

)]L
. Due to the linearity of

expectation, the expected number of idle steps can be calculated by accumulating Eq. (A2) for all
k ∈ {0, · · · , T − 1}, and is written as:

T−1∑
k=0

[
1−

(
α1− k+1

T
− α1− k

T

)]L
. (A3)

Eq. (A1) enables the computation of idle steps given the sequence length L, the number of discretized
steps T , and the scheduling function αt. Consider the commonly used linear schedule αt =
1− t [9, 10]. Substituting the difference α1− k+1

T
− α1− k

T
= 1

T into the formula yields:

T−1∑
k=0

(
1− 1

T

)L

= T

(
1− 1

T

)L
(i)
≈ Te−

L
T , (A4)

where (i) holds when T is large. For example, when T = 1,024 and L = 1,024, we obtain
Te−L/T ≈ 1024 · e−1 ≈ 376, indicating that approximately 37% of the sampling steps are idle in
the discrete diffusion process.

Moreover, since 1 −
(
α1− k+1

T
− α1− k

T

)
∈ [0, 1], the quantity in Eq. (A1) decreases as the token

sequence length L increases. In MDM-Prime, the sequence length is extended by a factor of ℓ > 1
due to the introduction of sub-token sequences, and the number of idle steps ηPrime is given by:

ηPrime =

T−1∑
k=0

[
1−

(
α1− k+1

T
− α1− k

T

)]L×ℓ

. (A5)
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Figure A1: Comparison between idle steps obtained from simulation results and analytical computa-
tion. Solid curves and their corresponding shaded areas represent the mean and variance from ten
independent simulation runs. Dashed lines indicate the theoretical values.

Given identical T and αt, ηPrime in Eq. (A5) is always smaller than η in Eq. (A1). Therefore,
employing Prime must result in fewer idle steps. To support this observation and verify the correctness
of Eqs. (A1) and (A5), Fig. A1 compares our simulation results with the analytical values computed
using η and ηPrime. The results demonstrate agreement between the theoretical and empirical estimates.

Based on the above definition of expected idle steps, we define the idle step ratio (ISR) as the
proportion of expected idle steps relative to the total number of sampling steps T :

1

T

T−1∑
k=0

[
1−

(
α1− k+1

T
− α1− k

T

)]L×ℓ

. (A6)

ISR quantifies the model utilization in diffusion processes. To evaluate it, we can fix the scheduling
function αt and choose a large T (i.e., to approximate the continuous-time limit T → ∞). In our
experiments presented in Section 4, we set T as 1, 024.

A.1.2 Mutual Information Scheduling

In this section, we show that the MDM framework implements mutual information scheduling (i.e.,
I(xi

t;x
i
0) = αtH(xi

0)). This relationship was initially established in prior works [20, 21], where a
linear scheduling function αt = 1− t was considered as a special case. In our work, we extend this
result to arbitrary scheduling functions αt ∈ [0, 1], as formally stated in Proposition A.2.
Proposition A.2. Let αt ∈ [0, 1] be the scheduling function and q(xi

t|xi
0) be the distribution defined

in Eq. (1). The mutual information between xi
0 and xi

t satisfies:

I(xi
t;x

i
0) = αtH(xi

0). (A7)

Proof. The mutual information can be decomposed as follows:

I(xi
t;x

i
0) = H(xi

t)−H(xi
t|xi

0) (A8)

The following proof expands both entropy terms to derive Eq. (A7).

(i) H(xi
t|xi

0): Given xi
0, the distribution over xi

t is:

q(xi
t|xi

0) = αt δxi
0
(xi

t) + (1− αt) δm(x
i
t). (A9)

Its entropy can be expressed as the entropy of a Bernoulli:

H(xi
t|xi

0) = H(Bernoulli(αt)) = −αt logαt − (1− αt) log(1− αt). (A10)

(ii) H(xi
t): The element-wise distribution pt(x

i
t) can be written as follows:

pt(x
i
t) =

∑
xi
0∈X

p0(x
i
0) · q(xi

t|xi
0)

=
∑
xi
0∈X

p0(x
i
0)
[
αtδxi

0
(xi

t) + (1− αt)δm(x
i
t)
]
=

{
αt p0(x

i
t), if xi

t ∈ X ,

1− αt, if xi
t = m

.

(A11)
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The element-wise entropy can be expanded using Eq. (A11) as follows:

H(xi
t) = −

∑
x∈X̃

pt(x) log pt(x)

= −

(∑
x∈X

αtp0(x) log(αtp0(x))

)
− (1− αt) log(1− αt)

= −

(
αt

∑
x∈X

p0(x) log p0(x)

)
− αt logαt − (1− αt) log(1− αt)

= αtH(xi
0) +H(Bernoulli(αt)).

(A12)

According to Eqs. (A10) and (A12), the mutual information is expressed as follows:

I(xi
t;x

i
0) = H(xi

t)−H(xi
t|xi

0)

= αtH(xi
0) +H(Bernoulli(αt))−H(Bernoulli(αt))

= αtH(xi
0).

(A13)

A.2 Analyses of the Partial Mask Scheme

In this section, we provide thorough analyses of MDM-Prime. Section A.2.1 derives a formula for
computing the negative log-likelihood (NLL). Section A.2.2 shows that Prime yields a positive number
of intermediate states. Section A.2.3 examines the correctness of the carry-over parameterization for
Prime. Finally, Section A.2.4 offers a guideline for selecting the target length ℓ.

A.2.1 Negative Log Likelihood Calculation

In Section 3, we introduce an invertible function f : XL → Yℓ×L to transform between two vectors,
x0 and y0. In this section, we detail the computation of the expected negative log-likelihood (NLL)
of MDM after applying this transformation. We begin by revisiting the derivation of Eq. (4), and then
extend it to our proposed objective in Eq. (5).

