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Abstract

Although great progress has been made for001
Machine Reading Comprehension (MRC) in002
English, scaling out to a large number of lan-003
guages remains a huge challenge due to the004
lack of large amounts of annotated training005
data in non-English languages. To address this006
challenge, some recent efforts of cross-lingual007
MRC employ machine translation to transfer008
knowledge from English to other languages,009
through either explicit alignment or implicit010
attention. For effective knowledge transition,011
it is beneficial to leverage both semantic and012
syntactic information. However, the existing013
methods fail to explicitly incorporate syntax014
information in model learning. Consequently,015
the models are not robust to errors in align-016
ment and noises in attention. In this work, we017
propose a novel approach, named GraFusion-018
MRC, which jointly models the cross-lingual019
alignment information and the mono-lingual020
syntax information using a graph. We de-021
velop a series of algorithms including graph022
construction, learning, and pre-training. The023
experiments on two benchmark datasets for024
cross-lingual MRC show that our approach025
outperforms all strong baselines, which veri-026
fies the effectiveness of syntax information for027
cross-lingual MRC. The code will be made028
open-sourced on Github.029

1 Introduction030

Machine Reading Comprehension (MRC) (Cam-031

pos et al., 2016; Rajpurkar et al., 2016; Joshi032

et al., 2017; Rajpurkar et al., 2018), which aims033

to improve the ability of machines to read and034

understand human texts, is a challenging task in035

Natural Language Understanding (NLU) (Fader036

et al., 2014; Rajpurkar et al., 2016; Lewis et al.,037

2020a; Shou et al., 2020; Wang et al., 2020). Vari-038

ous large-scale human-annotated corpora, such as039

SQuAD (Rajpurkar et al., 2016), have greatly ad-040

vanced the progress in the MRC task (Seo et al.,041

2017; Wang et al., 2017; Hu et al., 2017; Yu042

et al., 2018; Devlin et al., 2019). However, those 043

large-scale human-annotated datasets are mostly 044

in resource-rich languages, such as English. For 045

most languages in the world, there is, however, 046

scarce annotated data for MRC, which limits the 047

corresponding MRC performance. 048

To tackle the challenge of data scarcity in low- 049

resource languages, recent attempts in cross-lingual 050

NLU adopt machine translation to transfer the 051

knowledge learned from the high quality annotated 052

data in resource-rich languages (i.e., the source lan- 053

guages) to low-resource languages (i.e., the target 054

languages) (Upadhyay et al., 2018; Schuster et al., 055

2019). For example, several methods (Zhu et al., 056

2019; Hu et al., 2020; Liang et al., 2020) translate 057

training data in English to target languages, and use 058

the translated data to train the cross-lingual MRC 059

models. Some other methods (Cui et al., 2019; 060

Fang et al., 2020) translate test cases in a target 061

language to English, and use the representation 062

of the translated cases in English to enhance the 063

representations of the original test cases. 064

For effective knowledge transfer across lan- 065

guages, both semantic and syntactic information 066

is highly valuable and thus should be well repre- 067

sented. However, all previous translation-based 068

approaches carry over knowledge across languages 069

only through unstructured texts, where semantic 070

and syntactic information is implicitly represented 071

and complicatedly entangled. To represent the 072

correlation among words in different languages, 073

previous works either build translation alignments 074

or learn attention matrices. However, it is very 075

challenging to learn the connection between words 076

across languages solely relying on texts only. Ad- 077

mitted by previous studies, misalignments often 078

happen and badly hurt model performance (Xu 079

et al., 2020; Li et al., 2020; Pei et al., 2020). More- 080

over, deep learning models may pay attention to 081

less relevant words in long text (Zhang et al., 2020). 082

Can we use syntax information explicitly to en- 083
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Figure 1: A passage (P), a question (Q), and an answer (A) in English with their translations in German. The
words in red are the correct answers, and the links in gray and blue represent the semantic alignments and syntax
information between words, respectively. The red dashed link indicates a misalignment of answers.

