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ABSTRACT

Deep spiking neural networks (SNNs) hold immense promise for low-power
event-driven computing, but their direct training via backpropagation through time
(BPTT) incurs prohibitive memory cost, which limits their scalability. Existing
memory-saving approaches, such as online learning, BPTT-to-BP, and reversible
networks, compromise accuracy, training speed, or applicability. In this work, we
propose a novel and broadly applicable pipeline for memory-efficient SNN training
that preserves BPTT’s accuracy. Our pipeline integrates layer-wise gradient check-
pointing with lossless spike compression to eliminate internal state storage and
reduce the memory cost of per-layer input spikes. We also introduce a multi-stage
checkpoint adjustment strategy that adaptively refines checkpoint placement based
on profiling results to further optimize memory usage and improve training speed.
Wrapped in an optimization pass, the pipeline automatically restructures the com-
putation flow before training with minimal user effort. Extensive experiments on
diverse architectures and tasks demonstrate up to 8 x memory efficiency gains with
< 20% speed reduction and no accuracy loss. Our method provides a practical
solution for efficient and scalable SNN training. Code will be available upon
acceptance.

1 INTRODUCTION

Inspired by the dynamics of biological neurons (Gerstner et al.l 2014), spiking neural networks
(SNNs) have emerged as the third generation of neural network models (Maass, [1997). SNNs
transmit information via discrete spikes rather than continuous activations in conventional artificial
neural networks (ANNSs). Their sparse and event-driven nature makes them ideal for deployment
on neuromorphic chips (Merolla et al., [2014; |Akopyan et al., [2015}; |Davies et al., [2018; [Pei et al.,
2019) for inference, offering significant potential for low-power edge computing (Yao et al., [2024).
To train a deep SNN end-to-end, the temporal dimension is discretized into 7" time steps so that the
SNN can be considered as a binary-activated recurrent neural network (RNN) (Fang et al., [2023a}
Eshraghian et al.| 2023). Then, backpropagation through time (BPTT) (Werbos| [1990) is adopted
to compute parameter updates, with surrogate gradient (SG) tackling the non-differentiable spike
emission process (Neftci et al., 2019 [Wu et al., 2018} [Shrestha & Orchard, [2018). With the BPTT-
based framework, low-latency deep SNNs can be directly trained using powerful graphics processing
units (GPUs) (Chetlur et al., 2014) and yield competitive performance (Yao et al.l 2025; Wang et al.|
2024 Lv et al.| 2024 a; |Chen et al., [2025)).

Despite its high accuracy and broad applicability, BPTT imposes intensive memory overhead (Meng
et al., 2023)). For an L-layer SNN unfolded over T time steps, BPTT requires O(LT") memory to
store intermediate states, compared to O(L) for a structurally similar ANN. Consequently, SNN
direct training is more likely to exceed the memory capacity of computational devices. The scaling of
SNNs to deeper architectures and more time steps is thus severely hindered.

Several approaches have been explored to reduce the memory demands of BPTT-based SNN training,
including online learning (Bellec et al.| 2020; Xiao et al.| [2022; Meng et al., 2023} Yin et al.| 2023}
Jiang et al., 2024), BPTT-to-BP (Xiao et al.,|2021; Wu et al.,|2023; |[Kheradpisheh et al., [2022; | Yu
et al., [2024), and reversible networks (Zhang & Zhang, 2024} |[Hu et al., 2024). However, these
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Figure 1: Comparison of (a) BPTT and (b) gradient checkpointing with spike compression. We use
grey boxes with dashed borders to denote gradient checkpointing segments. (c) Spatial segment
partitioning. (d) Temporal segment partitioning.

methods compromise training speed, accuracy, or generality across SNN models (see Section
and Table 5| for details). Also, their implementations require manual architectural modifications or
training code rewrites, which are error-prone and cumbersome. These limitations highlight the need
for a broadly applicable and user-friendly solution that improves the memory efficiency of SNN
direct training while preserving training speed and performance.

In this work, we propose an automatic pipeline that combines gradient checkpointing (Chen et al.,
2016) and spike compression to address the challenge (Figure[I). Our analysis identifies internal
states and per-layer input spikes as the dominant memory consumers in SNN training. To this end, we
employ layer-wise gradient checkpointing to eliminate internal state storage, and losslessly compress
the input spikes before saving them to reduce their memory footprint. To further optimize peak
memory usage, we insert additional checkpoints spatio-temporally into high-cost layers. Check-
pointed segments with no benefit on peak memory are then greedily reverted to standard BPTT
segments to accelerate training. The entire process is encapsulated in an optimization pass that
automatically reconfigures the computation flow before training, requiring minimal user intervention.
The proposed method obtains up to 8 x memory efficiency gains with an affordable training speed
drop and preserved accuracy on extensive experiments. Our main contributions are:

(1) Memory cost analysis. We analyze the memory cost of SNN direct training and identify input
spikes and internal states as primary memory consumers.

(2) An automatic pipeline. We propose a broadly applicable pipeline that integrates gradient
checkpointing with spike compression for memory-efficient SNN training.

(3) Efficiency and Accuracy. We obtain substantial memory savings on diverse SNN models and
task settings with acceptable speed trade-offs and maintained accuracy.

2 RELATED WORK

2.1 BPTT-BASED SNN DIRECT TRAINING

If simulated on discrete time steps, SNNs can be trained end-to-end as binary-activated RNNs through
BPTT (Werbos| 1990), with SG addressing the non-differentiability of the spike firing process (Neftci
et al., 2019; Wu et al.| 2018}; Shrestha & Orchard, [2018)). Compared to ANN-to-SNN conversion
(Cao et al., |2015; |Bu et al., |2022; |Hu et al., 2023} [Hao et al.,|2023b;a), this approach enables low
inference latency (Wu et al.l 2019)) and broader task applicability, thus attracting increasing attention.
Recent advancements have improved the performance of SNN direct training by adapting ANN
architectures like ResNet (He et al.,2016) and Transformer (Vaswani et al., 2017 [Dosovitskiy et al.,



Under review as a conference paper at ICLR 2026

2021)) to spiking ResNets (Fang et al.,[2021a};|Hu et al., [2025)) and spiking Transformers (Zhou et al.|
2023} [Yao et al.,|2023;|Zhou et al., 2024). Other works enhance neuron models (Fang et al., 2021b;
Yao et al.,|2022; Fang et al.| 2023b; |Huang et al., [2024a; |L1 et al.,|2024b; |Huang et al., 2024b). For
instance, the parallel spiking neuron (PSN) family (Fang et al.,[2023b) models neuronal dynamics as
a linear projection of the input over time, enabling temporal parallelization and efficient capturing
of long-term dependencies. Despite the advances in performance, the memory overhead of BPTT
remains a key bottleneck.

2.2 MEMORY-EFFICIENT SNN DIRECT TRAINING

BPTT’s O(LT) memory complexity motivates methods to reduce SNN training memory usage.
Online learning (Bellec et al.| [2020; Xiao et al., 2022;[Meng et al.,[2023} Yin et al., {2023} Bohnstingl
et al., 2023} Jiang et al.,|2024) truncates temporal gradients and stores only the intermediate results at
the current step. However, the gradient mismatch results in a severe performance drop on temporal
tasks. Its step-wise running mode undermines its compatibility with widely adopted temporal
parallelization techniques like PSN (Fang et al.,[2023b). BPTT-to-BP approximation (Xiao et al.,
2021} [Wu et al., |2023} [Kheradpisheh et al.l 2022; [Yu et al.l 2024) trains an SNN by backpropagating
through a static proxy based on firing rates, effectively removing the temporal gradient dimension.
Despite its memory and time efficiency, BPTT-to-BP can hardly handle sequential data due to
the neglect of temporal information, thus limiting its applicability. Last but not least, reversible
networks (Gomez et al.l [2017; Zhang & Zhang, [2024; |Hu et al., [2024) reconstruct intermediate
features reversely during backward pass rather than storing them. It preserves BPTT-level accuracy,
but imposes strict architectural constraints and significantly slows training. In conclusion, existing
methods trade off accuracy, speed, or applicability; they also require manual modifications on model
architectures and training codes. In contrast, our pipeline reduces memory usage with an affordable
extra time cost, maintains accuracy and broad compatibility, and demands minimal user effort.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

SNNs can be regarded as ANNs augmented with bio- . rel—1 .
inspired spiking neuronal dynamics (Li et al., [2024a)). To X'[t] = g (S [t; W),
train an SNN directly, its dynamics are simulated on 7' dis- Hl[ ] = AV [t —1] + X! [t],
crete time steps, and the spike signals are represented as . : (D
binary activations. For example, the discrete-time dynam- S'[t] = ©(H'[t] = Vin),

ics of a L-layer SNN composed of leaky integrate-and-fire V! [t] = H! [t](1 — s! [t]).

