
Decomposed Prompting for Vision and Language Arithmetic Reasoning

Anonymous ACL submission

Abstract

Math problems that involve both vision and001
language pose a challenging multi-modal task002
that requires the integration of visual informa-003
tion, textual information, and strong numeri-004
cal reasoning for adequately solving it. While005
large language models (LLMs) have achieved006
impressive performance on arithmetic word007
problems based solely on text, we show that008
introducing visual data significantly increases009
the difficulty. Specifically, the compositional010
task of counting objects following recogni-011
tion becomes a formidable hurdle for math012
problem-solving with large vision-language013
models (LVLMs). The dual demand of rec-014
ognizing objects and performing arithmetic rea-015
soning poses a significant challenge, hinder-016
ing LVLMs from excelling in the overarching017
task. We show that the commonly employed018
chain-of-thought (CoT) approach for decom-019
posed reasoning, designed for LLMs, proves in-020
effective when applied to this multimodal task.021
As an alternative to demonstration-based CoT022
we propose a novel decomposition prompting023
approach, explicitly breaking down the task024
into two stages as follows. The first stage per-025
forms object detection and enumeration refer-026
enced within the mathematical problem. The027
second stage leverages the output from stage028
one to directly address the posed math ques-029
tion. Our results demonstrate that this approach030
leads to stark performance improvements on es-031
tablished benchmarks for visual and language032
arithmetic problems. This breaks the chains of033
CoT, paving the way towards developing new034
and novel multimodal breakdown approaches.035

1 Introduction036

Math word problems (MWPs) constitute a category037

of reasoning tasks demanding translation from real-038

world scenarios into mathematical equations, ap-039

plying arithmetic operations, and interpreting the040

results back into meaningful solutions (Kushman041

et al., 2014). Similar to other reasoning tasks such042

as analogy problems (Webb et al., 2023) and com- 043

mon sense reasoning (Bisk et al., 2020), large lan- 044

guage models (LLMs, Brown et al., 2020a; Smith 045

et al., 2022; Chowdhery et al., 2023a) have exhib- 046

ited impressive reasoning capabilities in tackling 047

MWPs (Gaur and Saunshi, 2023). 048

Vision and language math problems (VLMP) 049

constitute a multi-modal task that builds upon the 050

foundation of MWP (Lu et al., 2023). Unlike MWP, 051

VLMP necessitates the integration of both visual 052

and linguistic modalities to solve the mathemati- 053

cal problem. The inclusion of two modalities re- 054

quires diverse cognitive abilities, specifically object 055

recognition from vision and quantitative reasoning 056

guided by textual cues. For instance, when posed 057

with the problem “How many figs will remain in 058

the image if Joe eats one?”, accurate detection of 059

the number of figs in the image becomes essential. 060

Similarly to LLMs, LVLMs evolved from be- 061

ing task-specific (fine-tuned), to instruction-tuned 062

general-purpose models. A commonly used ap- 063

proach to guide LLMs to complete complex tasks 064

is through chain-of-thought (CoT, Wei et al., 2022). 065

CoT does not only give examples of the task and 066

answer, but demonstrates to the model step-by-step 067

how to break the task into smaller more manage- 068

able tasks, in order to reach the correct answer. 069

This approach has been applied to LVLM question- 070

answering for the ScienceQA benchmark (Lu et al., 071

2022a; Zhang et al., 2023). 072

In this work, we identify a key challenge with 073

the LVLM’s integration of object identification and 074

enumeration into mathematical problem-solving. 075

Specifically, despite applying the CoT approach 076

to demonstrate the two steps minimally required 077

for solving VLMP (object identification and enu- 078

meration, followed by numerical operations), the 079

LVLM’s ability to integrate them for problem- 080

solving remains limited, resulting in minimal per- 081

formance improvement relative to vanilla prompt- 082

ing. This suggests a possible limitation in the 083
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LVLM’s ability to seamlessly combine these dis-084

