
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS LOSSLESS MEMORY-EFFICIENT TRAINING
OF SPIKING NEURAL NETWORKS VIA GRADIENT
CHECKPOINTING AND SPIKE COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep spiking neural networks (SNNs) hold immense promise for low-power
event-driven computing, but their direct training via backpropagation through time
(BPTT) incurs prohibitive memory cost, which limits their scalability. Existing
memory-saving approaches, such as online learning, BPTT-to-BP, and reversible
networks, compromise accuracy, training speed, or applicability. In this work, we
propose a novel and broadly applicable pipeline for memory-efficient SNN training
that preserves BPTT’s accuracy. Our pipeline integrates layer-wise gradient check-
pointing with lossless spike compression to eliminate internal state storage and
reduce the memory cost of per-layer input spikes. We also introduce a multi-stage
checkpoint adjustment strategy that adaptively refines checkpoint placement based
on profiling results to further optimize memory usage and improve training speed.
Wrapped in an optimization pass, the pipeline automatically restructures the com-
putation flow before training with minimal user effort. Extensive experiments on
diverse architectures and tasks demonstrate up to 8× memory efficiency gains with
≤ 20% speed reduction and no accuracy loss. Our method provides a practical
solution for efficient and scalable SNN training. Code will be available upon
acceptance.

1 INTRODUCTION

Inspired by the dynamics of biological neurons (Gerstner et al., 2014), spiking neural networks
(SNNs) have emerged as the third generation of neural network models (Maass, 1997). SNNs
transmit information via discrete spikes rather than continuous activations in conventional artificial
neural networks (ANNs). Their sparse and event-driven nature makes them ideal for deployment
on neuromorphic chips (Merolla et al., 2014; Akopyan et al., 2015; Davies et al., 2018; Pei et al.,
2019) for inference, offering significant potential for low-power edge computing (Yao et al., 2024).
To train a deep SNN end-to-end, the temporal dimension is discretized into T time steps so that the
SNN can be considered as a binary-activated recurrent neural network (RNN) (Fang et al., 2023a;
Eshraghian et al., 2023). Then, backpropagation through time (BPTT) (Werbos, 1990) is adopted
to compute parameter updates, with surrogate gradient (SG) tackling the non-differentiable spike
emission process (Neftci et al., 2019; Wu et al., 2018; Shrestha & Orchard, 2018). With the BPTT-
based framework, low-latency deep SNNs can be directly trained using powerful graphics processing
units (GPUs) (Chetlur et al., 2014) and yield competitive performance (Yao et al., 2025; Wang et al.,
2024; Lv et al., 2024a; Chen et al., 2025).

Despite its high accuracy and broad applicability, BPTT imposes intensive memory overhead (Meng
et al., 2023). For an L-layer SNN unfolded over T time steps, BPTT requires O(LT) memory to
store intermediate states, compared to O(L) for a structurally similar ANN. Consequently, SNN
direct training is more likely to exceed the memory capacity of computational devices. The scaling of
SNNs to deeper architectures and more time steps is thus severely hindered.

Several approaches have been explored to reduce the memory demands of BPTT-based SNN training,
including online learning (Bellec et al., 2020; Xiao et al., 2022; Meng et al., 2023; Yin et al., 2023;
Jiang et al., 2024), BPTT-to-BP (Xiao et al., 2021; Wu et al., 2023; Kheradpisheh et al., 2022; Yu
et al., 2024), and reversible networks (Zhang & Zhang, 2024; Hu et al., 2024). However, these

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Conv
Forward

BN
Forward

Neuron
Forward

Conv
Forward

BN
Forward

Neuron
Forward

Conv
Backward

BN
Backward

Neuron
Backward

Conv
Backward

BN
Backward

Neuron
Backward

Conv
Forward

BN
Forward

Neuron
Forward

Conv
Forward

BN
Forward

Neuron
Forward

Conv
Forward

BN
Forward

Neuron
Forward

Conv
Forward

BN
Forward

Neuron
Forward

Comp.

Comp.

(a) (b)

forward pass backward pass forward pass backward pass

recomputation

layer

layer

Conv
Backward

BN
Backward

Neuron
Backward

Conv
Backward

BN
Backward

Neuron
Backward

Dec.

Dec.

Conv

BN

Neuron

✂️

Conv

BN

Neuron

🔍 highest
mem. cost

spatial
partition

Neuron
Update

Neuron
Update

GC
segment

(c)

Neuron

Neuron
Update

Neuron
Update

✂️

🔍 highest
mem. cost

temporal
partition

=

(d)

Figure 1: Comparison of (a) BPTT and (b) gradient checkpointing with spike compression. We use
grey boxes with dashed borders to denote gradient checkpointing segments. (c) Spatial segment
partitioning. (d) Temporal segment partitioning.

methods compromise training speed, accuracy, or generality across SNN models (see Section 2.2
and Table 5 for details). Also, their implementations require manual architectural modifications or
training code rewrites, which are error-prone and cumbersome. These limitations highlight the need
for a broadly applicable and user-friendly solution that improves the memory efficiency of SNN
direct training while preserving training speed and performance.

In this work, we propose an automatic pipeline that combines gradient checkpointing (Chen et al.,
2016) and spike compression to address the challenge (Figure 1). Our analysis identifies internal
states and per-layer input spikes as the dominant memory consumers in SNN training. To this end, we
employ layer-wise gradient checkpointing to eliminate internal state storage, and losslessly compress
the input spikes before saving them to reduce their memory footprint. To further optimize peak
memory usage, we insert additional checkpoints spatio-temporally into high-cost layers. Check-
pointed segments with no benefit on peak memory are then greedily reverted to standard BPTT
segments to accelerate training. The entire process is encapsulated in an optimization pass that
automatically reconfigures the computation flow before training, requiring minimal user intervention.
The proposed method obtains up to 8× memory efficiency gains with an affordable training speed
drop and preserved accuracy on extensive experiments. Our main contributions are:

(1) Memory cost analysis. We analyze the memory cost of SNN direct training and identify input
spikes and internal states as primary memory consumers.

(2) An automatic pipeline. We propose a broadly applicable pipeline that integrates gradient
checkpointing with spike compression for memory-efficient SNN training.

(3) Efficiency and Accuracy. We obtain substantial memory savings on diverse SNN models and
task settings with acceptable speed trade-offs and maintained accuracy.

2 RELATED WORK

2.1 BPTT-BASED SNN DIRECT TRAINING

If simulated on discrete time steps, SNNs can be trained end-to-end as binary-activated RNNs through
BPTT (Werbos, 1990), with SG addressing the non-differentiability of the spike firing process (Neftci
et al., 2019; Wu et al., 2018; Shrestha & Orchard, 2018). Compared to ANN-to-SNN conversion
(Cao et al., 2015; Bu et al., 2022; Hu et al., 2023; Hao et al., 2023b;a), this approach enables low
inference latency (Wu et al., 2019) and broader task applicability, thus attracting increasing attention.
Recent advancements have improved the performance of SNN direct training by adapting ANN
architectures like ResNet (He et al., 2016) and Transformer (Vaswani et al., 2017; Dosovitskiy et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2021) to spiking ResNets (Fang et al., 2021a; Hu et al., 2025) and spiking Transformers (Zhou et al.,
2023; Yao et al., 2023; Zhou et al., 2024). Other works enhance neuron models (Fang et al., 2021b;
Yao et al., 2022; Fang et al., 2023b; Huang et al., 2024a; Li et al., 2024b; Huang et al., 2024b). For
instance, the parallel spiking neuron (PSN) family (Fang et al., 2023b) models neuronal dynamics as
a linear projection of the input over time, enabling temporal parallelization and efficient capturing
of long-term dependencies. Despite the advances in performance, the memory overhead of BPTT
remains a key bottleneck.

2.2 MEMORY-EFFICIENT SNN DIRECT TRAINING

BPTT’s O(LT) memory complexity motivates methods to reduce SNN training memory usage.
Online learning (Bellec et al., 2020; Xiao et al., 2022; Meng et al., 2023; Yin et al., 2023; Bohnstingl
et al., 2023; Jiang et al., 2024) truncates temporal gradients and stores only the intermediate results at
the current step. However, the gradient mismatch results in a severe performance drop on temporal
tasks. Its step-wise running mode undermines its compatibility with widely adopted temporal
parallelization techniques like PSN (Fang et al., 2023b). BPTT-to-BP approximation (Xiao et al.,
2021; Wu et al., 2023; Kheradpisheh et al., 2022; Yu et al., 2024) trains an SNN by backpropagating
through a static proxy based on firing rates, effectively removing the temporal gradient dimension.
Despite its memory and time efficiency, BPTT-to-BP can hardly handle sequential data due to
the neglect of temporal information, thus limiting its applicability. Last but not least, reversible
networks (Gomez et al., 2017; Zhang & Zhang, 2024; Hu et al., 2024) reconstruct intermediate
features reversely during backward pass rather than storing them. It preserves BPTT-level accuracy,
but imposes strict architectural constraints and significantly slows training. In conclusion, existing
methods trade off accuracy, speed, or applicability; they also require manual modifications on model
architectures and training codes. In contrast, our pipeline reduces memory usage with an affordable
extra time cost, maintains accuracy and broad compatibility, and demands minimal user effort.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

Xl[t] = gl(Sl−1[t];Wl),

Hl[t] = λVl[t− 1] +Xl[t],

Sl[t] = Θ(Hl[t]− Vth),

Vl[t] = Hl[t](1− Sl[t]).