The expected NLL of x0 is expressed as Epdata(x0)[− log pθ(x0)], which can be approximated using a
variational upper bound [9, 10, 12] as expressed as follows:

Epdata(x0)[− log pθ(x0)] ≤ Epdata(x0)

[∫ 1

0

α′
t

1− αt
Eq(xt|x0) [log pθ(x0|xt)] dt

]
(i)
= Epdata(x0)

[∫ 1

0

α′
t

1− αt
Eq(xt|x0)

[
L∑

i=1

log pθ(x
i
0|xt)

]
dt

]
,

(A14)

where (i) is derived from pθ(x0|xt) =
∏L

i=1 pθ(x
i
0|xt). Due to the introduction of f , the expected

NLL expressed by MDM-Prime is written as Epdata(x0)[− log pθ ◦ f(x0)], where pθ ◦ f(x0) is the
parameterized pmf as discussed in Section 3.1. This expectation can be estimated via Eq. (5), as
derived below:

Epdata(x0)[− log pθ ◦ f(x0)] = Epdata◦f−1(y0)[− log pθ(y0)]

≤ Epdata◦f−1(y0)

[∫ 1

0

α′
t

1− αt
Eq(yt|y0) [log pθ(y0|yt)] dt

]
(i)
= Epdata◦f−1(y0)

[∫ 1

0

α′
t

1− αt
Eq(yt|y0)

[
L∑

i=1

log pθ(y
i
0|yt)

]
dt

]
,

(A15)
where (i) is due to pθ(y0|yt) =

∏L
i=1 pθ(y

i
0|yt) following the derivation in Eq. (A14). To sample

data points from the distribution pdata ◦ f−1, one can first sample x0 ∼ pdata and then transform
it to y0 = f(x0) according to the change-of-variable principle for probability distributions. This
formulation enables us to estimate the expected NLL of MDM-Prime.

25



A.2.2 Number of Intermediate States

In Section 3.1, we claim that the number of intermediate states can be quantified as |Ỹℓ| − |X̃ | =
(b+1)ℓ− (C+1) and that this number is always positive. To verify this, we provide Proposition A.3.

Proposition A.3. Let Ỹ = {0, · · · , b− 1} ∪ {m} and X̃ = {0, · · · , C − 1} ∪ {m}. Let ℓ > 1 be a
positive integer and let b = ⌈ ℓ

√
C⌉. The number of intermediate states is a positive integer:

|Ỹℓ| − |X̃ | > 0. (A16)

Proof. The number of original tokens with the mask token is:

|X̃ | = C + 1. (A17)

The total number of possible sub-token sequences (including the mask) is:

|Ỹℓ| = (b+ 1)ℓ
(i)
=

ℓ∑
k=0

(
ℓ

k

)
bℓ−k = bℓ +

(
ℓ

1

)
bℓ−1 + · · ·︸ ︷︷ ︸
>0

+1 > bℓ + 1, (A18)

where (i) is derived by the binomial theorem. Since b = ⌈ ℓ
√
C⌉ by construction, we have bℓ ≥ C,

and thus:
(b+ 1)ℓ > bℓ + 1 ≥ C + 1. (A19)

By rearranging this equation, we conclude that (b+ 1)ℓ − (C + 1) > 0. As a result,

|Ỹℓ| − |X̃ | = (b+ 1)ℓ − (C + 1) > 0. (A20)

To illustrate how the number of intermediate states (i.e., |Ỹℓ| − |X̃ |) may increase with ℓ, we define
a function M(ℓ, C) = (b + 1)ℓ − (C + 1) and evaluate its value under different ℓ. As a concrete
example, consider C = 256 and ℓ ∈ {2, 4, 8}. Substituting these values yields M(2, 256) = 32,
M(4, 256) = 368, and M(8, 256) = 6304. This example highlights that Prime can produce a
substantial number of intermediate states by selecting ℓ. This growth of M(ℓ, C) motivates our
design choice for the embedding lookup table discussed in Section 3.2, where we mention the
infeasibility of directly modeling the embeddings for yi

t.

A.2.3 Carry-over Parameterization

In Section 3.2, we introduced the carry-over parameterization for MDM-Prime. In this section, we
justify this approach by presenting Proposition A.4 and discussing its practical implementation.

Proposition A.4. Let V(yi
t) denote the set of yi

0 such that each yi,j0 is consistent with yi,jt ∈ Y , i.e.,

V(yi
t) ≜ {yi = [yi,1, · · · , yi,ℓ] ∈ f(X ) s.t. (yi,j = yi,jt ) ∨ (yi,jt = m)}. (A21)

Given the parameterized distribution pθ(y
i
0|yt) expressed as follows:

pθ(y
i
0|yt) =

{
exp(Eθ(y

i
0|yt))∑

yi∈V(yi
t)

exp(Eθ(yi|yt))
, if yi

0 ∈ V(yi
t),

0, if yi
0 /∈ V(yi

t),
(A22)

the marginal distribution pθ(y
i,j
0 |yt) of Eq. (A22) satisfies the carry-over condition for all position

i, j where yi,jt ∈ Y:

pθ(y
i,j
0 |yt) =

∑
yi,1
0 , ··· , yi,j−1

0 , yi,j+1
0 , ··· , yi,ℓ

0 ∈Y

pθ(y
i,1
0 , · · · , yi,ℓ0 |yt) = δyi,j

t
(yi,j0 ). (A23)

Proof. Given i, j such that yi,jt ∈ Y , according to Eq. (A21), yi,j0 = yi,jt is a necessary condition for
non-zero probability:

pθ(y
i
0|yt) > 0 ⇒ yi,j0 = yi,jt . (A24)
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Figure A2: An illustration of (a) the computation procedure of the carry-over parameterization and
(b) the corresponding carry-over condition (i.e., Eq. (A23)) on the marginal distributions. In this
example, C = 7, ℓ = 3, and b = 2 (i.e., binary encodings). In (a), the filters are precomputed and
stored in a lookup table indexed by yi,jt . These filters exclude logits corresponding to yi

0 with yi,j0 that
are inconsistent with yi,jt ∈ Y (i.e., yi,1t = 1 and yi,3t = 0). For each position j ∈ {1, · · · , ℓ}, a filter
is queried from the lookup table using yi,jt . Then, a combined filter is then constructed by applying
a logical AND operation across ℓ filters. Finally, the softmax distribution pθ(y

i
0|yt) is established

by normalizing the filtered logits. In (b), the resulting distribution pθ(y
i
0|yt) satisfies the carry-over

condition for yi,jt ∈ Y as defined in Eq. (A23).

