

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING BARREN PLATEAUS IN QUANTUM NEU- RAL NETWORKS VIA AN AI-DRIVEN SUBMARTINGALE- BASED FRAMEWORK

Anonymous authors

Paper under double-blind review

ABSTRACT

In the era of noisy intermediate-scale quantum (NISQ) computing, Quantum Neural Networks (QNNs) have emerged as a promising approach for various applications, yet their training is often hindered by barren plateaus (BPs), where gradient variance vanishes exponentially in terms of the qubit size. Most existing initialization-based mitigation strategies rely heavily on pre-designed static parameter distributions, thereby lacking adaptability to diverse model sizes or data conditions. To address these limitations, we propose AdaInit, a foundational framework that leverages generative models with the submartingale property to iteratively synthesize initial parameters for QNNs that yield non-negligible gradient variance, thereby mitigating BPs. Unlike conventional one-shot initialization methods, AdaInit adaptively explores the parameter space by incorporating dataset characteristics and gradient feedback, with theoretical guarantees of convergence to finding a set of effective initial parameters for QNNs. We provide rigorous theoretical analyses of the submartingale-based process and empirically validate that AdaInit consistently outperforms existing initialization methods in maintaining higher gradient variance across various QNN scales. We believe this work may initiate a new avenue to mitigate BPs.

1 INTRODUCTION

In recent years, there have been significant advancements in quantum computing, particularly with the advent of noisy intermediate-scale quantum (NISQ) devices (Preskill, 2018). Within this research landscape, quantum neural networks (QNNs), which integrate quantum circuits with classical deep-learning layers, have been widely applied in various domains, such as quantum machine learning (Stein et al., 2021), quantum chemistry and materials modeling (Kandala et al., 2017), and combinatorial optimization (Farhi et al., 2014). However, recent studies (Ortiz Marrero et al., 2021; Cerezo et al., 2021) reveal that the performance of QNNs may be hindered due to gradient issues, such as barren plateaus (BPs), a kind of gradient issue that the initialization of QNNs might be trapped on a flattened landscape at the beginning of training. McClean et al. (2018) first systematically investigate BPs and affirm that the gradient variance will exponentially decrease when the QNNs satisfy the assumption of the 2-design Haar distribution. Under these circumstances, most gradient-based training approaches would fail. To better illustrate the BPs’ mitigation process, we present an example in Fig. 1.

Numerous studies have been devoted to mitigating the BPs, among which initialization-based strategies have proven particularly effective by using well-designed distributions to initialize QNNs’ parameters (Sack et al., 2022). However, most existing initialization-based strategies, such as GaInit (Zhang et al., 2022) or BeInit (Kulshrestha & Safro, 2022), rely on a one-shot generation of static initial parameters, which suffer from two critical limitations: (i) they often depend on idealized distribution assumptions, and (ii) they lack adaptability when scaling to various model sizes or data conditions. These limitations are particularly problematic where BPs hinder effective QNNs’ training.

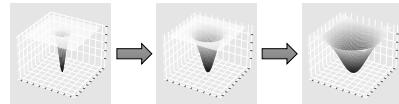


Figure 1: Example of BPs’ mitigation process. A plateau-dominated loss landscape (1st image), a.k.a. BPs, could be gradually recovered to the normal case (3rd image) after mitigation.

To address the limitations, we propose **AdaInit**, an iterative framework that combines generative modeling with the submartingale property. We prove its convergence, demonstrating that AdaInit **Adaptively** generates effective **Initial** parameters for QNNs. These parameters ensure non-negligible gradient variance at the beginning of training, thereby mitigating BPs. Beyond the theoretical guarantee, AdaInit intuitively can help QNNs locate initial parameters in the “non-flat” loss landscape, which prevents training from being trapped from the start. Our method is grounded by **two key ideas**. First, instead of statically pre-designing the initialization distribution, we leverage generative models, such as large language models (LLMs), to synthesize candidate parameters based on dataset descriptions and prior gradient feedback. This allows the initializer to actively explore the parameter space and adaptively refine the candidate. Second, by modeling the iterative process as a submartingale, we provide a theoretical guarantee that this process will almost surely converge within a finite number of iterations to initial parameters that yield non-negligible gradient variances. We model such a process because the submartingale property can depict the trend of expected improvement in gradient variance and guarantee convergence in finite time. Besides theoretical analysis, we conduct extensive experiments to validate the effectiveness of our proposed framework across various model scales. The results reveal that our framework can maintain higher gradient variances against three classic initialization methods and two popular initialization-based strategies for mitigating BPs. Overall, our primary contributions can be summarized as:

- We propose a new artificial intelligence (AI)-driven submartingale-based framework, AdaInit, for mitigating BPs. To the best of our knowledge, we open a new avenue to leverage LLMs with submartingale property to model QNNs’ initial parameters for mitigating BPs.
- We theoretically analyze the submartingale property of the iterative process and rigorously prove its supremum and expected hitting time.
- Extensive experiments across various model scales demonstrate that as the model size of QNNs increases, our framework can maintain higher gradient variances against classic initialization methods.

2 RELATED WORK

McClean et al. (2018) first investigated BP phenomena and demonstrated that under the assumption of the 2-design Haar distribution, gradient variance in QNNs will exponentially decrease to zero at the beginning of training as the model size increases. In recent years, enormous studies have been devoted to mitigating BP issues in QNNs (Qi et al., 2023). Cunningham & Zhuang (2024) categorize most existing studies into the following five groups. (i) Initialization-based strategies initialize model parameters with various well-designed distributions in the initialization stage (Grant et al., 2019; Sack et al., 2022; Mele et al., 2022; Grimsley et al., 2023; Liu et al., 2023; Park & Killoran, 2024; Kashif et al., 2024; Shang & Shi, 2025). (ii) Optimization-based strategies address BP issues and further enhance trainability during optimization (Ostaszewski et al., 2021; Suzuki et al., 2021; Heyraud et al., 2023; Liu et al., 2024; Sannia et al., 2024). (iii) Model-based strategies attempt to mitigate BPs by proposing new model architectures (Li et al., 2021; Bharti & Haug, 2021; Du et al., 2022; Selvarajan et al., 2023; Tüysüz et al., 2023; Kashif & Al-Kuwari, 2024). (iv) To address both BPs and saddle points, Zhuang et al. (2024) regularize QNNs’ model parameters via Bayesian approaches. (v) Rappaport et al. (2023) measure the BP phenomenon via various informative metrics.

3 PRELIMINARIES

In this section, we first introduce the preliminary background about the basics of quantum computing and barren plateaus, and then present the necessary tools from probability theory.

Quantum Basics. A quantum state can be seen as a unit vector $|\psi\rangle$ in a complex Hilbert space \mathcal{H}^m , satisfying the normalization condition $\langle\psi|\psi\rangle = 1$. We use the Dirac bra-ket notation, where ket $|\psi\rangle$, bra $\langle\psi|$ denote a column vector in \mathbb{C}^m and its Hermitian conjugate (conjugate transpose), respectively. Any $|\psi\rangle$ can be written as a linear combination of computational basis states, $|\psi\rangle = \sum_{i=1}^m c_i|i\rangle$, where $c_i \in \mathbb{C}$ are called the *amplitudes* of the basis states $|i\rangle$. Given two states $|\psi\rangle \in \mathcal{H}^m$ and $|\phi\rangle \in \mathcal{H}^n$, their inner product can be denoted by $\langle\psi|\phi\rangle \triangleq \sum_i \psi_i^\dagger \phi_i$, whereas their tensor product can be denoted by $|\psi\rangle \otimes |\phi\rangle \in \mathcal{H}^{m \times n}$. If we measure state $|\psi\rangle = \sum_{i=1}^m c_i|i\rangle$ on a computational basis, we will obtain i with probability $|c_i|^2$ and the state will collapse into $|i\rangle$ after measurement.

108 **Variational Quantum Circuits (vQCs)**, whose model architecture is constructed solely from parameterized quantum circuits without interleaving classical neural network layers, play a core role in quantum neural networks (QNNs) (Mitarai et al., 2018; Mari et al., 2020). Typical vQCs consist of a finite sequence of unitary gates $U(\theta)$ parameterized by $\theta \in \mathbb{R}^{LNR}$, where L , N , and R denote the number of layers, qubits, and rotation gates. $U(\theta)$ can be formulated as:

$$113 \quad U(\theta) = U(\theta_1, \dots, \theta_L) = \prod_{l=1}^L U_l(\theta_l), \quad (1)$$

116 where $U_l(\theta_l) = e^{-i\theta_l V_l}$, V_l is a Hermitian operator.

117 QNNs, which are built by wrapping neural network layers with vQCs, can be optimized using gradient-based methods. To optimize QNNs, we first define the loss function $E(\theta)$ of $U(\theta)$ as the expectation 118 over Hermitian operator H :

$$120 \quad E(\theta) = \langle 0 | U(\theta)^\dagger H U(\theta) | 0 \rangle. \quad (2)$$

121 Given the loss function $E(\theta)$, we can further compute its gradient by the following formula:

$$123 \quad \partial_k E \equiv \frac{\partial E(\theta)}{\partial \theta_k} = i \langle 0 | U_-^\dagger \left[V_k, U_+^\dagger H U_+ \right] U_- | 0 \rangle, \quad (3)$$

125 where we denote $U_- \equiv \prod_{l=0}^{k-1} U_l(\theta_l)$ and $U_+ \equiv \prod_{l=k}^L U_l(\theta_l)$. Also, $U(\theta)$ is sufficiently random s.t. 126 both U_- and U_+ (or either one) are independent and match the Haar distribution up to the second 127 moment.

128 **Barren Plateaus (BPs)** are first investigated by McClean et al. (2018), who demonstrate that the 129 gradient variance $\text{Var}[\partial E]$ of QNNs at the beginning of training will exponentially decrease as the 130 number of qubits N increases when the random QNNs match 2-design Haar distribution. This 131 exponential pattern can be approximated as:

$$133 \quad \text{Var}[\partial E] \propto 2^{-2N}. \quad (4)$$

134 The Eq. (4) indicates that $\text{Var}[\partial E]$ will approximate zero when the number of qubits N is very large, 135 i.e., most gradient-based approaches will fail to train QNNs in this case.

136 Based on the above description, we formally state the problem that we aim to solve as follows:

137 **Problem 1.** *By leveraging a generative AI (GenAI) model, such as an LLM, we refine posterior with 138 adaptive prompting, i.e., iteratively generate effective initial parameters θ_0^* for a QNN that yields 139 non-negligible gradient variance $\text{Var}[\partial E]$, thereby mitigating barren plateaus (BPs).*

141 **Tools from Probability Theory.** Below, we review the definition of martingale (submartingale), 142 along with key tools relevant to our work. We adapt the descriptions from (Williams, 1991; Freeman 143 & Stephenson, 2025).