(1)

SNNs can be regarded as ANNs augmented with bio-
inspired spiking neuronal dynamics (Li et al., 2024a). To
train an SNN directly, its dynamics are simulated on T dis-
crete time steps, and the spike signals are represented as
binary activations. For example, the discrete-time dynam-
ics of a L-layer SNN composed of leaky integrate-and-fire
(LIF) neurons (Gerstner et al., 2014) can be described as
Equation (1). Here, l ∈ {1, . . . , L} is the layer index, and t ∈ {1, . . . , T} is the time step index. X is
the input current, H and V are the membrane potentials before and after spike emission, and S is the
output spike (a.k.a. activation). Xl[t] can be computed from the previous layer’s output Sl−1[t] via a
linear transformation gl with weight Wl (bias is omitted). λ ∈ (0, 1) is the decay factor, Vth > 0
is the firing threshold, and Θ(x) is the Heaviside step function (yields 1 if x ≥ 0 and 0 otherwise).
The elements of Sl (l > 0) are either 0 (no spike) or 1 (spike), while the network input S0 is not
necessarily binary (Rathi & Roy, 2023). Notice that the second to fourth lines of Equation (1) are
element-wise, and secondary neuronal parameters like the reset and resting potentials are omitted for
simplicity. We use LIF as the default neuron model throughout this work.

3.2 GRADIENT CHECKPOINTING

Gradient checkpointing (GC) (Chen et al., 2016) was originally proposed for ANN training to trade
computation for memory. Standard backpropagation stores all intermediate results for gradient
computation, as Figure 1(a) shows. By contrast, GC stores merely a subset of activations (a.k.a.
checkpoints) and discards the others; the network is thus divided into several GC segments, each
saving only its input. During backward pass on a segment, the forward computation is rerun from
the segment’s checkpointed input to restore the dropped activations needed for calculating gradients,
as illustrated in Figure 1(b). Since forward pass is far less costly than backward pass, GC’s extra
time cost is affordable. GC has been successfully applied to temporal models like recurrent neural

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ResNet-34 ViT SEW
ResNet-34

Spikformer
0

10000

20000

30000

Absolute Memory (MB)

ResNet-34 ViT SEW
ResNet-34

Spikformer
0

25

50

75

100
Relative Composition (%)

stored features weights gradients optimizer runtime variables

Figure 2: The memory cost breakdown of ANNs and SNNs
when peak memory consumption is reached during training
on ImageNet (see Appendix A).

Layer Index
FP BP

Peak: MB

Peak: MB

Figure 3: The memory cost evolu-
tion when training a Spiking VGG
on CIFAR10-DVS. Dashed lines indi-
cate peak memory consumptions.

networks (Gruslys et al., 2016) and neural ordinary differential equations (Zhuang et al., 2020) to
reduce training memory cost.

Previous studies have explored applying GC along the temporal dimension of SNNs (Singh et al.,
2022; Bencheikh et al., 2024), achieving notable memory savings on shallow networks with a large
T (T ≥ 100). However, these approaches do not consider the spatial dimension, and have not been
evaluated on advanced larger-scale SNNs that typically adopt short time horizons (T ≤ 16). In
addition, they lack an automated, user-friendly GC workflow, which limits ease of use in practice.

4 METHODS

4.1 MEMORY COST ANALYSIS OF BPTT-BASED SNN DIRECT TRAINING

In BPTT-based SNN direct training, memory usage primarily stems from: (1) model parameters, (2)
gradients, (3) optimizer states, (4) intermediate features, including each layer’s input and internal
states, that are stored during forward pass for backward gradient computation, and (5) temporary
runtime variables dynamically allocated and immediately freed. An upper bound for the peak
memory can be formulated as:

Mpeak
BPTT ≤

∑
l

(MWl +MGl +MΛl +MSl−1 +MΩl) + max
l
MRl , (2)

whereMWl ,MGl ,MΛl ,MSl−1 ,MΩl , andMRl are the memory consumptions of the weights,
gradients, optimizer states, inputs, internal states, and runtime variables at layer l, respectively.

A key feature of SNN direct training is that intermediate features (inputs and internal states) dominate
memory usage. As shown in Figure 2, for ResNet-34 (He et al., 2016) and ViT (Dosovitskiy et al.,
2021) trained on ImageNet (Deng et al., 2009), intermediate features occupy about 77% of the
memory at peak usage. In contrast, for their SNN counterparts with T = 4, the ratios rise to over
96%. This is because SNNs’ T time steps scale intermediate feature sizes by O(T), while the sizes
of weights, gradients and optimizer states stay unchanged. Therefore, memory optimization for SNN
direct training should prioritize reducing internal states and input spike storage at each layer.

4.2 LAYER-WISE GRADIENT CHECKPOINTING

In standard BPTT, all internal states must be stored, resulting in a memory cost of up to
∑

lMΩl . To
reduce this cost, we apply GC (Chen et al., 2016) to each layer l ∈ {1, . . . , L}. During the forward
pass on layer l, only the input Sl−1 and weight Wl are stored. In the backward pass, internal states
Ωl are reconstructed through an extra local forward pass given Sl−1 and Wl. With Sl−1, Wl and Ωl,
we can propagate the gradients back through layer l, as Figure 1(b) shows.

With GC, Ωl is allocated and freed during layer l’s backward pass. Thus, at most one layer’s internal
states are stored in memory at any given time. The peak memory’s upper bound then becomes:

Mpeak
GC ≤

∑
l

(
MWl +MGl +MΛl +MSl−1 +HHHMΩl

)
+max

l
(MΩl +MRl) . (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 One iteration of SNN training with
layer-wise GC and spike compression.

Input: parameters {Wl}Ll=1; network input
S0; compressor C(·); other hyperparameters.
Output: trained parameters {Wl}Ll=1.

1: // forward pass
2: for l = 1, 2, . . . , L do
3: Sl ← layerl(Sl−1; autograd = False);
4: if Sl−1 is binary then
5: Compress: S̃l−1 ← C(Sl−1);
6: Save S̃l−1, and free Sl−1;
7: else
8: Save Sl−1;
9: end if

10: end for
11: Compute the loss L and the gradient ∂L

∂SL ;
12: // backward pass
13: for l = L,L− 1, . . . , 1 do
14: if Sl−1 is compressed then
15: Decompress: Sl−1 ← C−1(S̃l−1);
16: end if
17: Sl ← layerl(Sl−1; autograd = True);
18: Compute ∂L

∂Wl , ∂L
∂Sl−1 by BPTT;

19: Free the saved tensors of layer l;
20: end for
21: Update the parameters {Wl}Ll=1.

Algorithm 2 GC structure adjustment.

Input: A list of GC segments Ψ = [segl]Ll=1.
Output: the adjusted GC segment list.

1: // spatial partitioning
2: while True do
3: Find l∗ = argmaxl(Mpeak

l);
4: Spatially split: segl

∗ → {segl
∗
1 , segl

∗
2}

5: if globalMpeak doesn’t decrease then
6: Revert the split; break;
7: end if
8: end while
9: // temporal partitioning

10: while True do
11: Find l∗ = argmaxl(Mpeak

l);
12: Temporally split: segl

∗ → {segl
∗
i }ki=1;

13: if globalMpeak doesn’t decrease then
14: Revert the split; break;
15: end if
16: end while
17: // greedy restoration
18: sort Ψ descendingly by forward time cost;
19: for segl in Ψ do
20: Restore segl to a BPTT segment;
21: if globalMpeak increases then
22: Re-enable GC for segl;
23: end if
24: end for

Since internal states in SNNs consume far more memory than in ANNs (Figure 2), GC’s effectiveness
will be more pronounced in SNNs compared to ANNs.

4.3 LOSSLESS INPUT SPIKE COMPRESSION

Input spikes Sl−1 must be stored even if GC is applied. For most SNN programming frameworks
(Fang et al., 2023a; Eshraghian et al., 2023), spikes are represented as 32-bit floats (or 16-bit with
automatic mixed precision) for compatibility with arithmetic operations. However, 32-bit storage
is redundant for binary values. Therefore, instead of storing Sl−1 as floats during forward pass, we
store its compressed form S̃l−1, as Figure 1(b) shows. S̃l−1 is decompressed to Sl−1 when needed in
backward pass (Algorithm 1). The peak memory’s upper bound then becomes:

Mpeak
GC+Comp ≤

∑
l

(MWl +MGl +MΛl +XXXXMSl−1 +MS̃l−1) + max
l

(MΩl +MRl) . (4)

The spike compressor must be lossless to ensure computational equivalence with standard BPTT. For
instance, bit representation uses 1 bit per binary value, achieving up to 32× compression over 32-bit
floats. Alternatives include sparse representation that records the indices of non-zero elements,
and lossless bit stream compressors like Zstandard (Collet & Kucherawy, 2018) and asymmetric
numeral systems (ANS) (Duda, 2013). While bit representation cannot benefit from spike sparsity,
it is faster and more memory-saving than the alternatives in most cases (see Appendix M). Hence,
we choose it by default. To further accelerate compression and decompression, we handcraft Triton
kernels (Tillet et al., 2019). Notice that compression is skipped for non-binary inputs (e.g., S0).

4.4 ADJUSTING GRADIENT CHECKPOINTING STRUCTURE

Figure 3 depicts the memory evolution during a training iteration of a Spiking VGG on CIFAR10-DVS
(see Appendix B for explanations). For standard BPTT (blue), the peak occurs in deep layers during
backward pass. Layer-wise GC (green) reduces deep-layer memory, shifting the peak to shallower

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

layers, and spike compression (orange) further lowers deep-layer cost. After these optimizations, the
global peak memoryMpeak achieved at the critical layer far exceeds the local peaks elsewhere. Notice
that model trainability on specific devices depends only on this global peak. This motivates us to
adjust the GC structure to further enhance global efficiency by allowing slightly higher memory usage
in non-critical layers. We propose three strategies accordingly and summarize them in Algorithm 2.