In other word, if yi,j0 ̸= yi,jt for any j is observed, then pθ(y
i
0|yt) = 0. This indicates that the

marginal pθ(y
i,j
0 |yt) =

∑
yi,1
0 , ··· , yi,j−1

0 , yi,j+1
0 , ··· , yi,ℓ

0 ∈Y pθ(y
i
0|yt) = 0 for any yi,j0 ̸= yi,jt .

Since
∑

yi,j
0 ∈Y pθ(y

i,j
0 |yt) =

∑
yi
0∈Yℓ pθ(y

i
0|yt) = 1 by Eq. (A22), pθ(y

i,j
0 |yt) = 1 for yi,j0 = yi,jt .

Therefore, the marginal distribution corresponds to the Kronecker delta function as follows:

pθ(y
i,j
0 |yt) =

{
1, if yi,j0 = yi,jt ,

0, if yi,j0 ̸= yi,jt .
= δyi,j

t
(yi,j0 ). (A25)

To understand this parameterization method, we examine its implementation in practice. The goal
is to ensure that the marginal distribution pθ(y

i,j
0 |yt) =

∑
yi,1
0 , ··· , yi,j−1

0 , yi,j+1
0 , ··· , yi,ℓ

0 ∈Y pθ(y
i
0|yt)

is zero whenever the candidate state yi
0 contains any yi,j0 that is inconsistent with yi,jt (i.e., when

yi,j0 ̸= yi,jt , as discussed in the proof of Proposition A.3). Since the marginal probability is a sum
over probabilities, it follows that each individual probability pθ(y

i
0|yt) should be zero for yi

0 with yi,j0

that is inconsistent with yi,jt . To enforce this, we use filters with C entries to exclude the output logits
of invalid yi

0. For example, suppose C = 7, ℓ = 3, and b = 2. If yi
t = (yi,1t , yi,2t , yi,3t ) = (1, m, 0),

we create ℓ filters (i.e., Filters 1-3) as follows:

• For yi,1t = 1, Filter 1 excludes yi
0 where the first position is not 1.

• For yi,2t = m, Filter 2 excludes no state since no condition is needed to be satisfied at this position.

• For yi,3t = 0, Filter 3 excludes yi
0 where the third position is not 0.

We then combine these element-wise filters using a logical AND operation, since any violation of
an element-wise condition leads to an invalid yi

0 that has inconsistency with yi,jt . The resulting
combined filter excludes yi

0 /∈ V(yi
t), retaining only yi

0 ∈ V(yi
t). Subsequently, we apply a softmax

over the logits corresponding to yi
0 ∈ V(yi

t) to define the probability distribution pθ(y
i
0|yt). An

illustrative example of this procedure is depicted in Fig. A2.

For efficient implementation, we precompute and cache a lookup table with size |Ỹ| × |f(X )| =
(b+1)×C, which contains all possible filters for yi,jt . During the forward pass, we query this lookup
table using yi,jt to retrieve the corresponding filters, which are then applied to the logits to zero out
the probability of yi

0 /∈ V(yi
t).
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Figure A4: (1)-(8) PPL of MDLM-Prime with different ℓ evaluated on OWT and seven zeroshot
datasets. (9) FID of MDM-Prime across varying ℓ evaluated on CIFAR-10. Lower values indicate
better performance. Red stars highlight the ℓ values corresponding to the elbow points of the ISR
curves (see Fig. A3). These points yield near-optimal performance across most evaluations.

A.2.4 Analysis of the Target Length

Prime introduces a parameter ℓ that controls the target length of sub-token sequences. This section
analyzes its impact on performance and provides a practical guideline for selecting an appropriate
value of ℓ.
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Figure A3: ISR under different choices of ℓ. The
elbow points are highlighted using red stars.

Section 4 demonstrates that, although increas-
ing ℓ generally correlates with improved perfor-
mance, the relationship is not strictly monotonic,
i.e., larger values of ℓ do not always lead to bet-
ter results. As larger values of ℓ typically induce
more intermediate states (see Section A.2.2), we
hypothesize that the associated increase in learn-
ing complexity may degrade performance under
fixed model capacity (e.g., model size). This ob-
servation motivates our development of a strategy
for identifying an effective ℓ.

Through empirical analysis across both image and
text datasets, we find that selecting ℓ near the el-
bow point of the Idle Step Ratio (ISR) curve (i.e., Eq. (A6)) yields strong performance. Fig. A3
presents ISR curves for various values of ℓ, with elbow points indicated by red stars. The relationship
between ISR elbow points and MDM-Prime’s performance is depicted in Fig. A4, where these points
align with near-optimal results across most evaluations. Based on the above findings, we recommend
ℓ = 2 for image datasets and ℓ = 4 for text datasets.

A.3 Model Architecture Designs

This section compares a number of architectural variants of MDM-Prime, with a focus on the design
choices for the output logit layer and the input embedding layer. For reference, the standard MDM
architecture is shown in Figs. A5 (o1) and (i1), which illustrate its output logit and embedding
layers, respectively. In standard MDM, the output layer produces L logits with C entries, while the
embedding layer processes inputs xt ∈ X̃L to produce L D-dimensional embeddings.

Output Logit Layer. In Section 3.2, we introduce two alternative designs for the output layer. The
first design assumes independence among sub-tokens, leading to a factorized form of the probability
distribution: pθ(yi

0|yt) =
∏ℓ

j=1 pθ(y
i,j
0 |yt). This formulation can be implemented using ℓ×L logits,

each with b entries, as illustrated in Fig. A5 (o3). The second design (i.e., Fig. A5 (o2)) models a joint
distribution over sub-token sequences, producing L logits with C entries, consistent with the standard
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Figure A5: Comparison of input and output layer designs in MDM and MDM-Prime. The top row
illustrates three types of output layer designs: (o1) standard MDM, (o2) MDM-Prime with joint
distribution, and (o3) MDM-Prime with independent distribution. The bottom row shows three
embedding layer designs: (i1) standard MDM embedding layer, (i2) MDM-Prime embedding layer
with concatenation, and (i3) MDM-Prime embedding layer with Perceiver [25] cross-attention.