144 **Definition 1** (Martingale, (Williams, 1991)). *Let $\{M^{(t)}\}_{t \geq 1}$ be a stochastic process w.r.t. a filtration 145 $\{\mathcal{F}^{(t)}\}_{t \geq 1}$ on a probability space (Ω, \mathcal{F}, P) . The process $\{M^{(t)}\}$ is called a martingale if (i) $\{M^{(t)}\}$ 146 is adapted, (ii) $\mathbb{E}[|M^{(t)}|] < \infty$, for $\forall t \in \mathbb{Z}^+$, (iii) $\mathbb{E}[M^{(t+1)} | \mathcal{F}^{(t)}] = M^{(t)}$, almost surely for 147 $\forall t \in \mathbb{Z}^+$.*

148 *If (iii) is replaced by $\mathbb{E}[M^{(t+1)} | \mathcal{F}^{(t)}] \geq M^{(t)}$ almost surely, we say $\{M^{(t)}\}$ is a submartingale.*

149 **Theorem 1** (Doob's Forward Convergence Theorem, (Williams, 1991)). *Let $\{M^{(t)}\}_{t \geq 1}$ be an L^1 - 150 bounded submartingale (in Def. 1). Then, almost surely, the limit $M^{(\infty)} = \lim_{t \rightarrow \infty} M^{(t)}$ exists and 151 is finite.*

152 **Theorem 2** (Doob's Optional Stopping Theorem, (Williams, 1991)). *Let $\{M^{(t)}\}_{t \geq 1}$ be a submartingale 153 (in Def. 1) and let τ be a stopping time. Then $\mathbb{E}[M^{(\tau)}] \geq \mathbb{E}[M^{(0)}]$ if any one of the following 154 conditions hold: (i) τ is bounded, (ii) $P[\tau < \infty] = 1$ and $\{M^{(t)}\}$ is bounded for $\forall t \in \mathbb{Z}^+$, (iii) 155 $\mathbb{E}[\tau] < \infty$ and $|M^{(t)} - M^{(t-1)}|$ is bounded for $\forall t \in \mathbb{Z}^+$.*

156 **Theorem 3** (Dominated Convergence Theorem, (Williams, 1991)). *Let $M^{(t)}$, M be random variables 157 s.t. $M^{(t)} \rightarrow M$ almost surely. There exists a random variable $Y \in L^1$ s.t. for $\forall t \in \mathbb{Z}^+$, $|M^{(t)}| < Y$ 158 almost surely, then $\mathbb{E}[M^{(t)}] \rightarrow \mathbb{E}[M]$ as $t \rightarrow \infty$.*

159 **Lemma 1** (Minimum of Stopping Times, (Freeman & Stephenson, 2025)). *Let τ_1 and τ_2 be stopping 160 times w.r.t. a filtration $\{\mathcal{F}^{(t)}\}$. Then $\tau_1 \wedge \tau_2 = \min(\tau_1, \tau_2)$ is also a $\{\mathcal{F}^{(t)}\}$ stopping time.*

162 **4 OUR PROPOSED FRAMEWORK**
163
164

165 In this study, we introduce a new framework, AdaInit,
166 designed to mitigate BP issues in QNNs by leveraging gen-
167 erative AI (GenAI) models, particularly LLMs. Our **key**
168 **innovations** can be described as follows. **(i)** First, unlike
169 conventional one-shot initialization strategies, we propose
170 a generative approach that iteratively generates effective
171 initial model parameters $\theta_0^* \in \mathbb{R}^{LN^R}$ for QNNs that yield
172 non-negligible gradient variance $\text{Var}[\partial E]$, thereby mitigat-
173 ing BPs. In each iteration, we employ an LLM to refine the
174 posterior (candidate initial model parameters θ_0) through
175 adaptive prompting. After the posterior refinement, we
176 train the QNN initialized with the generated θ_0 and fur-
177 ther compute its $\text{Var}[\partial E]$ in the early stage of training
178 for monitoring BPs. The benefit of using LLM to refine
179 the posterior is that the LLM can incorporate diverse tex-
180 tual instructions via prompts and adaptively update the
181 prompts based on feedback from the previous iteration.
182 This adaptive refinement allows our framework to dyna-
183 mically optimize the generation process. **(ii)** To validate
184 the generation quality, we employ Expected Improvement
185 (EI), $\Delta^{(t)}$, as a guiding metric for the iterative process.
186 Furthermore, we rigorously prove that the process satisfies
187 the properties of a submartingale. Consequently, we the-
188oretically establish the boundedness, thereby demonstrating
189 that our proposed framework will ultimately find effective
190 initial model parameters for QNNs in a finite step.

191 We present our framework workflow in Fig. 2
192 and further introduce details in Algo. 1. Given
193 a GenAI model $f(\cdot)$, prompts x_p for the $f(\cdot)$, a
194 QNN $g(\cdot)$, and the number of iterations T , we first
195 initialize $f(\cdot)$, x_p (**line 1**) and also create an empty
196 list \emptyset for Θ_0^* to collect candidates of QNN’s ini-
197 tial model parameters (**line 2**). After initialization,
198 we run T iterations for generation (**line 3**). In
199 each iteration, let’s say in the t -th iteration, we
200 first employ $f(\cdot)$ with prompts $x_p^{(t)}$ and a prior
201 distribution $P(\theta_0^{(t)})$ to refine the posterior distri-
202 bution $P(\theta_0^{(t)}|x_p^{(t)})$, which is the generated initial
203 model parameter $\theta_0^{(t)}$ for the QNN (**line 4**). After
204 generation, we train the QNN $g(\theta_0^{(t)})$ with certain
205 training epochs and compute the gradient variance
206 $\text{Var}[\partial E^{(t)}]$, whose gradient is abbreviated from
207 $\frac{\partial E(\theta^{(t)})}{\partial \theta^{(t)}}$, where $\theta^{(t)}$ denotes the QNN’s model pa-
208 rameter in the t -th iteration (**line 5**). After com-
209 puting the variance, we evaluate the improvement
210 using the Expected Improvement (EI) metric, com-
211 paring the current gradient variance $\text{Var}[\partial E^{(t)}]$ to the historical maximum gradient variance, which
212 is the cumulative sum of EI when EI meets the following conditions (**line 6**). If the current EI, $\Delta^{(t)}$,
213 is effectively improved, i.e., $\Delta^{(t)} \geq 1/(\text{poly}(N, L)K)$, where $1/(\text{poly}(N, L)K)$ (with a parameter K be
214 determined later) denotes a strictly positive lower bound on the gradient variance of an N -qubit,
215 L -layer QNN for each iteration, in the absence of BPs (**line 7**), then we update the prompts for
the next iteration based on the current initial model parameters $\theta_0^{(t)}$, the current gradient variance
 $\text{Var}[\partial E^{(t)}]$, and the historical maximum gradient variance $S^{(t-1)}$ (**line 8**). After updating prompts,

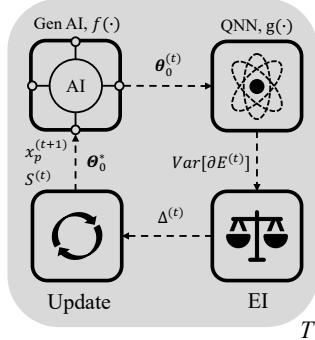


Figure 2: Our proposed framework follows an iterative process over T iterations (gray area). In t -th iteration, we perform four sequential steps: (i) Generate $\theta_0^{(t)}$ using a Gen AI model, $f(\cdot)$, (ii) Compute $\text{Var}[\partial E^{(t)}]$ after QNN’s training, (iii) Calculate EI, $\Delta^{(t)}$, and (iv) Update prompts $x_p^{(t+1)}$, historical maximum gradient variance $S^{(t)}$, and effective candidates θ_0^* for next iteration. Dashed arrows indicate data flow and corresponding outputs in each step.

Algorithm 1 Iteratively generate effective initial parameters for QNNs using a generative model.

Require: A GenAI model $f(\cdot)$, prompts x_p , a QNN $g(\cdot)$, the number of iterations T , a parameter K .
1: Initialize prompts x_p and the GenAI model $f(\cdot)$;
2: Create an empty list $\Theta_0^* \leftarrow \emptyset$ to collect effective candidates of initial model parameters for the QNN, $g(\cdot)$;
3: **for** $t = 1$ to T **do**
4: $P(\theta_0^{(t)}|x_p^{(t)}) \leftarrow f(x_p^{(t)}|\theta_0^{(t)})P(\theta_0^{(t)})$;
5: $\text{Var}[\partial E^{(t)}] \leftarrow g(\theta_0^{(t)})$;
6: $\Delta^{(t)} \leftarrow \max(\text{Var}[\partial E^{(t)}] - S^{(t-1)}, 0)$;
7: **if** $\Delta^{(t)} \geq \frac{1}{\text{poly}(N, L)K}$ **then**
8: $x_p^{(t+1)} \leftarrow \frac{\theta_0^{(t)}, \text{Var}[\partial E^{(t)}], S^{(t-1)}}{x_p^{(t)}}$;
9: $S^{(t)} \leftarrow \text{Var}[\partial E^{(t)}]$;
10: $\Theta_0^* \leftarrow \Theta_0^* \oplus [\theta_0^{(t)}]$;
11: **end if**
12: **end for**
13: **return** Θ_0^* .

216 we update the historical maximum $S^{(t)}$ for the next iteration, where (if $\Delta^{(t)} \geq 1/(poly(N,L)K)$)
 217 $S^{(t)} = S^{(t-1)} + \Delta^{(t)} = \text{Var}[\partial E^{(t)}]$ (line 9) and further concatenate $\theta_0^{(t)}$ to the candidate list Θ_0^*
 218 (line 10), which will be returned at the end (line 13). If so, the most effective initial model parameter
 219 θ_0^* will be the last element in the candidate list. We can see that the input parameter K is somewhat
 220 related to a wanted increment in $\text{Var}[\partial E^{(t)}]$, which is further linked to the desired underlying property
 221 provided by the GenAI model. This connection is explicitly shown in the theoretical analysis below.
 222

223 **Analysis of time and space complexity.** Our framework runs T iterations. In each iteration,
 224 posterior refinement, which is linearly related to the output size of θ_0 , takes $\mathcal{O}(|\theta_0|)$ for a fixed-
 225 size QNN. Besides, training $g(\theta_0)$ with T_{tr} epochs may take $\mathcal{O}(T_{tr} \cdot |\theta_0|)$, where T_{tr} denotes
 226 the number of training epochs for QNN. Combining $\theta_0 \in \mathbb{R}^{LNR}$, the total **time complexity** is
 227 $\mathcal{O}(T \cdot (L \cdot N \cdot R + T_{tr} \cdot L \cdot N \cdot R)) \approx \mathcal{O}(T \cdot T_{tr} \cdot L \cdot N \cdot R)$. The space complexity primarily depends
 228 on the storage requirements. Θ_0^* at most stores T number of θ_0 , which consumes $\mathcal{O}(T \cdot |\theta_0|)$. The
 229 output of posterior refinement takes $\mathcal{O}(|\theta_0|)$ space. Gradient variance and EI are scalars, which cost
 230 $\mathcal{O}(1)$ space. The prompts x_p are iteratively updated and thus occupy $\mathcal{O}(|x_p|)$ space. Considering the
 231 size of θ_0 , the total **space complexity** is $\mathcal{O}(T \cdot L \cdot N \cdot R + L \cdot N \cdot R + |x_p|) \approx \mathcal{O}(T \cdot L \cdot N \cdot R + |x_p|)$.
 232

233 **Theoretical analysis of our framework.** We first present some necessary results and further
 234 discuss how those results can be interpreted. Full Proofs can be found in the **Appendix A**.