Spatial Segment Partitioning To reduceMpeak, we first identify the GC segment l∗ with the
largest peak memory and then insert a spatial checkpoint within it. In other words, we split l∗ along
the layer dimension into two spatial subsegments l∗1 and l∗2 , as Figure 1(c) shows. The spatial
partition point is defined by the user (see Appendix I). Since MΩl∗ > max{M

Ωl∗1 ,MΩl∗2 }, a
reduction of maxlMΩl is guaranteed. However,Mpeak may not drop due to the added checkpoint.
This process repeats untilMpeak cannot further decrease.

Temporal Segment Partitioning Temporal partitioning similarly finds the critical segment l∗ and
splits it along the time axis into k sequential temporal subsegments, as shown in Figure 1(d). Each
temporal subsegment checkpoints both its inputs and initial hidden states to enable recomputation
during backward pass. Users should set the temporal partitioning factor k and define the state
transition function (see Appendix I). The procedure repeats untilMpeak cannot be further reduced.
Temporal partitioning is applied conservatively after spatial partitioning as a complementary strategy,
since splitting segments along time disables temporal parallelism and limits temporal kernel fusion,
resulting in restricted applicability and slower training.

Greedy Segment Restoration For GC segments whose local memory cost is well belowMpeak,
we can safely revert them to standard BPTT blocks (i.e., storing all intermediate features) without
increasingMpeak. Since GC segments require an extra forward pass for recomputation, restoring
them accelerates training. Specifically, we first profile the forward time cost of each GC segment,
and then greedily restore the segments with the largest time cost. The change is kept only ifMpeak

does not increase. This process terminates after all segments are considered.

4.5 AUTOMATIC PIPELINE

net = memory_optimization(
 net,
 (Conv1dBNNeuron, Conv2dBNNeuron, QKACore, SSACore),
 dummy_input=torch.rand(32, 3, 224, 224),
 compress_x=True,
 level=4,
 verbose=True,
 temporal_split_factor=2,
)

Figure 4: The pipeline’s user interface.

To minimize user intervention, we wrap all
the above strategies into an automatic pipeline.
Users can set the level parameter to specify the
applied strategy set. At level O1, only layer-wise
GC and spike compression are enabled; O2 addi-
tionally applies spatial segment partitioning; O3

further incorporates temporal partitioning; O4

additionally activates greedy segment restora-
tion. Default settings cover most cases, while advanced users can customize spatio-temporal partition
schemes. This design balances simplicity and extensibility.

4.6 MEMORY-EFFICIENT LIF KERNEL

Beyond the optimization pipeline, kernel-level improvements can bring further efficiency gains. We
therefore design a Triton kernel (Tillet et al., 2019) for the widely adopted LIF neuron. The BPTT
formulation of LIF can be derived from Equation (1) as:

∂L
∂Xl[t]

=

(
∂L

∂Sl[t]
− ∂L

∂Vl[t]
Hl[t]

)
Θ′

sg(H
l[t]− Vth) +

∂L
∂Vl[t]

(1− Sl[t]),

∂L
∂Vl[t− 1]

= λ
∂L

∂Xl[t]
,

(5)

where L is the loss and Θ′
sg is the surrogate gradient function. Accordingly, BPTT on a LIF layer

requires storing only {Hl[t]}Tt=1 and {Sl[t]}Tt=1 during forward pass. We further avoid storing
{Sl[t]}Tt=1 by reconstructing it during the LIF layer’s backward pass through Sl[t] = Θ(Hl[t]−Vth).
In this way, the floating-point spikes can be dropped once their compression at the subsequent layer
is done. We name the kernel as memory-efficient LIF (MELIF) and use it by default.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of training speed and memory cost. The throughput and memory cost ratios
relative to “SJLIF, BPTT” are shown in parentheses.

Task T Batch
Size Network LIF impl. Method Throughput

(sample / s) ↑
Peak Alloc.
Mem. (MB) ↓

Sequential
CIFAR-10 32 128 SCNN

SJLIF BPTT 4872.23 1317.23
PTLIF BPTT 1054.68 1264.97
MELIF O4 5138.76 (1.05×) 474.98 (0.36×)

DVS128
Gesture 16 16 7B-Net

SJLIF BPTT 114.52 8984.02
PTLIF BPTT 36.52 8067.41
MELIF O4 120.04 (1.05×) 4213.86 (0.47×)

CIFAR10-
DVS 10 32 Spiking

VGG

SJLIF BPTT 290.26 6131.07
PTLIF BPTT 150.69 5889.44
MELIF O4 270.79 (0.93×) 2349.39 (0.38×)

ImageNet 4 32

SEW
ResNet-34

SJLIF BPTT 309.04 8821.28
PTLIF BPTT 202.83 7140.09
MELIF O4 281.39 (0.91×) 2004.14 (0.23×)

Spikformer
(8-512)

SJLIF BPTT 116.70 34264.76
PTLIF BPTT 71.03 28779.13
MELIF O4 93.58 (0.80×) 7640.68 (0.22×)

QKFormer
(10-512)

SJLIF BPTT 86.15 44571.33
PTLIF BPTT 55.65 37375.90
MELIF O4 76.51 (0.89×) 5219.93 (0.12×)

5 EXPERIMENTS

In this section, we evaluate the proposed method’s memory efficiency, as well as training speed,
compatibility, and accuracy. We also conduct case studies to highlight the importance of our method.

5.1 MEMORY COST AND TRAINING SPEED

Table 2: Ablation study of LIF implemen-
tation and optimization levels on CIFAR10-
DVS.

LIF
impl.

Opt.
Level

Throughput
(sample / s) ↑

Peak Alloc.
Mem. (MB) ↓

SJLIF – 290.26 6131.07
PTLIF – 150.69 5889.44

MELIF

– 331.30 4865.06
O1 246.81 2887.75
O3 247.83 2349.39
O4 270.79 2349.39

We assess the memory and time cost of our method on
Sequential CIFAR-10 (Fang et al., 2021b), DVS128
Gesture (Amir et al., 2017), CIFAR10-DVS (Li et al.,
2017), and ImageNet (Deng et al., 2009). For Ima-
geNet, we try three architectures: SEW ResNet-34
(Fang et al., 2021a), Spikformer (Zhou et al., 2023),
and QKFormer (Zhou et al., 2024). See Appendix C
for more details. As Table 1 shows, our memory op-
timization pipeline at O4 combined with the Triton-
based LIF kernel (MELIF) reduces the peak memory
consumption to 0.12× ∼ 0.47× of SNNs trained
with standard BPTT using SpikingJelly’s CuPy-based
LIF (SJLIF). This great reduction in memory footprint is achieved with no or only a slight training
slowdown (≤ 20%; see Appendix K for a more detailed runtime decomposition). Table 2 shows that
the proposed Triton kernel is significantly more memory- and time-efficient than SJLIF and the LIF in
pure PyTorch (PTLIF). Moreover, layer-wise GC (O1) and spatio-temporal GC segment partitioning
(O3) further reduce memory, while greedy restoration (O4) mitigates the recomputation overhead
of GC. A fine-grained ablation study on three GC adjustment strategies is provided in Appendix L.
Finally, Figure 5 demonstrates that spike compression brings memory saving by providing more free
space for GC structure adjustment (see Appendix J for a detailed discussion).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Layer Index
FP BP

Layer Index
FP BP

Peak: MB
Peak: MB

Figure 5: Spiking VGG memory evolution on CIFAR10-DVS under different optimization levels.

Table 3: Compatibility with temporally parallel SNNs.

Task Network Neuron Method Peak Alloc.
Mem. (MB) ↓

Sequential
CIFAR-10 SCNN Sliding

PSN
BPTT 1302.69

O4 599.34 (0.46×)

ImageNet SEW
ResNet-34 PSN BPTT 7602.64

O4 2544.28 (0.33×)

Table 4: Compatibility with AMP
and LOMO. Condition: ImageNet,
QKFormer, MELIF, O4.

AMP? LOMO? Peak Alloc.
Mem. (MB) ↓

✗ ✗ 5219.93
✗ ✓ 5190.60
✓ ✗ 3158.02
✓ ✓ 3142.86

5.2 COMPATIBILITY WITH OTHER METHODS

Beyond LIF neurons, our method is compatible with other spiking neuron models. Table 3 shows
that our approach effectively reduces memory usage for SNNs built with PSNs and Sliding PSNs
(Fang et al., 2023b). Note that temporal parallelism is not compatible with BPTT-to-BP or online
learning. Moreover, Table 4 demonstrates that our method can be seamlessly combined with prevalent
memory-saving techniques, such as automatic mixed precision (AMP) (Micikevicius et al., 2018) and
low-memory optimizer (LOMO) (Lv et al., 2024b) (see Appendix E for introductions).

5.3 MATHEMATICAL EQUIVALENCE WITH CONVENTIONAL BPTT

0 100 200 300

Epochs

30

40

50

60

70

Train Acc. (%)

0 100 200 300

Epochs

40

50

60

70

80

Val. Acc. (%)

SJLIF

MELIF

MELIF, O4

Figure 6: Sequential CIFAR-10 accuracies. SJLIF
shows mean ± std over three runs, while the other
two curves are single runs with a fixed seed.