MDM architecture shown in Fig. A5 (o1). As discussed in Section 3.2, we adopt the joint distribution
design over the factorized alternative (Fig. A5 (o3)) due to two key limitations of the latter: (1) the
independence assumption, and (2) the potential to generate invalid samples. These issues hinder
the model’s ability to capture complex data distributions (see Fig. 4) and limit its applicability to
real-world generative tasks.

Embedding Layer. As discussed in Section 3.2, creating an embedding lookup table for yi
t is

impractical due to the resulting growth in the number of parameters in it (also see Section A.2.2).
To address this, we model sub-token embeddings by creating a lookup table for yi,jt ∈ Ỹ . Since
the input and output sequences differ in length, we introduce a simple merging strategy based on
concatenation, as illustrated in Fig. A5 (i2). In this approach, each sub-token is embedded into a
vector of size D

ℓ , and the ℓ sub-token embeddings are then concatenated to form D-dimensional
token-level embeddings.

Fig. A5 (i3) shows an alternative design based on Perceiver [25], which employs cross-attention with
learnable latent queries to merge sub-token embeddings. In this design, each sub-token is embedded
into a D-dimensional vector, producing ℓ× L sub-token embeddings. These sub-token embeddings
are then used as the key and value matrices in a cross-attention layer, while a learnable query matrix
Qθ ∈ RD×L retrieves the token-level embeddings. The resulting outputs are L D-dimensional
token embeddings. Although this approach is well-established for processing high-dimensional
inputs in transformer-based models, it introduces substantial computational overhead [25]. Moreover,
empirical results in Appendix A.5.2 show that it does not lead to performance gains. Based on these
observations, we adopt the simple concatenation-based merging strategy in MDM-Prime’s embedding
layer.

A.4 Experimental Setups

In this section, we provide additional implementation details and the hyperparameter settings used in
our experiments. The configurations for the two-dimensional synthetic experiment, image generation
experiment, and text generation experiment are presented in Sections A.4.1, A.4.2, and A.4.3,
respectively.
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A.4.1 Two-Dimensional Example

Dataset. The experiment in Fig. 4 is conducted on a synthetic dataset constructed by converting pixel
values from an image in the Cat dataset [60] into a two-dimensional probability histogram. The image
is first cropped to 512 × 512 pixels and converted to grayscale. A probability distribution is then
constructed according to the normalized pixel intensity values. In this example, XL = {0, . . . , 511}2,
where L = 2 and C = 512. The sample x0 ∈ XL represents the coordinate of the figure (512× 512).

Training and Implementation Details. The network architecture is a four-layered multilayer percep-
tron (MLP) with hidden dimension 512 and Swish [61] as its activation function. The models are
trained using the Adam optimizer [62] with a learning rate of 1× 10−3 and a batch size of 4, 096.
The training is performed on a single NVIDIA A40 GPU with 48 GB memory.

A.4.2 Image Generation

Datasets and Evaluation Methods. The experiments described in Section 4 are conducted on
the CIFAR-10 [15] and ImageNet-32 [16] datasets. For both datasets, L = 32 × 32 × 3 and
C = 256. The CIFAR-10 training set contains 50, 000 images, while the ImageNet-32 dataset
comprises 1, 281, 149 training images and 49, 999 validation images. The sample quality is assessed
using the Fréchet Inception Distance (FID) [14] and Inception Score (IS) [47], implemented via the
torchmetrics.image.fid and torchmetrics.image.inception libraries, respectively. The
corrector steps [22, 23] are adopted during sampling. For CIFAR-10, FID is computed using the
training set as the reference distribution, whereas for ImageNet-32, the validation set serves as the
reference distribution. This evaluation protocol is consistent with prior works [17–20, 22, 23, 35–45].

Training and Implementation Details. Our model architecture follows [23] to adapt the ablated
diffusion model (ADM) [46], which has a U-Net structure with a symmetric design. It comprises
a downsampling module, a bottleneck module, and an upsampling module. Each module contains
multiple residual convolutional blocks, with attention layers incorporated at selected resolutions. The
downsampling and upsampling modules use an embedding dimension of 96 and channel multipliers
of [3, 4, 4], respectively. The depth of each block is set to 5. For attention layers, the number of
head channels is set to 64. The network is optimized using the Adam optimizer [62] with β1 = 0.9,
β2 = 0.999, and a learning rate of 1 × 10−4. The scheduling function is defined as a third-order
polynomial, given by αt = (1 − t)3. Following prior work [20, 23], the coefficient α′

t

1−αt
in the

loss term is omitted during training to improve sample quality. As for sampling, temperature
scheduling [23], corrector steps [23], and timestep scheduling [10] are incorporated into both MDM
and MDM-Prime to enhance performance. The sampling parameters are selected via grid search (see
Section A.5.1). The model is trained with a batch size of 512 for 4, 250 epochs on CIFAR-10 and
1, 000 epochs on ImageNet-32. The training is performed on eight NVIDIA L40 GPUs with 48 GB
memory.

A.4.3 Text Generation

Datasets and Evaluation Methods. The training is performed on the OpenWebText (OWT)
dataset [11]. Text data is tokenized using the GPT-2 tokenizer [5], which defines L = 1, 024
and C = 50, 257. Since some sequences in OWT exceed the maximum length L, they are con-
catenated with the <eos> token as a separator and then wrapped into segments of length 1, 024. In
addition, the first and last tokens of each sequence are set to <eos>. As OWT does not include an
official validation split, we follow the procedure in [9] by reserving the last 100, 000 samples for
validation. The above data preprocessing and evaluation setup is consistent with [9].

Training and Implementation Details. Following prior works [7, 9, 10, 12, 13], our model archi-
tecture is a diffusion transformer (DiT) [26] with rotary positional embeddings [27]. The model
consists of 12 DiT blocks with a hidden dimension of 768 and 12 attention heads, consistent with
the configuration used in [9]. A dropout rate of 0.1 is applied throughout training. The scheduling
function is defined as αt = 1− t. The network is optimized using the AdamW optimizer [63] with
β1 = 0.9, β2 = 0.999, and a linear learning rate warm-up from 0 to 3× 10−4. The model is trained
with a batch size of 128 for 1 million steps, corresponding to a total of 262 billion tokens [9]. To
facilitate efficient training, the model is first trained without the carry-over parameterization for 900K
iterations, and then enables this mechanism in the final 100K iterations (see Section A.5.3). The
training is performed on eight NVIDIA L40 GPUs with 48 GB memory.
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Table A1: Zero-shot validation PPL evaluated on seven textual datasets. Lower values correspond
to better performance. Methods marked with * incorporate an autoregressive formulation. MDLM-
Prime with carry-over parameterization achieves improved results on LAMBADA and PubMed.