(LIF) neurons (Gerstner et al.l 2014) can be described as

Equation (I). Here, [ € {1, ..., L} is the layer index, and t € {1, ..., T} is the time step index. X is
the input current, H and V are the membrane potentials before and after spike emission, and S is the
output spike (a.k.a. activation). X'[t] can be computed from the previous layer’s output S'~[¢] via a
linear transformation g' with weight W' (bias is omitted). A € (0, 1) is the decay factor, Vi, > 0
is the firing threshold, and O(x) is the Heaviside step function (yields 1 if 2 > 0 and 0 otherwise).
The elements of S! (I > 0) are either 0 (no spike) or 1 (spike), while the network input S° is not
necessarily binary (Rathi & Royl 2023). Notice that the second to fourth lines of Equation are
element-wise, and secondary neuronal parameters like the reset and resting potentials are omitted for
simplicity. We use LIF as the default neuron model throughout this work.

3.2 GRADIENT CHECKPOINTING

Gradient checkpointing (GC) (Chen et al.|[2016) was originally proposed for ANN training to trade
computation for memory. Standard backpropagation stores all intermediate results for gradient
computation, as Figure [I(a) shows. By contrast, GC stores merely a subset of activations (a.k.a.
checkpoints) and discards the others; the network is thus divided into several GC segments, each
saving only its input. During backward pass on a segment, the forward computation is rerun from
the segment’s checkpointed input to restore the dropped activations needed for calculating gradients,
as illustrated in Figure[I[b). Since forward pass is far less costly than backward pass, GC’s extra
time cost is affordable. GC has been successfully applied to temporal models like recurrent neural
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Figure 2: The memory cost breakdown of ANNs and SNNs
when peak memory consumption is reached during training
on ImageNet (see Appendix EI)
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Figure 3: The memory cost evolu-
tion when training a Spiking VGG
on CIFAR10-DVS. Dashed lines indi-
cate peak memory consumptions.

networks (Gruslys et al., [2016)) and neural ordinary differential equations (Zhuang et al., [2020) to
reduce training memory cost.

Previous studies have explored applying GC along the temporal dimension of SNNs (Singh et al.,
2022; Bencheikh et al.,[2024), achieving notable memory savings on shallow networks with a large
T (T > 100). However, these approaches do not consider the spatial dimension, and have not been
evaluated on advanced larger-scale SNNs that typically adopt short time horizons (7" < 16). In
addition, they lack an automated, user-friendly GC workflow, which limits ease of use in practice.

4 METHODS

4.1 MEMORY COST ANALYSIS OF BPTT-BASED SNN DIRECT TRAINING

In BPTT-based SNN direct training, memory usage primarily stems from: (1) model parameters, (2)
gradients, (3) optimizer states, (4) intermediate features, including each layer’s input and internal
states, that are stored during forward pass for backward gradient computation, and (5) temporary
runtime variables dynamically allocated and immediately freed. An upper bound for the peak
memory can be formulated as:

MESEr < D (Mwi + Mar + Mai + Msis + M) + max M, @)
l

where My, Mgt, M, Mgi-1, Mqi, and My are the memory consumptions of the weights,
gradients, optimizer states, inputs, internal states, and runtime variables at layer [, respectively.

A key feature of SNN direct training is that intermediate features (inputs and internal states) dominate
memory usage. As shown in Figure[2] for ResNet-34 (He et al.| 2016) and ViT (Dosovitskiy et al.]
2021) trained on ImageNet (Deng et al., 2009), intermediate features occupy about 77% of the
memory at peak usage. In contrast, for their SNN counterparts with 7' = 4, the ratios rise to over
96%. This is because SNNs’ T time steps scale intermediate feature sizes by O(T'), while the sizes
of weights, gradients and optimizer states stay unchanged. Therefore, memory optimization for SNN
direct training should prioritize reducing internal states and input spike storage at each layer.

4.2 LAYER-WISE GRADIENT CHECKPOINTING

In standard BPTT, all internal states must be stored, resulting in a memory cost of up to ), Mqu. To
reduce this cost, we apply GC (Chen et al.,|2016)) to each layer ! € {1, ..., L}. During the forward
pass on layer [, only the input S'~! and weight W' are stored. In the backward pass, internal states
Q! are reconstructed through an extra local forward pass given S!~! and W', With S!~1, W' and Q¢,
we can propagate the gradients back through layer /, as Figure [[(b) shows.

With GC, ! is allocated and freed during layer [’s backward pass. Thus, at most one layer’s internal
states are stored in memory at any given time. The peak memory’s upper bound then becomes:

MEEE <N (Mwi + Mg + Myt + Mg+ Mgr) + max (Mo + Mer). ()
l

4
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Algorithm 1 One iteration of SNN training with ~ Algorithm 2 GC structure adjustment.
layer-wise GC and spike compression.

Input: A list of GC segments ¥ = [seg'|Z .

Input: parameters { W'}~ ; network input Output: the adjusted GC segment list.
SY; compressor C(-); other hyperparameters. 1: // spatial partitioning
Output: trained parameters {W'} 2 . 2 while True do
1: // forward pass 3:  Find I* = argmax; (./\/lfeak);
2: fori=1,2,...,Ldo 4:  Spatially split: seg’” — {segl,seg/2}
3:  S! < layer'(S'~!;autograd = False); 5:  if global MP*% doesn’t decrease then
4:  ifS'7lis binary then 6: Revert the split; break;
5 Compress: S!=1 « C(S!71); 7:  endif
6: Save S!=1, and free S!1; 8: end while
7 else 9: // temporal partitioning
8 Save Sl_l; 10: while True do
9:  endif 11:  Find I* = arg max; (/\/lfeak);
10: end for 12:  Temporally split: seg’” — {segh }¥_,;
11: Compute the loss £ and the gradient ;’S—ﬁ; 13:  if global MP% doesn’t decrease then
12: // backward pass 14: Revert the split; break;
13: forl=L,L—1,...,1do 15:  end if
14:  if S'~!is compressed then 16: end while
15: Decompress: S!™1 « C—l(Sl—l); 17: // greedy restoration
16:  end if 18: sort ¥ descendingly by forward time cost;
17:  S! « layer'(S'~!; autograd = True); 19: for seg' in ¥ do
18:  Compute % i % by BPTT; 20: Bestore seg! to a BPTT segment;
19:  Free the saved tensors of layer /; 21:  if global MP*** increases then
20: end for 22: Re-enable GC for seg';
21: Update the parameters {W'}L_,. 23: endif

24: end for

Since internal states in SNNs consume far more memory than in ANNs (Figure [2)), GC’s effectiveness
will be more pronounced in SNNs compared to ANNSs.