hance knowledge transfer across languages and im-084

prove cross-lingual MRC? In this paper, we tackle085

this challenge. Figure 1 shows a motivating exam-086

ple. Suppose the source training example is in En-087

glish: the question is “Where are egg tubes found088

inside of an insect?”, and the answer “ovaries” is089

in the sentence “The ovaries are made up of a num-090

ber of egg tubes . . . ” After the English example is091

translated into German, the corresponding answer092

“Eierstöcke” in “Die Eierstöcke bestehen aus einer093

Anzahl von Eierröhrchen . . . ” is not correctly iden-094

tified due to misalignment by an off-the-shelf align-095

ment tool GIZA++ (Och and Ney, 2003). Check-096

ing many cases manually, we find misalignments097

commonly happen in complex sentence structures098

(e.g., involving passive voice where word orders099

are different from usual) and usages of rare words100

(e.g., “ovaries” and “Eierstöcke” belong to the do-101

main of biology). In such cases, syntax informa-102

tion can help the model to figure out the correct103

alignment. In the example in Figure 1, although104

“ovaries” and “Eierstöcke” are not correctly aligned,105

their parents “made/bestehen”, and siblings “num-106

ber/Anzahl” are correctly aligned. Therefore, if we107

can leverage the syntax structure to propagate the108

alignment information, we can learn better repre-109

sentation for the target language.110

Carrying the above insights, in this paper, we111

jointly model the cross-lingual alignment informa-112

tion and the mono-lingual syntax information us-113

ing a graph. We make the following contributions.114

First, we propose using syntax information to en-115

hance knowledge transfer across languages. Sec-116

ond, we develop a novel graph fusion approach to117

model the syntax structure as well as the alignment118

across the source and target inputs. We design119

a series of algorithms including graph construc-120

tion, learning, and pre-training. Last, we evaluate121

our approach on two public cross-lingual MRC 122

benchmarks. The experimental results show that 123

our model effectively transfers knowledge from 124

source language to target language through atten- 125

tion guided by syntax information, and hence out- 126

performs all the strong baselines. The results verify 127

the effectiveness of syntax information for cross- 128

lingual MRC. The code will be made open-sourced 129

on Github. 130

2 Related Work 131

Given a question and a passage, the MRC 132

task (Campos et al., 2016; Rajpurkar et al., 2016; 133

Shen et al., 2017; Joshi et al., 2017; Shen et al., 134

2017; Rajpurkar et al., 2018) builds a model to 135

find the span of the correct answer for the question 136

from the given passage. Thanks to the emergence 137

of large-scale pre-trained language models, such 138

as BERT (Devlin et al., 2019), and the availabil- 139

ity of the large-scale human-annotated corpora in 140

English, such as SQuAD (Rajpurkar et al., 2016), 141

great progress has been made in English MRC 142

task (Seo et al., 2017; Shen et al., 2017; Yu et al., 143

2018). Interested readers can consult some recent 144

surveys (Zhu et al., 2021; Zeng et al., 2020). 145

Among the various MRC approaches, Zhang 146

et al. (2020) argue that the syntax information can 147

prevent a model from attending to some dispens- 148

able words. The authors incorporate the syntac- 149

tic dependencies between words into a pre-trained 150

model and show significant gains in the English 151

MRC task. This paper also considers syntax infor- 152

mation in the MRC task but in a totally different 153

problem setting. Zhang et al. (2020) assume a 154

single-language setting and use the syntax informa- 155

tion to explore the correlation between questions 156

and passages, while we target at the cross-lingual 157

setting where the syntax information is used to 158
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guide the correlation between the inputs in source159

and target languages.160

Limited by the availability of large-scale anno-161

tated data, for most languages in the world, the162

MRC task relies on cross-lingual MRC models,163

which transfer knowledge from a resource-rich lan-164

guage to some low-resource languages. As a base-165

line, some multi-lingual pre-trained models, such166

as mBERT (Devlin et al., 2019), XLM (Lample167

and Conneau, 2019), and XLM-R (Conneau et al.,168

2020), are fine-tuned by training data in English169

and then directly applied to other languages. Sev-170

eral previous studies (Upadhyay et al., 2018; Schus-171

ter et al., 2019; Li et al., 2021) show that the base-172

line usually works well for classification tasks, such173

as intent detection. However, for sequence label-174

ing tasks, such as slot tagging, the results in target175

languages are much poorer than that in English.176

Since MRC is also a sequence labeling prob-177

lem, i.e., labeling the answer span in a passage,178

the second approach to cross-lingual MRC em-179

ploys machine translators to translate training data180

from English to some target languages, and then181

adds the translated training sets into the fine-tuning182

stage (Cui et al., 2019; Zhu et al., 2019; Hu et al.,183

2020; Liang et al., 2020; Yuan et al., 2020; Liu184

et al., 2020). Although this approach improves the185

MRC results substantially, one weakness remained186

is the alignment quality between the training exam-187

ple in English and the translated example. Previous188

studies (Xu et al., 2020; Li et al., 2020; Pei et al.,189

2020) indicate that misalignments often happen190

and can badly degrade the model performance.191

The third approach to cross-lingual MRC trans-192

lates test cases in a target language into English,193

and combines the representation of the original test194

cases and the representation of the translated case195

to English through the attention mechanism. For196

example, Cui et al. (2019) apply two BERT mod-197

els (Devlin et al., 2019) to encode the inputs in198

a target language and English, respectively, and199

then learn an attention matrix between the repre-200

sentations of the two inputs. Fang et al. (2020)201

concatenate the target example with the translated202

example to English and feed it through a stack of203

transformers (Vaswani et al., 2017) to jointly learn204

the cross-lingual attention. This approach avoids205

hard alignments across the inputs in different lan-206

guages, and shows promising results. However,207

all the previous methods learn the attention matrix208

only from plain text without considering internal209

syntax structures. To the best of our knowledge, we 210

are the first to leverage both the semantic and syn- 211

tactic information to guide the attention between 212

the inputs in different languages. 213

Another approach to cross-lingual MRC is to 214

synthesize training data. Instead of translating 215

training data in English to other languages, this ap- 216

proach starts from passages in the target languages, 217

and then generates questions and answers (Puri 218

et al., 2020; Riabi et al., 2020; Shakeri et al., 2021). 219

Both translation and generation can be considered 220

as data augmentation methods, and are orthogonal 221

to each other. 222

3 Methodology 223

In this section, we first describe the overall net- 224

work architecture of our proposed GraFusionMRC 225

approach in Section 3.1. We then elaborate the 226

details of the major components of our approach, 227

including the construction of the Syntax-Enhanced 228

and Alignment-Aware Graph (SA-Graph) in Sec- 229

tion 3.2 and the learning algorithm of the graph 230

in Section 3.3. Limited by space, the pre-training 231

methods for the SA-Graph with different masking 232

strategies and the implementation details of our 233

model are described in Appendix B and C, respec- 234

tively. 235

3.1 Overview of Network Architecture 236

Figure 2 shows the overview of our approach. The 237

backbone is a stack of bidirectional Transform- 238

ers (Vaswani et al., 2017) with N + 2 layers. The 239

first layer encodes the inputs, and the last layer 240

learns the final representations for decoding. 241

Our major technical contribution is in the mid- 242

dle N layers, where a graph neural network is con- 243

structed and trained to model both syntax and align- 244

ment information. Such information jointly con- 245

tributes to the knowledge transfer across languages 246

and results in better representation for the target 247

language through enhanced attention matrices. 248

Given an instance S in the source language, we 249

first apply a machine translator to translate it to 250

an instance T in the target language (or given an 251

instance T in the target language, we can translate 252

it to S in English). We then unify the length of S 253

and T to be l by padding or truncating operations, 254

and input S ∈ Rl×d and T ∈ Rl×d in parallel 255

to our model, where d is the dimensionality of 256

the token embedding vectors. The input is then 257
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Figure 2: The overview of our model GraFusionMRC, where the red and green nodes represent the words in the
source and target language, respectively.