Carry-over LAMBADA WikiText PTB LM1B AG News PubMed ArXiv
ARM* [9] - 51.28 25.75 82.05 51.25 52.09 49.01 41.73
MDLM [9] ✓ ≤47.52 ≤32.83 ≤95.26 ≤67.01 ≤61.15 ≤41.89 ≤37.37

MDLM-Prime (ℓ = 2) ≤34.61 ≤31.94 ≤91.85 ≤65.25 ≤63.74 ≤63.51 ≤25.95
MDLM-Prime (ℓ = 2) ✓ ≤30.91 ≤27.93 ≤74.81 ≤55.50 ≤63.21 ≤33.32 ≤25.44
MDLM-Prime (ℓ = 3) ≤34.55 ≤31.00 ≤55.46 ≤41.15 ≤62.51 ≤171.74 ≤29.44
MDLM-Prime (ℓ = 3) ✓ ≤27.75 ≤27.42 ≤60.13 ≤42.69 ≤62.58 ≤41.14 ≤24.71
MDLM-Prime (ℓ = 4) ≤25.79 ≤23.52 ≤49.90 ≤37.70 ≤59.65 ≤210.96 ≤23.19
MDLM-Prime (ℓ = 4) ✓ ≤24.44 ≤23.86 ≤53.98 ≤38.02 ≤59.44 ≤48.64 ≤25.83
MDLM-Prime (ℓ = 6) ≤25.89 ≤25.86 ≤52.42 ≤37.65 ≤56.68 ≤497.39 ≤24.99
MDLM-Prime (ℓ = 6) ✓ ≤25.80 ≤26.87 ≤62.62 ≤45.36 ≤60.16 ≤59.09 ≤25.19
MDLM-Prime (ℓ = 8) ≤32.20 ≤26.01 ≤53.27 ≤38.05 ≤65.63 ≤218.99 ≤28.63
MDLM-Prime (ℓ = 8) ✓ ≤25.23 ≤25.77 ≤53.77 ≤38.00 ≤64.89 ≤54.50 ≤25.79

A.5 Supplementary Experiments

In this section, we present additional experimental results. Section A.5.1 discusses a technique for
tuning the hyperparameters based on relative FID values. Section A.5.2 provides ablation studies
on the embedding layer designs and the carry-over parameterization method. Section A.5.3 reports
the time cost per training iteration under different values of ℓ. Section A.5.4 compares the training
curves of MDLM, MDLM-Prime, and ARM. Section A.5.5 presents qualitative results for both the
text and image generation tasks. Finally, Section A.5.6 provides visualization of the sampling process
of MDM-Prime.

A.5.1 Hyper-Parameter Tuning based on Relative FID
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Figure A6: FID versus relative FID.

Since computing the FID score is computationally inten-
sive, we tune hyperparameters (e.g., batch size, dropout
rate, scheduling coefficients αt, and sampling parame-
ters) using FID scores estimated from a smaller number
of samples. We refer to this approximation as relative
FID. Empirically, we find that relative FID is positively
correlated with the standard FID computed on the full
dataset. Fig. A6 illustrates this trend, comparing relative
FID computed with 2,048 samples to standard FID com-
puted with 50,000 samples. In our experiments, we use
relative FID to guide hyperparameter search for both the
baseline methods (i.e., MDM and MDM-Mixture) and our
proposed method, and report their best-performing results
in the benchmark comparison.

A.5.2 Ablation Study

Table A2: Perplexity (PPL) evalua-
tion on OWT. The symbol ↓ repre-
sents that lower values correspond
to better performance.

PPL (↓)

Carry-over ✓
ℓ = 2 ≤18.04 ≤17.90
ℓ = 3 ≤16.43 ≤16.36
ℓ = 4 ≤15.67 ≤15.62
ℓ = 6 ≤15.43 ≤15.36
ℓ = 8 ≤15.48 ≤15.45

Carry-over Parameterization. In this subsection, we eval-
uate the effectiveness of the carry-over parameterization. Ta-
ble A2 compares the performance of MDLM-Prime trained
with and without carry-over on the OWT dataset. It is observed
that incorporating the carry-over parameterization consistently
leads to slightly improved performance across different values
of ℓ. In contrast, when the model is evaluated using unseen
data from zeroshot datasts, the difference becomes significant.
A comparison is offered in Table A1. This parameterization
method consistently offers performance gains on LAMBADA.
In addition, MDLM-Prime without the carry-over parameteriza-
tion has noticeably inferior performance (i.e., difference > 30)
on specific text domains such as PubMed. We hypothesize
that the carry-over parameterization, by explicitly removing predictions of y0 inconsistent with yt,
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Table A3: The average runtime calculated based
on ten training iterations. The results are reported
in seconds per iteration. The 95% confidence
intervals of the results are around 0.05.

Runtime (sec./iter.)

Carry-over ✓

ℓ = 1, b = 50, 257 1.06 e-1 1.14 e-1
ℓ = 2, b = 225 1.06 e-1 1.29 e-1
ℓ = 3, b = 37 1.11 e-1 1.34 e-1
ℓ = 4, b = 15 1.10 e-1 1.43 e-1
ℓ = 6, b = 7 1.13 e-1 1.75 e-1
ℓ = 8, b = 4 1.07 e-1 2.12 e-1

Table A4: FID scores evaluated under different
NFE on the CIFAR-10 and ImageNet-32 bench-
marks. Lower values correspond to better perfor-
mance. MDM-Prime is trained with ℓ = 2.

CIFAR-10
NFE 128 256 512

MDM 7.55 5.00 4.66
MDM-Prime 5.22 3.73 3.26

ImageNet-32
NFE 128 256 512

MDM 9.55 8.24 8.12
MDM-Prime 7.85 7.61 7.31

Table A5: Ablation results on the validation perplexities of MDLM-Prime (ℓ = 6). The model is
trained and evaluated with or without the carry-over parameterization. Lower perplexity indicates
better performance.