235 First, we define the Expected Improvement (EI) at each iteration t as $\Delta^{(t)}$ and its cumulative sum
 236 in the past iterations as $S^{(t-1)}$ in Def. 2. Besides, we assume that the maximum possible gradient
 237 ∂E_{max} during QNN’s training is bounded by a positive constant $B_{\partial E}$, which is practical in real-world
 238 simulation. Next, we establish an upper bound for EI through Lem. 2 and Lem. 3.

239 **Definition 2** (Expected Improvement). *For $\forall t \in \mathbb{Z}^+$, the Expected Improvement (EI) in the t -th
 240 iteration is defined as:*

$$241 \quad \Delta^{(t)} = \max(\text{Var}[\partial E^{(t)}] - S^{(t-1)}, 0),$$

243 where $\text{Var}[\partial E^{(t)}]$ denotes the gradient variance in the t -th iteration, and $S^{(t-1)} = \sum_{t_i=1}^{t-1} \Delta^{(t_i)} \cdot I^{(t_i)}$.
 244 $I^{(t_i)}$ denotes the maximum observed gradient variance in the past iterations, where $I^{(t_i)}$ represents an
 245 indicator function $\mathbf{1}(\Delta^{(t_i)} \geq 1/(poly(N,L)K))$ given a condition inside.

246 **Assumption 1** (Bounded Maximum Gradient). *We assume there exists a positive constant $B_{\partial E} > 0$,
 247 s.t. the maximum possible gradient ∂E_{max} during QNN’s training satisfies:*

$$248 \quad |\partial E_{max}| \leq B_{\partial E}.$$

250 *Without loss of generality, let’s say $\partial E_{max} \in [-\frac{B_{\partial E}}{2}, \frac{B_{\partial E}}{2}]$.*

252 **Lemma 2** (Boundedness of Gradient Variance). *Given a certain-size quantum neural network (QNN),
 253 the variance of its gradient at the beginning of training, $\text{Var}[\partial E]$, is bounded by:*

$$254 \quad \text{Var}[\partial E] \leq (\partial E_{max} - \partial E_{min})^2,$$

256 where ∂E_{max} and ∂E_{min} denote the maximum and minimum values of the gradient ∂E , respectively.

258 **Lemma 3** (Boundedness of EI). *From Def. 2 and Lem. 2, in the process of generating initial model
 259 parameters θ_0 for a certain-size QNN, for $\forall t \in \mathbb{Z}^+$, there exists a bound for the expected improvement
 260 (EI) s.t.*

$$261 \quad \Delta^{(t)} \leq (\partial E_{max} - \partial E_{min})^2.$$

264 These results indicate that $S^{(t)}$ is L^1 -bounded and integrable for each t . Building upon these lemmas,
 265 we investigate the submartingale property and rigorously prove in Lem. 4 that $S^{(t)}$ is a submartingale.
 266

267 **Lemma 4** (Informal Statement of Submartingale Property). *Let $\{I^{(t)}\}_{t \geq 1}$ be a sequence of Bernoulli
 268 random variables on a probability space (Ω, \mathcal{F}, P) s.t. $I^{(t)} = 1$ with a real number $p \in (0, 1]$. Then,
 269 $\{S^{(t)}\}_{t \geq 1}$ is a submartingale with respect to the filtration $\{\mathcal{F}^{(t)}\}_{t \geq 1}$ which denotes the collections of
 all possible events up to time t .*

270 Note that the random variable is defined in relation to the comparison between the values of $\Delta^{(t)}$ and
 271 $1/(poly(N,L)K)$. From the definition, it is easy to see that $\Delta^{(t)} \geq 1/(poly(N,L)K)$ when $I^{(t)} = 1$, and
 272 $\Delta^{(t)} < 1/(poly(N,L)K)$ when $I^{(t)} = 0$. More precisely, each $\Delta \cdot I$ (omitting the superscripts) defines
 273 a joint distribution of one discrete random variable and one continuous random variable. More details
 274 about this intuition are provided in the proofs (**Appendix A**).
 275

276 Leveraging the convergence of submartingales and the monotonicity of $S^{(t)}$, we establish in Lem. 5
 277 that $S^{(t)}$ has a supremum, which indicates that our proposed framework can eventually generate
 278 effective initial model parameters for QNNs that can yield non-negligible gradient variance.
 279

280 **Lemma 5** (Boundedness of Submartingale). *Let $\{S^{(t)}\}_{t \geq 1}$ be a submartingale w.r.t. a $\{\mathcal{F}^{(t)}\}_{t \geq 1}$
 281 s.t. $\sup_t \mathbb{E}[|S^{(t)}|] < \infty$. Then, $\{S^{(t)}\}_{t \geq 1}$ is almost surely bounded by a finite constant B_S s.t.
 282 $S^{(t)} \leq B_S$, a.s., $\forall t \in \mathbb{Z}^+$.*
 283

284 Building upon Lem. 5, Thm. 4 shows the expected hitting time $\mathbb{E}[T_b]$ of a bounded submartingale,
 285 ensuring that our framework will converge to a desired solution within a finite number of iterations.
 286

287 **Theorem 4** (Expected Hitting Time of a Bounded Submartingale). *Let $\delta = p/(poly(N,L)K) > 0$ with p
 288 defined in Lem. 4. Let T_b be the hitting time of a bounded submartingale $\{S^{(t)}\}_{t \geq 1}$, where $S^{(t)} \leq B_S$
 289 almost surely, for $\forall t \in \mathbb{Z}^+$ (by Lem. 5). We define the hitting time as: $T_b = \inf \{t \in \mathbb{Z}^+ : S^{(t)} = b\}$,
 290 for some threshold $b \leq B_S$ such that the set is non-empty almost surely. Then the expected hitting
 291 time satisfies:*
 292

$$\mathbb{E}[T_b] \leq \frac{b}{\delta} = \frac{b \cdot poly(N, L) \cdot K}{p}.$$

293 With this theorem, it is straightforward to derive the results for two meaningful cases: (i) $b =$
 294 $1/poly(N,L)$; and (ii) $b = B_S$. This is summarized as Cor. 1 in the **Appendix A**. (i) When the
 295 threshold $b = 1/poly(N,L)$, the expected hitting time satisfies $\mathbb{E}[T_b] \leq K/p$, where the probability
 296 p is defined in Lem. 4. Note that K determines the desired threshold on increment $\Delta^{(t)}$. This is
 297 related to the generative power provided by the input GenAI model f , which is manifested in Lem. 4.
 298 Concretely, if the model f can help return a wanted $\Delta^{(t)}$ with greater $1/(poly(N,L)K)$ (i.e. smaller K)
 299 and better probability (i.e. p), then the expected stopping iteration T is getting smaller. (ii) When
 300 $b = B_S$, i.e., the supremum of the submartingale, $\mathbb{E}[T_b] \leq B_S \cdot poly(N,L) \cdot K/p$. This suggests that even
 301 when iteratively generating more effective initial parameters for QNNs (can yield higher gradient
 302 variance), our framework can still converge within a tractable (polynomial) number of iterations if
 303 $B_S = \mathcal{O}(poly(N, L))$. Both cases demonstrate that our framework is not only theoretically grounded
 304 but also robust in generating meaningful initializations for QNNs under different optimization goals.
 305

306 Furthermore, we discuss extreme cases when p is negligible, e.g., $p = \mathcal{O}(2^{-N})$. One such case
 307 involves ansatz-induced BPs (Holmes et al., 2022), where initialization-based methods fail in this
 308 scenario. Another case arises when LLMs repeatedly generate identical ineffective outputs. The
 309 former case could be addressed by modifying the QNN architecture (Holmes et al., 2022), while the
 310 latter one can be solved by adjusting hyperparameters, like temperature or top-p, to enhance output
 311 diversity (Achiam et al., 2023).
 312

5 EXPERIMENT

314 In this section, we first introduce the experimental settings and further present our results in detail.
 315

316 **Experimental settings.** We evaluate our proposed method across four public datasets, **Iris**, **Wine**,
 317 **Titanic**, and **MNIST**. We present the dataset statistics and settings in the **Appendix B**. In the
 318 experiment, we analyze the trend of gradient variance by varying the number of qubits, ranging from
 319 2 to 20 in increments of 2 (fixed 2 layers), and the number of layers, spanning from 4 to 40 in steps
 320 of 4 (fixed 2 qubits). To obtain reliable results, we repeat the experiments five times and present them
 321 as curves (mean) with their bandwidth (standard deviation). Overall, our framework can generate
 322 effective model parameters within 50 iterations. In each iteration, we employ an Adam optimizer
 323 with a learning rate of 0.01 and a batch size of 20 to train a QNN with 30 epochs and compute the
 324 gradient variance. After training, we compute the expected improvement (EI) and compare it with

an assumed lower bound, $1/(poly(N,L)K)$, in each iteration, where we set $K = T$ in the experiments. We empirically choose the lower bound by $1/(T \cdot N^6)$ (**Appendix B**) and apply it for all cases, as we observe in Fig. 3 that the magnitudes of gradient variances are comparable across all datasets. For evaluation, we follow (McClean et al., 2018) to assess BP by measuring the gradient variance during the early stage of QNNs’ training. A higher gradient variance implies a reduced likelihood of encountering BPs.

