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Abstract. Generative Adversarial Networks(GANs) have received con-
siderable attention due to its outstanding ability to generate images.
However, training a GAN is hard since the game between the Gener-
ator(G) and the Discriminator(D) is unfair. Towards making the com-
petition fairer, we propose a new perspective of training GANs, named
Consistent Latent Representation and Reconstruction(CLR-GAN). In
this paradigm, we treat the G and D as an inverse process, the
discriminator has an additional task to restore the pre-defined latent code
while the generator also needs to reconstruct the real input, thus obtain-
ing a relationship between the latent space of G and the out-features of
D. Based on this prior, we can put D and G on an equal position during
training using a new criterion. Experimental results on various datasets
and architectures prove our paradigm can make GANs more stable and
generate better quality images(31.22% gain of FID on CIFAR10
and 39.5% on AFHQ-Cat, respectively). We hope that the proposed
perspective can inspire researchers to explore different ways of viewing
GANs training, rather than being limited to a two-player game. The code
is publicly available at https://github.com/Petecheco/CLR-GAN.

Keywords: Generative Adversarial Networks · Image generation · La-
tent space consistency

1 Introduction

Generative models are an important part of computer vision, they can be widely
used in fields such as image generation [12,16, 20, 24], video editing [3, 5, 48, 50],
style transfer [9,27,55] and even drug discovery [7,35]. Among various generative
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Fig. 1: Sketch map of the proposed method, we proposed two additional learning
objectives to consider D and G as inverse process. The top is latent consistency loss
where D tries to rebuild the latent distribution of G. The bottom is reconstruction loss
where G tries to restore the original real images.

models, Generative Adversarial Networks(GANs) have received considerable at-
tention due to its remarkable performance in generating realistic images [12].
A conventional GAN comprises of two individual networks named generator(G)
and discriminator(D). While training a GAN, the generator aims to produce in-
distinguishable images, and the discriminator tries to figure out the synthesized
images from the input images. By the competition between D and G, ideally,
we can eventually train a generator that can recover the real distribution and
generate high quality samples.

However, it is well known that training a GAN is hard and unstable [26,37]. In
general, the instability of training GANs can be attributed to the inequal set up
of generator(G) and discriminator(D). Specifically, in the traditional paradigm,
the training process is formulated as a two-player game. But in fact, the dis-
criminator seems to dominant the game [2,47]. In practice, the discriminator can
easily identify the fake samples from a relatively early stage of the training and
maintain this advantage during the whole training, making the generator hard to
converge [51]. Many attempts have been done to improve the stability of training
GANs. Previous studies attempted to find new metric functions [1, 14, 32, 45],
enhance the generator’s ability to generate [4,21,40], or use data augment meth-
ods [19,30]. These solutions have shown some degree of improvement on training
stability, but they did not fundamentally change the core relationship between
the generator and discriminator, while ignoring the essence of dynamic balance
within GANs architecture. The competition between the generator and discrim-
inator is still unfair. In addition, existing methods have not fully utilized the
structural information of the latent space, which limits the further improvement
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of GANs generation ability. Therefore, improving the training of GANs still re-
mains an unsolved and challenging problem.

In this paper, contrast to existing methods, we proposed a novel perspective
of training GANs. By rethinking the training process and network architecture
of GANs. We found that the generator and the discriminator got optimized in a
considerably large latent space, resulting unstable training and inconsistency be-
tween the generator and the discriminator. While traditional methods primarily
focus on adjusting network architectures or tuning hyperparameters to stabilize
training [19, 40]. Our method is to view the generator and the discriminator as
two inverse components. As shown in Fig. 1. In particular, the discriminator
can be regarded as outputting a realness score and extracting samples to the
latent representation space at the same time. And the generator not only gener-
ates images but restores source images from the extracted latent representation.
By constraining the generator and discriminator with these additional tasks, we
make the discriminator’s representation latent space closer to the generator’s
latent space, thus making the generator and the discriminator more consistent,
leading a fairer game between the generator and the discriminator. This not
only provides a more robust framework for training GANs but also opens up
new possibilities for improving GANs training from different aspects.