tinct skills despite its success in logical reason-085

ing and accurate mathematical operations. Strik-086

ingly, we are able to show that this discrepancy087

occurs even when the LVLM correctly identifies088

and counts the objects when explicitly prompted in089

isolation to do so.090

To overcome these limitations and close this091

multimodal reasoning gap, we propose a novel yet092

natural vision-and-language decomposed prompt-093

ing method (henceforth: V&L DECOMP). This094

approach deconstructs the VLMP task into two sub-095

tasks: (i) a vision-focused query task: concentrates096

on identifying and enumerating objects within the097

image — specifically those that are relevant to the098

math problem — effectively grounding the problem099

in the visual context; and (ii) a language-focused100

reasoning task: leveraging the identified objects,101

this subtask employs textual reasoning to solve the102

mathematical problem, establishing a clear con-103

nection between the visual information and the104

solution process. Notably, this decomposition is105

made and streamlined explicitly, rather than by106

demonstration as in CoT. Testing on the Clevr-107

Math benchmark (Lindström and Abraham, 2022)108

and a VLMP-filtered subset of the VQA2.0 dataset109

(Goyal et al., 2017), shows that V&L DECOMP out-110

performs CoT (+7% Clevr-Math, +28% VQA2.0).111

Looking ahead, we envision a “decompose by112

demonstration” approach for LVLMs inspired by113

our decomposition approach, subsequently formu-114

lating strategies and implementing an appropriate115

plan for solving a multimodal problem. Crucially,116

such a plan should allow the model to delegate117

specific tasks to specialized modalities in areas it118

lacks proficiency. Such strategies could potentially119

enhance multimodal problem-solving even further.120

2 LVLMs and Prompting: Preliminaries121

Large Vision and Language Models (LVMLs)122

The prevalent structure for large vision-language123

models (LVLMs, Li et al., 2023) is founded on a124

two-part backbone: (i) a Vision-Language Model125

(VLM) – this component serves as a bridge be-126

tween visual and textual data, establishing a shared127

embedding space. Within this space, both images128

and their textual descriptions are represented as129

comparable points. Contrastive Language-Image130

Pre-training (CLIP, Radford et al., 2021) exempli-131

fies this approach. (ii) a Large Language Model132

(LLM) – this component leverages both the lan-133

guage prompt and the image embedding generated 134

by the VLM (part (i)). Despite the demonstrated 135

capabilities of VLMs in object recognition and enu- 136

meration guided by a text-label (Jiang et al., 2023) 137

and the remarkable capability of LLMs in solving 138

MWP (Chen et al., 2022; Gaur and Saunshi, 2023; 139

Yang et al., 2023; Imani et al., 2023), a performance 140

gap remains in the VLMP task. As evidenced by 141

MathVista (Lu et al., 2023), humans still outper- 142

form LVLMs by a margin of 15.5% on this task. 143

Prompting Strategies Chain-of-Thought (CoT) 144

prompting is a recently developed technique that 145

aims to improve the reasoning abilities of large 146

language models (LLMs, Brown et al., 2020b; 147

Chowdhery et al., 2023b) by explicitly encouraging 148

them to explain their thought process step-by-step 149

(Wei et al., 2022; Kojima et al., 2022). Program- 150

of-Thoughts (PoT) builds upon the idea of CoT 151

(Chen et al., 2022), using formal language elements 152

like conditional statements and logical operators to 153

guide the LLM through the problem-solving pro- 154

cess. This allows the answer to delegate the com- 155

putation steps to an external language interpreter, 156

potentially simplifying implementation. 157

Both of these methods take a step-by-step ap- 158

proach, breaking the overall task into subtasks, 159

and they both utilize demonstrations, where the 160

model implicitly acquires knowledge of the task 161

structure from observed solutions and explanations. 162

However, the decomposition is done implicitly, and 163

without explicitly planning the distinct subtasks at 164

inference time. This enables knowledge transfer 165

through demonstration sequences but leaves the 166

concrete problem-solution structure implicit. In 167

contrast, DECOMP (Khot et al., 2022) proposed 168

for LLMs decomposes tasks by creating a plan- 169

ning prompt and then delegating the subtasks to 170

different LLM handlers. Adapting these learn-by- 171

demonstration-and-explanation approaches to mul- 172

timodal tasks presents substantial challenges. Re- 173

cent efforts demonstrated CoT application to only 174

one benchmark, scienceQA (Zhang et al., 2023). 175

Contrary to such implicit learning from demon- 176

strations and explanations, here we propose to ex- 177

plicitly decompose the prompting process, delegat- 178

ing the distinct tasks to the relevant task handlers. 179

This entails segmenting a specific problem instance 180

within the overall task into modality-specific sub- 181

tasks. Subsequently, the input prompt is explicitly 182

divided into smaller, targeted sub-prompts, each 183

delegated to specialized handlers tailored to their 184

2



Figure 1: Illustration of a vanilla vision-language prompting compared to vision-language decomposed prompting.