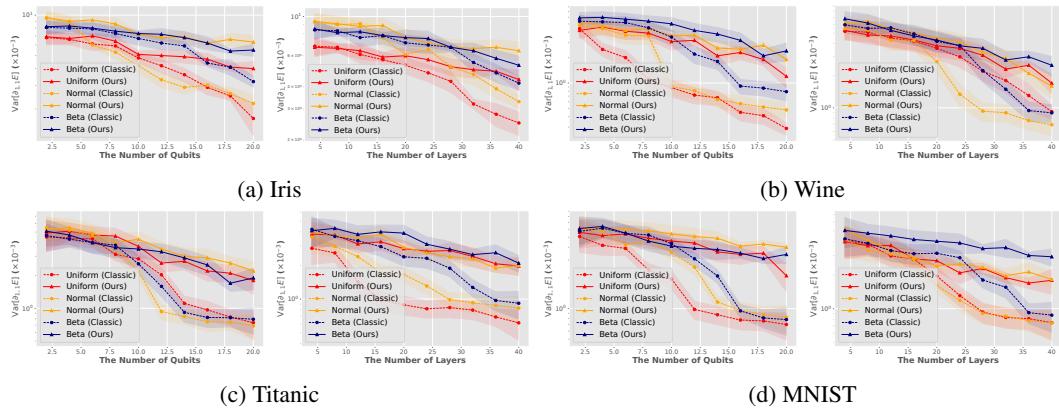


Figure 3: Analysis of gradient variance trends in the first element of QNNs’ model parameters across varying qubit and layer settings for three classic initialization distributions, uniform, normal, and beta. “Classic” denotes that we initialize the model parameters with a classic distribution. “Ours” denotes that we use our framework to generate initial model parameters.

Generating initial model parameters of QNNs using our framework can help mitigate BPs. We analyze gradient variance trends in the first element of QNNs’ model parameters across varying qubit and layer settings for three classic initialization distributions, uniform, normal, and beta distributions, which are presented in Fig. 4 as examples. For each initialization with classic distribution, we compare it (“Classic”) with our proposed methods (“Ours”). As presented in Fig. 3, we observe that in the case of using classic initialization, the gradient variance of QNNs will significantly decrease as the number of qubits or layers increases. Compared with it, our method can maintain higher variances, indicating that our framework can mitigate BPs better. In the rest of the experiments, if there is no specific state, we adopt a uniform distribution as prior knowledge for posterior refinement. Besides the above comparison, we further investigate the contribution of LLMs in the **Appendix B**.

Comparison of generative performance using LLMs. In our framework, the initial model parameters of QNNs are generated by LLMs. We compare the generative performance under varying QNN structures, such as different numbers of qubits or layers. Specifically, we primarily evaluate whether the correct size of model parameters can be generated by testing 20 combinations in accuracy, fixing either 2 layers while varying qubits from 2 to 20, or 2 qubits while varying layers from 4 to 40. As shown in Tab. 1, the results indicate that both GPT-4o and Claude 3.5 Sonnet can achieve 100% accuracy in generating the correct shapes of model parameters. Considering 4K output tokens are sufficient for our settings, we mainly use GPT-4o as the backbone LLMs. We provide additional observation in the **Appendix B**.

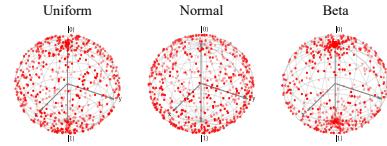


Figure 4: Example of three classic distributions commonly used for initialization. In the figure, the red dots represent the initial values of the model parameters.

LLMs	Acc.	Max i/o
GPT-4o	100%	128K / 4K
GPT-4o Mini	85%	128K / 16K
Gemini 1.5 Flash	75%	1M / 8K
Gemini 1.5 Pro	90%	2M / 8K
Claude 3.5 Sonnet	100%	200K / 8K
LLaMA 3 70B Instruct	0%	8K / 2K
LLaMA 3 405B Instruct	50%	128K / 2K

Table 1: Comparison of initial parameters’ generation by accuracy (Acc.) via GPT (Hurst et al., 2024), Gemini (Team et al., 2024), Claude (Anthropic, 2024), and LLaMA (Grattafiori et al., 2024). Suffix ‘K’ denotes ‘thousand’.

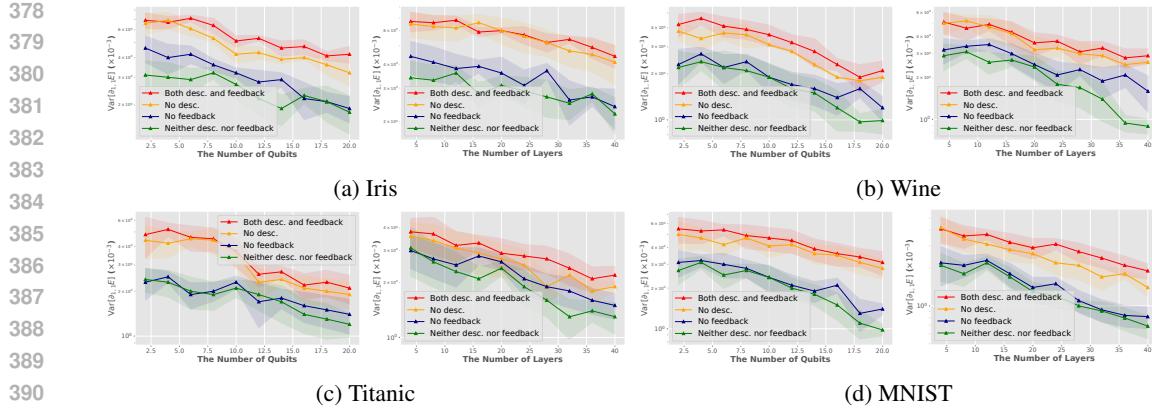


Figure 5: Analysis of prompts’ impact, i.e., investigate whether data description (desc.) and gradient feedback (feedback) affect the gradient variance in the first element of QNNs’ model parameters across different model structures, considering variations in the number of qubits and layers.

Investigation of prompts. We examine whether the content of prompts influences generative performance. In the experiments, we tested four prompting scenarios: (i) Including both data description and gradient feedback in prompts (Both desc. and feedback), (ii) Including gradient feedback only (No desc.), (iii) Including data description only (No feedback), (iv) Including neither data description nor gradient feedback (Neither desc. nor feedback). As the results presented in Fig. 5, we observe that suppressing either dataset description or gradient feedback in the prompts leads to a reduction in the gradient variance of QNNs. Notably, the reduction is more significant in most cases when gradient feedback is muted compared to the dataset description, suggesting that both factors play a crucial role in mitigating BPs, with gradient feedback contributing significantly more.

Comparison with initialization-based strategies. We compare our framework with two representative initialization-based strategies, GaInit (Zhang et al., 2022) and BeInit (Kulshrestha & Safro, 2022). Both of them leverage well-designed Normal and Beta distributions to initialize the QNNs, respectively. For a fair comparison, we initialize the QNNs with the corresponding distribution. We present the results on Iris in Fig. 6 as an example. The results demonstrate that our framework can generate initial model parameters of QNNs that achieve higher gradient variance at the beginning of training as the model size increases, indicating better mitigation for BPs.

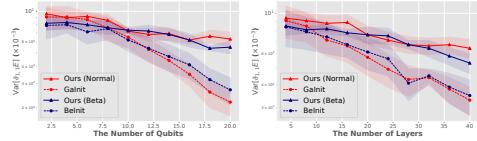


Figure 6: Comparison between two strategies and our framework, which is initialized with the corresponding data distribution for a fair comparison.

Analysis of the expected improvement. We analyze the patterns on the expected improvement (EI) and the corresponding gradient variance across various QNN structures as iterations progress. Representative experiments conducted on Iris are illustrated in Fig. 11 as an example (**Appendix B**). Our findings show that the framework can reliably discover meaningful initial parameters regardless of model size. Besides, as the model size grows, more iterations are required to obtain effective initial parameters that enable QNNs to maintain higher gradient variance. This is expected, as larger models expand the candidate space, demanding greater computational resources to explore effectively. Both observations verify the Cor. 1 (**Appendix A**).

Sensitivity analysis of hyperparameters. We analyze the sensitivity of hyperparameters, including Temperature and Top P, for LLMs. Temperature controls the randomness of predictions, with higher values generating more diverse outputs, while Top P affects the probabilities of token selections, balancing generation diversity and structural consistency. To identify optimal settings, we first narrowed down the ranges through manual tuning and then applied grid search to determine the best combinations (Temperature, Top P) for each dataset: Iris (0.5, 0.9), Wine (0.1, 0.45), Titanic (0.8, 0.75), and MNIST (0.8, 0.8), as presented in Fig. 7. The combinations of the above hyperparameters were used in this study.

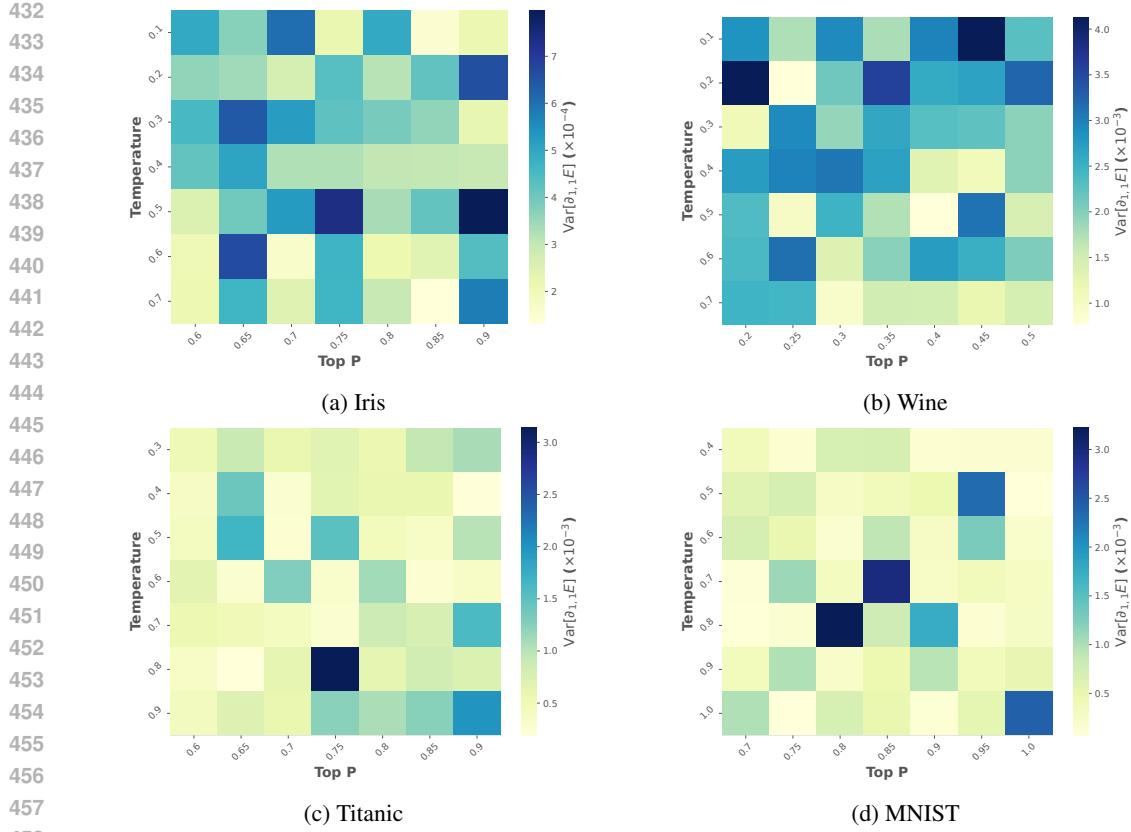


Figure 7: Analysis of the sensitivity of hyperparameters, including Temperature and Top P. The grid with the darkest color indicates the optimal combination.