encoded by a Transformer as follows:258

As
0 = Transformer(S), (1)259

260

At
0 = Transformer(T ). (2)261

We then take the concatenation of As
0262

and At
0, and apply N Syntax-enhanced and263

Alignment-aware Fusion Transformer layers (or264

SA-Transformer for short) to produce the represen-265

tation by266

[As
n;At

n] = Transformersa([As
n−1;A

t
n−1]), (3)267

where the subscripts n ∈ [1, N ] indicate that the268

variables are at the n-th SA-Transformer layer, and269

[As
n;At

n] ∈ R2l×d is the concatenation of the rep-270

resentations of the parallel sentences in the source271

and the target languages.272

Each SA-Transformer layer applies a multi-head273

self-attention operation (Vaswani et al., 2017) fol-274

lowed by a feed-forward layer. Specifically, the275

multi-head self-attention operation first obtains a276

triplet consisting of the query Qi, the key Ki277

and the value Vi ∈ R2l×dh for each headi by278

applying linear transformations W q
i , W k

i , and279

W v
i ∈ Rd×dh on the input matrix [As

n−1;A
t
n−1],280

respectively, where dh is the dimensionality of each281

head, and matricesW q
i ,W k

i , andW v
i are parame-282

ters to be learned. Then, each headi conducts the283

following attention operation:284

headi = softmax(
QiK

>
i√

dk
+G)Vi, (4)285

where i denotes the i-th head of the multi-head286

operation, and G ∈ R2l×2l is the attention matrix287

to be described in Section 3.2.288

After obtaining the representation [As
n;At

n] via 289

(3), we further add another Transformer layer to 290

separately projectAs
n andAt

n back to the individ- 291

ual language spaces and obtainAs andAt ∈ Rl×d, 292

respectively, since our final goal is to predict the 293

labels in the individual languages. 294

We then use As and At to predict the answer 295

span in the source and target languages, respec- 296

tively. Let us take At as an example to elaborate. 297

Following Liu et al. (2020), we feed At to two 298

separate linear layers, each followed by a softmax 299

operation to produce the final span prediction ptstr 300

and ptend ∈ Rl, i.e., the predictions of the start and 301

the end positions, respectively. For example, ptstr 302

is calculated by ptstr = softmax(At · ustr + bstr), 303

where ustr ∈ Rd and bstr ∈ Rl are two trainable 304

parameters. We then calculate the standard cross 305

entropy loss for the predicted start and end posi- 306

tions in the target language by 307

Lt = − 1

‖D‖

‖D‖∑
i=1

(ytstr,i · log(ptstr,i)+

ytend,i · log(ptend,i)),

(5) 308

where ‖D‖ is the total number of training examples, 309

ytstr,i and ytend,i ∈ Rl are the ground-truth labels 310

for the start and end positions of the i-th training 311

example. 312

3.2 Syntax-Enhanced and Alignment-Aware 313

Graph (SA-Graph) 314

To incorporate the syntax and alignment informa- 315

tion into Transformer, we learn an attention matrix 316

G, where an element Gi,j in G is the attention 317

score indicating the attention that word i pays to 318

the word j. To learn the matrix G, we first con- 319

struct the syntax-enhanced and alignment-aware 320
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graph (or SA-Graph for short), where each node321