To verify that our pipeline produces unbiased
gradients with respect to standard BPTT, we
compare Sequential CIFAR-10 accuracies in
Figure 6. The MELIF curves with and with-
out O4 optimization (green and orange) exactly
overlap, showing that GC and spike compres-
sion do not introduce gradient bias. Their minor
difference from the baseline (SJLIF, blue) stems
from the different numerical behavior of Triton
and CuPy. This gap is negligible, as the orange
curve lies almost entirely within the baseline’s
error band. Additional results and discussion
on numerical discrepancies are provided in Appendices F and G. Overall, our pipeline preserves
BPTT-level accuracy, which is its main advantage over other efficient training approaches.

5.4 COMPARISON WITH OTHER EFFICIENT TRAINING METHODS

Table 5 compares throughput, memory usage, gradient fidelity, and applicability constraints of
representative efficient training methods. All methods use the same Spiking VGG model, except
reversible networks, whose architectures are adjusted to match the VGG in parameter count (9.2 M)
and feature-map resolution. Online learning methods like SLTT (Meng et al., 2023), OTTT (Xiao
et al., 2022) and NDOT (Jiang et al., 2024) achieve the lowest memory cost but require step-wise
execution, prohibiting techniques like temporal parallelism (Fang et al., 2023b) that are common in
modern SNNs. BPTT-to-BP, such as Tandem SNN (Wu et al., 2023) and Rate-based BP (Yu et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Comparison of SNN efficient training methods. Throughput and memory are tested on
CIFAR10-DVS. ‘Grad. Bias’ indicates additional gradient approximation beyond surrogate gradients.

Category Method Throughput
(sample / s) ↑

Peak Alloc.
Mem. (MB) ↓

Grad.
Bias Constraints

Vanilla BPTT 290.26 6131.07 ✗ ✗

Online
Learning

SLTT 297.45 736.63
✓ step-wise onlyOTTT 216.78 969.21

NDOT 168.48 1467.90

BPTT-to-BP Tandem SNN 551.96 1706.68
✓

no temporal
dependencyRate-based 497.07 1540.65

Reversible
Network

RevSResNet 157.46 3198.78
✗

reversible
models onlyT-RevSNN 191.36 1089.43

Ours O4 270.79 2349.39 ✗ layer-wise only

(a) (b) (c)QKFormer, ImageNet DH-SFNN, SHD SpikeVideoFormer, Kinetics-400

T

layer 4

layer 3

layer 2

layer 1
0 1000

saved internal states
saved inputs
not saved

Figure 7: Case studies. The proposed pipeline enables (a) larger batch size, (b) finer temporal
resolution, and (c) training large-scale SNNs on more accessible devices. The heatmap in (b) shows
which intermediate features are saved during forward pass after O4 optimization when T = 1000.

2024), shows higher throughput but introduces substantial gradient bias, making it unsuitable for
tasks with rich temporal dependencies. Reversible networks like RevSResNet (Zhang & Zhang,
2024) and T-RevSNN (Hu et al., 2024) reduce memory cost but significantly slow down training and
impose strict architectural constraints. In contrast, our method balances speed and memory while
maintaining mathematical equivalence to BPTT and supporting generic layer-wise SNNs.

5.5 CASE STUDIES

QKFormer on ImageNet Take QKFormer trained on ImageNet (T = 4) as an example. With our
pipeline, the batch size can be increased by nearly 8× without consuming more memory. Enlarging
the batch size from 8 to 64 yields about 1.43× training speedup, as shown in Figure 7(a).

DH-SFNN on SHD We evaluate our method on Spiking Heidelberg Digits (SHD) (Cramer et al.,
2022) using DH-SFNN, a fully connected SNN (700→ 1024→ 1024→ 512→ 20) with dendritic
heterogeneity LIF (DH-LIF) neurons (Zheng et al., 2024). Each DH-LIF contains four dendritic
branches and a soma, resulting in five internal states per neuron. Batch size is set to 128. Existing
efficient training approaches can hardly work here: online learning and BPTT-to-BP struggle with
SHD’s rich temporal dynamics, while reversible network is infeasible due to architectural constraints.
In contrast, as Figure 7(b) shows, our method enables 4× increase in T with negligible extra memory
cost, allowing finer temporal resolution and potentially better sequence modeling quality.

SpikeVideoFormer on Kinetics-400 We train a SpikeVideoFormer (Zou et al., 2025) (55.9 M
parameters) on Kinetics-400 (Kay et al., 2017) with T = 32 frames and 224× 224 input resolution.
Training with a batch size of 4 per GPU requires 54.43 GB of memory per device, restricting
experiments to high-end hardware. Indeed, the original work uses eight A6000 GPUs, which is not
affordable for many researchers. With our method, the peak memory per GPU is reduced to 11.17 GB,
enabling its training on widely accessible GPUs (e.g., 4090, 24 GB), as Figure 7(c) shows. This
demonstrates that our approach can lower hardware barriers for cutting-edge SNN research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

In this work, we presented an automatic memory optimization pipeline for SNN direct training. The
pipeline integrates layer-wise GC with lossless spike compression to reduce the memory footprint of
intermediate features. We then adaptively adjust GC structure by spatio-temporal segment partitioning
and greedy restoration to further reduce memory demand and GC’s recomputation overhead. Experi-
ments show that our pipeline achieves high memory efficiency while maintaining acceptable training
speed, BPTT-level accuracy, and broad compatibility. This work provides a practical approach for
efficiently training large-scale SNNs. Limitations and future directions are discussed in Appendix N.

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, Brian Taba, Michael Beakes, Bernard
Brezzo, Jente B. Kuang, Rajit Manohar, William P. Risk, Bryan Jackson, and Dharmendra S.
Modha. Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic
chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(10):
1537–1557, 2015.

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz, Michael
Debole, Steve Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha. A low power, fully
event-based gesture recognition system. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7243–7252, 2017.

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
Nature Communications, 11(1):3625, 2020.

Wadjih Bencheikh, Jan Finkbeiner, and Emre Neftci. Optimal gradient checkpointing for sparse and
recurrent architectures using off-chip memory. arXiv preprint arXiv:2412.11810, 2024.

Thomas Bohnstingl, Stanisław Woźniak, Angeliki Pantazi, and Evangelos Eleftheriou. Online spatio-
temporal learning in deep neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 34(11):8894–8908, 2023.

Tong Bu, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang. Optimal ANN-
SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In The Tenth
International Conference on Learning Representations, 2022.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66, 2015.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Xinyi Chen, Jibin Wu, Chenxiang Ma, Yinsong Yan, Yujie Wu, and Kay Chen Tan. Pmsn: A
parallel multi-compartment spiking neuron for multi-scale temporal processing. arXiv preprint
arXiv:2408.14917, 2024.

Zehao Chen, Zhan Lu, De Ma, Huajin Tang, Xudong Jiang, Qian Zheng, and Gang Pan. Evhdr-
gs: Event-guided hdr video reconstruction with 3d gaussian splatting. Proceedings of the AAAI
Conference on Artificial Intelligence, 39(3):2367–2375, 2025.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro,
and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759,
2014.

Yann Collet and Mark Kucherawy. Zstandard compression and the application/zstd media type. RFC
8478, Internet Engineering Task Force, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 33(7):2744–2757, 2022.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, S. Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin,
Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul, Jonathan Tse,
Guruguhanathan Venkataramanan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang.
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1):82–99,
2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In The Ninth International Conference on Learning Representations, 2021.

Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective
batch normalization in spiking neural networks. In Advances in Neural Information Processing
Systems, volume 35, pp. 34377–34390, 2022.

Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of huffman coding with
compression rate of arithmetic coding. arXiv preprint arXiv:1311.2540, 2013.

Jason K. Eshraghian, Max Ward, Emre O. Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu. Training spiking neural networks using
lessons from deep learning. Proceedings of the IEEE, 111(9):1016–1054, 2023.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. In Advances in Neural Information Processing
Systems, volume 34, pp. 21056–21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2661–2671,
2021b.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023a.

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. In Advances in Neural Information Processing Systems, volume 36, pp. 53674–
53687, 2023b.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition. Cambridge University Press, 2014.

Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The reversible residual net-
work: Backpropagation without storing activations. In Advances in Neural Information Processing
Systems, volume 30, pp. 2214–2224, 2017.

Audrunas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time. In Advances in Neural Information Processing Systems, volume 29,
pp. 4125–4133, 2016.

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion
error through residual membrane potential. Proceedings of the AAAI Conference on Artificial
Intelligence, 37(1):11–21, 2023a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between
ANNs and SNNs by calibrating offset spikes. In The Eleventh International Conference on
Learning Representations, 2023b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Jiakui Hu, Man Yao, Xuerui Qiu, Yuhong Chou, Yuxuan Cai, Ning Qiao, Yonghong Tian, Bo Xu,
and Guoqi Li. High-performance temporal reversible spiking neural networks with O(l) training
memory andO(1) inference cost. In Proceedings of the 41st International Conference on Machine
Learning, volume 235, pp. 19516–19530, 2024.

Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan. Fast-snn: Fast spiking neural network by
converting quantized ann. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45
(12):14546–14562, 2023.

Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks toward
deep residual learning. IEEE Transactions on Neural Networks and Learning Systems, 36(2):
2353–2367, 2025.

Yifan Huang, Wei Fang, Zhengyu Ma, Guoqi Li, and Yonghong Tian. Flexible and scalable deep den-
dritic spiking neural networks with multiple nonlinear branching. arXiv preprint arXiv:2412.06355,
2024a.

Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan,
and Bojun Cheng. CLIF: Complementary leaky integrate-and-fire neuron for spiking neural
networks. In Proceedings of the 41st International Conference on Machine Learning, volume 235,
pp. 19949–19972, 2024b.

Haiyan Jiang, Giulia De Masi, Huan Xiong, and Bin Gu. NDOT: Neuronal dynamics-based online
training for spiking neural networks. In Proceedings of the 41st International Conference on
Machine Learning, volume 235, pp. 21806–21823, 2024.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Saeed Reza Kheradpisheh, Maryam Mirsadeghi, and Timothée Masquelier. Spiking neural networks
trained via proxy. IEEE Access, 10:70769–70778, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In The Third
International Conference on Learning Representations, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009,
University of Toronto, 2009.

Guoqi Li, Lei Deng, Huajin Tang, Gang Pan, Yonghong Tian, Kaushik Roy, and Wolfgang Maass.
Brain-inspired computing: A systematic survey and future trends. Proceedings of the IEEE, 112
(6):544–584, 2024a.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: An event-stream
dataset for object classification. Frontiers in Neuroscience, 11:309, 2017.

Yang Li, Yinqian Sun, Xiang He, Yiting Dong, Dongcheng Zhao, and Yi Zeng. Parallel spiking unit
for efficient training of spiking neural networks. In 2024 International Joint Conference on Neural
Networks, pp. 1–8, 2024b.

Yuhang Li, Youngeun Kim, Hyoungseob Park, Tamar Geller, and Priyadarshini Panda. Neuromorphic
data augmentation for training spiking neural networks. In European Conference on Computer
Vision, pp. 631–649, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128× 128 120 db 15 µs latency
asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2):566–
576, 2008.

Changze Lv, Yansen Wang, Dongqi Han, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
Efficient and effective time-series forecasting with spiking neural networks. In Proceedings of the
41st International Conference on Machine Learning, volume 235, pp. 33624–33637, 2024a.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and Xipeng Qiu. Full parameter fine-tuning for
large language models with limited resources. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics, volume 1, pp. 8187–8198, 2024b.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory- and time-efficient backpropagation for training spiking neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6166–6176, 2023.

Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan
Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner,
William P. Risk, Rajit Manohar, and Dharmendra S. Modha. A million spiking-neuron integrated
circuit with a scalable communication network and interface. Science, 345(6197):668–673, 2014.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In The Fifth International Conference on Learning Representations, 2018.

Samuel G. Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmenta-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 774–782,
2021.

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32, pp.
8026–8037, 2019.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and
Learning Systems, 34(6):3174–3182, 2023.

Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In
Advances in Neural Information Processing Systems, volume 31, pp. 1419–1428, 2018.

Sonali Singh, Anup Sarma, Sen Lu, Abhronil Sengupta, Mahmut T. Kandemir, Emre Neftci, Vi-
jaykrishnan Narayanan, and Chita R. Das. Skipper: Enabling efficient snn training through
activation-checkpointing and time-skipping. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture, pp. 565–581, 2022.

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, pp. 10–19, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, pp. 5998–6008, 2017.

Kexin Wang, Jiahong Zhang, Yong Ren, Man Yao, Di Shang, Bo Xu, and Guoqi Li. SpikeVoice:
High-quality text-to-speech via efficient spiking neural network. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics, volume 1, pp. 7927–7940, 2024.

Paul J. Werbos. Backpropagation through time: What it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 34(1):446–460, 2023.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):1311–1318, 2019.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training feedback
spiking neural networks by implicit differentiation on the equilibrium state. In Advances in Neural
Information Processing Systems, volume 34, pp. 14516–14528, 2021.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
through time for spiking neural networks. In Advances in Neural Information Processing Systems,
volume 35, pp. 20717–20730, 2022.

Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. In Advances in Neural Information Processing Systems, volume 36, pp. 64043–64058,
2023.

Man Yao, Ole Richter, Guangshe Zhao, Ning Qiao, Yannan Xing, Dingheng Wang, Tianxiang Hu,
Wei Fang, Tugba Demirci, Michele De Marchi, et al. Spike-based dynamic computing with
asynchronous sensing-computing neuromorphic chip. Nature Communications, 15(1):4464, 2024.

Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luziwei
Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing approxima-
tion training. IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(4):2973–2990,
2025.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. In Advances in Neural Information Processing Systems,
volume 35, pp. 32160–32171, 2022.

Bojian Yin, Federico Corradi, and Sander M. Bohté. Accurate online training of dynamical spiking
neural networks through forward propagation through time. Nature Machine Intelligence, 5(5):
518–527, 2023.

Chengting Yu, Lei Liu, Gaoang Wang, Erping Li, and Aili Wang. Advancing training efficiency
of deep spiking neural networks through rate-based backpropagation. In Advances in Neural
Information Processing Systems, volume 37, pp. 115786–115815, 2024.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

Hong Zhang and Yu Zhang. Memory-efficient reversible spiking neural networks. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(15):16759–16767, 2024.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In The Sixth International Conference on Learning Representations, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guoqi Li, and Lei
Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks for learning
multi-timescale dynamics. Nature Communications, 15(1):277, 2024.

Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu
Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer using q-k
attention. In Advances in Neural Information Processing Systems, volume 37, pp. 13074–13098,
2024.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and
James Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ODE.
In Proceedings of the 37th International Conference on Machine Learning, volume 119, pp.
11639–11649, 2020.

Shihao Zou, Qingfeng Li, Wei Ji, Jingjing Li, Yongkui Yang, Guoqi Li, and Chao Dong. Spikevideo-
former: An efficient spike-driven video transformer with hamming attention and $\mathcal{O}(t)$
complexity. In Proceedings of the 42th International Conference on Machine Learning, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DETAILS OF MEMORY COST BREAKDOWN

Figure 2 illustrates the memory breakdown of stored feature maps (input tensors and internal states of
all layers), model weights, gradients, optimizer states, and temporary runtime variables when training
SNNs or ANNs on ImageNet (Deng et al., 2009). We evaluate SEW ResNet-34 (Fang et al., 2021a)
and Spikformer (Zhou et al., 2023) using the same settings as our main experiments (Appendix C),
with ResNet-34 (He et al., 2016) and ViT (Dosovitskiy et al., 2021) mirroring the settings of SEW
ResNet-34 and Spikformer, respectively. SEW ResNet-34 and Spikformer are implemented using
SpikingJelly (Fang et al., 2023a), and the LIF model with CuPy backend is adopted; For ResNet-34
and ViT, we use torchvision implementations (Paszke et al., 2019). We run the experiments on a
single NVIDIA A100 GPU (80 GB, CUDA 12.2).

The memory usage for weights, gradients, and optimizer states can be easily computed by summing
the sizes of all tensors of these kinds. To quantify the size of stored feature maps, we measure the
allocated memory after the forward pass before the backward pass starts, and subtract the sizes of
weights and optimizer states from the value. For runtime variables, we first identify the critical layer
l∗ with the highest peak memory. In other words, the network-level peak memory occurs during
backpropagation on layer l∗. The difference between the peak allocated memory at layer l∗ and the
allocated memory at the start of the layer’s backward pass reflects runtime variable costs. Note that
gradient sizes are slightly overestimated, as not all gradients are ready when global peak memory is
reached. Detailed results are shown in Table 6.

Table 6: Detailed memory breakdown of different networks when trained on ImageNet. Memory
costs are measured in MB.

Network Stored Features Weights Gradients Optimizer States Runtime Variables

ResNet-34 936.49 83.15 83.15 83.15 38.25
ViT 1629.20 100.05 100.05 200.11 91.19

SEW ResNet-34 8373.98 83.15 83.15 83.15 40.50
Spikformer 33372.02 113.26 113.26 226.52 496.00

B MEMORY EVOLUTION CURVES

Figure 3 and Figure 5 demonstrate the memory cost evolution within one training iteration of Spiking
VGG on CIFAR10-DVS. To get these curves, we record the allocated memory at the start, peak,
and end of each target layer’s forward pass (FP) and backward pass (BP). The resulting sequence,
arranged in the temporal order of events, is[

Mstart
FP1 ,Mpeak

FP1 ,Mend
FP1 ,Mstart

FP2 ,Mpeak
FP2 ,Mend

FP2 , . . . ,

Mstart
BP2 ,Mpeak

BP2 ,Mend
BP2 ,Mstart

BP1 ,Mpeak
BP1 ,Mend

BP1

]
,

(6)

where FPl and BPl denote the forward and backward pass of layer l, respectively. The global peak
memory can be defined asMpeak = max

(
{Mpeak

FPl }l
⋃
{Mpeak

BPl }l
)

.

C DETAILS OF THE MAIN EXPERIMENTS

The main experiment is implemented using PyTorch (Paszke et al., 2019) and SpikingJelly (Fang
et al., 2023a).

Sequential CIFAR-10 Sequential CIFAR-10 (Fang et al., 2023b; Chen et al., 2024) is a sequence
classification task derived from the standard CIFAR-10 benchmark (Krizhevsky, 2009). It is widely
used for evaluating SNNs’ capability to learn long-term temporal patterns. In this task, the CIFAR-10
images are fed into the model column by column, mimicking the way humans scan pictures from left
to right. Each sample is a sequence with T = 32 elements, and each element contains 32 RGB pixels.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

There are 50, 000 training samples, 10, 000 test samples, and 10 classes. Following the practice in
PSN (Fang et al., 2023b), we augment the training data with random mixup (Zhang et al., 2018),
random cutmix (Yun et al., 2019), random horizontal flipping, TrivialAugment (Müller & Hutter,
2021), predefined data normalization, and random erasing. An 8-layer 1D convolutional SNN is
employed (SCNN) (Fang et al., 2023b). Hyperparameters and running environment are listed in
Table 7.