respective modality. Furthermore, our approach185

builds on successive prompting (Dua et al., 2022),186

where the output of one subtask is passed to be187

used in prompting the handler in the next subtask.188

3 The V&L DECOMP Approach189

Due to the inherently multimodal nature of the190

VLMP task, requiring reasoning over both vi-191

sual and textual information, we propose a vision-192

language decomposed prompting approach (V&L193

DECOMP, Figure 1). This approach breaks down194

the problem into two key sub-tasks, respective of195

the different modalities: (i) a vision-focused query196

task – focuses on identifying and enumerating ob-197

jects relevant to the mathematical question within198

the image. This effectively grounds the problem199

in the visual context and extracts key elements for200

further processing. (ii) a language-focused reason-201

ing task – leveraging the identified objects from202

the first sub-task, this stage employs textual reason-203

ing to solve the mathematical problem. It utilizes204

the extracted visual information alongside the tex-205

tual prompt to reach a solution through symbolic206

manipulation or mathematical reasoning processes.207

In stage (i), we extract entities using an LLM208

(GPT-4) from the input question X = x0, x1, ..., xn209

where {xi}ni=0 is a sequence of tokens, and the210

output is a set of entity spans from X, denoted211

as E = {e ∣ e = (y0, y1, . . . , ym), 0 ≤ m ≤212

n,∀i ∈ {0, 1, . . . ,m},∃j, 0 ≤ j ≤ n, yi = xj}.213

We then generate a prompt querying about all the214

entities found in the question. P 0 = Concat({"How215

many ei are in the image and what are they?")|216

Ei ⊆ E, 0 ≤ i ≤ m}). For example, E ={‘blue217

objects’,‘blocks’}, then P
0 = “How many blocks 218

are in the image and what are they? How many 219

blue objects are in the image and what are they?”. 220

In stage (ii), we pass the prompt P 0 and the im- 221

age I to an LVLM and receive the sequence output 222

Y
0
= LVLM(P 0

, I). In the second stage, we con- 223

catenate the question X and the output of the first 224

stage: P
1
= Concat(Y 0

, x). We then pass the 225

image I and the prompt P 1 to an LVLM to receive 226

the final answer Y 1
= LVLM(P 1

, I). 227

4 Experiments 228

Goal We set out to empirically quantify the per- 229

formance gap and subsequently evaluate the effec- 230

tiveness of our proposed V&L DECOMP in address- 231

ing the performance gap on VLMP tasks. 232

Datasets To analyze the challenges in the VLMP 233

task, we evaluate our method on two datasets: 234

Clevr-Math (Lindström and Abraham, 2022), 235

and arithmetic problems extracted from VQA2.0 236

(Goyal et al., 2017). We use a subset of 400 VLMPs 237

from Clevr-Math (built on Clevr, Johnson et al., 238

2017). This selection covers 100 problems each 239

in addition (Add.), subtraction (Sub.), adversarial 240

(Adver.), and multi-hop subtraction. MathVista 241

(Lu et al., 2023) extracted 188 math problems from 242

VQA2.0. Out of this, we extracted 25 VLMPs that: 243

(i) include arithmetic (addition, subtraction, mul- 244

tiplication, or division) (ii) are not strict counting 245

problems or shape size comparisons; (iii) do not 246

require world knowledge (e.g., “What is the MPG 247

of an average city bus?”); and crucially, (iv) require 248

both image and text to answer the problem. 249
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Test Development
VQA2.0 Clevr-Math Clevr-Math

All All Add. Sub. Adver. Mult. All Add. Sub. Adver. Mult.
Vanilla 0.28 0.51 0.63 0.49 0.48 0.44 0.52 0.75 0.51 0.43 0.39
CoT 0.32 0.50 0.64 0.53 0.51 0.33 0.50 0.69 0.55 0.37 0.38
V&L DECOMP 0.60 0.57 0.73 0.51 0.53 0.51 0.54 0.78 0.55 0.38 0.44