Carry-over Dataset
Train Evaluation OWT LAMBADA WikiText PTB LM1B AG News PubMed ArXiv

≤15.43 ≤25.89 ≤25.86 ≤52.42 ≤37.65 ≤56.68 ≤497.39 ≤24.99
✓ ≤15.41 ≤24.36 ≤24.25 ≤49.77 ≤37.35 ≤56.48 ≤63.58 ≤24.81

✓ ✓ ≤15.36 ≤25.80 ≤26.87 ≤62.62 ≤45.36 ≤60.16 ≤59.09 ≤25.19

effectively reduces the uncertainty in the model’s outputs and therefore enhances generalization to
unseen domains.

Embedding Layer Designs. In this subsection, we compare the performance of MDM-Prime when
trained using two embedding-merging strategies: the concatenation-based design (denoted as (o2))
and the cross-attention-based design (denoted as (o3)), both of which are detailed in Appendix A.3.
We first evaluate these approaches on the image generation task using the CIFAR-10 dataset with
ℓ = 2. The concatenation-based design (o2) achieves a superior FID score of 3.26, compared to the
cross-attention-based design (o3), which yields an FID score of 3.98. The results indicate that the
concatenation-based design offers better overall performance across both modalities.

A.5.3 Runtime Evaluation

Table A3 presents a comparison of the time required to optimize the model parameterized with and
without the carry-over condition (i.e., Eq. (6)) under different choices of ℓ. We observe that larger
values of ℓ incur higher computational costs for the setup with carry-over condition. The increase in
runtime arises from the filter lookup table calculation required by the carry-over parameterization (see
Section A.2.3). Due to the 48 GB memory limitation of our available GPUs, parallelized querying of
the filter lookup table (with a batch size of 128) often results in out-of-memory errors. To mitigate
this issue, we implement the lookup operations sequentially in our text experiments, which introduces
additional computational overhead as ℓ increases. To maintain a runtime comparable to the baseline,
we first train the model without the carry-over parameterization for 900K iterations, and then enable
this mechanism during the final 100K iterations. Alternatively, the carry-over parameterization can
be applied only at inference time. As shown in Table A5, this setup—training without the carry-over
parameterization but evaluating with it—achieves performance comparable to, or slightly better than,
that of the model trained and evaluated with the carry-over parameterization, while avoiding the
higher training cost. Nonetheless, to preserve the mathematical formality of our proposed framework,
we adopt the carry-over parameterization during both training and evaluation.

As for inference efficiency, although idle sampling steps in masked diffusion models can be executed
efficiently using cached model output probabilities (since the model is timestep-independent [9]),
determining the unmasked elements (i.e., resampling) during these steps still incurs computational
overhead, even without extra forward passes. Consequently, the sampling cost of MDLM grows
substantially when targeting a higher effective NFE (i.e., NFEs that cannot be cached). As shown
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Table A6: Runtime and effective NFE evaluation of MDLM and MDLM-Prime (ℓ = 4).

MDLM MDLM-Prime (ℓ = 4)
Effective NFE 768 1,003 1,023 768 1,003 1,023

Discretized Timesteps 1,685 25,000 500,000 772 1,022 1,044
Runtime (sec.) 8.87 23.30 159.81 8.72 12.31 12.58

Figure A7: The training and evaluation curves of ARM, MDM, and MDM-Prime (ℓ = 4).

in Table A6, MDLM requires 500,000 discretized steps to achieve an effective 1,023 NFE, severely
limiting sampling efficiency. In contrast, MDLM-Prime (ℓ = 4) attains the same effective NFE with
only 1,044 discretized steps, highlighting its substantially improved efficiency.

A.5.4 Training Curves

Fig. A7 compares the training and evaluation curves of MDLM, MDLM-Prime (ℓ = 4), and ARM.
MDLM-Prime (ℓ = 4) achieves the lowest evaluation PPL among the three models.

A.5.5 Sample Quality Evaluation

Image Generation. In this subsection, we provide additional quantitative and qualitative results
to assess sample quality in image generation tasks. Table A4 presents a comparison of FID scores
between MDM-Prime and its baseline (i.e., a standard MDM). The results show that MDM-Prime
outperforms MDM across different number of function evaluations (NFE). In addition, Fig. A19
provides a number of imputation examples, while Fig. A20 presents qualitative results showcasing
multiple uncurated samples generated by MDM-Prime.
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Figure A8: Gen PPL evaluated using LLaDA-
8B (left) and GPT-2 Large (right). Lower values
correspond to better performance. MDLM is
evaluated using their officially released code.

Text Generation. In this subsection, we present
additional sample quality evaluations for text gen-
eration tasks. Fig. A8 presents the generative per-
plexity (Gen PPL) results for ARM, MDLM, and
MDLM-Prime. Gen PPL is calculated by evalu-
ating the perplexity of generated samples using
a pretrained large language model. To ensure a
comprehensive assessment, we report Gen PPL
obtained from both order-agnostic models (e.g.,
LLaDA-8B [8]) and order-specific models (e.g.,
GPT-2 Large [5]). Following [24], we adopt 64-
bit floating-point precision to enhance sampling
accuracy. We observe opposite trends depending
on the pretrained model: MDLM and MDLM-
Prime outperform ARM under LLaDA-based Gen
PPL, whereas ARM achieves lower Gen PPL than
MDLM and MDLM-Prime when evaluated using GPT-2.
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Figure A9: Visualization of the sampling processes of MDM-Prime with ℓ = 2 (top), ℓ = 4 (middle),
and ℓ = 8 (bottom). The models are trained on CIFAR-10.

In addition, to qualitatively evaluate MDLM-Prime, we present both unconditional and conditional
generation samples. Unconditional generation results are shown in Fig. A18. For conditional
generation, we provide the model with prefix (i.e., Fig. A13) and suffix (i.e., Fig. A14) texts sourced
from an online article describing Rabindranath Tagore’s poems (link), and assign the model to
generate the middle content. Figs. A15-A17 present some samples generated using MDLM-Prime.