2 Related Work

2.1 Improving GANs through discriminators

As we mentioned above, due to the limitations of original training objective
[1, 12], the discriminator tends to easily take over the competition during the
early stage of training. Prior works have been devoted to improving the inequal-
ity using modified discriminators. Dist-GAN [45] decelerate the convergence of
the discriminator by constructing a reconstruction constrain using a auxiliary
autoencoder. Wang et al. [47] combined Grad-CAM [42] with GANs to improve
the spatial awareness of the generator using the discriminator as a regularizer,
lessening the information gap between D and G. DynamicGAN [51] controls
the strength of the discriminator by gradually increasing D’s learning capacity,
thereby preventing the discriminator from being overly dominant in the early
stages of training. AdaptiveMix [32] shrinks the feature space of the discrim-
inator by training using constructed hard samples, reducing the feature space
of the discriminator and making training easier. There are also some data aug-
mentation methods that enhance model training by providing more data to the
model [19, 46]. However, the above methods have not changed the inner prop-
erties of training. All gradient during the optimization process is provided by
D, so D always occupies a more dominant position during the training process,
which will prevent further optimization of the model. While our model, based on
limiting D, also constrains D to optimize based on the gradient provided by G.
This allows both G and D to optimize themselves using the gradients provided
by each other, making the game fairer.
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2.2 Latent space of GANs

The latent space of GANs has always been a popular research area due to its
rich semantic information. Multi-Code GAN [13] combines multiple latent fea-
ture maps with adaptive channels to improve the quality of image reconstruction.
ClusterGAN [38] combines latent space encoding and one-hot encoding to obtain
a better clustering result. StyleMapGAN [23] utilizes latent space as an accurate
feature embedding, improving the performance of image editing and interpola-
tion tasks. Although latent space plays an important role in various downstream
tasks. But to our best knowledge, there has been no previous work that di-
rectly uses the latent space of GANs as a component to optimize the training
of GANs. In our proposed method, we have directly incorporated latent space
into the training process of GANs as an additional constrain. The experimental
results show that applying this method can effectively improve the quality and
diversity of generated images.

2.3 Differences to Reconstruction-based Methods

Prior works have explored the application of reconstruction-based methods within
GANs. HoloGAN [39] and PiGAN [6] utilize latent reconstruction to learn the
3D-aware image representations. GLeaD [2] takes advantage of image recon-
struction to improve the training dynamics of GANs. However, these methods
either lack a specific focus on stabilizing GANs training or solely concentrate
on improving the generator without considering the discriminator. Specifically,
in the GLeaD paradigm, given an image, we expect D to extract representative
features that can be adequately decoded by G to reconstruct the input, however,
this paradigm only improves the generator, the discriminator still controls the
game. To address these limitations, we use the latent spatial code extracted by
the discriminator and reconstruction loss to achieve stable GAN training and
generate higher quality and more diverse images. Thus making GANs training
more efficient and practical.

3 Method

As we mentioned before, we try to augment the training fairness of GANs via
considering the generative process of the generator (G) and the discriminative
process of the discriminator (D) as inverse to each other, thereby enhancing
the stability and quality of generated samples. To better understand this new
perspective, we first review the conventional formulation of GANs in Sec. 3.1. To
obtain a fairer training, Sec. 3.2 introduces our new training paradigm named
Consistent Latent Representation that considers G and D as an inverse process.
Furthermore, in Sec. 3.3, we also propose a Real Image Reconstruction strategy
to achieve mutual connection between generator and the discriminator. Then
Sec. 3.4 explained our method from a regularization perspective. Finally, Sec. 3.5
gives the full optimization objective and shows the pseudo code of the new
training paradigm.
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3.1 Preliminary

A GAN usually consists of two components: a generator G(·) and a discrimina-
tor D(·). The generator aims to map a latent code z into an image, while the
discriminator tries to distinguish the generated image G(z) from the real one x.
The conventional GAN trains via a two-player game by optimizing the learning
objective as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] (1)

where pz(z) and pdata(x) represent a random latent representation and real data
distribution respectively.

Goodfellow et al . [12] have proved that the optimal solution to this objective
is that G can eventually recover the distribution of source data and D can not
separate the generated images out from real images. However, the game between
two players is not fair since in Eq. 1 that the gradient for optimizing all comes
from D, which makes the discriminator a natural dominant [2]. Thus the ideal
solution is hard to reach in practice. [11, 47]

3.2 Consistent Latent Space

We aim to improve the stability of GANs by introducing a novel perspective,
that is to consider the generate and discriminate as an inverse process. Recall
that in a regular GAN paradigm, the generator and discriminator are treated
as two individual component. While in our proposed view, we have refined the
concepts of generator and discriminator and consider them as an inverse process.
In our perspective, the generator maps a latent representation to the real data
distribution, and the discriminator not only outputs a realness score, but it also
transform the high-dimensional distribution into a trainable latent space. By
measuring the distance between these two spaces, we can improve GANs training
in the following aspects: First, we can to some extent make the generator and
discriminator behave more consistent in the mapping process. Second, since the
discriminator needs to align with the generator, it can be seen as constraining the
discriminator using generator, which makes the game not completely dominated
by discriminator. The detailed implementation is shown in Fig. 2.