corresponds to a word, and the edges represent the322

syntax and alignment information. Given a pair323

of parallel sentences as input, we build a graph324

to represent the relations among the words in the325

sentences. Each word in the parallel sentences cor-326

responds to a node in the graph, and the edges be-327

tween the nodes are based on the relations between328

the words. As introduced in Section 1, we consider329

two types of relations of words, cross-lingual word330

alignment and mono-lingual syntactic dependency.331

We build edges for those two relations.332

In machine translation, the corresponding words333

in source and target languages can be aligned with334

each other. Taking German sentence “Wir sollten335

die Umwelt schützen” and its parallel sentence “We336

should protect the environment” in English as an337

example, we can apply some off-the-shelf align-338

ment tools, such as GIZA++1 (Och and Ney, 2003),339

to compute the word alignment. The aligned words340

often share similar semantic meaning, for exam-341

ple, “Wir” and “We”, “sollten” and “should”, “die”342

and “the”, “Umwelt” and “environment”, as well343

as “schützen” and “protect”. We then add word-344

alignment edges between the nodes corresponding345

to those words.346

In addition to the edges between words across347

languages, we also consider the syntactic structures348

of sentences and build edges between words within349

the same language. Specifically, we first split a350

given passage into sentence-level and then apply351

the Stanza toolkit2 (Qi et al., 2020) to extract the352

dependency between words for each sentence. Two353

words are connected by a word-dependency edge if354

there exists a dependency between them. We also355

add a special word-dependency edge between the356

same words in a passage.357

Based on the graph, the representation fi of a358

word i is derived by359

fi,n = F(hi,n,N (i)), (6)360

where hi,n is the representation of word i from361

the n-th layer, N (i) denotes the neighbors of word362

i in the SA-Graph, and F(·, ·) is the aggregation363

function of word i and its neighbors that will be364

described in Equation (8), Section 3.3. Once fi,n365

is computed, the attention matrixG is obtained by366

Gn
i,j = (W n

att·fi,n+bnatt)·(W n
att·fj,n+bnatt), (7)367

1https://github.com/moses-smt/giza-pp
2https://github.com/stanfordnlp/stanza

where W n
att ∈ Rd×d and bnatt ∈ Rd are trainable 368

parameters. For convenient representation, we use 369

fi instead of fi,n in the following. Next, we present 370

the learning process of the representation fi. 371

3.3 Graph Learning 372

After we construct the SA-Graph, we perform 373

a learning algorithm over the graph. For each 374

node i, we want to learn a better representation 375

fi = F(hi,N (i)) than its original representation 376

hi by aggregating the information from its neigh- 377

bors N (i). As described in Section 3.2, there are 378

two types of edges in the graph. Correspondingly, 379

the node representation fi consists of two parts: 380

fi =
1

2
(fa

i + fd
i ), (8) 381

where fa
i is the representation of word i aggre- 382

gated from the alignment information, i.e., fa
i = 383

Fa(hi,Na(i)), whereNa(i) is the set of neighbors 384

of word i that are connected by word-alignment 385

edges. Similarly, fd
i aggregates the dependency in- 386

formation, i.e., fd
i = Fd(hi,Nd(i)), where Nd(i) 387

is the set of dependency neighbors. In Equation (8), 388

in addition to the average function, other combi- 389

nation operators, such as weighted sum or max- 390

pooling, may also be considered. Here we choose 391

the simple but effective average method based on 392

our empirical study. Experiments with other com- 393

bination operators are presented and discussed in 394

Appendix D.1. 395

To learn aggregation by alignment Fa(·, ·), for 396

a word i, the representation fa
i aggregates the in- 397

formation from its neighbors Na(i) connected by 398

the word-alignment edges. As indicated in the pre- 399

vious studies (Xu et al., 2020; Li et al., 2020; Pei 400

et al., 2020), word alignment is a challenging task 401

and misalignments may exist in results produced 402

by existing methods. To mitigate the alignment er- 403

rors, we develop a gate mechanism to guard against 404

irrelevant alignment. 405

gi = σ(V1 · hi +W1 · h̄j),

fa
i = (1− gi)� (V2 · hi) + gi � (W2 · h̄j),

(9) 406

where h̄j = avg{hj |hj ∈ Na(i)} is the average 407

of the representations of the nodes in the neighbor 408

set Na(i), σ is the sigmoid function, � denotes 409

element-wise multiplication, gi ∈ Rd serves as 410

the role of gating, and matrices V1,W1,V2 and 411

W2 ∈ Rd×d are model parameters. gi is the gate 412

to control whether the aligned information should 413

5



contribute to the representation of word i. If the414

nodes connected by the alignment edge bear very415

different semantic meanings, the weights in the416

gate are close to zero, which switch off the infor-417

mation flow.418

In addition to cross-lingual word alignment in-419

formation, the mono-lingual syntax information420

discloses the inherent dependency among words421

and thus also benefits the representation of words.422

The representation fd
i aggregates the syntax in-423

formation for node i using a graph attention net-424

work (Velickovic et al., 2018) as follows.425

fd
i = σ(

∑
(αiuW3hu, ∀u ∈ Nd(i))), (10)426

where W3 ∈ Rd×d is a model parameter, σ is the427

sigmoid function, and αiu ∈ R is the attention428

coefficient that indicates the importance of word i429

to its neighbor u, calculated as follows:430

αiu =
exp(LR(W4[hi;hu]))∑

k∈Nd(i)
exp(LR(W4[hi;hk]))

, (11)431

where LR is the Leaky ReLU activate function,432

andW4 ∈ R2d is a model parameter.433

To enhance the representation power of the SA-434

Graph, we use translated parallel data to pre-train435

the graph. The basic idea is to randomly mask436

some nodes in the graph and use the representa-437

tions of its semantic and syntactic neighbors to438

recover it. Limited by space, the details are left in439

Appendix B.440

4 Experiments441

We evaluate the proposed GraFusionMRC ap-442

proach on two benchmark datasets. In this section,443

we first describe the experiment setup. We then444

report and analyze the experimental results. We445

also illustrate how SA-Graph affects the attention446

weights through a case study. The further analysis447

of our model is presented in Appendix D.448

4.1 Experimental Setup449

4.1.1 Datasets and Evaluation Metrics450

MLQA (Lewis et al., 2020b) and TyDiQA-GoldP451

dataset (Clark et al., 2020) are two recent pub-452

lic benchmark datasets for cross-lingual machine453

reading comprehension. The details of these two454

datasets are given in the Appendix A.455

Although MLQA and TydiQA provide sufficient456

test data, their training data is quite limited. Follow-457

ing Fang et al. (2020), we use SQuAD v1.1 (Ra-458

jpurkar et al., 2016) English training data as ad-459

ditional data during the fine-tuning stage of our460

model. Moreover, the English training data in 461

SQuAD v1.1 is further translated into the target 462

languages in the MLQA and TyDiQA-GoldP test 463

data via the Google Machine Translation system3. 464

Besides, to pre-train our SA-Graph model, we fur- 465

ther collect additional parallel sentences following 466

Huang et al. (2019). There are one million pairs 467

of parallel sentences in English and each target 468

language. 469

We adopt the standard evaluation metrics from 470

the SQuAD dataset (Rajpurkar et al., 2016), includ- 471

ing F1 and Exact Match (EM) scores. The F1 score 472

is used to measure the overlap of tokens between 473

the predicted and ground-truth answer spans, while 474

the EM score only counts the cases where the pre- 475

dicted answer spans exactly match the ground-truth 476

answer spans. We run the official evaluation script 477

provided by Lewis et al. (2020b) and Clark et al. 478

(2020) for the MLQA and TyDiQA-GoldP datasets, 479

respectively, to report the results. 480

4.1.2 Baselines 481

We compare GraFusionMRC with the following 482

two groups of approaches. The first group consists 483

of models fine-tuned using training data in English 484

only. The second group is the methods that employ 485

parallel translation data. 486

Fine-tuning with English training data only 487

In this group of baselines, we pick the existing 488

cross-lingual models, including mBERT (Devlin 489

et al., 2019), XLM (Lample and Conneau, 2019), 490

and XLM-R (Conneau et al., 2020). We also in- 491

clude the encoder MMTE (Siddhant et al., 2020), 492

which is a large-scale cross-lingual neural machine 493

translation model for up to 102 languages to and 494

from English. These models are fine-tuned using 495

English training data only. 496

Models using translation In this group, we first 497

select XLM-R as the representative for cross- 498

lingual models, since it performs the best among 499

all the models in the first group in our experiments 500

for the cross-lingual MRC task. We then fine-tune 501

the XLM-R model with the combined translated 502

training data of all languages jointly, which is de- 503

noted as XLM-R (translate-train). We also in- 504

clude baselines, the FILTER (Fang et al., 2020), 505

which leverages the intrinsic cross-lingual corre- 506

lation between different languages, and the XLM- 507

ALIGNbase (Chi et al., 2021), which introduces 508

3https://console.cloud.google.com/storage/browser/xtreme
_translations
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Table 1: MLQA results (F1 / EM) for each language.