4.3 LOSSLESS INPUT SPIKE COMPRESSION

Input spikes S'~! must be stored even if GC is applied. For most SNN programming frameworks
(Fang et al.,2023a; Eshraghian et al., [2023)), spikes are represented as 32-bit floats (or 16-bit with
automatic mixed precision) for compatibility with arithmetic operations. However, 32-bit storage
is redundant for binary values. Therefore, instead of storing S'~! as floats during forward pass, we
store its compressed form Si-1 as Figure b) shows. SI=1 is decompressed to S'~! when needed in
backward pass (Algorithm [I)). The peak memory’s upper bound then becomes:

MEE, Comp < > (Mwi + Mg + My + Mg + Mg ) + max (Mg + Mpgi). @)
1

The spike compressor must be lossless to ensure computational equivalence with standard BPTT. For
instance, bit representation uses 1 bit per binary value, achieving up to 32x compression over 32-bit
floats. Alternatives include sparse representation that records the indices of non-zero elements,
and lossless bit stream compressors like Zstandard (Collet & Kucherawy, 2018) and asymmetric
numeral systems (ANS) (Duda, [2013)). While bit representation cannot benefit from spike sparsity,
it is faster and more memory-saving than the alternatives in most cases (see Appendix [M). Hence,
we choose it by default. To further accelerate compression and decompression, we handcraft Triton
kernels (Tillet et al., 2019). Notice that compression is skipped for non-binary inputs (e.g., S°).

4.4 ADJUSTING GRADIENT CHECKPOINTING STRUCTURE

Figure[3|depicts the memory evolution during a training iteration of a Spiking VGG on CIFAR10-DVS
(see Appendix [B]for explanations). For standard BPTT (blue), the peak occurs in deep layers during
backward pass. Layer-wise GC (green) reduces deep-layer memory, shifting the peak to shallower
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layers, and spike compression (orange) further lowers deep-layer cost. After these optimizations, the
global peak memory MPe2K achieved at the critical layer far exceeds the local peaks elsewhere. Notice
that model trainability on specific devices depends only on this global peak. This motivates us to
adjust the GC structure to further enhance global efficiency by allowing slightly higher memory usage
in non-critical layers. We propose three strategies accordingly and summarize them in Algorithm 2]

Spatial Segment Partitioning To reduce MP°**_ we first identify the GC segment [* with the
largest peak memory and then insert a spatial checkpoint within it. In other words, we split [* along
the layer dimension into two spatial subsegments /] and 3, as Figure [I[c) shows. The spatial
partition point is defined by the user (see Appendix . Since Mqi= > maX{MQz; s Mgis 1, a
reduction of max; Mgy is guaranteed. However, MPX may not drop due to the added checkpoint.
This process repeats until MP°2 cannot further decrease.

Temporal Segment Partitioning Temporal partitioning similarly finds the critical segment [* and
splits it along the time axis into k sequential temporal subsegments, as shown in Figure[I(d). Each
temporal subsegment checkpoints both its inputs and initial hidden states to enable recomputation
during backward pass. Users should set the temporal partitioning factor k£ and define the state
transition function (see Appendix . The procedure repeats until MP*?k cannot be further reduced.
Temporal partitioning is applied conservatively after spatial partitioning as a complementary strategy,
since splitting segments along time disables temporal parallelism and limits temporal kernel fusion,
resulting in restricted applicability and slower training.

Greedy Segment Restoration For GC segments whose local memory cost is well below MPe2K,
we can safely revert them to standard BPTT blocks (i.e., storing all intermediate features) without
increasing MP¢2k, Since GC segments require an extra forward pass for recomputation, restoring
them accelerates training. Specifically, we first profile the forward time cost of each GC segment,
and then greedily restore the segments with the largest time cost. The change is kept only if MPeak
does not increase. This process terminates after all segments are considered.

4.5 AUTOMATIC PIPELINE

net = memory_optimization(

To minimize user intervention, we wrap all net,
: H : : : (Conv1dBNNeuron, Conv2dBNNeuron, QKACore, SSACore),
the above strategies into an automatic plpehne. dummy_inputetoreh. rand(32, 3. 234, 224).
Users can set the level parameter to specify the compress_x=True,
. . level=4,
applied strategy set. At level O1, only layer-wise verbose~True,

GC and spike compression are enabled; O- addi- temporal_split_factor=2,
tionally applies spatial segment partitioning; O3 )
further incorporates temporal partitioning; Oy
additionally activates greedy segment restora-
tion. Default settings cover most cases, while advanced users can customize spatio-temporal partition
schemes. This design balances simplicity and extensibility.

Figure 4: The pipeline’s user interface.

4.6 MEMORY-EFFICIENT LIF KERNEL

Beyond the optimization pipeline, kernel-level improvements can bring further efficiency gains. We
therefore design a Triton kernel (Tillet et al.,|2019) for the widely adopted LIF neuron. The BPTT
formulation of LIF can be derived from Equation (I) as:

oL oL oL , or
oxXI[t] — (asz[t] T Vi H [ﬂ) 0L, (H'[t] — Vi) + avig - s'), 5
oL oL (&)

OVt —1] /\axl [t]’

where L is the loss and Oy, is the surrogate gradient function. Accordingly, BPTT on a LIF layer

requires storing only {H'[t]}7_; and {S'[t]}L_; during forward pass. We further avoid storing
{S'[t]}1_, by reconstructing it during the LIF layer’s backward pass through S'[t] = ©(H![t] — Vin).
In this way, the floating-point spikes can be dropped once their compression at the subsequent layer
is done. We name the kernel as memory-efficient LIF (MELIF) and use it by default.
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Table 1: Comparison of training speed and memory cost. The throughput and memory cost ratios
relative to “SJLIF, BPTT” are shown in parentheses.

Batch . Throughput Peak Alloc.
Task T Size Network LIF impl. Method (sample / s) 1 Mem. (MB) 4

Seauential SILIF  BPTT 4872.23 1317.23

ClPAR.10 32 128 SCNN PTLIF  BPTT 1054.68 1264.97
MELIF O, 5138.76 (1.05x)  474.98 (0.36x)

DVS198 SILIF  BPTT 114.52 8984.02

Costure 1616 7B-Net PTLIF  BPTT 36.52 8067.41
MELIF on 120.04 (1.05x)  4213.86 (0.47x)

L SILIF  BPTT 290.26 6131.07

OO 10 32 SPlIe | prLIF  BPTT 150.69 5889.44
MELIF Oy 270.79 (0.93x)  2349.39 (0.38x%)

SEW SILIF  BPTT 309.04 8821.28

ResNot34 | PTLIF  BPTT 202.83 7140.09
MELIF O4 281.39 (0.01x)  2004.14 (0.23x)

. SILIF  BPTT 116.70 34264.76

ImageNet 4 32 S%lifsolrg;er PTLIF  BPTT 71.03 28779.13
MELIF O, 93.58 (0.80x)  7640.68 (0.22x)

OKFormer | SJLIE  BPTT 86.15 44571.33

(10.512) | PTLIF  BPTT 55.65 37375.90
MELIF on 76.51 (0.89x) 5219.93 (0.12x)

5 EXPERIMENTS

In this section, we evaluate the proposed method’s memory efficiency, as well as training speed,
compatibility, and accuracy. We also conduct case studies to highlight the importance of our method.