Extracting Latent Representation through D. In the training of GANs,
the discriminator plays a role of downsample high-dimensional data. For any
discriminator, it can be divided into two parts, the first part is the feature
extractor denoted as f(·) which extracts features from high-dimensional data
samples, another serves as a affine from extracted features to realness score to
tell whether the input is true(real samples) or false(generated samples). For any
input data x and latent code z, the whole discriminate process can be denoted
as follows:

D(x) = R(f(x)) (2)
D(z) = R(f(G(z))) (3)
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Fig. 2: Detailed implementation of Consistent Latent Representation. Given a latent
code z, the generator maps z to an image. The synthesised image was then got dis-
criminated by the discriminator, outputting a realness score and a reconstructed latent
code z′. The Consistent Latent loss is calculated between the real latent z and the
reconstructed latent z′. The right part specifically shows the architecture of D.

where f(·) is the feature extractor module of discriminator and R(·) is the affine
module to transform feature space to the realness score.

Through this discriminate process, we can transform structural high-dimensional
input into feature map that contains abundant semantic information [31], thus
judging the realness of the input data. We discovered both latent code in the
generator and feature map in the discriminator contain lots semantic features,
making it possible to align the generator and discriminator using a mapping
function. The mapping function converts discriminator’s feature space to latent
space. Finally we can get a reconstructed latent code ϕ(x) from discriminator as
follows:

ϕ(x) = σ(f(x)) (4)

where x is the real input, f(·) is the feature extractor of D and σ(·) is a mapping
function that transform feature to latent space, we use an identical affine in this
paper for simplicity.

Consistent Latent Representation Loss. As we mentioned above, we now
have a real latent code(z) from the generator and a reconstructed latent code(Eq.4)
from the discriminator. The latent representation loss can be defined by mea-
suring the distance between these two latent spaces:

LCLR = Dist(ϕ(x), z) (5)

where Dist(·) is distance measurement for any two distributions. In this paper,
we use L1-Distance similar to [55] for all distance measurement, so the Lclr can
be rewritten as:

LCLR =
1

n

n∑
i=1

∥zi − ϕ(xi)∥1 (6)
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3.3 Real Image Reconstruction

As mentioned in Sec. 2, in a regular GAN, the generator optimized through the
gradient offered by discriminator. Also during the training, the generator has no
access to real data distributions, it can only update its parameters implicitly,
while the discriminator can get optimized according to real data distribution.
This unfair situation helps the discriminator converge faster at an early stage of
the training [47], thus the discriminator can not provide useful gradient in the
later stage of training, making the generator not perform well.

To solve this problem, we proposed a new strategy called Real Image Recon-
struction, which enables the generator to also get gradient from the real data
distribution. Specifically, since we have strengthened the discriminator to output
both realness and latent code in the last section, we can then use latent code as
a bridge to indirectly connect the generator with real distribution. Subsequently,
we can use the generated images for a image reconstruction task. The generator
then can utilize this gradient that comes from real distribution for better syn-
thesis, making the whole process more efficient. In practice, we can use Eq. 4 to
get the reconstructed latent code of real distributions, then we use generator for
image restoration.

Irec = G(ϕ(x)) (7)

After reconstructing the image, we can calculate the distance between real images
and reconstructed images. And for the reconstruction loss, we use a regular
from [55] as follows:

Lrec =
1

n

n∑
i=1

∥I(x)− Irec∥1 (8)

where I(x) is the source image data and Irec is the reconstructed image using
generator and reconstructed latent code.

3.4 Enhancing Training Stability via Regularization Techniques

To better understand the superiority of our method, we turn to investigate the
above training strategies from the perspective of regularization in this section.

With our method, the objective of training GANs can be rewritten as:

min
G

max
D

V (D,G) = Ex∼pdata
logD(x) + Ez∼pz log[1−D(G(z))]

+ Ex∼pdata
∥ G(D(x))− x∥ − Ex,z ∥ D(x)− z∥

(9)

The first two terms of Eq. 9 are the default training objectives for GANs,
while the third and fourth terms correspond to Latent Consistency Loss and
Real Image Reconstruction Loss, respectively. Note that these two objectives
actually appear in the form of L1 norm, and we will consider them as two types
of regularization in this section.