A.5.6 Visualization of Sampling Processes

Unlike continuous diffusion models (e.g., [19, 37]), visualizing the sampling processes of MDM and
MDM-Prime is nontrivial due to the presence of masked tokens and sub-tokens. To qualitatively
analyze the generation behaviors of MDM and MDM-Prime, we develop a visualization technique that
illustrates the evolution of samples throughout the diffusion process. Instead of directly visualizing
the latent variables (i.e., xt for MDM or yt for MDM-Prime), we visualize the model’s predictions
of the final unmasked sample. Specifically, we show x0 ∼ pθ(· |xt) for MDM, and x0 = f−1(y0)
where y0 ∼ pθ(· |yt) for MDM-Prime.

Fig. A9 shows the evolution of samples x0 generated by MDM-Prime trained with different values of
ℓ on CIFAR-10. For each setup, we capture a snapshot every 25 timesteps, with the total number of
function evaluations (NFE) fixed at 500. The snapshots are displayed from left to right, depicting the
progressive refinement from noisy initialization to the final output.

The text generation processes are presented in Figs. A10-A12. Since the coarse-to-fine transitions of
x0 are less visually discernible in text generation, we additionally illustrate the denoising progression
using token-wise masked ratios. In the figures, darker shades of blue indicate a higher degree of
masking, while lighter colors suggest that a token is closer to its final predicted state. The results
demonstrate that MDLM-Prime with larger values of ℓ enables a more fine-grained denoising process.
In contrast, the original MDLM employs a binary masking scheme, where each token is either masked
or unmasked. The results thus highlight the property of the proposed Prime method.
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A.6 Limitations

A core assumption in MDM is that tokens (i.e., x1
0, · · · , xL

0 ) are conditionally independent given
the latent representation xt, i.e., xi

0 ⊥⊥ xj
0 | xt for i ̸= j. Under this assumption, many recent

works [8–10, 20, 22–24] factorize the conditional distribution as pθ(x0|xt) =
∏L

i=1 pθ(x
i
0|xt),

which leads to the sum of log-probability terms in the evidence upper bound (i.e., Eq. (4)). While this
factorized parameterization offers significant advantages in sampling and training efficiency, some
recent studies [12, 64] have shown that it may degrade performance due to its inability to model
inter-token dependencies.

In this work, we adopt the same conditional independence assumption as prior studies [8–10, 20, 22–
24], and extend it to our sub-token formulation. Specifically, we assume yi

0 ⊥⊥ yj
0 | yt for i ̸= j, and

accordingly factorize the conditional distribution as pθ(y0|yt) =
∏L

i=1 pθ(y
i
0|yt). As discussed in

Section 3, further factorizing each sub-token sequence prediction as pθ(yi
0|yt) =

∏ℓ
j=1 pθ(y

i,j
0 |yt)

leads to a clear drop in performance. Therefore, we retain the inter-token factorization (i.e.,
pθ(y0|yt) =

∏L
i=1 pθ(y

i
0|yt)) to strike a balance between accuracy and computational efficiency.

A.7 Broader Impacts and Future Works

This paper investigated whether discrete data can be effectively represented and reconstructed using
sub-token representations. We proposed MDM-Prime as a simple yet effective instantiation of this
idea. Given its superior performance across both image and text generation tasks, MDM-Prime holds
potential for positive societal impact. To support broader scientific contributions, we outline two
potential directions for extending the proposed framework and guiding future research in this area:

Learnable Transformations for Discrete Data. MDM-Prime adopts base-b encoding as an invert-
ible mapping to extend discrete data into longer sequences of sub-tokens. Analogous to normalizing
flows in the continuous domain (e.g., [65, 66]), which parameterize invertible transformations using
carefully designed model architectures, we anticipate that this discrete transformation can likewise be
parameterized and optimized during training to encode the semantics of each token. As invertible
modeling in the discrete domain remains underexplored, it presents opportunities to advance discrete
generative modeling.

Capturing Inter-token Dependencies. Our current decoder implementation follows prior works [8–
10, 20, 22–24], which assume conditional independence between tokens (see Section A.6). While
recent approaches [12, 64] have proposed methods to relax this assumption, they require training
an additional autoregressive model to guide the sampling process of MDM, resulting in substantial
computational overhead. Hence, developing a more efficient method for MDM to model inter-token
joint distributions represents a promising direction for future work.
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Figure A10: Visualization of the sampling processes of MDLM. The masked ratio is measured on a
per-token basis, with higher values indicated by darker shades of blue. The samples are generated
with prefix and suffix presented in Figs. A13 and A14, respectively. Further experimental details are
shown in Section A.5.5.

36



Masked Ratio
0.0 1.00.5

𝑡 = 1.000

𝑡 = 0.000

𝑡 = 0.875

𝑡 = 0.750

𝑡 = 0.625

𝑡 = 0.500

𝑡 = 0.375

𝑡 = 0.250

𝑡 = 0.125

Figure A11: Visualization of the sampling processes of MDLM-Prime (ℓ = 2). The masked ratio is
measured on a per-token basis, with higher values indicated by darker shades of blue. The samples are
generated with prefix and suffix presented in Figs. A13 and A14, respectively. Further experimental
details are shown in Section A.5.5.
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Figure A12: Visualization of the sampling processes of MDLM-Prime (ℓ = 4). The masked ratio is
measured on a per-token basis, with higher values indicated by darker shades of blue. The samples are
generated with prefix and suffix presented in Figs. A13 and A14, respectively. Further experimental
details are shown in Section A.5.5.
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10 timeless poems by Rabindranath Tagore

Born on May 7, 1861 the Bard of Bengal, Rabindranath Tagore has inspired generations of people
through his writings, poetry and thoughts. Tagore was much ahead of his time and his works were
loved not only in India but across the world. His much-acclaimed work 'Gitanjali', which was
first published in 1910 and later translated and published into English in 1912, won him the
prestigious Nobel Prize in Literature in 1913 for "his profoundly sensitive, fresh and beautiful
verse, by which, with consummate skill, he has made his poetic thought, expressed in his own
English words, a part of the literature of the West." Infact, Rabondranath Tagore was the first
non-European to ever win a Nobel Prize!

Remembering Tagore on his 160th birth anniversary today, here we list down some of his timeless
poems that continue to resonate his creative charm and are still as relevant. These poems reflect
upon different moods and are a must read for all. Read on!

Figure A13: Prefix text used for conditional sample generation.