5.1 MEMORY COST AND TRAINING SPEED

Table 2: Ablation study of LIF implemen-
We assess the memory and time cost of our method on  tation and optimization levels on CIFAR10-
Sequential CIFAR-10 (Fang et al.| 2021b), DVS128 DVS.
Gesture (Amir et al.,|2017), CIFAR10-DVS (L1 et al.|

2017), and ImageNet (Deng et al., 2009). For Ima- LIF Opt. | Throughput ,  Peak Alloc.
geNet, we try three architectures: SEW ResNet-34  impl.  Level | (sample/s) T Mem. (MB) ¥
(Fang et al.,[2021a)), Spikformer (Zhou et al.,|2023),  sjLIF _ 290.26 6131.07
and QKFormer (Zhou et al.| 2024)). See Appendix E] PTLIF - 150.69 5889.44
for more details. As Table|l|shows, our memory op- _ 331.30 4865.06
timization pipeline at O4 combined with the Triton- MELIF Oy 246.81 2887.75
based LIF kernel (MELIF) reduces the peak memory O3 247.83 2349.39
consumption to 0.12x ~ 0.47x of SNNs trained O 270.79 2349.39

with standard BPTT using SpikingJelly’s CuPy-based

LIF (SJLIF). This great reduction in memory footprint is achieved with no or only a slight training
slowdown (< 20%; see Appendix [E for a more detailed runtime decomposition). Table [2{shows that
the proposed Triton kernel is significantly more memory- and time-efficient than SJLIF and the LIF in
pure PyTorch (PTLIF). Moreover, layer-wise GC (O) and spatio-temporal GC segment partitioning
(O3) further reduce memory, while greedy restoration (O,4) mitigates the recomputation overhead
of GC. A fine-grained ablation study on three GC adjustment strategies is provided in Appendix [
Finally, Figure [5|demonstrates that spike compression brings memory saving by providing more free
space for GC structure adjustment (see Appendix [J]for a detailed discussion).
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Figure 5: Spiking VGG memory evolution on CIFAR10-DVS under different optimization levels.

Table 3: Compatibility with temporally parallel SNNs. Table 4: Compatibility with AMP
and LOMO. Condition: ImageNet,

QKFormer, MELIF, Oy,.

Peak Alloc.

Task Network  Neuron Method Mem. (MB) 4

Peak Alloc.
Sequential Sliding  BPTT 1302.69 AMP? LOMO? o5 e |
CIFAR-10  SCNN “pon em. (MB)
Oy 599.34 (0.46x) X X 5219.93

X v 5190.60

ImageNet Reg\ak\;/% psy  BPTT 7602.64 X . 060
Oy 2544.28 (0.33x) v Vs 3142.86

5.2 COMPATIBILITY WITH OTHER METHODS

Beyond LIF neurons, our method is compatible with other spiking neuron models. Table [3|shows
that our approach effectively reduces memory usage for SNNs built with PSNs and Sliding PSNs
(Fang et al.,|2023b). Note that temporal parallelism is not compatible with BPTT-to-BP or online
learning. Moreover, Table[d]demonstrates that our method can be seamlessly combined with prevalent
memory-saving techniques, such as automatic mixed precision (AMP) (Micikevicius et al.,[2018) and
low-memory optimizer (LOMO) (Lv et al., 2024b)) (see Appendix @ for introductions).

5.3 MATHEMATICAL EQUIVALENCE WITH CONVENTIONAL BPTT

To verify that our pipeline produces unbiased ‘ Train Acc. (%) ‘ Vel Ace. (%)
gradients with respect to standard BPTT, we | , 7 L
compare Sequential CIFAR-10 accuracies in ™[ 1 wb [ 20 M
Figure [f] The MELIF curves with and with- ¢ Ans MMV o f [ (VT
out Oy optimization (green and orange) exactly ~«f/ L2 =~ 1 J | — suF
overlap, showing that GC and spike compres- s ] MELIF, 0,
sion do not introduce gradient bias. Their minor 0 00 00 ™ o 100 PR
difference from the baseline (SJLIF, blue) stems Epochs Bpochs

from the different numerical behavior of Triton ~Figure 6: Sequential CIFAR-10 accuracies. SJLIF
and CuPy. This gap is negligible, as the orange ~Shows mean = std over three runs, while the other

curve lies almost entirely within the baseline’s WO curves are single runs with a fixed seed.

error band. Additional results and discussion
on numerical discrepancies are provided in Appendices [F]and [G] Overall, our pipeline preserves
BPTT-level accuracy, which is its main advantage over other efficient training approaches.

5.4 COMPARISON WITH OTHER EFFICIENT TRAINING METHODS

Table [5] compares throughput, memory usage, gradient fidelity, and applicability constraints of
representative efficient training methods. All methods use the same Spiking VGG model, except
reversible networks, whose architectures are adjusted to match the VGG in parameter count (9.2 M)
and feature-map resolution. Online learning methods like SLTT (Meng et al.,[2023), OTTT (Xiao
et al.,[2022) and NDOT (Jiang et al.,2024) achieve the lowest memory cost but require step-wise
execution, prohibiting techniques like temporal parallelism (Fang et al.,2023b) that are common in
modern SNNs. BPTT-to-BP, such as Tandem SNN (Wu et al., 2023)) and Rate-based BP (Yu et al.,
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Table 5: Comparison of SNN efficient training methods. Throughput and memory are tested on
CIFAR10-DVS. ‘Grad. Bias’ indicates additional gradient approximation beyond surrogate gradients.

Throughput Peak Alloc. Grad. .
Category Method (sample / ) T Mem. (MB) + Bias Constraints
Vanilla \ BPTT 290.26 6131.07 \ X X
Online SLTT 297.45 736.63
Learnin OTTT 216.78 969.21 v step-wise only
ne NDOT 168.48 1467.90
Tandem SNN 551.96 1706.68 no temporal
BPTT-t0-BP | "p e based 497.07 1540.65 Y dependency
Reversible RevSResNet 157.46 3198.78 X reversible
Network T-RevSNN 191.36 1089.43 models only
Ours \ Oy 270.79 2349.39 X layer-wise only
(a) QKFormer, ImageNet (b) DH-SFNN, SHD saved internal states ~ (€) SpikeVideoFormer, Kinetics-400
saved inputs —_
= —— SILIF = —— Baseline not saved g 60
o0 —s— MELIF, 0, = —— 0, =
QE; g so87.31 AYerA . (r_j 40 NVIDIA
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Figure 7: Case studies. The proposed pipeline enables (a) larger batch size, (b) finer temporal
resolution, and (c) training large-scale SNNs on more accessible devices. The heatmap in (b) shows
which intermediate features are saved during forward pass after O, optimization when 7" = 1000.

2024), shows higher throughput but introduces substantial gradient bias, making it unsuitable for
tasks with rich temporal dependencies. Reversible networks like RevSResNet (Zhang & Zhang|
2024) and T-RevSNN (Hu et al.| 2024) reduce memory cost but significantly slow down training and
impose strict architectural constraints. In contrast, our method balances speed and memory while
maintaining mathematical equivalence to BPTT and supporting generic layer-wise SNNs.

5.5 CASE STUDIES

QKFormer on ImageNet Take QKFormer trained on ImageNet (1" = 4) as an example. With our
pipeline, the batch size can be increased by nearly 8 x without consuming more memory. Enlarging
the batch size from 8 to 64 yields about 1.43x training speedup, as shown in Figure [7(a).

DH-SFNN on SHD We evaluate our method on Spiking Heidelberg Digits (SHD) (Cramer et al.,
2022) using DH-SFNN, a fully connected SNN (700 — 1024 — 1024 — 512 — 20) with dendritic
heterogeneity LIF (DH-LIF) neurons (Zheng et al., 2024). Each DH-LIF contains four dendritic
branches and a soma, resulting in five internal states per neuron. Batch size is set to 128. Existing
efficient training approaches can hardly work here: online learning and BPTT-to-BP struggle with
SHD’s rich temporal dynamics, while reversible network is infeasible due to architectural constraints.
In contrast, as Figure[7[b) shows, our method enables 4x increase in 7" with negligible extra memory
cost, allowing finer temporal resolution and potentially better sequence modeling quality.