When optimizing networks, we actually calculate the gradients of objective
function. For the training objective we propose, the gradients can be expressed
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as:

∇θd,θgV (G,D) = Ex∼pdata
[∇θd logD(x)] + Ez∼pz

[∇θd,θg logD(1−D(G(z)))]

+ Ex∼pdata
sign(G(D(x))− x)− Ex,zsign(D(x)− z)

(10)

where sign(G(D(x))−x) and sign(D(x)−z) is simply the sign of both constrains
applied element-wise.

Next, we will discuss the role of our regularization in two different scenarios:

Training the Discriminator with a fixed Generator. When the generator
is fixed, we can consider the gradients related to the generator to be 0, so we
can obtain the gradients as follows:

∇θdV (D) = Ex∼pdata
[∇θd logD(x)]− Ex,zsign(D(x)− z) (11)

Considering the general training situation of GANs, when the discriminator
is too strong during training. The first term in the gradient tends to be large,
resulting in unstable gradient descent. However with our regularization term.
Due to the negative sign in the front, we can reduce the gradient of D using this
term, making the gradient smaller and can stable the training.

Training the Generator with a fixed Discriminator. As in the previous
case, we first write the representation for the gradient:

∇θgV (G) = Ez∼pz [∇θd,θg logD(1−D(G(z)))] + Ex∼pdata
sign(G(D(x))− x)

(12)

When the discriminator is dominating the game, it can make the first term
to become very small, making it difficult for the generator to effectively opti-
mize and generate real images. After adding a regularization term, we found an
additional training objective was given to the generator, allowing the generator
to optimize through this training objective, and continue to compete with the
discriminator instead of collapsing.

Finally, we can find that by adding two additional training objective, our
model can penalize the discriminator when it is too strong. It can optimize the
generator by providing more information through additional tasks, making the
game fairer and improving the effectiveness of image generation.

3.5 Full Objective

With the enhanced discriminator and the reconstruction guided generator, the
overall training objective can be rewritten as:

LD
′ = LD + λ1LCLR (13)

LG
′ = LG + λ2Lrec (14)
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Algorithm 1 Training a GAN with Consistent Latent Representation and Re-
construction
Require: G and our D that are initialized with random parameters.
Training data {xi}, latent variable {z}.
for t = 1 until converge do

Sample z ∼ P (Z), x ∼ P (X)
real_score, real_latent= D(x)
fake_score, fake_latent= D(G(z))
reconstruct_images = G(real_latent)
Calculate Consistent Latent Loss with Eq.(6)
Calculate Reconstruction Loss with Eq. (8)
Update D and G with Eq. (9), Eq. (10)

end for
Output: G with best training set FID.

where LG and LD are the original loss function of generator and discriminator,
Lrec and LCLR are the proposed consistent latent space distance and real im-
age reconstruction distance calculated through Eq. 6 and Eq. 8, λ1 and λ2 are
weighting coefficient of the additional loss.

With this updated objective, we can stabilize GANs training in the following
two aspects: First, we align the generator and discriminator during training
phase by assigning a consistent latent representation task for the discriminator,
which makes the game between generator and discriminator fairer. Second, we
enable the generator to get access to the real data through a reconstruction
task. This helps generator make full use of alternative information, leading to a
more realistic output. The pseudo code of our method is shown in Algorithm 1.
Extensive experiments result in Sec 4. showed the effectiveness of our method.

4 Experiments

To validate the effectiveness of the proposed method, we conducted extensive ex-
periments on various GAN architectures and datasets. Sec. 4.1 first introduces
the detailed settings of our experiments. In Sec. 4.2, we proved that our method
achieves better quality and stability through quantitative evaluation on various
image generation datasets. Sec. 4.3 includes ablation study to the proposed Con-
sistent Latent loss and Reconstruction loss to better understand the designed
components. In Sec. 4.4 we prove that we can get a better feature extractor
by unsupervised classification. At last, we visualize the realness curve of D to
validate the improved fairness of GANs in Sec. 4.5. The generated samples can
be found in the Supplementary Material.

4.1 Experimental Setup

Datasets. For a more comprehensive evaluation of the proposed method, the
model was tested on low resolution images and high resolution images sepa-
rately. We used DCGAN [40] as the basic architecture for low resolution image
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Table 1: FIDs of DCGAN [40] using different learning objectives on CelebA [33] and
CIFAR-10 [25] dataset. The bold numbers indicate the best result for each dataset.