Waiting

The song I came to sing

remains unsung to this day.

I have spent my days in stringing

and in unstringing my instrument.

The time has not come true,

the words have not been rightly set;

only there is the agony

of wishing in my heart….

I have not seen his face,

nor have I listened to his voice;

only I have heard his gentle footsteps

from the road before my house…..

But the lamp has not been lit

and I cannot ask him into my house;

I live in the hope of meeting with him;

but this meeting is not yet

Friend

Art thou abroad on this stormy night

on thy journey of love, my friend?

The sky groans like one in despair.

I have no sleep tonight.

Ever and again I open my door and look out on

the darkness, my friend!

I can see nothing before me.

I wonder where lies thy path!

By what dim shore of the ink-black river,

by what far edge of the frowning forest,

through what mazy depth of gloom art thou threading

thy course to come to me, my friend?

Figure A14: Suffix text used for conditional sample generation.
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Travis's

When you embrace

Son

this time you ask

When I plead my secret

to you, you won't hear the light.

It is the quiet decker of my life of love.

When I went

which I said

returns, and went on,

the world will tell me the same time.

Do you like to think as this

or live like now?

I will have a song in the Adverse.

I will have a story for you

Figure A15: Conditional sample generated using MDLM-Prime (ℓ = 2).

Dreaming

Our thoughts are

a spark in the depths of our life, but

They really seem to be no new.

Dreaming

That is a stranger.

That is something new to me.

That makes me more than I could.

That makes me think more than I could have.

I can always think with my own light,

And so I see the edge of heaven and even~sappiness and hope.~

In the magic of my mind, I can go along in my lightness.

Figure A16: Conditional sample generated using MDlM-Prime (ℓ = 4).

The Promise

I think about my life when I make me the vessel of life.

Garnings, deeply

At the hinge of my life,

it’s the most tranquil, exposed world.

....

It is the very moment of such a thing

I walk up to my house every time night or fall.

Leave me.

I am a lifetime,

I come.

I begin to see my mind and into my mind.

The passion and death of the night do not think of the other away.

Figure A17: Conditional sample generated using MDLM-Prime (ℓ = 6).
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<|endoftext|> argument that such modeling is one of the world’s thinkers for climate change.

“People can read the website. We are going to examine them,” she said. “Each day, there are
companies that only 20 -- 40 people approve of fossil fuel emissions. The huge zonal wave that
ice is releasing into the atmosphere. Everything here is…having is back and it is coming.”

For the political pro-energy group, SoundEarth and the Climate Collective think that it will lead
to a stronger understanding of pollution, which could help make the greenhouse issue a premier
educational problem. The studies are expected to increase this further: “For example, plants have
the potential to respond to climate change. This is why we as a world need to encourage the kinds
of applications that can damage infrastructure, up in trees, up in trenches, up in towers.”

“We are most aggressive skeptics,” Bec Lindy said. They claim that the pollution is used from
storage in the air to take out high-cost water straight from fossil fuels. Carbon dioxide
emissions, at times, swamp energy use from companies. This begins with gravity, and through large
amounts of rain in mountains, caused storms. The trees also host a public debate over whether
it’s used when placing organic synchias and plants to actually remove emissions from the minerals
of which it is created, as well as changing water to be natural.

While many of those skeptics are even aware that such pollution is from a scientific study, the
Baker Effect, they may be receiving a new level of threat from the state.

Beegy said this is something she’s hopeful about and suspect that it will continue to grow,
especially after solar wind projects shrink the risk of air pollution. The solar Effect has its
course changed.

“We see a public concern as knowing how we can affect the climate," Lindy said. “We have a set of
models called climate feedback that we are able to predate the climate on. So if we need to, it
forces us to actively reduce output to actually increase carbon pollution. They use some of the
efficiency we already study as sources of government resources.

Conners is working on a supplementary Energy Initiative Decamp to study new complete wind
refrigerators at the University of California that will be charged and responsive. House
estimates on their new solar panels will likely serve over 33,000 panels, consisting of
residential, “basement cost” scenarios that could be significantly set up if rug leaks in the
open-up.

“The University is moving forward with the capital energy,” Lindy said.

“For 2 years, we haven’t worked in the BLy’s first experiment,” agrees Professor Mark Clerock,
director of the National Institute of Reliousness and Turiative Research Unit at Hampshire
University. “So whether it takes the 9 hours per second test is six-figure! Even 2 miles wouldn’t
have been predicted.”

Professor Jeanne Morul Institute of California at California State adds, and stops saying that
this will only accelerate anyway. Any skeptics say the BLy’s changes sheet this might give even
more freedom to Colorado.

In approving the research, the Democle Climate Council published a statement that the additional
study “taught mixing severe weather events. In forests, burn the volume. Therefore the magnitude
to severe consequences of weather could weaken by comparison.” Professor Thomas Muirema,
Professor A at West Texas’s Gulf Observatory, is aiming to do the research this year. When the
gets through extreme weather, he attributes one of the biggest implications of his discoveries.
“It is the poisoning of our income – I don’t see them taking any action and still don’t have the
opportunity to see pollution. I don’t think their companies have anything to start doing,” he
said. “We’ll have to deal with it again on whether its power … but we can see what consequences
for them before and whether that is thought locally entirely on what comes with power would be an
investigation.”

We are thinking NOE to the chemicals, methane that comes from traditional coal emitting plants,
the standard statement is funny.

If someone wants to try to do all the environmental damage with it, it can’t afford the
Department of Energy. But, government of the coalition has tried to extend those limits to 95
percent. It shows credit to Bob Marshall measures used by his governments decades ago. It raises
some questions they cannot use plants made from traditional coal but can do get a product at a
high cost. Should they get more money from the subsidies or others from their locally grown
stations or the food grains required to comply? Their limits would be at least the biggest in the
world.

The Marshall says that they send farms in rais-<|endoftext|>

Figure A18: Unconditional samples generated by MDLM-Prime with 1,024 sampling steps.
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Figure A19: Uncurrated imputation results generated by MDM-Prime with CIFAR-10 images as
conditions.
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(a) CIFAR-10

(b) ImageNet-32

Figure A20: (a) CIFAR-10 and (b) ImageNet-32 samples generated by MDM-Prime with NFE=512.
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