Model en ar de es hi vi zh Avg.

mBERT 80.2 / 67.0 52.3 / 34.6 59.0 / 43.8 67.4 / 49.2 50.2 / 35.3 61.2 / 40.7 59.6 / 38.6 61.4 / 44.2
XLM 68.6 / 55.2 42.5 / 25.2 50.8 / 37.2 54.7 / 37.9 34.4 / 21.1 48.3 / 30.2 40.5 / 21.9 48.5 / 32.7
MMTE 78.5 / - 56.1 / - 58.4 / - 64.9 / - 46.2 / - 59.4 / - 58.3 / - 60.3 / 41.4
XLM-Rbase 78.5 / 65.3 56.1 / 36.8 61.7 / 47.1 66.0 / 48.7 60.1 / 42.4 63.6 / 43.5 60.1 / 35.5 63.7 / 45.6

XLM-Rbase (translate-train) 77.8 / 64.4 58.0 / 38.1 63.4 / 49.1 68.7 / 51.9 62.8 / 46.1 65.3 / 45.9 61.8 / 36.9 65.4 / 47.5
FILTERbase 77.2 / 63.9 60.2 / 41.2 66.9 / 52.7 70.5 / 53.2 64.5 / 47.2 66.8 / 47.7 63.4 / 42.1 67.1 / 49.7
XLM-ALIGNbase 81.5 / 68.3 60.7 / 41.2 64.5 / 49.8 70.3 / 52.2 65.2 / 47.5 69.8 / 48.9 64.4 / 40.4 68.1 / 49.8
GraFusionMRCbase+a 77.7 / 64.0 61.2 / 42.2 67.6 / 53.4 72.9 / 55.7 66.0 / 48.4 67.1 / 48.6 64.6 / 43.3 68.2 / 50.8
GraFusionMRCbase+ad 77.5 / 63.8 61.9 / 42.8 68.9 / 54.9 73.4 / 56.4 66.6 / 49.2 68.4 / 49.1 65.2 / 44.0 68.8 / 51.5
GraFusionMRCbase+adp 77.4 / 63.8 62.8 / 43.4 69.3 / 55.3 74.0 / 56.8 67.1 / 49.5 68.8 / 49.5 65.6 / 44.3 69.3 / 51.8

XLM-Rlarge (translate-train) 83.5 / 70.6 66.6 / 47.1 70.1 / 54.9 74.1 / 56.6 70.6 / 53.1 74.0 / 52.9 62.1 / 37.0 71.6 / 53.2
FILTERlarge 84.0 / 70.8 72.1 / 51.1 74.8 /60.0 78.1 / 60.1 76.0 / 57.6 78.1 /57.5 70.5 / 47.0 76.2 / 57.7
GraFusionMRClarge+a 84.2 / 71.5 73.0 / 52.0 75.4 / 60.3 78.8 / 60.9 77.9 / 58.4 79.0 / 57.8 71.4 / 48.6 77.1 / 58.5
GraFusionMRClarge+ad 83.9 / 71.0 73.7 / 52.5 75.9 / 61.2 79.6 / 61.2 78.6 / 58.7 79.9 / 59.8 72.4 / 48.8 77.7 / 59.0
GraFusionMRClarge+adp 83.5 / 70.7 74.2 / 52.7 76.2 / 61.7 80.1 / 62.0 79.2 / 59.0 80.4 / 60.1 73.0 / 49.3 78.1 / 59.4

Table 2: TyDiQA-GoldP results (F1 / EM) for each language. As the Stanza toolkit doesn’t support languages
Bengali and Swahili, we don’t report results on these two languages in the syntactic fusion setting. Please note that
we correct the text segment module of FILTER when handling ko language and bring its performance back from
33.1 to 68.9 of the F1 score.

Model en ar bn fi id ko ru sw te Avg.

mBERT 75.3 / 63.6 62.2 / 42.8 49.3 / 32.7 59.7 / 45.3 64.8 / 45.8 58.8 / 50.0 60.0 / 38.8 57.5 / 37.9 49.6 / 38.4 59.7 / 43.9
XLM 66.9 / 53.9 59.4 / 41.2 27.2 / 15.0 58.2 / 41.4 62.5 / 45.8 14.2 / 5.1 49.2 / 30.7 39.4 / 21.6 15.5 / 6.9 43.6 / 29.1
MMTE 62.9 / 49.8 63.1 / 39.2 55.8 / 41.9 53.9 / 42.1 60.9 / 47.6 49.9 / 42.6 58.9 / 37.9 63.1 / 47.2 54.2 / 45.8 58.1 / 43.8
XLM-Rbase 71.9 / 57.1 54.3 / 32.1 57.8 / 44.6 63.9 / 50.4 68.5 / 51.3 61.2 / 38.7 60.4 / 33.8 65.2 / 55.6 64.9 / 47.6 63.1 / 45.7