Learning Objective CelebA CIFAR-10
WGAN [1] 36.47 55.96
HingeGAN [54] 25.57 42.4
LSGAN [36] 30.76 42.01
DCGAN [40] 27.02 38.56
WGAN-GP [14] 70.28 41.86
Realness GAN-Obj.1 [49] - 36.73
Realness GAN-Obj.2 [49] 23.51 34.59
Realness GAN-Obj.3 [49] - 36.21
AdaptiveMix [32] 12.43 30.85
CLR-GAN(Ours) 13.63 23.3

generation, with CIFAR-10 [25] dataset and Celeba64×64 [33] dataset. For high-
resolution image generation, we used StyleGAN-V2 [22] as the basic architec-
ture, and test the generation ability under AFHQ Cat [8], LSUN Church [53],
and FFHQ [21] dataset corresponding to animal generation, natural scene gen-
eration, and face generation respectively.

Evaluation. During evaluation phase, we mainly used the most common Frechet
Inception Distance(FID) [15] for quantitatively represent the image generation
quality. Besides, Precision & Recall [29] is also adopted to provide more details
of the realness and diversity of the proposed model. In practice, we calculate FID
between 20K generated images and all real samples on CIFAR-10 and CelebA
dataset. While for AFHQ-Cat, LSUN-Church and FFHQ, we calculate the FID
and P&R between 50K generated images and all real samples.

Other settings. For all baselines, our experimental hyperparameters were set
according to the original paper. We used pre-trained Inception-V3 [43] as the
feature extractor for FID and P&R calculation. For the weights of the additional
loss, we set λ1 = 5 and λ2 = 0.5.

4.2 Performance on Image Generation

Low-resolution Image Generation. We first conducted experiments on low
resolution image datasets to verify the effectiveness of the proposed method. We
used DCGAN [40] as the baseline architecture and compared our method with
some well-known learning objectives on CIFAR10 and CelebA datasets.

Tab. 1 presents the results. From the perspective of FID, we can directly
see a significant margin between the proposed method and previous learning
objectives. Furthermore, compared with the recently proposed learning objective
[32], our method outperforms 24.5% on the CIFAR-10 dataset while remains a
competitive result on CIFAR-10 dataset(8% behind), which further demonstrates
the superiority of our model.
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Table 2: Comparisons on AFHQ-Cat [8], FFHQ [21] and LSUN-Church [53] with
different high-resolution image generative models. P and R denote precision and recall.
The bold numbers indicate the best result for each dataset. The blue numbers indicate
the improvements.

Method AFHQ-Cat FFHQ LSUN Church

FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑

StyleGAN-V2 [22] 7.92 0.68 0.27 3.86 0.68 0.25 4.04 0.58 0.40
LC-Reg [46] 6.70 - - 3.93 - - 4.07 - -

StyleGAN-V2-ADA [19] 6.05 0.66 0.25 4.01 0.66 0.26 4.01 0.61 0.43
StyleGAN-V2-APA [18] 4.88 0.65 0.30 3.75 0.67 0.29 3.92 0.60 0.43

StyleGAN-V2 + Ours 4.79(-3.13) 0.76 0.28 3.44(-0.42) 0.70 0.41 3.52(-0.52) 0.63 0.46
StyleGAN-V2-ADA + Ours 4.45(-0.43) 0.74 0.33 3.37(-0.64) 0.71 0.44 3.43(-0.58) 0.61 0.48

High-resolution Image Generation. To further demonstrate the effective-
ness of the proposed method, we also considered the recently proposed high-
resolution image synthesis architecture StyleGAN-V2 [22]. We compared our
method with other StyleGAN-V2 variants methods on AFHQ-Cat, LSUN Church
and FFHQ datasets, respectively. We also combined our method with recent pro-
posed works that aims to improve GANs training called StyleGAN-V2-ADA [19]
to show the compatibility of our method.

As shown in Tab. 2, there is a substantially improvement with the proposed
method on StyleGAN-V2 for both datasets, outperforming other methods with
a clear margin. We also found that combined with StyleGAN-V2-ADA, our
method can get a further improvement, achieving a better results on various
datasets. Therefore, our proposed method can improve the synthesis quality of
high-resolution images while also integrating well with previous works.

As for the Precision and Recall. The improvements among multiple datasets
are clear, indicating that our model can not only learn to generate more realis-
tic images, but also enhance the diversity of generated images, to some extent
solving the problem of insufficient diversity of conventional GANs. This may
suggest that CLR-GAN can benefit from the proposed two constrains that leads
to learning a wider distribution, thereby improving the diversity of generated
samples. More validation metrics and experimental results on the more complex
ImageNet [41] dataset are shown in the Supplementary Material.