SpikeVideoFormer on Kinetics-400 We train a SpikeVideoFormer (Zou et al., 2025) (55.9M
parameters) on Kinetics-400 (Kay et al.,[2017) with T" = 32 frames and 224 x 224 input resolution.
Training with a batch size of 4 per GPU requires 54.43 GB of memory per device, restricting
experiments to high-end hardware. Indeed, the original work uses eight A6000 GPUs, which is not
affordable for many researchers. With our method, the peak memory per GPU is reduced to 11.17 GB,
enabling its training on widely accessible GPUs (e.g., 4090, 24 GB), as Figure[/(c) shows. This
demonstrates that our approach can lower hardware barriers for cutting-edge SNN research.
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6 CONCLUSION

In this work, we presented an automatic memory optimization pipeline for SNN direct training. The
pipeline integrates layer-wise GC with lossless spike compression to reduce the memory footprint of
intermediate features. We then adaptively adjust GC structure by spatio-temporal segment partitioning
and greedy restoration to further reduce memory demand and GC’s recomputation overhead. Experi-
ments show that our pipeline achieves high memory efficiency while maintaining acceptable training
speed, BPTT-level accuracy, and broad compatibility. This work provides a practical approach for
efficiently training large-scale SNNs. Limitations and future directions are discussed in Appendix [N|
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A DETAILS OF MEMORY COST BREAKDOWN

Figure 2] illustrates the memory breakdown of stored feature maps (input tensors and internal states of
all layers), model weights, gradients, optimizer states, and temporary runtime variables when training
SNNs or ANNs on ImageNet (Deng et al., 2009). We evaluate SEW ResNet-34 (Fang et al.,2021a)
and Spikformer (Zhou et al, [2023)) using the same settings as our main experiments (Appendix [C),
with ResNet-34 (He et al.,|2016) and ViT (Dosovitskiy et al., 2021) mirroring the settings of SEW
ResNet-34 and Spikformer, respectively. SEW ResNet-34 and Spikformer are implemented using
SpikingJelly (Fang et al|2023a)), and the LIF model with CuPy backend is adopted; For ResNet-34
and ViT, we use torchvision implementations (Paszke et al.l [2019). We run the experiments on a
single NVIDIA A100 GPU (80 GB, CUDA 12.2).

The memory usage for weights, gradients, and optimizer states can be easily computed by summing
the sizes of all tensors of these kinds. To quantify the size of stored feature maps, we measure the
allocated memory after the forward pass before the backward pass starts, and subtract the sizes of
weights and optimizer states from the value. For runtime variables, we first identify the critical layer
I* with the highest peak memory. In other words, the network-level peak memory occurs during
backpropagation on layer [*. The difference between the peak allocated memory at layer [* and the
allocated memory at the start of the layer’s backward pass reflects runtime variable costs. Note that
gradient sizes are slightly overestimated, as not all gradients are ready when global peak memory is
reached. Detailed results are shown in Table

Table 6: Detailed memory breakdown of different networks when trained on ImageNet. Memory
costs are measured in MB.

Network | Stored Features Weights ~Gradients ~Optimizer States ~ Runtime Variables
ResNet-34 936.49 83.15 83.15 83.15 38.25
ViT 1629.20 100.05 100.05 200.11 91.19
SEW ResNet-34 8373.98 83.15 83.15 83.15 40.50
Spikformer 33372.02 113.26 113.26 226.52 496.00

B MEMORY EVOLUTION CURVES

Figure 3] and Figure[5]demonstrate the memory cost evolution within one training iteration of Spiking
VGG on CIFAR10-DVS. To get these curves, we record the allocated memory at the start, peak,
and end of each target layer’s forward pass (FP) and backward pass (BP). The resulting sequence,
arranged in the temporal order of events, is

start peak end start peak end

[ MR, MBS, MRS, MG MBS, MRS, o
start eak d start eak

ISR, MBS, M, MESEE, MBS, M |,

BP2> BP1>

where FP! and BP' denote the forward and backward pass of layer [, respectively. The global peak

memory can be defined as MP¢?K = max ({Mgi-ik 1 U{Mchpalk z).

C DETAILS OF THE MAIN EXPERIMENTS

The main experiment is implemented using PyTorch (Paszke et al.l [2019) and SpikingJelly (Fang
et al., [2023a).

Sequential CIFAR-10 Sequential CIFAR-10 (Fang et al., 2023b;|Chen et al., 2024)) is a sequence
classification task derived from the standard CIFAR-10 benchmark (Krizhevskyl 2009). It is widely
used for evaluating SNNs’ capability to learn long-term temporal patterns. In this task, the CIFAR-10
images are fed into the model column by column, mimicking the way humans scan pictures from left
to right. Each sample is a sequence with T' = 32 elements, and each element contains 32 RGB pixels.
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There are 50, 000 training samples, 10, 000 test samples, and 10 classes. Following the practice in
PSN (Fang et al., [2023b), we augment the training data with random mixup (Zhang et al., [2018)),
random cutmix (Yun et al.| 2019), random horizontal flipping, TrivialAugment (Miiller & Hutter,
2021), predefined data normalization, and random erasing. An 8-layer 1D convolutional SNN is
employed (SCNN) (Fang et al.| [2023b)). Hyperparameters and running environment are listed in
Table 7l

DVS128 Gesture DVS128 Gesture (Amir et al., 2017) is an event-based gesture recognition dataset
recorded by a DVS128 camera. It contains 11 gesture classes performed by 29 subjects under 3
illumination conditions with spatial resolution 128 x 128. For experiments, we follow the standard
split provided in Spikinglelly (Fang et al., |2023a)): 1,176 training samples and 288 test samples.
Each recording is integrated into 7" = 16 frames, and no extra augmentations are applied. We use
7B-Net, a small-scale SEW ResNet (Fang et al., [2021a), as the backbone. See Table [/| for other
hyperparameters and the running environment.

CIFAR10-DVS CIFAR10-DVS (Li et al.,|2017)) is a neuromorphic vision classification task cre-
ated by recording CIFAR-10 images (Krizhevsky} 2009) through a Dynamic Vision Sensor (DVS)
(Lichtsteiner et al., [2008)). The dataset is composed of 10,000 samples, each represented as an event
stream with 2 channels and 128 x 128 resolution. Following the protocol of temporal effective batch
normalization (TEBN) (Duan et al.,|2022)) and PSN (Fang et al.| | 2023b), we partition the dataset into
9, 000 training samples and 1, 000 test samples, downsample the resolution to 48 x 48, and integrate
each event stream into 7' = 10 frames. The data augmentation pipeline incorporates random resized
cropping, random horizontal flipping, and Neuromorphic Data Augmentation (NDA) (Li et al., [2022).
We adopt a Spiking VGG11 architecture, following the practice of TEBN (Duan et al., 2022)) and
PSN (Fang et al 2023Db). Refer to Table[7]for hyperparameters and running environment.

ImageNet ImageNet-1k (Deng et al.,2009) is a large-scale visual recognition benchmark containing
about 1.28 million training samples and 50,000 validation samples across 1,000 classes. Training
on the entire ImageNet dataset is computationally expensive, so we use its 3—12 subset instead, whose
samples are evenly distributed across all 1000 classes. Since the peak memory cost during training
is independent of the sample size, the memory footprint we report can faithfully reflect full-dataset
training conditions. Each image is resized to 224 x 224 resolution. We utilize SEW ResNet-34
(Fang et al.}[2021a), Spikformer (Zhou et al., [2023)) and QKFormer (Zhou et al., 2024) architectures.
The SEW residual connections in these architectures bring non-binary integer activation values
(Fang et al., 2021a)); for these activations, we compress them into 8-bit unsigned integers (uint8)
rather than bits to avoid accuracy loss. For experiments using SEW ResNet-34, we use the same
data augmentation pipeline as in the original work (Fang et al.,[2021a); for both Spikformer and
QKFormer, we augment data using the procedure in the original QKFormer work (Zhou et al.,2024)).
Hyperparameters and running environments are provided in Table

Table 7: Hyperparameter settings and running environment configurations for the main experiments.