XLM-Rbase (translate-train) 71.6 / 56.4 57.8 / 34.5 60.8 / 48.6 67.1 / 53.0 71.9 / 53.7 63.3 / 40.4 62.2 / 34.7 62.8 / 53.7 67.3 / 50.9 65.0 / 47.3
FILTERbase 68.4 / 55.5 58.3 / 34.6 61.3 / 46.7 67.7 / 54.0 72.2 / 54.5 65.5 / 41.1 63.3 / 35.4 72.3 / 63.1 67.1 / 49.6 66.2 / 48.3
XLM-ALIGNbase 69.4 / 56.2 68.7 / 49.4 56.0 / 38.9 64.2 / 47.2 73.9 / 57.9 53.0 / 40.4 62.3 / 38.0 60.1 / 42.8 51.0 / 31.9 62.1 / 44.8
GraFusionMRCbase+a 71.2 / 55.7 60.1 / 37.1 62.4 / 48.8 69.0 / 54.6 73.5 / 57.2 67.2 / 43.5 64.6 / 38.0 73.9 / 64.1 68.1 / 53.4 67.8 / 50.3
GraFusionMRCbase+ad 70.8 / 55.4 61.4 / 38.6 / 69.7 / 55.1 74.9 / 59.0 68.1 / 44.7 64.8 / 36.7 / 70.4 / 53.2 68.6 / 49.0
GraFusionMRCbase+adp 70.6 / 55.1 62.6 / 39.5 / 70.4 / 55.7 75.7 / 59.3 69.0 / 46.1 65.5 / 37.2 / 71.0 / 53.6 69.3 / 49.5

XLM-Rlarge (translate-train) 75.1 / 62.0 66.9 / 39.8 63.8 / 47.5 70.1 / 52.8 77.1 / 61.7 67.8 / 43.4 66.5 / 41.8 65.7 / 47.8 69.6 / 43.4 69.2 / 48.9
FILTERlarge 72.4 / 59.1 72.8 / 50.8 70.5 / 56.6 73.3 / 57.2 76.8 / 59.8 68.9 / 45.7 68.9 / 46.6 77.4 / 65.7 69.9 / 50.4 72.3 / 54.7
GraFusionMRClarge+a 74.1 / 61.3 73.4 / 51.6 71.7 / 57.5 74.1 / 58.0 77.8 / 62.4 69.5 / 46.2 69.8 / 46.7 78.0 / 65.7 70.3 / 53.0 73.2 / 55.8
GraFusionMRClarge+ad 73.9 / 61.2 74.2 / 53.2 / 74.9 / 59.5 79.2 / 64.2 70.5 / 47.5 70.4 / 47.6 / 72.0 / 54.9 73.6 / 55.4
GraFusionMRClarge+adp 73.5 / 60.8 75.1 / 53.8 / 76.2 / 61.0 79.8 / 64.2 71.3 / 48.3 71.3 / 48.2 / 72.5 / 55.7 74.2 / 56.0

denoising word alignment pre-training task. Please509

note that the XLM-ALIGN only provides the base510

model.511

4.2 Experimental Results512

We conduct experiments with three variants of513

our GraFusionMRC approach: (1) GraFusion-514

MRC+a: only the word-alignment edges are used in515

graph learning and all the word-dependency edges516

are ignored; (2) GraFusionMRC+ad: both the517

word-alignment and word-dependency edges are518

included in the graph learning stage to obtain the519

node representation; and (3) GraFusionMRC+adp:520

the pre-training stage is added before the graph521

learning stage to enhance the representation power522

of the SA-Graph.523

The results for all the methods on the MLQA and524

the TyDiQA-GoldP datasets are presented in Table525

1 and Table 2, respectively. In the first group of 526

baselines, the XLM-Rbase model consistently out- 527

performs all other baselines in most of the target 528

languages, demonstrating itself as a strong base- 529

line for the cross-lingual MRC task. Based on this 530

observation, we use XLM-R as the representative 531

for cross-lingual models, and further fine-tune this 532

model with translated training data in target lan- 533

guages. 534

As shown in the first row (“XLM-R (translate- 535

train)”) of the second and third group of baselines, 536

adding translated data in target languages substan- 537

tially improves the model performance, which sug- 538

gests that the translated data strengthen knowledge 539

transfer effectively. We also observe the FILTER 540

method performs better than the strong baseline 541

XLM-R (translate-train) on both datasets. It indi- 542

cates that the attention between the source sentence 543

7



Ja
hr

en

st
ie

g
di

e
ob

je
kt

or
ie

nt
ie

rte
-

Pr
og

ra
m

m
ie

ru
ng an

al
on

g
wi

th a

ris
e in

ob
je

ct -
or

ie
nt ed

pr
og

ra
m

m
i

ng

Jahren

stieg
die

objekt
orientierte

-
Programm

ierung
an

along
with

a

rise
in

object
-

orient
ed

programmi
ng 0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ja
hr

en

st
ie

g
di

e
ob

je
kt

or
ie

nt
ie

rte
-

Pr
og

ra
m

m
ie

ru
ng an

al
on

g
wi

th a

ris
e in

ob
je

ct -
or

ie
nt ed

pr
og

ra
m

m
i

ng

Jahren

stieg
die

objekt
orientierte

-
Programm

ierung
an

along
with

a

rise
in

object
-

orient
ed

programmi
ng 0.0

0.1

0.2

0.3

0.4

0.5

Figure 3: Visualization of the FILTER model (left) and the proposed model (right). The triple of (P,Q,A) in
German is (“Jahren stieg die objektorientierte -Programmierung an . . . ”, “Welche Art von Programmierung hat in
den 1990er Jahren den Umgang mit Datenbanken verändert?”, “objektorientierte”). The corresponding translation
in English is (“. . . along with a rise in object-oriented programming . . . ”, “In the 1990s, what type of programming
changed the handling of databases?”, “object-oriented”). In order to distinguish the two languages more clearly,
the German sentence is presented in green color and the corresponding English sentence in orange color. We also
highlight the correct answer spans in both German and English.