4.3 Ablation Study

In the ablation experiment, we primarily focus on the impact of the two new
training constrains we added during training. To ensure the generality, we se-
lected both the low-resolution CIFAR-10 dataset and the high-resolution FFHQ
dataset as two baseline datasets. Recall that we can use λ1 and λ2 to control the
strength of the proposed constrains in Eq. 13. Therefore we can modify different
λ values in the ablation study to figure out the optimal values of two constrains.
We first set λ1 = λ2 = 0 to get the baseline values.
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Table 3: Ablation studies of different weights λ1 and λ2 on low-resolution CIFAR-10
dataset and high-resolution FFHQ dataset. The best FID of each dataset are marked
in bold.

λ1 λ2 FID
0 0 38.56(baseline)
1 0 25.15
0 1 26.09
5 1 25.20
10 1 25.17
15 1 26.30
5 5 25.55
5 0.5 23.3

(a) CIFAR-10 @ 32×32

λ1 λ2 FID
0 0 3.86(baseline)
1 0 3.75
0 1 3.77
5 1 3.62
10 1 3.84
15 1 4.01
5 5 3.80
5 0.5 3.44

(b) FFHQ @ 256×256

The FID scores are shown in Tab. 3. We can observe that when we set λ1 = 0
or λ2 = 0, the performance of the network significantly drops 9.96% on CIFAR-10
dataset. The performance even falls below the baseline model on high resolution
dataset. Only when both the latent consistent loss and the reconstruction loss
are combined together does the model gets its best performance. This proves
that the two constrains we added are indispensable with each other.

Next we will find the optimal strength of the proposed constrains. We first
fix λ2 = 1 and change the value of λ1 to find the ideal value of λ1. During
the experiments, we found that a relatively high λ1 makes the model unable to
converge, so we chose 15 as the maximum value. As shown in Tab. 3, λ1 = 5
turns out to be the best. Consequently, we then fix λ1 = 5 and search for the
best λ2. Ultimately, λ1 = 5 and λ2 = 0.5 turns out to be the best strategy.

During the search for optimal parameters, we observed some interesting phe-
nomena. As shown in Fig. 3. Let η = λ1

λ2
. We found a higher value of η leads to a

better result in the early stage of training. However, an excessively high η might
lead to poor convergence at the final stages of model training. We infer that
when η is large, our model that constrained by the latent distance, can quickly
converge to a distribution similar to the real distribution, hence leads to an early
convergence. But overly tight constraints might prevent the model’s ability to
generalize effectively, resulting in a lack of diversity in the generated data thus
making the final performance poor. The underlying causes of this phenomenon
require further investigation in future research.

4.4 Performance on Unsupervised Visual Recognition

GANs are often regarded as an unsupervised training method. To further demon-
strate the effectiveness of the proposed method, we did experiment to show our
proposed method leads to a better feature extractor. We take the pre-trained dis-
criminator as a feature extractor and add a linear classification head to perform
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Fig. 3: Training curves at different η

Table 4: Classification accuracy on CIFAR-10 dataset [25] with various methods with
linear classifier.

Method #Parameters Accuracy
ViT-H [10] 632M 99.5%
EfficientNetV2-M [44] 55M 99%
PyramidNet [28] 26M 98.6%
NAT-M4 [34] 6.2M 98.4%
HCGNet [52] 3.1M 97.7%
CLR-GAN(Ours) 3.02M 98.8%

classification task on the CIFAR-10 dataset. We compared our feature extractor
with other classification models. The results are shown in Tab. 4.

As listed in Tab. 4. Our proposed pre-train feature extractor can reach a
relatively high accuracy after simple fine-tuning. Compared with models which
have similar parameter sizes (≤ 10M) [34,52], our model is 0.4% and 1.1% higher
respectively. In comparison with models several orders of magnitude higher than
our parameter size [10], our model is also very competitive, only 0.7% lower
than the best model. This indicates that our strategy can not only improve the
quality and diversity of generated images in generative adversarial networks, but
also serve as an effective unsupervised training method, benefiting downstream
tasks.

4.5 Towards a fairer game

As we mentioned in the introduction part, the fundamental purpose of our
method is to produce more realistic and diverse images by making the train-
ing of GANs fairer. By the proposed consistent latent representation and recon-
struction, we can shrink the distance between the generator and discriminator.
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Fig. 4: Realness scores of the real samples and synthesis samples by various discrimina-
tors during training. We visualize the realness score of StyleGAN-V2 [22], StyleGAN-
V2-ADA [19] and the proposed CLR-GAN.

In this section, we demonstrate the enhanced fairness of our method through
experiments.