Due to the page limit, we present our supplementary results, such as simulation time of QNNs, and the computational trade-off, in the [Appendix B](#).

6 CONCLUSION

In this study, we aim to mitigate barren plateaus (BPs) by introducing a new AI-driven submartingale-based framework, namely AdaInit. This framework iteratively generates effective initial parameters using generative models, such as LLMs, for QNNs that yield non-negligible gradient variance, thereby mitigating BPs. Our theoretical analysis establishes the submartingale property for the iterative process, ensuring the effective generation. Through extensive experiments across various model scales, we demonstrated that AdaInit outperforms conventional classic initialization methods in maintaining higher gradient variance as QNN's sizes increase. Overall, this study might initiate a new avenue to explore how LLMs help mitigate BPs.

Limitations, future work, and broad impact. First, our theoretical analyses assume that the maximum gradient of QNNs is bounded by a positive constant, implying that gradient explosion does not occur during training, a condition that is typically satisfied in practice. Second, due to the practical limitations of quantum simulation, our experiments are constrained to QNNs with up to 20 qubits. We also assume an idealized setting where quantum measurements are noise-free. Moreover, our current scope excludes ansatz-induced BPs, which may be mitigated through architectural modifications, as discussed above. For **future work**, we plan to (i) accelerate the convergence of the iterative process and (ii) expand the applicability of our framework beyond BP mitigation. In particular, it can be leveraged to guide QNN architecture design or to identify optimal model parameters in training. More **broadly**, our framework can support robust QNN training across various domains, such as healthcare, where robustness and reliability are critical.

486 **Ethics Statement**

487 This work does not involve human subjects, sensitive personal data, or tasks with foreseeable negative
 488 societal impact. The datasets used (Iris, Wine, Titanic, and MNIST) are standard, publicly available
 489 benchmarks. We ensured compliance with their respective licenses and data usage guidelines. The
 490 proposed framework is designed to mitigate barren plateaus and does not directly enable harmful
 491 applications. Nonetheless, as with other advances in optimization, the method could potentially be
 492 applied in sensitive domains; in such cases, practitioners should carefully consider fairness, privacy,
 493 and security concerns in line with the ICLR Code of Ethics.

494 **Reproducibility Statement**

495 We have made every effort to ensure reproducibility of our results. Detailed theoretical proofs are
 496 included in Appendix A, whereas experimental settings, dataset splits, hyperparameters, architecture
 497 of the backbone quantum circuit, and the computing infrastructure are described in Appendix B.
 498 Besides, we provide sample code and datasets in the supplementary materials, which will be made
 499 publicly available upon publication. These resources, together with the descriptions of prompts,
 500 model parameters, and evaluation protocols, are intended to enable independent verification and
 501 extension of our work.

502 **REFERENCES**

503 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 504 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 505 *arXiv preprint arXiv:2303.08774*, 2023.

506 Anthropic. Introducing claude 3.5 sonnet, June 2024. URL <https://www.anthropic.com/news/clause-3-5-sonnet>. Accessed: 2025-02-15.

507 Kishor Bharti and Tobias Haug. Quantum-assisted simulator. *Physical Review A*, 104(4):042418,
 508 2021.

509 Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J Coles. Cost function
 510 dependent barren plateaus in shallow parametrized quantum circuits. *Nature communications*, 12
 511 (1):1791, 2021.

512 Jack Cunningham and Jun Zhuang. Investigating and mitigating barren plateaus in variational
 513 quantum circuits: A survey. *arXiv preprint arXiv:2407.17706*, 2024.

514 Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao. Quantum circuit architecture
 515 search for variational quantum algorithms. *npj Quantum Information*, 8(1):62, 2022.

516 Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm.
 517 *arXiv preprint arXiv:1411.4028*, 2014.

518 Nic Freeman and Robin Stephenson. Mas352: Stochastic processes and financial mathematics
 519 (notes). https://nicfreeman1209.github.io/Website/MASx52/html/notes_1.html, 2025. Accessed: 2025-05-15.

520 Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti. An initialization
 521 strategy for addressing barren plateaus in parametrized quantum circuits. *Quantum*, 2019.

522 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 523 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 524 models. *arXiv preprint arXiv:2407.21783*, 2024.

525 Harper R Grimsley, George S Barron, Edwin Barnes, Sophia E Economou, and Nicholas J Mayhall.
 526 Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes
 527 and barren plateaus. *npj Quantum Information*, 9(1):19, 2023.

528 Valentin Heyraud, Zejian Li, Kaelan Donatella, Alexandre Le Boit , and Cristiano Ciuti. Efficient
 529 estimation of trainability for variational quantum circuits. *PRX Quantum*, 4(4):040335, 2023.

530 Zo  Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. Connecting ansatz expressibility to
 531 gradient magnitudes and barren plateaus. *PRX quantum*, 3(1):010313, 2022.

540 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 541 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 542 *arXiv:2410.21276*, 2024.

543 Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow,
 544 and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and
 545 quantum magnets. *nature*, 549(7671):242–246, 2017.

546 Muhammad Kashif and Saif Al-Kuwari. Resqnets: a residual approach for mitigating barren plateaus
 547 in quantum neural networks. *EPJ Quantum Technology*, 2024.

548 Muhammad Kashif, Muhammad Rashid, Saif Al-Kuwari, and Muhammad Shafique. Alleviating
 549 barren plateaus in parameterized quantum machine learning circuits: Investigating advanced
 550 parameter initialization strategies. In *2024 Design, Automation & Test in Europe Conference &*
 551 *Exhibition (DATE)*, pp. 1–6. IEEE, 2024.

552 Ankit Kulshrestha and Ilya Safro. Beinit: Avoiding barren plateaus in variational quantum algorithms.
 553 In *2022 IEEE international conference on quantum computing and engineering (QCE)*, pp. 197–
 554 203. IEEE, 2022.

555 Guangxi Li, Zhixin Song, and Xin Wang. Vsql: Variational shadow quantum learning for classification.
 556 In *Proceedings of the AAAI conference on artificial intelligence*, 2021.

557 Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, Yong-Jian Han, and Guo-Ping Guo. Mitigating barren
 558 plateaus with transfer-learning-inspired parameter initializations. *New Journal of Physics*, 25(1):
 559 013039, 2023.

560 Xia Liu, Geng Liu, Hao-Kai Zhang, Jiaxin Huang, and Xin Wang. Mitigating barren plateaus of
 561 variational quantum eigensolvers. *IEEE Transactions on Quantum Engineering*, 2024.

562 Andrea Mari, Thomas R Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran. Transfer learning
 563 in hybrid classical-quantum neural networks. *Quantum*, 4:340, 2020.

564 Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren
 565 plateaus in quantum neural network training landscapes. *Nature communications*, 9(1):4812, 2018.

566 Antonio A Mele, Glen B Mbeng, Giuseppe E Santoro, Mario Collura, and Pietro Torta. Avoiding
 567 barren plateaus via transferability of smooth solutions in a hamiltonian variational ansatz. *Physical*
 568 *Review A*, 106(6):L060401, 2022.

569 Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit learning.
 570 *Physical Review A*, 98(3):032309, 2018.

571 Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe. Entanglement-induced barren plateaus.
 572 *PRX quantum*, 2(4):040316, 2021.

573 Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. Structure optimization for parameter-
 574 ized quantum circuits. *Quantum*, 5:391, 2021.

575 Chae-Yeon Park and Nathan Killoran. Hamiltonian variational ansatz without barren plateaus.
 576 *Quantum*, 8:1239, 2024.

577 John Preskill. Quantum computing in the nisq era and beyond. *Quantum*, 2:79, 2018.

578 Han Qi, Lei Wang, Hongsheng Zhu, Abdullah Gani, and Changqing Gong. The barren plateaus of
 579 quantum neural networks: review, taxonomy and trends. *Quantum Information Processing*, 22(12):
 580 435, 2023.

581 Sonny Rappaport, Gaurav Gyawali, Tiago Sereno, and Michael J Lawler. Measurement-induced
 582 landscape transitions in hybrid variational quantum circuits. *arXiv preprint arXiv:2312.09135*,
 583 2023.

584 Stefan H Sack, Raimel A Medina, Alexios A Michailidis, Richard Kueng, and Maksym Serbyn.
 585 Avoiding barren plateaus using classical shadows. *PRX Quantum*, 3(2):020365, 2022.

594 Antonio Sannia, Francesco Tacchino, Ivano Tavernelli, Gian Luca Giorgi, and Roberta Zambrini.
 595 Engineered dissipation to mitigate barren plateaus. *npj Quantum Information*, 10(1):81, 2024.
 596

597 Raja Selvarajan, Manas Sajjan, Travis S Humble, and Sabre Kais. Dimensionality reduction with
 598 variational encoders based on subsystem purification. *Mathematics*, 2023.

599 Yun Shang and Xiao Shi. Avoiding barren plateaus via gaussian mixture model. *New Journal of
 600 Physics*, 2025.

601

602 Samuel A Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang Li, Bo Fang, and Shuai Xu.
 603 *Qugan: A quantum state fidelity based generative adversarial network*. In *2021 IEEE International
 604 Conference on Quantum Computing and Engineering (QCE)*, pp. 71–81. IEEE, 2021.

605 Yudai Suzuki, Hiroshi Yano, Rudy Raymond, and Naoki Yamamoto. Normalized gradient descent for
 606 variational quantum algorithms. In *2021 IEEE International Conference on Quantum Computing
 607 and Engineering (QCE)*, pp. 1–9. IEEE, 2021.

608

609 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 610 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 611 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

612 Cenk Tüysüz, Giuseppe Clemente, Arianna Crippa, Tobias Hartung, Stefan Kühn, and Karl Jansen.
 613 Classical splitting of parametrized quantum circuits. *Quantum Machine Intelligence*, 2023.

614

615 David Williams. *Probability with martingales*. Cambridge university press, 1991.

616

617 Kaining Zhang, Liu Liu, Min-Hsiu Hsieh, and Dacheng Tao. Escaping from the barren plateau via
 618 gaussian initializations in deep variational quantum circuits. *Advances in Neural Information
 Processing Systems*, 2022.