and the translated target sentence leads to better544

representation of words, and further contributes to545

the cross-lingual MRC task.546

All three variants of our GraFusionMRC ap-547

proach outperform the XLM-R and FILTER mod-548

els on both datasets. In particular, the GraFu-549

sionMRC+adp method achieves an average im-550

provement of 2 points over the FILTER model in551

both MLQA and TyDiQA-GoldP. The major dif-552

ference of GraFusionMRC from FILTER is that553

we enhance the learning of the attention matrix be-554

tween the inputs in the source and target languages555

through explicit syntax and alignment information.556

Moreover, our gate mechanism and graph attention557

network increase the model robustness against the558

errors in alignment and syntactic parsing.559

When we compare the three variants of the Gra-560

FusionMRC approach, the general trend is that us-561

ing both the syntax edges and alignment edges562

is better than using alignment edges alone. This563

justifies the effectiveness of injecting syntax in-564

formation into representation learning. Moreover,565

the pre-training using large-scale parallel data also566

boosts the model performance with a clear gain.567

An interesting observation is that our base568

GraFusionMRCbase model even outperforms the569

large XLM-Rlarge model in the TyDiQA-GoldP570

dataset among languages fi, ko, sw, and te. The571

use of alignment and syntactic information success-572

fully bridges the model performance gap caused by573

the number of parameters, and once again confirms574

the effectiveness of utilizing SA-Graph. 575

4.3 Visualization 576

To showcase the effectiveness of our SA-Graph, 577

we compare the attention distributions from the last 578

fusion layer of the FILTER model with that of our 579

proposed GraFusionMRC in Figure 3. Please note 580

that the original answer in German “objektorien- 581

tierte” is misaligned to the word “were” in English 582

by the GIZA++ toolkit. With the help of syntactic 583

information, our model is able to learn a higher 584

attention weight between “objektorientierte” and 585

the correct parallel word “object-oriented”. The vi- 586

sualization of the example illustrates the benefit of 587

the SA-Graph, which improves knowledge transfer 588

through the enhanced attention matrix. 589

5 Conclusion 590

In this paper, we develop a novel GraFusionMRC 591

approach that leverages both cross-lingual align- 592

ment information and mono-lingual syntactic infor- 593

mation for cross-lingual MRC. To the best of our 594

knowledge, we are the first to explicitly inject both 595

information to enhance the representation learn- 596

ing in the cross-lingual MRC task. We develop a 597

systematic approach including the construction of 598

the Syntax-Enhanced and Alignment-Aware Graph, 599

the learning algorithms, as well as the pre-training 600

strategies. The experimental results show that our 601

approach outperforms all strong baselines on two 602

public cross-lingual MRC benchmarks. 603
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A More Details for the Datasets857

We evaluate our model on two public cross-858

lingual machine reading comprehension datasets:859

MLQA (Lewis et al., 2020b) and TyDiQA-GoldP860

dataset (Clark et al., 2020).861

• MLQA (Lewis et al., 2020b), is a cross-862

lingual machine reading comprehension863

benchmark that covers 7 languages, includ-864

ing English, Arabic, German, Spanish, Hindi,865

Vietnamese and Simplified Chinese. The num-866

ber of question-answering instances in the test867

set for those languages is 11590, 5335, 4517,868

5254, 4918, 5495, and 5137, respectively.869

• TyDiQA-GoldP (Clark et al., 2020), is an-870

other cross-lingual machine reading compre-871

hension benchmark covering 9 typologically872

diverse languages, including English, Arabic,873

Bengali, Finnish, Indonesian, Korean, Rus-874

sian, Swahili, and Telugu. The number of875

question-answering instances in the develop-876

ment set for those languages is 440, 921, 113,877

782, 565, 276, 812, 499, and 669, respectively.878

Contextual
Representation

Multi-Head
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Add & Norm

Feed Forward

Add & Norm

Fusion Function ℱ(⋅)

Attention

Monolingual Masking Cross-lingual Masking

Figure 4: Illustration of the graph masking strategies,
where dotted node stands for the masked node, and
nodes connected by dotted lines are used to predict the
masked nodes. (left) Mono-lingual Masking Strategy.
(right) Cross-Lingual Masking Strategy.

B Pre-training SA-Graph 879

To enhance the representation power of the SA- 880

Graph, we use translated parallel data to pre-train 881

the graph. To be more specific, given a source sen- 882

tenceS and the translated sentence T , we construct 883

the SA-graph in the same way as the fine-tuning 884

stage. Therefore, we keep consistent between the 885

pre-training stage and the fine-tuning stage. The 886

difference is that in the pre-training stage, we ran- 887

domly mask some nodes in the graph and use their 888

neighbors to recover them, which is shown in Fig- 889

ure 4. To be more specific, for each masked node i, 890

we aggregate the representations of its neighbors. 891

The aggregated representation is then fed into a lin- 892

ear classifier, which outputs the probabilities over 893

the whole vocabulary. Cross entropy is used to 894

compute the recovery loss as follows: 895

LSA(i) = −logP (i|N (i)). (12) 896

Mono-lingual Masking Given a source sentence 897

S and the translated sentence T , the first mask- 898

ing strategy constrains all the masked tokens to be 899

within only one language, i.e., either the source 900

or the target language. For those masked tokens, 901

since the corresponding words in the other lan- 902

guage should not be masked according to the mask- 903

ing constraint, the model can learn from the align- 904

ment information to predict the masked ones. In 905

other words, this masking strategy encourages the 906

model to explore the semantic correlation from the 907

alignment information. At each iteration in our 908

implementation, we first choose a language, and 909

then randomly mask 15% of nodes belonging to 910

the chosen language in SA-Graph are masked at 911

random. 912

Cross-Lingual Masking With the above mono- 913

lingual masking strategy, the model learns to 914

leverage the word-alignment edges to predict the 915
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masked ones. However, this would make the model916