DVS128 Gesture DVS128 Gesture (Amir et al., 2017) is an event-based gesture recognition dataset
recorded by a DVS128 camera. It contains 11 gesture classes performed by 29 subjects under 3
illumination conditions with spatial resolution 128× 128. For experiments, we follow the standard
split provided in SpikingJelly (Fang et al., 2023a): 1,176 training samples and 288 test samples.
Each recording is integrated into T = 16 frames, and no extra augmentations are applied. We use
7B-Net, a small-scale SEW ResNet (Fang et al., 2021a), as the backbone. See Table 7 for other
hyperparameters and the running environment.

CIFAR10-DVS CIFAR10-DVS (Li et al., 2017) is a neuromorphic vision classification task cre-
ated by recording CIFAR-10 images (Krizhevsky, 2009) through a Dynamic Vision Sensor (DVS)
(Lichtsteiner et al., 2008). The dataset is composed of 10, 000 samples, each represented as an event
stream with 2 channels and 128× 128 resolution. Following the protocol of temporal effective batch
normalization (TEBN) (Duan et al., 2022) and PSN (Fang et al., 2023b), we partition the dataset into
9, 000 training samples and 1, 000 test samples, downsample the resolution to 48× 48, and integrate
each event stream into T = 10 frames. The data augmentation pipeline incorporates random resized
cropping, random horizontal flipping, and Neuromorphic Data Augmentation (NDA) (Li et al., 2022).
We adopt a Spiking VGG11 architecture, following the practice of TEBN (Duan et al., 2022) and
PSN (Fang et al., 2023b). Refer to Table 7 for hyperparameters and running environment.

ImageNet ImageNet-1k (Deng et al., 2009) is a large-scale visual recognition benchmark containing
about 1.28 million training samples and 50,000 validation samples across 1,000 classes. Training
on the entire ImageNet dataset is computationally expensive, so we use its 1

32 subset instead, whose
samples are evenly distributed across all 1000 classes. Since the peak memory cost during training
is independent of the sample size, the memory footprint we report can faithfully reflect full-dataset
training conditions. Each image is resized to 224 × 224 resolution. We utilize SEW ResNet-34
(Fang et al., 2021a), Spikformer (Zhou et al., 2023) and QKFormer (Zhou et al., 2024) architectures.
The SEW residual connections in these architectures bring non-binary integer activation values
(Fang et al., 2021a); for these activations, we compress them into 8-bit unsigned integers (uint8)
rather than bits to avoid accuracy loss. For experiments using SEW ResNet-34, we use the same
data augmentation pipeline as in the original work (Fang et al., 2021a); for both Spikformer and
QKFormer, we augment data using the procedure in the original QKFormer work (Zhou et al., 2024).
Hyperparameters and running environments are provided in Table 7.

Table 7: Hyperparameter settings and running environment configurations for the main experiments.

Sequential
CIFAR-10

DVS128
Gesture

CIFAR10-
DVS

ImageNet

SEW Transformer

λ 0.5 0.5 0.25 0.5 0.5
Vth 1.0 1.0 1.0 1.0 1.0

Optimizer SGD(0.9) SGD(0.9) SGD(0.9) SGD(0.9) AdamW
L2 Reg. 0 0 5× 10−4 0 5× 10−2

Init. LR 0.1 0.1 0.1 0.1 0.001
Scheduler Cosine Step(0.1, 64) Cosine Cosine Cosine

Loss CE CE TET TET Smooth CE
Batch Size 128 16 32 32 32

T 32 16 10 4 4
k 2 2 2 2 2

CUDA Version 12.3 12.3 12.3 12.2 12.2
Device 1× 4090 1× 4090 1× 4090 1× A100 1× A100

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D EXPERIMENTS OF MULTI-GPU TRAINING

The experiments in Table 1 of the main text are conducted on a single GPU. To further validate the
scalability of the proposed framework, we conduct multi-GPU training experiments on ImageNet
(Deng et al., 2009) using QKFormer (Zhou et al., 2024). The experimental setup follows Appendix C,
except that 1, 2, or 3 NVIDIA A100 GPUs are used for distributed data parallel (DDP) training. We
set a per-device batch size of 32. Table 8 reports the time and memory costs. Here, the batch time cost
refers to the average time per training iteration for a single GPU. Throughput accounts for all GPUs,
measured as the total number of training samples processed per second. The peak allocated memory
is the maximum of peak allocated memory across all devices. Generally, in multi-GPU settings, our
method achieves substantial memory efficiency improvements while incurring a moderate increase in
training time, which is consistent with the single-GPU cases.

Table 8: Time and memory efficiency when training a QKFormer on ImageNet using multiple GPUs.

#GPUs Neuron Method Throughput
(samples / s)↑

Peak. Alloc.
Mem. (MB) ↓

1 SJLIF BPTT 86.15 44571.33
MELIF O4 76.51 (0.89×) 5219.93 (0.12×)

2 SJLIF BPTT 168.43 44679.28
MELIF O4 151.54 (0.90×) 5323.13 (0.12×)

3 SJLIF BPTT 235.45 44679.28
MELIF O4 211.01 (0.90×) 5323.13 (0.12×)

E ADDITIONAL MEMORY OPTIMIZATION TECHNIQUES

Low-Memory Optimizer (LOMO) Low-memory optimization (LOMO) (Lv et al., 2024b) reduces
the memory cost of gradients by updating Wl once its gradient Gl is computed, instead of waiting
until all gradients are available. Unlike the stateless original LOMO (Lv et al., 2024b), we retain opti-
mizer states (e.g., those of Adam (Kingma & Ba, 2015)) to match the baseline cases. LOMO ensures
that at most one gradient tensor resides in memory at a time, reducing

∑
lMGl in Equation (4) to

maxlMGl .

Automatic Mixed Precision (AMP) Automatic mixed precision (AMP) training (Micikevicius
et al., 2018) can be optionally enabled to reduce overall memory usage and accelerate training by
utilizing 16-bit floats for activations and gradients. The loss is scaled to prevent underflow and ensure
numerical stability.

F ACCURACY RESULTS

We report additional validation accuracy results in Table 9. Note that these experiments are designed
to validate the mathematical equivalence of our method with standard BPTT rather than to maximize
performance, so we do not apply advanced training tricks like random temporal delete (Fang et al.,
2021a). We train 300, 192, and 100 epochs for Sequential CIFAR-10, DVS128 Gesture and CIFAR10-
DVS, respectively. For 1

32 ImageNet, we report validation accuracy at the fifth epoch to reduce
training cost, which is sufficient to demonstrate the equivalence. The results show that MELIF
attains accuracy nearly identical to SJLIF across all benchmarks, with minor discrepancies arising
only from different backend numerical behaviors. In most cases, the optimization pipeline itself
does not affect accuracy. However, O3 and O4 for Spikformer and QKFormer slightly influence
accuracy due to the temporal segment partitioning on weight layers. Appendix G discusses this issue
in detail. These small deviations stem purely from numerical computation rather than from any
approximation in the gradient computation. The gradients produced by our method remain
free from systematic bias.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Comparison of validation accuracy (%). For 1
32 ImageNet, we report the validation accuracy

at epoch 5. For SJLIF conditions, we report mean ± std over three runs. For MELIF conditions, we
report the results on a single run using a fixed seed.

Task Network SJLIF MELIF

BPTT BPTT O1 O2 O3 O4

Sequential CIFAR-10 SCNN 82.53±0.25 82.36 82.36 82.36 82.36 82.36

DVS128 Gesture 7B-Net 95.08±0.87 95.14 95.14 95.14 95.14 95.14

CIFAR10-DVS Spiking VGG 85.98±0.25 86.10 86.10 86.10 86.10 86.10

1
32 ImageNet

SEW ResNet-34 3.46±0.21 3.50 3.50 3.50 3.50 3.50
Spikformer 1.03±0.16 0.90 0.90 0.90 1.10 1.10
QKFormer 1.06±0.12 1.20 1.20 1.20 1.10 1.10

G POTENTIAL SOURCES OF NUMERICAL DISCREPANCIES

Numerical discrepancies in gradients may arise when temporal GC segment partitioning is
applied to layers with learnable parameters. Without temporal partitioning, the gradient is first
computed for each time step t ∈ {1, . . . , T} and batch sample n ∈ {1, . . . , N}, and then summed
over the temporal and batch dimensions:

G =

T∑
t=1

N∑
n=1

Gt,n, (7)

where Gt,n denotes the gradient contribution at time step t from sample n. In contrast, when the
temporal dimension is partitioned (k = 2 for example), the accumulation is performed in two stages:

G(1) =

T
2∑

t=1

N∑
n=1

Gt,n, G(2) =

T∑
t=T

2 +1

N∑
n=1

Gt,n, (8)

followed by a final aggregation:
G = G(1) +G(2). (9)

Although mathematically equivalent to the unpartitioned case, these operations differ in numerical
practice because floating-point addition is not associative. As a result, reordering the accumulation
of gradient terms leads to slight deviations in the final gradient values. This explains the minor
accuracy deviations observed in Table 9 for Spikformer and QKFormer at O3 and O4.