Sequential DVSI128 CIFAR10- ImageNet
CIFAR-10 Gesture DVS SEW Transformer
A 0.5 0.5 0.25 0.5 0.5
Vin 1.0 1.0 1.0 1.0 1.0
Optimizer SGD(0.9) SGD(0.9) SGD(0.9) SGD(0.9) AdamW
L2 Reg. 0 0 5x 1074 0 5x 1072
Init. LR 0.1 0.1 0.1 0.1 0.001
Scheduler Cosine Step(0.1, 64) Cosine Cosine Cosine
Loss CE CE TET TET Smooth CE
Batch Size 128 16 32 32 32
T 32 16 10 4 4
k 2 2 2 2 2
CUDA Version 12.3 12.3 12.3 12.2 12.2
Device 1x 4090 1x 4090 1x 4090 1x A100 1x A100
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D EXPERIMENTS OF MULTI-GPU TRAINING

The experiments in Table[T]of the main text are conducted on a single GPU. To further validate the
scalability of the proposed framework, we conduct multi-GPU training experiments on ImageNet
(Deng et al.| [2009) using QKFormer (Zhou et al., 2024). The experimental setup follows Appendix [C]
except that 1, 2, or 3 NVIDIA A100 GPUs are used for distributed data parallel (DDP) training. We
set a per-device batch size of 32. Table[8]reports the time and memory costs. Here, the batch time cost
refers to the average time per training iteration for a single GPU. Throughput accounts for all GPUs,
measured as the total number of training samples processed per second. The peak allocated memory
is the maximum of peak allocated memory across all devices. Generally, in multi-GPU settings, our
method achieves substantial memory efficiency improvements while incurring a moderate increase in
training time, which is consistent with the single-GPU cases.

Table 8: Time and memory efficiency when training a QKFormer on ImageNet using multiple GPUs.

Throughput Peak. Alloc.

#GPUs Neuron Method (samples /s)T Mem. (MB) 4

| SJLIF  BPTT 86.15 44571.33
MELIF O, 76.51 (0.89x)  5219.93 (0.12x)
) SJLIF  BPTT 168.43 44679.28
MELIF on 151.54 (0.90x) 5323.13 (0.12x)
3 SJLIF  BPTT 235.45 44679.28

MELIF O, 211.01 (0.90x) 5323.13 (0.12x)

E ADDITIONAL MEMORY OPTIMIZATION TECHNIQUES

Low-Memory Optimizer (LOMQO) Low-memory optimization (LOMO) (Lv et al., 2024b) reduces
the memory cost of gradients by updating W' once its gradient G! is computed, instead of waiting
until all gradients are available. Unlike the stateless original LOMO (Lv et al.,|2024b), we retain opti-
mizer states (e.g., those of Adam (Kingma & Bal [2015))) to match the baseline cases. LOMO ensures
that at most one gradient tensor resides in memory at a time, reducing » , Mq: in Equation (@) to
max; Mqt.

Automatic Mixed Precision (AMP) Automatic mixed precision (AMP) training (Micikevicius
et al.| 2018)) can be optionally enabled to reduce overall memory usage and accelerate training by
utilizing 16-bit floats for activations and gradients. The loss is scaled to prevent underflow and ensure
numerical stability.

F ACCURACY RESULTS

We report additional validation accuracy results in Table[9} Note that these experiments are designed
to validate the mathematical equivalence of our method with standard BPTT rather than to maximize
performance, so we do not apply advanced training tricks like random temporal delete (Fang et al.|
2021a). We train 300, 192, and 100 epochs for Sequential CIFAR-10, DVS128 Gesture and CIFAR10-
DVS, respectively. For 3—12 ImageNet, we report validation accuracy at the fifth epoch to reduce
training cost, which is sufficient to demonstrate the equivalence. The results show that MELIF
attains accuracy nearly identical to SJLIF across all benchmarks, with minor discrepancies arising
only from different backend numerical behaviors. In most cases, the optimization pipeline itself
does not affect accuracy. However, O3 and Oy for Spikformer and QKFormer slightly influence
accuracy due to the temporal segment partitioning on weight layers. Appendix |G|discusses this issue
in detail. These small deviations stem purely from numerical computation rather than from any
approximation in the gradient computation. The gradients produced by our method remain
free from systematic bias.
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Table 9: Comparison of validation accuracy (%). For % ImageNet, we report the validation accuracy
at epoch 5. For SJLIF conditions, we report mean =+ std over three runs. For MELIF conditions, we
report the results on a single run using a fixed seed.

Task Network SILIF MELIF
BPTT BPTT O O2 O3 Oy
Sequential CIFAR-10 SCNN 82.53+£0.25 8236 8236 8236 8236 82.36
DVS128 Gesture 7B-Net 95.084+0.87 95.14 95.14 95.14 95.14 95.14
CIFAR10-DVS Spiking VGG~ 85.984+0.25 86.10 86.10 86.10 86.10 86.10
SEW ResNet-34  3.464+0.21 350 350 350 350 3.50
3% ImageNet Spikformer 1.03£0.16 090 090 090 1.10 1.10

QKFormer 1.06+0.12 1.20 1.20 1.20 1.10 1.10

G POTENTIAL SOURCES OF NUMERICAL DISCREPANCIES

Numerical discrepancies in gradients may arise when temporal GC segment partitioning is
applied to layers with learnable parameters. Without temporal partitioning, the gradient is first
computed for each time step ¢ € {1,...,7} and batch sample n € {1,..., N}, and then summed
over the temporal and batch dimensions:

N
G=> > G, ©)
n=1

t=1

where G ,, denotes the gradient contribution at time step ¢ from sample n. In contrast, when the
temporal dimension is partitioned (k = 2 for example), the accumulation is performed in two stages:

T
2

N T N
GH=3"3"Gin, GO= 3 3 Gy, ®)

= = T =
t=1 n=1 75774-1" 1

followed by a final aggregation:
G=GW+G®, )

Although mathematically equivalent to the unpartitioned case, these operations differ in numerical
practice because floating-point addition is not associative. As a result, reordering the accumulation
of gradient terms leads to slight deviations in the final gradient values. This explains the minor
accuracy deviations observed in Table 0] for Spikformer and QKFormer at O3 and O,.

H TIME COST OF MEMORY OPTIMIZATION

Table[I0]reports the time cost of the memory optimization pipeline at each optimization level. For
SCNN, the overhead increases moderately with higher optimization levels, reflecting the additional
computations from spatial and temporal segment partitioning and greedy segment restoration. For
QKFormer, the jump in time cost from O3 to O4 is much more pronounced, primarily due to the
transformer’s greater depth, which increases profiling costs and the number of segments to iterate
over. Importantly, this overhead is incurred only once before training and is negligible relative to the
total training time.

Table 10: Time (in seconds) spent by the memory optimization pipeline at each optimization level.