tend to ignore the word-dependency edges. To917

facilitate the model to leverage the syntax informa-918

tion, we further develop a cross-lingual masking919

strategy: whenever a node is masked, its aligned920

node must be masked together. In this way, we cut921

off the alignment information flow, and the model922

is forced to learn from word-dependency edges to923

recover the masked nodes.924

During the pre-training stage, we adopt each925

masking strategy half of the time. Besides the926

above two masking strategies, we also employ927

translation language modeling (TLM) in our pre-928

training process, which has shown strong perfor-929

mance in XLM pre-trained model (Lample and930

Conneau, 2019). For each masked word i, we com-931

pute the recovery loss as follows:932

LTLM (i) = −logP (i|hi). (13)933

The final loss for the pre-training is the sum934

of the loss of translation language modeling and935

our graph masking tasks, i.e., L(i) = LSA(i) +936

LTLM (i).937

C Implementation Details938

We implement on top of HuggingFace’s Transform-939

ers (Wolf et al., 2019) and report results on two both940

base and large models, i.e., GraFusionMRCbase941

and GraFusionMRClarge. We initialize our base942

model by the pre-trained XLM-R base model re-943

leased by HuggingFace4, which contains 12 layers;944

and use XLM-R large model for initializing our945

large model, which contains 24 layers. We set the946

number of intermediate Transformer layers, i.e.,947

the Syntax-Enhanced and Alignment-Aware Trans-948

former layers, to 10 in the base model and to 22949

in the large model. The first bottom Transformer950

layer is used for encoding the raw input sentences951

and the top layer converts the joint representation952

of the sentences in the source and target languages953

back to individual language spaces. To make a954

fair comparison, we reproduce FILTERbase and955

FILTERlarge models based on the XLM-R base and956

large model, respectively. During the fine-tuning957

stage, following Liu et al. (2020) and Conneau958

et al. (2020), we pair the passage and question for959

each language as [<cls> , question,</s> ,</s>960

, passage,</s>] as the input. We then concate-961

nate the input of the target language with the trans-962

lated input in the source language.963

4https://huggingface.co/xlm-roberta-base
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Figure 5: Further analysis on the choice of different
aggregation functions using the GraFusionMRC+ad
model.

To make a fair comparison in our experiments, 964

all the methods use translation approaches only. 965

As future work, we can combine the synthesized 966

data, the translated data, as well as the original 967

English training data to train an initial cross-lingual 968

MRC model. Then the proposed GraFusionMRC 969

approach can be further applied on top of this initial 970

model. 971

Please note that, since we employ individual 972

Transformer layers to encode the inputs for each 973

language at the bottom of our model, the supporting 974

max sequence length of each language can be 512. 975

However, we set the max sequence length to 384 976

for each language to balance efficiency. Then we 977

concatenate the source and target input and feed a 978

sequence of length 768 to the SA-Transformer to 979

extract their correlation. 980

D Further Analysis 981

In this section, we further explore the choice of 982

aggregation function in (8) and also report the per- 983

formances of our model when pre-trained with dif- 984

ferent masking strategies. Note that due to the time- 985

consuming issue of training the large models under 986

different settings, we conduct further analysis on 987

our base models, i.e., GraFusionMRCbase. 988

D.1 Comparison of Different Combinations 989

In this subsection, we study the effect of different 990

aggregation functions in our GraFusionMRC+ad 991

model. For each node i in SA-Graph, to aggregate 992

the fa
i and fd

i vector, we experiment with three 993

different types of aggregation functions: concate- 994

nation, weighted sum, and max-pooling. Please 995

note that, for concatenation operation, we need an 996

extra trainable matrixWcat ∈ R2d×d to project the 997

vector back to the dimension of d for consistency. 998

For better comparison, we also report the results of 999

12
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Figure 6: Effectiveness of graph masking strategies to the target languages, Arabic, German and Spanish, on
MLQA dataset.

the average operation, which is used in our model.1000

As shown in Figure 5, the average function tends1001

to show the best performance on both MLQA and1002

TyDiQA-GoldP datasets, which indicates that the1003

average operation is a simple but effective method1004

to aggregate the cross-lingual and mono-lingual1005

correlation. We can also see that the concatenation1006

operation shows the worst. A possible explanation1007

could be that the introduction of the matrix Wcat1008

increases the computational complexity of the ag-1009

gregation process, making it more difficult to find1010

the global optimal solution. Another interesting1011

observation is that the performance of the weighted1012

sum operation outperforms the max-pooling op-1013

eration. This may be because the weighted sum1014

operation could capture the fine-grained correlation1015

between vectors while the max-pooling operations1016

only capture the significant information.1017

D.2 Comparison of Masking Strategies1018

Below, we provide a detailed analysis to better1019

understand the effectiveness of graph masking1020

strategies. Specifically, we further explore the im-1021

pacts on GraFusionMRC+ad of different choices1022

of graph masking strategies, including using either1023

mono-lingual or cross-lingual masking strategies or1024

employ them both. Figure 6 shows the F1 scores of1025

target languages, Arabic, German and Spanish, on1026

MLQA datasets with different choices of strategies1027

and the pre-training steps.1028

It can be observed that, in all three languages, the1029

cross-lingual masking strategy performs better, but1030

converges slower than the mono-lingual masking1031

strategy. This may be attributed to the reason that1032

the cross-lingual masking strategy is more complex1033

than mono-lingual, and thus needs more training1034

steps to fit the training data, and provide stronger1035

alignment capture capabilities. Meanwhile, com-1036

bining both strategies can obtain the best perfor-1037

mance, which indicates that those two strategies1038

might focus on different alignment information and 1039

thus be complementary to each other. 1040

E Fine-tuning Details 1041

We select the hyperparameters from batch size: 1042

{16, 32, 64}, learning rate: {1e-5, 3e-5, 5e-5, 1e- 1043

6, 5e-6}, and warmup rate: {5%, 10%, 15%}. 1044

All experiments are conducted on 4 16G NVIDIA 1045

P100 GPUs. Each experiment is repeated 10 times 1046

and the average results are reported. The num- 1047

ber of parameters of FILTER, GraFusionMRC+a 1048

and GraFusionMRC+ad model are 1.02, 1.07 and 1049

1.15 times that of XLM-R. For MLQA dataset, the 1050

best performance of GraFusionMRC+adp model 1051

is achieved at batch size=32, learning rate=5e-5, 1052

warmup rate=10%. It takes about 8 hours to get 1053

the best result running on 4 16G P100. As for 1054

the TyDiQA-GoldP dataset, we achieve the best re- 1055

sults at batch size=64, learning rate=3e-5, warmup 1056

rate=5%. It takes about 10 hours to get the best 1057

result running on 4 16G P100. 1058
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