H TIME COST OF MEMORY OPTIMIZATION

Table 10 reports the time cost of the memory optimization pipeline at each optimization level. For
SCNN, the overhead increases moderately with higher optimization levels, reflecting the additional
computations from spatial and temporal segment partitioning and greedy segment restoration. For
QKFormer, the jump in time cost from O3 to O4 is much more pronounced, primarily due to the
transformer’s greater depth, which increases profiling costs and the number of segments to iterate
over. Importantly, this overhead is incurred only once before training and is negligible relative to the
total training time.

Table 10: Time (in seconds) spent by the memory optimization pipeline at each optimization level.

O1 O2 O3 O4

SCNN 1.08 26.32 30.63 75.41
QKFormer 1.13 44.91 78.58 564.26

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I TUTORIAL

We provide a brief tutorial on using the proposed automatic memory optimization pipeline, taking the
training of Spiking VGG on CIFAR10-DVS as an example. The model can be defined using PyTorch
(Paszke et al., 2019) and SpikingJelly (Fang et al., 2023a) as shown in the code below.

1 class VGGBlock(nn.Module):
2 def __init__(
3 self, in_plane, out_plane, T,
4 neuron_type, preceding_avg_pool=False, **kwargs
5):
6 super().__init__()
7 proj_bn = []
8 if preceding_avg_pool:
9 proj_bn.append(nn.AvgPool2d(2))

10 proj_bn += [
11 nn.Conv2d(in_plane, out_plane, 3, 1, 1),
12 nn.BatchNorm2d(out_plane),
13]
14 self.proj_bn = SeqToANNContainer(*proj_bn)
15 kwargs["T"] = T
16 self.neuron = get_neuron(neuron_type, **kwargs)
17

18 def forward(self, x_seq):
19 return self.neuron(self.proj_bn(x_seq))
20

21 class CIFAR10DVSVGG(nn.Module):
22 def __init__(self, T, neuron_type, dropout=0.25, **kwargs):
23 super().__init__()
24 self.features = nn.Sequential(
25 VGGBlock(2, 64, T, neuron_type, False, **kwargs),
26 VGGBlock(64, 128, T, neuron_type, False, **kwargs),
27 VGGBlock(128, 256, T, neuron_type, True, **kwargs),
28 VGGBlock(256, 256, T, neuron_type, False, **kwargs),
29 VGGBlock(256, 512, T, neuron_type, True, **kwargs),
30 VGGBlock(512, 512, T, neuron_type, False, **kwargs),
31 VGGBlock(512, 512, T, neuron_type, True, **kwargs),
32 VGGBlock(512, 512, T, neuron_type, False, **kwargs),
33 layer.AvgPool2d(2, step_mode="m"),
34)
35 d = int(48 / 2 / 2 / 2 / 2)
36 l = [nn.Dropout(dropout)] if dropout > 0 else []
37 l.append(nn.Linear(512 * d * d, 10))
38 self.classifier = nn.Sequential(*l)
39 for m in self.modules():
40 if isinstance(m, nn.Conv2d):
41 nn.init.kaiming_normal_(
42 m.weight, mode=’fan_out’, nonlinearity=’relu’
43)
44

45 def forward(self, input):
46 # input.shape = [N, T, C, H, W]
47 input = input.transpose(0, 1).contiguous()
48 # [T, N, C, H, W]
49 x = self.features(input)
50 x = torch.flatten(x, 2) # [T, N, D]
51 x = self.classifier(x)
52 return x

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Users can define spatial partitioning rules by implementing the __spatial_split__ method,
which returns a tuple of submodules corresponding to the spatial subsegments of a layer. For instance,
a VGG block can be split into a convolution-plus-batch-norm segment and a spiking neuron segment.

1 class VGGBlock(nn.Module):
2 def __spatial_split__(self):
3 return self.proj_bn, self.neuron

To define temporal partitioning rules, users should implement the __tc_init_states__ and
__tc_forward__ methods. __tc_init_states__ returns a list of initial hidden states,
while __tc_forward__ takes a chunk of input tensors along with the initial hidden states, and
then returns the corresponding outputs and updated hidden states. The stateless layer container
SeqToANNContainer is the simplest case, where no hidden states are required and the temporally
chunked forward pass is just the same as the container’s original forward pass.

1 class SeqToANNContainer(layer.SeqToANNContainer):
2 """Stateless layer container that supports temporal chunking"""
3 def __tc_init_states__(self, x_seq):
4 return []
5

6 def __tc_forward__(self, xc):
7 return [self.forward(xc),]

A more complex example is the NeuronMaxPool block:

1 class NeuronMaxPool(nn.Module):
2 def __init__(self, neuron_type, **kwargs):
3 super().__init__()
4 self.neuron = get_neuron(neuron_type, **kwargs)
5 self.pool = SeqToANNContainer(
6 nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
7)
8

9 def forward(self, x_seq):
10 return self.pool(self.neuron(x_seq))
11

12 def __tc_init_states__(self, x_seq):
13 device, dtype = x_seq.device, x_seq.dtype
14 return [torch.zeros([], device=device, dtype=dtype)]
15

16 def __tc_forward__(self, xc, v):
17 sc, v = self.neuron.multistep_state_update(xc, v)
18 yc = self.pool(sc)
19 return yc, v

which means that the hidden state (the neuron’s membrane potential) is initialized to zero, and the
temporally forward pass consists of a multi-step state update of the neuron followed by max pooling.
In this example, there is only one input, one hidden state, and one output. However, multiple inputs,
hidden states, and outputs are also supported. Finally, the memory_optimization function can
be called to apply the automatic pipeline.

1 net = CIFAR10DVSVGG(T, neuron_type, dropout, **kwargs)
2 net = memory_optimization(
3 net,
4 instance=(VGGBlock,),
5 dummy_input=torch.rand(32, T, 2, 48, 48),

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

6 compress_x=True,
7 level=4,
8 verbose=True,
9 temporal_split_factor=2,

10)

where instance specifies the layer types to apply gradient checkpointing, dummy_input is a
sample input tensor for profiling, compress_x indicates whether to compress input spikes, level
sets the optimization level, and temporal_split_factor is the k factor that controls the

granularity of temporal partitioning. After optimization, the model can be trained using standard
procedures without further modification.

Note that the pipeline will automatically check whether spike compression is applicable at each
GC segment based on the input distribution. Users can also manually specify spike compressors by
setting the module’s x_compressor attribute. For instance, for a layer in a SEW residual block
(Fang et al., 2021a) whose input is non-binary integer tensors, we can compress the input to 8-bit
unsigned integers (uint8):

1 class SEWBlock(nn.Module)
2 def __init__(self, c_in, c_mid, neuron_type, **kwargs):
3 super().__init__()
4 self.conv = nn.Sequential(
5 Conv3x3(c_in, c_mid, neuron_type, **kwargs),
6 Conv3x3(c_mid, c_in, neuron_type, **kwargs),
7)
8 self.conv[0].x_compressor = "Uint8SpikeCompressor"
9

10 def forward(self, x: torch.Tensor):
11 out = self.conv(x)
12 out = out + x
13 return out

J THE EFFECT OF SPIKE COMPRESSION ON TRAINING MEMORY

Table 11 reports the peak memory usage corresponding to Figure 5. The majority of memory saving
comes from layer-wise GC (BPTT vs. O1, compression disabled), while spike compression alone
only provides marginal memory savings (O1, compression disabled vs. O1, compression enabled).
However, as shown in Figure 5, spike compression reduces the memory footprint of activations,
thus substantially lowering the instantaneous memory usage of deeper layers. This reduction creates
the headroom for stronger spatio-temporal partitioning, leading to larger memory savings at higher
optimization levels (O3 and O4). In summary, spike compression is not the main source of memory
efficiency, but an enabling factor that allows spatio-temporal partitioning to further reduce
peak memory.

Table 11: Peak allocated memory (MB) of Spiking VGG when training on CIFAR10-DVS with spike
compression enabled or disabled (T = 10, batch size is 32). See Figure 5.

Compression BPTT O1 (+GC) O3 (+partitioning) O4 (+restoration)

✓ / 2887.75 2349.39 2349.39
✗ 6131.07 2892.63 2530.66 2530.66

K DETAILED RUNTIME PROFILING

Table 12 reports the the forward and backward runtime for each layer in Spiking VGG. Note that the
fully connected classification head is omitted since no change is applied to it across all optimization

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

levels. GC introduces additional backward computation roughly equivalent to a single extra local
forward pass. Spike compression and decompression further add small overheads to both forward
and backward passes, but the increase is negligible relative to the total runtime, demonstrating the
efficiency of bit compression; note that Conv0 do not apply input spike compression. In this example,
spatial partitioning is applied only to Conv1, while temporal partitioning is skipped since it does not
yield additional memory benefits (see Algorithm 2). As a result, virtually no extra computational
cost. Finally, greedy segment restoration significantly reduces the computation load of both passes.
Conv3 and Conv5 are reverted to standard BPTT blocks, and their forward and backward runtimes
return to BPTT level.

Table 12: Layer-wise runtime profiling for Spiking VGG on CIFAR10-DVS (MELIF, T = 10, batch
size is 32). Results are averaged over 200 iterations with 10 warmup iterations and reported in
milliseconds.