619

620 Jun Zhuang, Jack Cunningham, and Chaowen Guan. Improving trainability of variational quantum
 621 circuits via regularization strategies. *arXiv preprint arXiv:2405.01606*, 2024.

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Mitigating Barren Plateaus in Quantum Neural Networks via an AI-Driven Submartingale-Based Framework – Appendix

In the appendix, we present the proofs and the supplementary experiments in detail. **Datasets and sample code with a README file** are attached to the supplementary material for review purposes. These assets will be publicly available upon publication.

A PROOFS

In this section, we provide formal proofs that consolidate the theoretical guarantees of our framework.

Proof for Lemma 2. We denote a sequence of gradient $\partial E = \{\partial E^{(t)}\}_{t=0}^{T_{tr}}$, where T_{tr} represents the number of training epochs for a QNN. Within this sequence, we denote ∂E_{max} , ∂E_{min} , and $\overline{\partial E}$ as the maximum, minimum, and mean values of the gradient. For $\forall t \in \mathbb{Z}^+$, we have:

$$\partial E^{(t)}, \overline{\partial E} \in [\partial E_{min}, \partial E_{max}],$$

then the gap between $\partial E^{(t)}$ and $\overline{\partial E}$ will not exceed the range of $[\partial E_{min}, \partial E_{max}]$:

$$|\partial E^{(t)} - \overline{\partial E}| \leq \partial E_{max} - \partial E_{min}.$$

Thus, we have:

$$\begin{aligned} \text{Var}[\partial E] &= \frac{1}{T_{tr}} \sum_{t=1}^{T_{tr}} (\partial E^{(t)} - \overline{\partial E})^2 \\ &\leq \frac{1}{T_{tr}} \sum_{t=1}^{T_{tr}} (\partial E_{max} - \partial E_{min})^2 \\ &= (\partial E_{max} - \partial E_{min})^2. \end{aligned}$$

Thus, the gradient variance $\text{Var}[\partial E]$ satisfies the bound $\text{Var}[\partial E] \leq (\partial E_{max} - \partial E_{min})^2$. \square

Proof for Lemma 3. From Def. 2, for $\forall t \in \mathbb{Z}^+$, in the t -th search iteration, we have:

$$\Delta^{(t)} = \max(\text{Var}[\partial E^{(t)}] - S^{(t-1)}, 0).$$

Combining with Lem. 2, for $\forall t \in \mathbb{Z}^+$, we have:

$$\text{Var}[\partial E^{(t)}], S^{(t-1)} \leq (\partial E_{max} - \partial E_{min})^2.$$

The above equation holds true as $S^{(t-1)}$ denotes the historical maximum gradient variance in the past iterations. Thus, we have:

$$\text{Var}[\partial E^{(t)}] - S^{(t-1)} \leq (\partial E_{max} - \partial E_{min})^2,$$

which indicates that:

$$\Delta^{(t)} \leq (\partial E_{max} - \partial E_{min})^2.$$

\square

Before introducing the formal statement of submartingale property, we first define the random variables. Let $\alpha = 1/(poly(N, L)K)$. To avoid confusion, notably, we clarify that the K refers to a previously defined parameter, whereas in Tab. 1, the suffix ‘K’ attached to numbers represents the unit ‘thousand’. Formally, we define discrete random variables $I^{(t)}$ and continuous random variables $\Delta^{(t)}$ as follows:

$$\begin{cases} P(I^{(t)} = 1) = P(\Delta^{(t)} \geq \alpha) = p, \\ P(I^{(t)} = 0) = P(\Delta^{(t)} < \alpha) = 1 - p, \end{cases} \quad (5)$$

702 with a real number $p \in (0, 1]$. Hence, $I^{(t)}$ is a Bernoulli random variable as an indicator of the event
 703 $\Delta^{(t)} \geq \alpha$, and its associated continuous random variable $\Delta^{(t)}$ is implicitly defined with an arbitrary
 704 probability density function $p(y)$ that satisfies
 705

$$706 \quad P(\Delta^{(t)} \geq \alpha) = \int_{\alpha}^{\infty} p(y) dy = p. \quad (6)$$

708 With such a relationship between them, the following can be easily verified, for all $t \in \mathbb{Z}^+$,

$$709 \quad P(I^{(t)} = x | \Delta^{(t)} = y) = \begin{cases} x, & y \geq \alpha \\ 710 1 - x, & \text{o.w.} \end{cases} \quad (7)$$

712 **Lemma 6** (Submartingale Property, formal statement of Lemma 4). *Let $\{I^{(t)}, \Delta^{(t)}\}_{t \geq 1}$ be a sequence
 713 of random variables as defined in Eq. (5). We define joint random variables $W^{(t)} = \Delta^{(t)} \cdot I^{(t)}$ and
 714 the natural filtration $\mathcal{F}^{(t)} = \sigma(W^{(1)}, \dots, W^{(t)})$. Then the sequence $\{S^{(t)}\}_{t \geq 1}$ as defined by Def. 2
 715 is a submartingale with respect to the filtration $\{\mathcal{F}^{(t)}\}_{t \geq 1}$.*

717 *Proof for Lemma 6.* According to Def. 1, a process $S^{(t)}$ is a submartingale relative to (Ω, \mathcal{F}, P) if it
 718 satisfies Adaptedness, Integrability, and Submartingale.

720 **Adaptedness.** We first aim to verify that $S^{(t)}$ is determined based on the information available up
 721 to past t iterations. By Def. 2, $S^{(t)} = \sum_{t_i=1}^t \Delta^{(t_i)} \cdot I^{(t_i)} = \sum_{t_i=1}^t W^{(t_i)}$ is a finite sum of random
 722 variables that are measurable w.r.t. $\sigma(W^{(1)}, \dots, W^{(t)})$ (or $\sigma(I^{(1)}, \dots, I^{(t)})$ for short due to the
 723 relationship between $I^{(t)}$ and $\Delta^{(t)}$ as shown in Eq. (5)). Thus, $S^{(t)}$ is also measurable w.r.t. $\mathcal{F}^{(t)}$,
 724 ensuring the adaptedness.

726 **Integrability.** In Lem. 3, $\Delta^{(t)} \leq (\partial E_{\max} - \partial E_{\min})^2$ for $\forall t \in \mathbb{Z}^+$. Thus,

$$727 \quad \mathbb{E}[|S^{(t)}|] = \mathbb{E}\left[\left|\sum_{t_i=1}^t \Delta^{(t_i)} \cdot I^{(t_i)}\right|\right] \\ 728 \quad \leq \mathbb{E}\left[\left|\sum_{t_i=1}^t (\partial E_{\max} - \partial E_{\min})^2 \cdot I^{(t_i)}\right|\right] \\ 729 \quad < \infty,$$

734 which ensures $\mathbb{E}[|S^{(t)}|]$ is integrable for each t .

737 **Submartingale.** Before proving this condition, we show the following necessary inequality: with
 738 $\alpha = 1/(poly(N, L)K)$,

$$739 \quad \mathbb{E}[\Delta^{(t)} \cdot I^{(t)}] = \sum_{x=0,1} \int_{-\infty}^{\infty} P(I^{(t)} = x | \Delta^{(t)} = y) \cdot p(y) \cdot x \cdot y dy \\ 740 \quad = \int_{\alpha}^{\infty} p(y) \cdot y dy \\ 741 \quad \geq \alpha \int_{\alpha}^{\infty} p(y) dy \\ 742 \quad = \alpha p, \quad (8)$$

746 where the second step follows from Eq. (7) and the last step uses Eq. (6). Apparently $\alpha p > 0$.

748 We observe that

$$749 \quad S^{(t)} = S^{(t-1)} + \Delta^{(t)} \cdot I^{(t)}.$$

750 Since $S^{(t-1)}$ is $\mathcal{F}^{(t-1)}$ -measurable, thus,

$$751 \quad \mathbb{E}[S^{(t)} | \mathcal{F}^{(t-1)}] = \mathbb{E}[S^{(t-1)} + \Delta^{(t)} \cdot I^{(t)} | \mathcal{F}^{(t-1)}] \\ 752 \quad = S^{(t-1)} + \mathbb{E}[\Delta^{(t)} \cdot I^{(t)}] \\ 753 \quad \geq S^{(t-1)} + \alpha p \\ 754 \quad \geq S^{(t-1)},$$

756 where the last two step applies Eq. (8).
 757

758 Thus, the submartingale condition holds true for $\forall t \geq 1$ s.t.
 759

$$\mathbb{E}[S^{(t)} | \mathcal{F}^{(t-1)}] \geq S^{(t-1)}, \quad \forall t \geq 1.$$

761 \square
 762

763 Intuitively, $S^{(t)}$ tracks the cumulative amount of non-trivial variance improvements observed over
 764 the iterations — akin to measuring meaningful progress in exploration.
 765

766 *Proof for Lemma 5.* Since the process $\{S^{(t)}\}_{t \geq 1}$ is a L^1 -bounded submartingale s.t. $\sup_t \mathbb{E}[|S^{(t)}|] <$
 767 ∞ , we apply the Doob’s Forward Convergence Theorem (by Thm. 1), which guarantees the almost
 768 sure existence of a finite random variable $S^{(\infty)}$ s.t. $S^{(\infty)} = \lim_{t \rightarrow \infty} S^{(t)}$. This implies that the
 769 process $\{S^{(t)}\}$ has a well-defined almost sure limit.
 770

771 Furthermore, if $\{S^{(t)}\}$ is monotone increasing, i.e., $S^{(t)} \leq S^{(t+1)}$, a.s., $\forall t \in \mathbb{Z}^+$, then the limit
 772 $S^{(\infty)}$ serves as a supremum for the entire process. By Defining $B_S := \sup_t S^{(t)} = S^{(\infty)}$, we obtain
 773 a desired bound $S^{(t)} \leq B_S$, a.s., $\forall t \in \mathbb{Z}^+$. \square
 774

775 *Proof for Theorem 4.* To analyze the expected hitting time, we **first** construct a drift-adjusted process
 776 $\{Z^{(t)}\}_{t \geq 1}$ adapted to a filtration $\{\mathcal{F}^{(t)}\}_{t \geq 1}$ as $Z^{(t)} = S^{(t)} - \delta t$, where $\delta = p/(poly(N, L)K) > 0$.
 777

778 Given $\alpha = 1/(poly(N, L)K)$ and follow those similar steps in the proof for Lem. 6, we can derive
 779

$$\mathbb{E}[\Delta^{(t)} \cdot I^{(t)}] \geq \alpha p = \delta, \quad (9)$$

780 where the last step is by definition of δ .
 781

782 We then verify that $Z^{(t)}$ is also a submartingale:
 783

784 • **Adaptedness:** Similr to $S^{(t)}$, $Z^{(t)}$ is also determined by the past t iterations w.r.t. the same filtration
 785 $\sigma(W^{(1)}, \dots, W^{(t)})$ as $S^{(t)}$. Thus, $Z^{(t)}$ can meet the adaptedness.
 786