01 02 03 04

SCNN 1.08 2632 30.63 7541
QKFormer 1.13 4491 78.58 564.26
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I TUTORIAL

We provide a brief tutorial on using the proposed automatic memory optimization pipeline, taking the
training of Spiking VGG on CIFAR10-DVS as an example. The model can be defined using PyTorch

(Paszke et al} 2019) and SpikingJelly (Fang et al.| [2023a)) as shown in the code below.

class VGGBlock (nn.Module) :
def _ init_ (
self, in_plane, out_plane, T,
neuron_type, preceding_avg_pool=False,

super () .__ _init__ ()
proj_bn = []
if preceding_avg_pool:
proj_bn.append (nn.AvgPool2d (2))
proj_bn += [
nn.Conv2d(in_plane, out_plane, 3, 1,
nn.BatchNorm2d (out_plane),
]
self.proj_bn =
kwargs ["T"]
self.neuron =

SeqToANNContainer (xproj_bn)
T
get_neuron (neuron_type,

def forward(self, x_seq):

return self.neuron(self.proj_bn(x_seq))

class CIFAR10DVSVGG (nn.Module) :
def _ init_ (self, T, neuron_type,
super () .__init__ ()
self.features = nn.Sequential (

dropout=0.25,

*xkwargs

1),

*xkwargs)

*xkwargs) :

VGGBlock (2, 64, T, neuron_type, False, xxkwargs),
VGGBlock (64, 128, T, neuron_type, False, #*x*kwargs),
VGGBlock (128, 256, T, neuron_type, True, =**kwargs),
VGGBlock (256, 256, T, neuron_type, False, *xxkwargs),
VGGBlock (256, 512, T, neuron_type, True, #**kwargs),
VGGBlock (512, 512, T, neuron_type, False, x*xkwargs),
VGGBlock (512, 512, T, neuron_type, True, **xkwargs),
VGGBlock (512, 512, T, neuron_type, False, #**kwargs),
layer.AvgPool2d (2, step_mode="m"),

)

d=1int (48 / 2 / 2 / 2 / 2)

1 = [nn.Dropout (dropout)] if dropout > 0 else []

l.append(nn Linear (512 = d = d, 10))

self.classifier = nn.Sequential (*1)

for m in self.modules() :
if isinstance (m, nn.Conv2d) :

nn.init.kaiming_normal_ (
m.weight, mode=’fan_out’, nonlinearity=’'relu’
)
def forward(self, input):
# input.shape = [N, T, C, H, W]
input = input.transpose (0, 1) .contiguous ()

# [Tr N, C, H, W]

x = self.features (input)
x = torch.flatten(x, 2) # [T, N, D]
x = self.classifier (x)

return x
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Users can define spatial partitioning rules by implementing the __spatial_split__ method,
which returns a tuple of submodules corresponding to the spatial subsegments of a layer. For instance,
a VGG block can be split into a convolution-plus-batch-norm segment and a spiking neuron segment.

class VGGBlock (nn.Module) :
def __ spatial_split__ (self):
return self.proj_bn, self.neuron

To define temporal partitioning rules, users should implement the __tc_init_states__ and

__tc_forward__ methods. _ tc_init_states__ returns a list of initial hidden states,

while __tc_forward__ takes a chunk of input tensors along with the initial hidden states, and
then returns the corresponding outputs and updated hidden states. The stateless layer container
SeqToANNContainer is the simplest case, where no hidden states are required and the temporally
chunked forward pass is just the same as the container’s original forward pass.

class SeqToANNContainer (layer.SeqToANNContainer) :
"""Stateless layer container that supports temporal chunking
def _ tc_init_states_ (self, x_seq):
return []

def _ tc_forward__ (self, xc):
return ([self.forward(xc), ]

A more complex example is the NeuronMaxPool block:

class NeuronMaxPool (nn.Module) :

def _ init__ (self, neuron_type, xxkwargs):
super () ._ _init__ ()
self.neuron = get_neuron (neuron_type, *xkwargs)

self.pool = SeqToANNContainer (
nn.MaxPool2d (kernel_size=3, stride=2, padding=1)
)

def forward(self, x_seq):
return self.pool (self.neuron(x_seq))

def _ tc_init_states_ (self, x_seq):
device, dtype = x_seqg.device, x_seq.dtype
return [torch.zeros([], device=device, dtype=dtype) ]

def _ tc_forward__ (self, xc, Vv):
sc, v = self.neuron.multistep_state_update (xc, V)
yc = self.pool (sc)
return yc, v

which means that the hidden state (the neuron’s membrane potential) is initialized to zero, and the
temporally forward pass consists of a multi-step state update of the neuron followed by max pooling.
In this example, there is only one input, one hidden state, and one output. However, multiple inputs,
hidden states, and outputs are also supported. Finally, the memory_optimization function can
be called to apply the automatic pipeline.

net = CIFAR10DVSVGG (T, neuron_type, dropout, =*xkwargs)
net memory_optimization (

net,

instance= (VGGBlock, ),

dummy_input=torch.rand (32, T, 2, 48, 48),
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compress_x=True,
level=4,

verbose=True,
temporal_split_factor=2,

where instance specifies the layer types to apply gradient checkpointing, dummy_input is a
sample input tensor for profiling, compress_x indicates whether to compress input spikes, level

sets the optimization level, and temporal_split_factor is the k factor that controls the
granularity of temporal partitioning. After optimization, the model can be trained using standard
procedures without further modification.

Note that the pipeline will automatically check whether spike compression is applicable at each
GC segment based on the input distribution. Users can also manually specify spike compressors by
setting the module’s x__compressor attribute. For instance, for a layer in a SEW residual block
(Fang et al.,20214) whose input is non-binary integer tensors, we can compress the input to 8-bit
unsigned integers (uint8):

class SEWBlock (nn.Module)
def _ init_ (self, c_in, c_mid, neuron_type, **xkwargs):
super () .__init__ ()
self.conv = nn.Sequential (
Conv3x3(c_in, c_mid, neuron_type, xxkwargs),
Conv3x3(c_mid, c_in, neuron_type, xxkwargs),
)

self.conv([0].x_compressor = "Uint8SpikeCompressor"

def forward(self, x: torch.Tensor):
out = self.conv (x)
out = out + x
return out

J THE EFFECT OF SPIKE COMPRESSION ON TRAINING MEMORY

Table [TT]reports the peak memory usage corresponding to Figure[5] The majority of memory saving
comes from layer-wise GC (BPTT vs. Oy, compression disabled), while spike compression alone
only provides marginal memory savings (O, compression disabled vs. O1, compression enabled).
However, as shown in Figure [5] spike compression reduces the memory footprint of activations,
thus substantially lowering the instantaneous memory usage of deeper layers. This reduction creates
the headroom for stronger spatio-temporal partitioning, leading to larger memory savings at higher
optimization levels (O3 and Oy4). In summary, spike compression is not the main source of memory
efficiency, but an enabling factor that allows spatio-temporal partitioning to further reduce
peak memory.

Table 11: Peak allocated memory (MB) of Spiking VGG when training on CIFAR10-DVS with spike
compression enabled or disabled (7' = 10, batch size is 32). See FigureEl

Compression  BPTT  O; (+GC) Ogs (+partitioning) Oy (+restoration)

4 / 2887.75 2349.39 2349.39
X 6131.07  2892.63 2530.66 2530.66

K DETAILED RUNTIME PROFILING

Table[T2]reports the the forward and backward runtime for each layer in Spiking VGG. Note that the
fully connected classification head is omitted since no change is applied to it across all optimization
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levels. GC introduces additional backward computation roughly equivalent to a single extra local
forward pass. Spike compression and decompression further add small overheads to both forward
and backward passes, but the increase is negligible relative to the total runtime, demonstrating the
efficiency of bit compression; note that Conv0 do not apply input spike compression. In this example,
spatial partitioning is applied only to Conv1, while temporal partitioning is skipped since it does not
yield additional memory benefits (see Algorithm 2). As a result, virtually no extra computational
cost. Finally, greedy segment restoration significantly reduces the computation load of both passes.
Conv3 and Conv5 are reverted to standard BPTT blocks, and their forward and backward runtimes
return to BPTT level.

Table 12: Layer-wise runtime profiling for Spiking VGG on CIFAR10-DVS (MELIF, T" = 10, batch
size is 32). Results are averaged over 200 iterations with 10 warmup iterations and reported in
milliseconds.