Condition Stage Conv0 Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7

BPTT fwd 2.48 5.96 4.16 5.22 2.80 3.98 1.04 0.91
bwd 4.28 12.82 8.57 10.13 5.58 8.29 2.26 1.95

+ GC fwd 2.52 5.99 4.20 5.26 2.81 4.01 1.07 0.92
bwd 6.80 18.86 12.78 15.42 8.45 12.33 3.27 2.89

O1
fwd 2.51 6.19 4.51 5.46 3.04 4.11 1.18 1.02
bwd 6.81 19.08 13.21 15.63 8.71 12.46 3.41 3.04

O3
fwd 2.49 6.15 4.48 5.38 3.05 4.09 1.17 0.99
bwd 6.72 19.02 13.24 15.62 8.56 12.22 3.39 2.98

O4
fwd 2.50 6.16 4.49 5.18 3.03 3.99 1.16 1.00
bwd 6.76 19.01 13.23 10.08 8.55 8.24 3.34 2.97

We further investigate how training time cost scales with the number of checkpointed layers and
temporal splits. Since GC performs one fixed-cost recomputation per segment, the total overhead
increases as the number of GC segments grows. However, the scaling is not strictly linear, since
recomputation cost varies across layers. As shown in the left plot of Figure 8, the overhead grows
as more GC segments are added, but the increments are uneven. From Table 12, we know that
spatial partitioning has almost no effect on training speed. In contrast, temporal partitioning actually
reduces temporal parallelism, thereby slowing down training (especially for models with a large T).
To illustrate this effect, we measure per-batch training time cost of DH-SFNN on SHD. Training time
per batch increases nonlinearly with the the temporal partitioning factor k.

0 1 2 3 4 5 6 7 8

L

80

90

100

110

120

130

T
ra

in
in

g
T

im
e

(m
s

/
 b

at
ch

)

1 2 4 5 10 20 25

K

260

270

280

290

300

310

320

T
ra

in
in

g
T

im
e

(m
s

/
 b

at
ch

)

Figure 8: Left: taining time per batch (forward + backward) of Spiking VGG on CIFAR10-DVS as a
function of the number of layers (L) with layer-wise GC applied. The first L layers adopt GC, where
L = 0 corresponds to standard BPTT. T = 10, and batch size is 32. Right: training time per batch of
DH-SFNN on SHD as a function of the temporal partitioning factor k under O3. k = 1 indicates no
temporal partitioning. T = 100, and batch size is 128. Experiments are run on a single 4090 (24 GB).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

L FINE-GRAINED ABLATION STUDY

Table 2 shows the ablation results of optimization levels on CIFAR10-DVS. To better understand
the impact of each GC adjustment strategy, we conduct fine-grained ablations on QKFormer for
ImageNet. As shown in Table 13, spatial partitioning provides substantial memory reduction with
almost no impact on training throughput. Temporal partitioning also reduces memory usage, though it
introduces a slight slowdown due to reduced temporal parallelism. When combined, the two strategies
complement each other effectively, lowering peak memory to 5219 MB. Greedy restoration further
improves throughput while preserving memory savings. With all three strategies jointly applied,
throughput reaches 76.51 samples/s, the highest among all variants; notably, it even exceeds the
condition without temporal partitioning because there are more GC segments restored to standard
BPTT blocks. Overall, these ablations clarify the individual and collective contributions of the three
components to memory and computational efficiency, confirming the intended synergistic effect of
the full pipeline.

Table 13: Ablation study of QKFormer for ImageNet on the impact of spatial partitioning, temporal
partitioning, and greedy restoration. All conditions adopt MELIF, GC and spike compression.

Spatial
Partition

Temporal
Partition

Greedy
Restoration

Throughput
(sample/s)

Memory
(MB) Annotation

66.13 7726.55 O1

✓ 66.02 6834.48 O2

✓ 63.82 6920.25
✓ 73.17 7725.87

✓ ✓ 64.01 5219.93 O3

✓ ✓ 73.07 6833.87
✓ ✓ 70.24 6920.25

✓ ✓ ✓ 76.51 5219.93 O4

M LOSSLESS SPIKE COMPRESSORS

As discussed in Section 4.3, we adopt bit representation as the default lossless spike compressor
due to its superior speed and memory efficiency. To validate this choice, we compare it with two
alternatives: sparse representation (storing indices of non-zero elements) and lossless bit-stream
compressor (e.g., ANS from nvCOMP 1). Experiments are performed on Sequential CIFAR-10 using
SCNN (T = 32, batch size is 128) on an NVIDIA GeForce RTX 4090. The results in Table 14 show
that bit compression consistently achieves the lowest memory footprint and highest throughput under
both O1 and O4. Sparse representation yields slightly higher memory consumption and lower speed,
while ANS provides moderate compression gains but is substantially slower.

For a more direct comparison, we evaluate compressed size and compression-decompression time
cost across a range of firing rates ρ, using a float32 spike tensor of 107 elements (38.14 MB) as input.
Time costs are averaged over 100 trials following 20 warm-up runs. As Table 15 and Table 16 show,
bit compression consistently produces a fixed-size 1.19 MB representation regardless of sparsity,
whereas sparse representation’s memory efficiency decreases rapidly as ρ increases. ANS achieves
small compressed sizes at low sparsity but is over an order of magnitude slower. Notably, firing rates
in modern activation-based SNNs typically fall within 0.02 to 0.35 (Zhou et al., 2024), a regime in
which bit representation performs effectively. These results confirm that bit representation is both
efficient and effective.

N LIMITATIONS, FUTURE WORK, AND SOCIAL IMPACTS

While the proposed memory optimization pipeline achieves significant memory reduction with broad
compatibility and preserved accuracy, several limitations remain. First, GC inevitably introduces

1https://developer.nvidia.com/nvcomp

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 14: Comparison of lossless spike compressors (bit, sparse, ANS) on Sequential CIFAR-10
(SCNN, T = 32, batch size is 128).

Compressor Throughput (sample / s) Memory (MB)

O1 O4 O1 O4

bit 496.79 474.98 4768.11 5138.76
sparse 527.53 516.99 4454.24 5020.27
ANS 509.42 497.71 2029.53 2542.50

Table 15: Compressed memory (MB) of spike compressors across firing rates ρ

Compressor ρ = 0.01 ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.9

bit 1.19 1.19 1.19 1.19 1.19 1.19
sparse 0.76 7.63 15.27 38.14 61.03 68.66
ANS 0.30 1.68 2.82 5.14 6.61 6.95

Table 16: Compression time cost (sec) of spike compressors across firing rates ρ

Compressor ρ = 0.01 ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.9

bit 0.1234 0.1257 0.1262 0.1216 0.1250 0.1215
sparse 0.1538 0.1568 0.1616 0.2210 0.2965 0.3119
ANS 2.6097 2.4416 2.4407 2.5761 2.6305 2.6603

computational overhead due to the recomputation of intermediate features during backward pass, and
spike compression also slightly adds computational burden. Although we alleviate these by greedily
restoring low-memory-impact GC segments to standard BPTT segments and implementing efficient
Triton kernels for compression and decompression, the overall training speed can be reduced to about
0.8× that of the baseline in the worst case. Second, our experiments mainly focus on visual and
audio classification benchmarks, which is a common practice in SNN research. While the pipeline is
theoretically applicable to other modalities, its effectiveness on tasks such as language modeling has
yet to be validated.

Future work can address these limitations in several directions. One possibility is to refine the adaptive
GC structure adjustment strategies. Currently, the algorithms follow user-defined partitioning schemes
to reduce the search space. We may instead use more principled optimization approaches, such
as dynamic programming (Gruslys et al., 2016), which could yield higher efficiency under a fixed
memory budget. Another direction is to evaluate the framework on large-scale SNNs for language
tasks, and to design optimization strategies tailored to language backbones. This would broaden the
applicability and further demonstrate the generalizability of the pipeline.

By reducing the memory cost of SNN training while retaining BPTT-level accuracy and broad
compatibility, our method lowers the hardware barriers for scaling up SNNs. The pipeline facilitates
the deployment of energy-efficient SNNs on resource-constrained platforms, including mobile and
edge IoT devices. Such advances can democratize access to neuromorphic computing, promote
sustainable AI solutions, and ultimately contribute to reduced energy consumption in intelligent
systems. We do not see any negative societal impacts from this work.

O USE OF LARGE LANGUAGE MODELS

We utilized large language models (LLMs) to refine phrasing, correct spelling and grammar, and
enhance the clarity of expressions. Additionally, LLMs were employed to assist in result visualization,
such as providing initial code templates or optimizing figure layout suggestions. However, the core
ideas, methodological design, code framework development, and key contributions of this paper were
independently conceived and completed by the authors, without relying on LLMs for substantive
support.

25

	Introduction
	Related Work
	BPTT-based SNN Direct Training
	Memory-efficient SNN Direct Training

	Preliminaries
	Spiking Neural Networks
	Gradient Checkpointing

	Methods
	Memory Cost Analysis of BPTT-based SNN Direct Training
	Layer-wise Gradient Checkpointing
	Lossless Input Spike Compression
	Adjusting Gradient Checkpointing Structure
	Automatic Pipeline
	Memory-efficient LIF Kernel

	Experiments
	Memory Cost and Training Speed
	Compatibility with Other Methods
	Mathematical Equivalence with Conventional BPTT
	Comparison with Other Efficient Training Methods
	Case Studies

	Conclusion
	Details of Memory Cost Breakdown
	Memory Evolution Curves
	Details of the Main Experiments
	Experiments of Multi-GPU Training
	Additional Memory Optimization Techniques
	Accuracy Results
	Potential Sources of Numerical Discrepancies
	Time Cost of Memory Optimization
	Tutorial
	The Effect of Spike Compression on Training Memory
	Detailed Runtime Profiling
	Fine-grained Ablation Study
	Lossless Spike Compressors
	Limitations, Future Work, and Social Impacts
	Use of Large Language Models