787 • **Integrability:** Given that $S^{(t)}$ is L^1 -bounded, and $Z^{(t)}$ is obtained by subtracting a deterministic
 788 finite value δt from $S^{(t)}$, it follows immediately that $Z^{(t)}$ is also L^1 -bounded, i.e., $\mathbb{E}[|Z^{(t)}|]$ is
 789 integrable for each t .
 790

791 • **Submartingale:** We further show that $Z^{(t)}$ meets the submartingale inequality as follows.
 792

$$\begin{aligned} \mathbb{E}[Z^{(t+1)} | \mathcal{F}^{(t)}] &= \mathbb{E}[S^{(t+1)} - \delta(t+1) | \mathcal{F}^{(t)}] \\ &= \mathbb{E}[S^{(t+1)} | \mathcal{F}^{(t)}] - \delta(t+1) \\ &= \mathbb{E}[S^{(t)} + \Delta^{(t+1)} \cdot I^{(t+1)} | \mathcal{F}^{(t)}] - \delta(t+1) \\ &= S^{(t)} + \mathbb{E}[\Delta^{(t+1)} \cdot I^{(t+1)} | \mathcal{F}^{(t)}] - \delta(t+1) \\ &\geq S^{(t)} + \delta - \delta(t+1) \\ &= Z^{(t)}, \end{aligned}$$

800 where the fifth step is obtained by combining the fact that $\Delta^{(t+1)} \cdot I^{(t+1)}$ is independent of $\mathcal{F}^{(t)}$ and
 801 Eq. (9).
 802

803 **Second**, we define the hitting time T_b as $T_b = \inf \{T \in \mathbb{Z}^+ : S^{(T)} = b\}$. Without loss of generality,
 804 we assume $b \leq B_S$ since $S^{(t)} \leq B_S$ a.s., for $\forall t \in \mathbb{Z}^+$ (by Lem. 5). We further verify that T_b is a
 805 bounded stopping time as follows.
 806

807 We observe that $\{T_b \leq T\} = \{\exists t \leq T \text{ such that } S^{(t)} = b\} = \bigcup_{t=0}^T \{S^{(t)} = b\}$. Since $S^{(t)}$ is
 808 $\mathcal{F}^{(T)}$ measurable for $\forall t \leq T$, we have $\{S^{(t)} = b\} \in \mathcal{F}^{(T)}$, which indicates that the finite union
 809 $\bigcup_{t=0}^T \{S^{(t)} = b\} \in \mathcal{F}^{(T)}$. Hence, $\{T_b \leq T\} \in \mathcal{F}^{(T)}$, which by definition shows that T_b is a bounded
 810 stopping time.
 811

810 **Third**, we define $T_b \wedge t$ as $\min(T_b, t)$. Given that T_b is a bounded stopping time, $T_b \wedge t$ is also a
 811 bounded stopping time (by Lem. 1). Based on this condition, the Doob’s Optional Stopping Theorem
 812 implies that $\mathbb{E}[Z^{(T_b \wedge t)}] \geq \mathbb{E}[Z^{(0)}] = 0$ (by Thm. 2). Thus, we have:
 813

$$814 \quad \mathbb{E}[S^{(T_b \wedge t)} - \delta(T_b \wedge t)] \geq 0$$

815 implying

$$816 \quad \mathbb{E}[S^{(T_b \wedge t)}] \geq \delta \mathbb{E}[T_b \wedge t].$$

817 Since $S^{(t)}$ is non-decreasing and bounded by B_S , we have $T_b \wedge t = T_b$ as $t \rightarrow \infty$ almost surely,
 818 which implies that $\mathbb{E}[T_b \wedge t] = \mathbb{E}[T_b]$. Moreover, by the definition of T_b , it follows that $S^{(T_b \wedge t)} \rightarrow b$
 819 as $t \rightarrow \infty$, i.e., $\mathbb{E}[S^{(T_b \wedge t)}]$ is bounded by a dominating constant b . So, by the Dominated Convergence
 820 Theorem, as $t \rightarrow \infty$, we have $\mathbb{E}[S^{(T_b \wedge t)}] \rightarrow \mathbb{E}[S^{(T_b)}] = b$ (by Thm. 3).
 821

822 By integrating the above equations and taking the limit, we conclude:

$$824 \quad \mathbb{E}[T_b] \leq \frac{b}{\delta} = \frac{bK \cdot \text{poly}(N, L)}{p}.$$

825 □

826 Thus, the following result can be derived immediately by plugging concrete values of b into Thm. 4.
 827

828 **Corollary 1** (Expected Hitting Time Under Specific Thresholds).

829 1. *With an expected number of K/p iterations, Algo. 1 can identify a candidate model parameter*
 830 *θ_0^* that has $\text{Var}[\partial E] \approx 1/\text{poly}(N, L)$.*
 831 2. *With an expected number of $B_S \cdot K \cdot \text{poly}(N, L)/p$ iterations, Algo. 1 can identify a candidate*
 832 *model parameter θ_0^* that has $\text{Var}[\partial E] = \mathcal{O}(\text{poly}(N, L))$.*

833 B SUPPLEMENTARY EXPERIMENTS

834 In this section, we present supplementary details about our experimental results.

835 **Dataset.** We evaluate our proposed method
 836 across four public datasets that are widely used
 837 in quantum machine learning. **Iris**¹ is a clas-
 838 sic machine-learning benchmark that measures
 839 various attributes of three-species iris flowers.
 840 **Wine**² is a well-known dataset that includes 13
 841 attributes of chemical composition in wines. **Ti-**
 842 **tanic**³ contains historical data about passengers
 843 aboard the Titanic and is typically used to pre-
 844 dict survival. **MNIST**⁴ is a widely used small
 845 benchmark in computer vision. This benchmark
 846 consists of 28×28 gray-scale images of hand-
 847 written digits from 0 to 9. We follow the settings of BeInit (Kulshrestha & Safro, 2022) and conduct
 848 experiments in binary classification. Specifically, we randomly sub-sample a certain number of
 849 instances from the first two classes of each dataset to create a new subset. After sub-sampling, we
 850 employ the t-SNE technique to reduce the feature dimensions to ensure they do not exceed the number
 851 of available qubits. The statistics of the original datasets, along with the data splits for training,
 852 validation, and testing, are presented in Table 2. Importantly, the total number of sub-sampled
 853 instances corresponds to the sum of the split datasets. For instance, in the Iris dataset, the total
 854 number of sub-sampled instances is 100.
 855

Dataset	$ D $	$ F $	$ C $	Splits
Iris	150	4	3	60:20:20
Wine	178	13	3	80:20:30
Titanic	891	11	2	320:80:179
MNIST	60,000	784	10	320:80:400

856 Table 2: Statistics of datasets. $|D|$, $|F|$, and $|C|$
 857 denote the original number of instances, features,
 858 and classes, respectively. “Split” denotes the split
 859 instances for the train, validation, and test data.

860 We evaluate our proposed method across four public datasets that are widely used in quantum machine learning. **Iris**¹ is a classic machine-learning benchmark that measures various attributes of three-species iris flowers. **Wine**² is a well-known dataset that includes 13 attributes of chemical composition in wines. **Titanic**³ contains historical data about passengers aboard the Titanic and is typically used to predict survival. **MNIST**⁴ is a widely used small benchmark in computer vision. This benchmark consists of 28×28 gray-scale images of hand-written digits from 0 to 9. We follow the settings of BeInit (Kulshrestha & Safro, 2022) and conduct experiments in binary classification. Specifically, we randomly sub-sample a certain number of instances from the first two classes of each dataset to create a new subset. After sub-sampling, we employ the t-SNE technique to reduce the feature dimensions to ensure they do not exceed the number of available qubits. The statistics of the original datasets, along with the data splits for training, validation, and testing, are presented in Table 2. Importantly, the total number of sub-sampled instances corresponds to the sum of the split datasets. For instance, in the Iris dataset, the total number of sub-sampled instances is 100.

861 ¹<https://archive.ics.uci.edu/ml/datasets/iris> (Fisher, 1936)

862 ²<https://archive.ics.uci.edu/ml/datasets/wine> (Fisher, 1936)

863 ³<https://www.kaggle.com/c/titanic> (Kaggle, 2012)

864 ⁴<http://yann.lecun.com/exdb/mnist/> (LeCun et al., 2010)

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 999

Contribution of LLMs. Besides comparing our framework with the classic method, we further investigate LLMs’ contribution to the initialization process on Iris. Specifically, we compare the generator within our framework when initialized using a random initializer (RI), which uniformly generates the parameters, versus using LLM-based uniform initialization (LLMs). As shown in Fig. 8, “RI” performs comparably to, or even worse than, the “Classic” method (uniform), as it generates random parameters without any guided refinement. In contrast, “LLMs” consistently outperforms both baselines, achieving significantly higher gradient variance. These findings suggest that the LLM-driven generator can more effectively explore the parameter space and identify better initializations within a limited number of iterations.

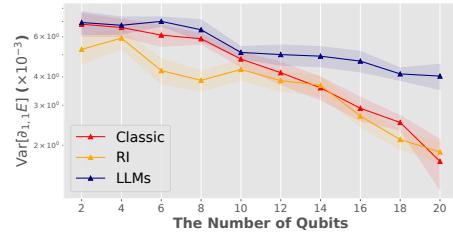


Figure 8: Comparison of model parameter initializations using a classic method, random initializer (RI), and LLMs. All methods apply a uniform distribution.

6.2.2.2. Observations of open-source models.

We observe that two LLaMA 3 open-source LLMs (Grattafiori et al., 2024) perform significantly worse. To further understand these failures, we present representative cases in Tab. 3 and observe that both models fail to generate correct shapes of model parameters, indicating that these open-source models struggle to follow precise structural instructions and suggesting their current limitations in shape-constrained generation tasks.

Simulation time in QNN training. We assess the simulation time of QNN training under varying model sizes (number of qubits, $N \in [2, 20]$) and subsampled MNIST dataset sizes (number of instances, $|D| \in [800, 4000]$). We train QNNs for 30 epochs and present the **average runtime per epoch**. When varying N , we fix the number of layers L at 2; when varying $|D|$, we fix both N and L as 2. As presented in Fig. 9, in a classical simulated environment, the average training time of QNNs increases exponentially w.r.t. the number of qubits, while it grows roughly linearly with the dataset size. These observations reflect an inherent scalability issue in classical simulation of quantum systems. Such limitations are widely acknowledged in the quantum computing community and are unlikely to be fully overcome until practical quantum hardware becomes more accessible.