In order to better quantitatively judge the fairness of our model, we followed
the previous two works [2, 47], using the score of the discriminator to represent
the realness of the image. We visualize the realness score the model trained on
LSUN-Church. We used exponentially weighted averages [17] on the original data
for better visualization. The left part of Fig. 4 shows the score of the synthesis
images, while the right part shows the score of the real images. We can clearly
see that using our CLR-GAN, the realness gap between the generated image and
the real image is much smaller than the baseline. While for StyleGAN-V2-ADA,
the gap between scores is similar to the baseline, so it only improves FID and
can not make the game fairer. We can then draw a conclusion that with the aid
of the proposed auxiliary objective functions, the realness scores of real images
and generated images become closer, which means that CLR-GAN can improve
the realness and diversity of generated images by improving training fairness.

5 Conclusion

In this paper, we proposed a simple, effective and plug and play new objective
function for GANs training. The new objective function simultaneously con-
strains the output distribution of the generator and the discriminator to make
them more consistent. Thereby making the competition between the generator
and the discriminator more fair. Eventually improving the quality and diver-
sity of generated images. In addition to image generator, we also demonstrated
that the discriminator with constrain is an efficient unsupervised feature extrac-
tor. Experimental results demonstrate that our proposed method improves the
performance of baseline models over various datasets.



CLR-GAN 15

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International conference on machine learning. pp. 214–223. PMLR (2017)

2. Bai, Q., Yang, C., Xu, Y., Liu, X., Yang, Y., Shen, Y.: Glead: Improving gans
with a generator-leading task. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 12094–12104 (June 2023)

3. Bar-Tal, O., Ofri-Amar, D., Fridman, R., Kasten, Y., Dekel, T.: Text2live: Text-
driven layered image and video editing. In: Avidan, S., Brostow, G., Cissé, M.,
Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. pp. 707–723.
Springer Nature Switzerland, Cham (2022)

4. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis (2019)

5. Ceylan, D., Huang, C.H.P., Mitra, N.J.: Pix2video: Video editing using image
diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 23206–23217 (October 2023)

6. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
5799–5809 (2021)

7. Chenthamarakshan, V., Das, P., Hoffman, S., Strobelt, H., Padhi, I., Lim, K.W.,
Hoover, B., Manica, M., Born, J., Laino, T., Mojsilovic, A.: Cogmol: Target-specific
and selective drug design for covid-19 using deep generative models. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Infor-
mation Processing Systems. vol. 33, pp. 4320–4332. Curran Associates, Inc. (2020)

8. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: Diverse image synthesis for mul-
tiple domains. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. pp. 8188–8197 (2020)

9. Deng, Y., Tang, F., Dong, W., Ma, C., Pan, X., Wang, L., Xu, C.: Stytr2: Image
style transfer with transformers. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 11326–11336 (June 2022)

10. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale (2021)

11. Farnia, F., Ozdaglar, A.: Do GANs always have Nash equilibria? In: III, H.D.,
Singh, A. (eds.) Proceedings of the 37th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 119, pp. 3029–3039.
PMLR (13–18 Jul 2020)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: NeurIPS. vol. 27 (2014)

13. Gu, J., Shen, Y., Zhou, B.: Image processing using multi-code gan prior. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (June 2020)

14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. Advances in neural information processing systems
30 (2017)

15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems 30 (2017)



16 S.Sun, Z.Luan et al.

16. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Infor-
mation Processing Systems. vol. 33, pp. 6840–6851. Curran Associates, Inc. (2020)

17. Hunter, J.S.: The exponentially weighted moving average. Journal of Quality Tech-
nology 18(4), 203–210 (1986)

18. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Deceive d: Adaptive pseudo augmentation
for gan training with limited data. In: Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing
Systems (NeurIPS). vol. 34, pp. 21655–21667. Curran Associates, Inc. (2021)

19. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training
generative adversarial networks with limited data (2020)

20. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila,
T.: Alias-free generative adversarial networks. In: Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems. vol. 34, pp. 852–863. Curran Associates, Inc. (2021)

21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 4401–4410 (2019)

22. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 8110–8119 (2020)

23. Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent
in gan for real-time image editing. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 852–861 (June 2021)

24. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2022)
25. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny

images (2009)
26. Kurach, K., Lučić, M., Zhai, X., Michalski, M., Gelly, S.: A large-scale study on

regularization and normalization in GANs. In: Chaudhuri, K., Salakhutdinov, R.
(eds.) Proceedings of the 36th International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research, vol. 97, pp. 3581–3590. PMLR (09–15 Jun
2019)