Condition Stage ConvO0 Convl Conv2 Conv3d Conv4 Conv5 Conv6 Conv7
fwd 2.48 5.96 4.16 522 2.80 3.98 1.04 091

BPTT  yvd 428 1282 857 1013 558 829 226 195
Loe MW 252 599 420 526 281 401 107 092
bwd 680 1886 1278 1542 845 1233 327  2.89

o fwd 251 619 451 546 304 411 118 102

1 bwd 681 1908 1321 1563 871 1246 341  3.04

o fwd 249 615 448 538 305 409 117 099
3 bwd 672  19.02 1324 1562 856 1222 339 208
o) fwd 250 616 449 518 303 399 116  1.00

bwd 6.76 19.01 1323  10.08 8.55 8.24 3.34 2.97

We further investigate how training time cost scales with the number of checkpointed layers and
temporal splits. Since GC performs one fixed-cost recomputation per segment, the total overhead
increases as the number of GC segments grows. However, the scaling is not strictly linear, since
recomputation cost varies across layers. As shown in the left plot of Figure[8] the overhead grows
as more GC segments are added, but the increments are uneven. From Table @, we know that
spatial partitioning has almost no effect on training speed. In contrast, temporal partitioning actually
reduces temporal parallelism, thereby slowing down training (especially for models with a large T).
To illustrate this effect, we measure per-batch training time cost of DH-SFNN on SHD. Training time
per batch increases nonlinearly with the the temporal partitioning factor k.
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Figure 8: Left: taining time per batch (forward + backward) of Spiking VGG on CIFAR10-DVS as a

function of the number of layers (L) with layer-wise GC applied. The first L layers adopt GC, where

L = 0 corresponds to standard BPTT. 7" = 10, and batch size is 32. Right: training time per batch of

DH-SENN on SHD as a function of the temporal partitioning factor £ under Os. k& = 1 indicates no

temporal partitioning. 7" = 100, and batch size is 128. Experiments are run on a single 4090 (24 GB).
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L FINE-GRAINED ABLATION STUDY

Table 2] shows the ablation results of optimization levels on CIFAR10-DVS. To better understand
the impact of each GC adjustment strategy, we conduct fine-grained ablations on QKFormer for
ImageNet. As shown in Table[I3] spatial partitioning provides substantial memory reduction with
almost no impact on training throughput. Temporal partitioning also reduces memory usage, though it
introduces a slight slowdown due to reduced temporal parallelism. When combined, the two strategies
complement each other effectively, lowering peak memory to 5219 MB. Greedy restoration further
improves throughput while preserving memory savings. With all three strategies jointly applied,
throughput reaches 76.51 samples/s, the highest among all variants; notably, it even exceeds the
condition without temporal partitioning because there are more GC segments restored to standard
BPTT blocks. Overall, these ablations clarify the individual and collective contributions of the three
components to memory and computational efficiency, confirming the intended synergistic effect of
the full pipeline.

Table 13: Ablation study of QKFormer for ImageNet on the impact of spatial partitioning, temporal
partitioning, and greedy restoration. All conditions adopt MELIF, GC and spike compression.

Spatial ~ Temporal Greedy Throughput Memory .
Partition  Partition = Restoration  (sample/s) (MB) Annotation

66.13 7726.55 O
v 66.02 6834.48 Oq
63.82 6920.25
73.17 7725.87
64.01 5219.93 O3
73.07 6833.87
70.24 6920.25
76.51 5219.93 Oy

AN
NN NN
SIS

M LOSSLESS SPIKE COMPRESSORS

As discussed in Section 4.3, we adopt bit representation as the default lossless spike compressor
due to its superior speed and memory efficiency. To validate this choice, we compare it with two
alternatives: sparse representation (storing indices of non-zero elements) and lossless bit-stream
compressor (e.g., ANS from nvCOMP E[) Experiments are performed on Sequential CIFAR-10 using
SCNN (7" = 32, batch size is 128) on an NVIDIA GeForce RTX 4090. The results in Table |E| show
that bit compression consistently achieves the lowest memory footprint and highest throughput under
both O, and Oy4. Sparse representation yields slightly higher memory consumption and lower speed,
while ANS provides moderate compression gains but is substantially slower.

For a more direct comparison, we evaluate compressed size and compression-decompression time
cost across a range of firing rates p, using a float32 spike tensor of 107 elements (38.14 MB) as input.
Time costs are averaged over 100 trials following 20 warm-up runs. As Table[I5]and Table[T6]show,
bit compression consistently produces a fixed-size 1.19 MB representation regardless of sparsity,
whereas sparse representation’s memory efficiency decreases rapidly as p increases. ANS achieves
small compressed sizes at low sparsity but is over an order of magnitude slower. Notably, firing rates
in modern activation-based SNNs typically fall within 0.02 to 0.35 2024), a regime in
which bit representation performs effectively. These results confirm that bit representation is both
efficient and effective.

N LIMITATIONS, FUTURE WORK, AND SOCIAL IMPACTS

While the proposed memory optimization pipeline achieves significant memory reduction with broad
compatibility and preserved accuracy, several limitations remain. First, GC inevitably introduces

"https://developer.nvidia.com/nvcomp
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Table 14: Comparison of lossless spike compressors (bit, sparse, ANS) on Sequential CIFAR-10
(SCNN, T' = 32, batch size is 128).

Throughput (sample / s) Memory (MB)

Compressor
O o O, Oq4
bit 496.79 474.98 4768.11 5138.76
sparse 527.53 516.99 4454.24  5020.27
ANS 509.42 497.71 2029.53  2542.50

Table 15: Compressed memory (MB) of spike compressors across firing rates p

Compressor p=001 p=01 p=02 p=05 p=08 p=09

bit 1.19 1.19 1.19 1.19 1.19 1.19
sparse 0.76 7.63 15.27 38.14 61.03 68.66
ANS 0.30 1.68 2.82 5.14 6.61 6.95

Table 16: Compression time cost (sec) of spike compressors across firing rates p

Compressor p=001 p=01 p=02 p=05 p=08 p=09

bit 0.1234 0.1257  0.1262  0.1216  0.1250  0.1215
sparse 0.1538 0.1568 0.1616  0.2210  0.2965 0.3119
ANS 2.6097 24416 24407 25761  2.6305 2.6603

computational overhead due to the recomputation of intermediate features during backward pass, and
spike compression also slightly adds computational burden. Although we alleviate these by greedily
restoring low-memory-impact GC segments to standard BPTT segments and implementing efficient
Triton kernels for compression and decompression, the overall training speed can be reduced to about
0.8x that of the baseline in the worst case. Second, our experiments mainly focus on visual and
audio classification benchmarks, which is a common practice in SNN research. While the pipeline is
theoretically applicable to other modalities, its effectiveness on tasks such as language modeling has
yet to be validated.

Future work can address these limitations in several directions. One possibility is to refine the adaptive
GC structure adjustment strategies. Currently, the algorithms follow user-defined partitioning schemes
to reduce the search space. We may instead use more principled optimization approaches, such
as dynamic programming (Gruslys et al., 2016)), which could yield higher efficiency under a fixed
memory budget. Another direction is to evaluate the framework on large-scale SNNs for language
tasks, and to design optimization strategies tailored to language backbones. This would broaden the
applicability and further demonstrate the generalizability of the pipeline.

By reducing the memory cost of SNN training while retaining BPTT-level accuracy and broad
compatibility, our method lowers the hardware barriers for scaling up SNNs. The pipeline facilitates
the deployment of energy-efficient SNNs on resource-constrained platforms, including mobile and
edge IoT devices. Such advances can democratize access to neuromorphic computing, promote
sustainable Al solutions, and ultimately contribute to reduced energy consumption in intelligent
systems. We do not see any negative societal impacts from this work.

O USE OF LARGE LANGUAGE MODELS

We utilized large language models (LLMs) to refine phrasing, correct spelling and grammar, and
enhance the clarity of expressions. Additionally, LLMs were employed to assist in result visualization,
such as providing initial code templates or optimizing figure layout suggestions. However, the core
ideas, methodological design, code framework development, and key contributions of this paper were
independently conceived and completed by the authors, without relying on LLMs for substantive
support.
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