Trade-off analysis. To analyze the trade-off in Fig. 11, we present the relationship between computational cost (measured by the number of search iterations) and performance benefits (quantified by gradient variance) in Fig. 10. We observe a roughly linear relationship between them. In the 2-qubit case, 40% cost yields over 60% gain, while in the 20-qubit case, 35% cost yields over 44% gain, showing strong early-stage cost-effectiveness. The diminishing returns after a few iterations align with submartingale optimization behavior, and the consistent trends across scales highlight AdaInit’s suitability for budget-aware scenarios.

Patterns of Expected Improvement (EI). Due to limited pages, we present the patterns of EI in Fig. 11.

LLaMA 3	Variables	Layer	Expected	Actual
70B	$N \in [2, 20]$	0	$(2, N, 3)$	$(2, 3)$
70B	$L \in [4, 40]$	0	$(L, 2, 3)$	$(L, 3)$
405B	$L \in [4, 40]$	1	$(2, 2)$	$(2, 2, 2)$

Table 3: Comparison of generated model parameters (layer, expected shape, and actual shape) between two open-source LLMs—LLaMA 3 70B Instruct and LLaMA 3 405B Instruct—evaluated under various numbers of qubits (N) or layers (L).

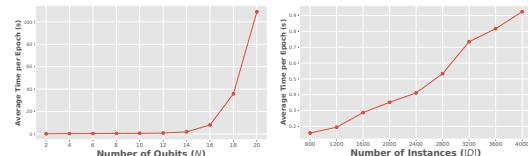


Figure 9: Assessment of the simulation time in QNN training.

Figure 9 shows that the average training time per epoch increases exponentially with the number of qubits (N) and linearly with the number of instances ($|D|$). This reflects the inherent scalability issue in classical simulation of quantum systems.

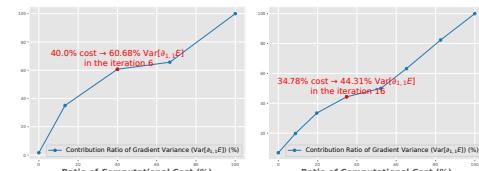


Figure 10: Trade-off analysis between computational cost and performance benefits for 2 qubits (left) and 20 qubits (right) setups. The graphs show a linear relationship between computational cost and performance benefits, highlighting AdaInit’s suitability for budget-aware scenarios.

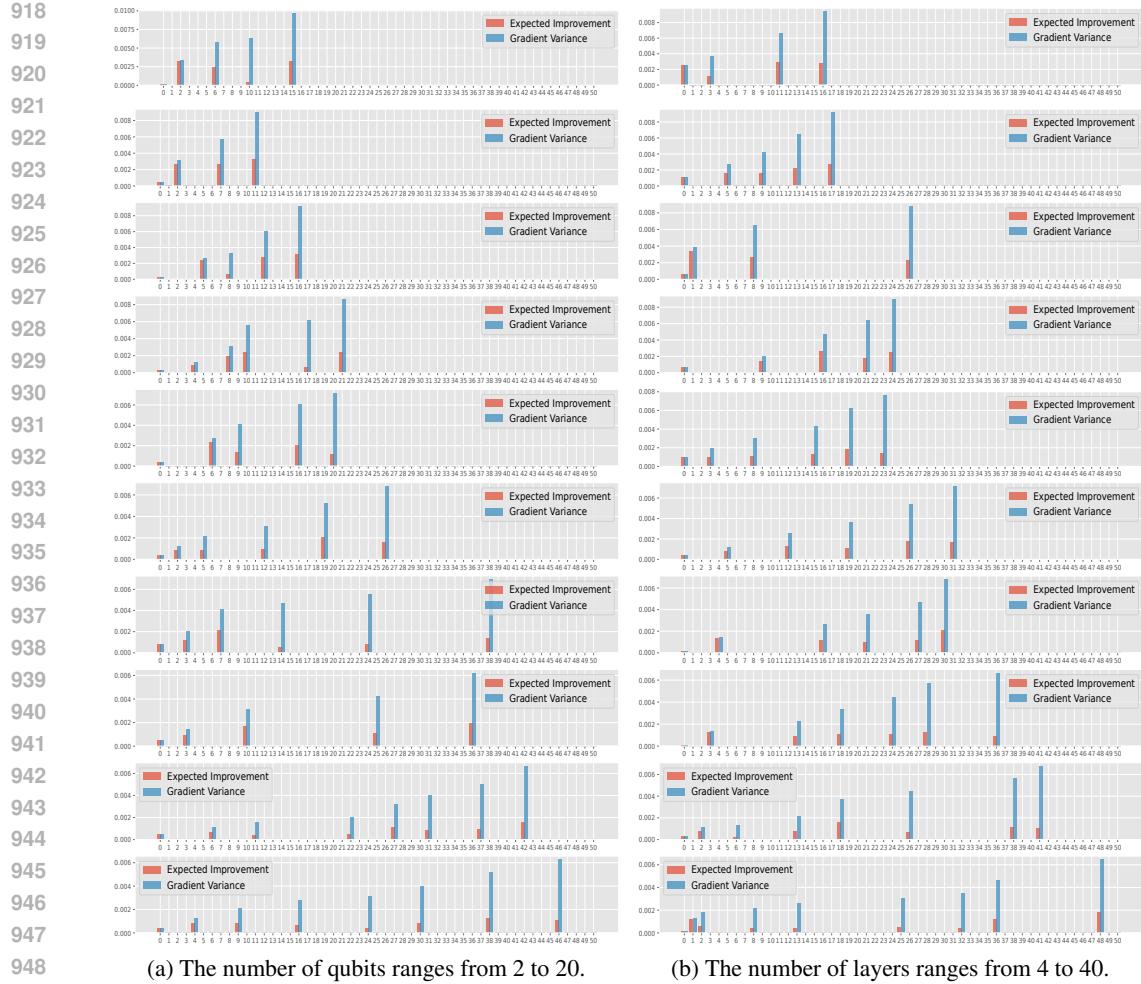


Figure 11: We analyze the patterns of expected improvement and the corresponding gradient variance and present the results in two columns: the left column illustrates the trends w.r.t. the number of qubits, while the right column captures the effects of increasing the number of layers.

Empirical analysis of the assumed lower bound.

To determine the assumed lower bound, $1/\text{poly}(N, L)K$, we conduct a trade-off analysis. A larger polynomial coefficient enlarges the admissible regime, but at the cost of including cases with vanishingly small gradient variance, whereas a smaller coefficient may filter out meaningful expected improvements, thereby preventing the framework from effectively exploring initial parameters. To proactively mitigate BPs, we restrict our attention to the range of qubits that are particularly susceptible to BPs. As illustrated in Fig. 12, we vary the polynomial coefficient and compare against the exponential baseline $1/(K2^{2N})$. Considering the trade-off, we empirically select $1/(KN^6)$ as the lower bound.

Prompt designs. Before presenting the prompts, we first introduce the notation for the hyperparameter in the prompts. ‘`nlayers`’, ‘`nqubits`’, ‘`nrot`’, ‘`nclasses`’ denote the number of layers, qubits, rotation gates, and classes for the QNN, respectively. ‘`init`’ denotes the initial data distribution for the QNN. ‘`data_desc`’ denotes the data description. ‘`feedback`’ denotes the gradient feedback from the previous iteration.

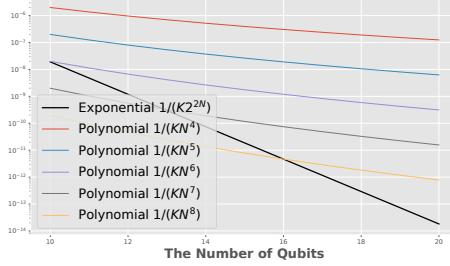


Figure 12: Trade-off analysis of the assumed lower bound, comparing polynomial terms against the exponential baseline, shown on a log scale.

972
973

Prompts

974
975
976

Role: data generator.
Goal: Generate a dictionary iteratively with the following shape:

```
{
  '10': a list, shape=(nlayers, nqubits, nrot),
  '11': a list, shape=(out_dim, nqubits),
  '12': a list, shape=(out_dim)
}
```

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996**Requirements:**

- Data shape: nlayers={nlayers}, nqubits={nqubits}, nrot={nrot}, out_dim={nclasses}.
- Data type: float, rounded to four decimals.
- Data distribution: numerical numbers in each list are sampled from standard {init} distributions, which may be modeled from the following dataset.
- Dataset description: {data_desc}
- Adjust the sampling based on feedback from the previous searches: {feedback}
- Crucially, ensure that the length of '10' = 'nlayers' and the length of '11' = 'out_dim'.
- Print out a dictionary [only] (Don't show Python code OR include ['"python\n"], ['"json\n"], ['"'])

Model architecture of the quantum circuit.

In this study, we evaluate our framework using a backbone QNN consisting of a quantum circuit followed by a fully connected layer. Classical data are first encoded into quantum states via angle encoding, where each feature is mapped to rotation gates (e.g., R_X) on a specific qubit. This encoding maps data into the Hilbert space while preserving differentiability. The circuit applies repeated layers of parameterized rotations (R_X , R_Y , R_Z) and linear-topology CNOT gates for entanglement. After computation, the quantum state is measured in the computational basis, and expectation values of Pauli-Z operators are computed and used as circuit outputs. These values are then processed by the classical fully connected layer. The overall architecture is adaptable in terms of layers, qubits, and rotation gates, as illustrated in Fig. 13.

Hardware and software. The experiment is conducted on a server with the following settings:

1014
1015
1016
1017

- Operating System: Ubuntu 22.04.3 LTS
- CPU: Intel Xeon w5-3433 @ 4.20 GHz
- GPU: NVIDIA RTX A6000 48GB
- Software: Python 3.11.8, PyTorch 2.2.2, PennyLane 0.35.1.

1018
1019
1020

Based on the above computational infrastructure and setup, for example, our search framework can be reproduced in about 15 hours using 18 qubits.

1021
1022
1023
1024
1025

Use of LLMs. LLMs were used only to assist in polishing the language and improving readability. No part of the technical content, analysis, or experimental results was generated by LLMs.

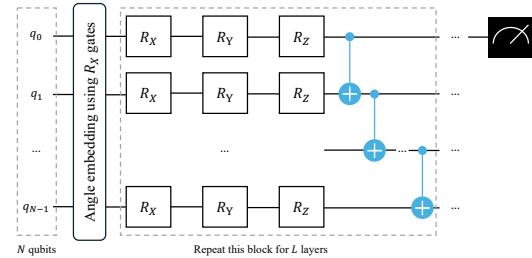


Figure 13: Architecture of our backbone quantum circuit. The number of rotation gates in this study is fixed as 3.