27. Kwon, G., Ye, J.C.: Clipstyler: Image style transfer with a single text condition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 18062–18071 (June 2022)

28. Kwon, J., Kim, J., Park, H., Choi, I.K.: Asam: Adaptive sharpness-aware mini-
mization for scale-invariant learning of deep neural networks (2021)

29. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision
and recall metric for assessing generative models. Advances in Neural Information
Processing Systems 32 (2019)

30. Lee, G., Kim, H., Kim, J., Kim, S., Ha, J.W., Choi, Y.: Generator knows what
discriminator should learn in unconditional gans. In: Avidan, S., Brostow, G., Cissé,
M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. pp. 406–
422. Springer Nature Switzerland, Cham (2022)

31. Liao, W., Hu, K., Yang, M.Y., Rosenhahn, B.: Text to image generation with
semantic-spatial aware gan. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 18187–18196 (June 2022)

32. Liu, H., Zhang, W., Li, B., Wu, H., He, N., Huang, Y., Li, Y., Ghanem, B., Zheng,
Y.: Adaptivemix: Improving gan training via feature space shrinkage. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 16219–16229 (June 2023)



CLR-GAN 17

33. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of the IEEE international conference on computer vision. pp. 3730–
3738 (2015)

34. Lu, Z., Sreekumar, G., Goodman, E., Banzhaf, W., Deb, K., Boddeti, V.N.: Neural
architecture transfer. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 43(9), 2971–2989 (Sep 2021)

35. Luo, S., Guan, J., Ma, J., Peng, J.: A 3d generative model for structure-based drug
design. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W.
(eds.) Advances in Neural Information Processing Systems. vol. 34, pp. 6229–6239.
Curran Associates, Inc. (2021)

36. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares gen-
erative adversarial networks. In: Proceedings of the IEEE international conference
on computer vision. pp. 2794–2802 (2017)

37. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks (2018)

38. Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: Clustergan: Latent space cluster-
ing in generative adversarial networks. Proceedings of the AAAI Conference on
Artificial Intelligence 33(01), 4610–4617 (Jul 2019)

39. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: Hologan: Unsuper-
vised learning of 3d representations from natural images. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 7588–7597 (2019)

40. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

41. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115, 211–252 (2015)

42. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(Oct 2017)

43. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision (2015)

44. Tan, M., Le, Q.: Efficientnetv2: Smaller models and faster training. In: Meila, M.,
Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 139, pp. 10096–10106.
PMLR (18–24 Jul 2021)

45. Tran, N.T., Bui, T.A., Cheung, N.M.: Dist-gan: An improved gan using distance
constraints. In: Proceedings of the European Conference on Computer Vision
(ECCV) (September 2018)

46. Tseng, H.Y., Jiang, L., Liu, C., Yang, M.H., Yang, W.: Regularizing generative ad-
versarial networks under limited data. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 7921–7931 (June
2021)

47. Wang, J., Yang, C., Xu, Y., Shen, Y., Li, H., Zhou, B.: Improving gan equilibrium
by raising spatial awareness. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 11285–11293 (June 2022)

48. Wu, J.Z., Ge, Y., Wang, X., Lei, S.W., Gu, Y., Shi, Y., Hsu, W., Shan, Y., Qie,
X., Shou, M.Z.: Tune-a-video: One-shot tuning of image diffusion models for text-
to-video generation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). pp. 7623–7633 (October 2023)



18 S.Sun, Z.Luan et al.

49. Xiangli, Y., Deng, Y., Dai, B., Loy, C.C., Lin, D.: Real or not real, that is the
question. arXiv preprint arXiv:2002.05512 (2020)

50. Xu, Y., AlBahar, B., Huang, J.B.: Temporally consistent semantic video editing. In:
Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer
Vision – ECCV 2022. pp. 357–374. Springer Nature Switzerland, Cham (2022)

51. Yang, C., Shen, Y., Xu, Y., Zhao, D., Dai, B., Zhou, B.: Improving gans with
a dynamic discriminator. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems. vol. 35,
pp. 15093–15104. Curran Associates, Inc. (2022)

52. Yang, C., An, Z., Zhu, H., Hu, X., Zhang, K., Xu, K., Li, C., Xu, Y.: Gated con-
volutional networks with hybrid connectivity for image classification. Proceedings
of the AAAI Conference on Artificial Intelligence 34(07), 12581–12588 (Apr 2020)

53. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: Construction
of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365 (2015)

54. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126 (2016)

55. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV) (Oct 2017)


	CLR-GAN: Improving GANs Stability and Quality via Consistent Latent Representation and Reconstruction 