Table 1: Test and development sets accuracies for Clevr-Math and VQA2.0

Clevr-Math VQA2.0

CA
correct isolated

OR and WA
correct math

in CA
wrong

OR in CA
wrong OR

in WA CA
correct isolated

OR and WA
correct math

in CA
wrong

OR in CA
wrong OR

in WA
c µ c µ c µ c µ c µ c µ c µ c µ c µ c µ

Vanilla 37 0.46 14 0.39 37 1 11 0.30 42 1 7 0.28 8 0.44 7 1 0 0 18 1
CoT 35 0.44 11 0.31 35 1 5 0.14 44 0.98 8 0.32 8 0.47 8 1 0 0 17 1
V&L
DECOMP 39 0.49 0 0.00 39 1 3 0.08 41 1 15 0.60 1 0.10 15 1 1 0.07 10 1

Table 2: Analyzed predictions on 80/25 Clevr-Math/VQA2.0 samples, showing accuracy (µ) and count (c) for
correct (CA) and incorrect responses (WA); correct mathematics, and incorrect object recognition (OR) in responses.

Models We leveraged the OpenAI’s multimodal250

GPT-4 model with vision capabilities (GPT-4V)1
251

and GTP-4 model version 0613, with temperature252

0 in both models for consistent text generation.253

5 Results254

Table 1 presents the performance of three prompt-255

ing strategies on the VQA2.0 and Clevr-Math256

datasets. Notably, our V&L DECOMP approach257

achieves accuracy gains of 7% and 28% over CoT258

on Clevr-Math and VQA2.0, respectively. This259

disparity in improvement can be attributed to the260

differing mathematical complexities of the datasets.261

VQA2.0 poses a greater challenge due to its inclu-262

sion of multiplication, division, and larger numbers263

(tens of thousands), requiring intricate mathemati-264

cal reasoning from the model.265

Table 2 reveals that even when models correctly266

identify and count objects in an isolated prompt,267

they still provide incorrect answers (WA) to the268

main VLM task when prompted again on the same269

image, mainly in CoT and Vanilla prompting strate-270

gies. Notably among all approaches, our V&L DE-271

COMP approach performs best in mitigating this272

phenomenon. Table 2 also reveals that inaccurate273

object recognition was a major factor contributing274

to incorrect responses across all strategies. This275

was further confirmed by an oracle experiment con-276

ducted on the Clevr-Math validation set. In this277

experiment, GPT-4V was provided with the ground-278

truth object labels from the image annotations. This279

intervention resulted in a significant improvement280

1
https://platform.openai.com/docs/guides/

vision

in model accuracy, reaching 79.25%. Additionally, 281

more objects in the images significantly hinder (p 282

< 0.001) LVLM’s performance in the Clevr-Math 283

validation set, as shown by a strong negative Spear- 284

man’s ranking correlation (-0.92, Spearman, 1961). 285

These findings highlight the critical role of robust 286

object recognition in achieving high performance 287

on VLMP tasks. Furthermore, these findings, cou- 288

pled with the superior performance of our V&L 289

DECOMP prompting strategy, suggest that decom- 290

posing the problem by addressing object recogni- 291

tion as a separate subtask, potentially through ded- 292

icated VLMs trained specifically for this purpose, 293

could be a promising avenue for future research. 294

6 Conclusion 295

This study has demonstrated the potential of 296

the novel vision-language decomposed prompting 297

method (V&L DECOMP) in addressing the chal- 298

lenges of Vision and Language Math Problems 299

(VLMP). By deconstructing the VLMP task into 300

two focused subtasks, respective of the different 301

modalities, we have been able to significantly im- 302

prove the performance of large vision-language 303

models (LVLMs) in streamlining the object identifi- 304

cation and enumeration into mathematical problem- 305

solving. The V&L DECOMP approach has shown 306

a marked increase in accuracy on two datasets, out- 307

performing the chain-of-thought (CoT) approach. 308

These findings underscore the importance of modal- 309

specific decompositions in enhancing the reasoning 310

capabilities of LVLMs, paving the way for solving 311

more complex multi-modal reasoning tasks in the 312

future, and leaving ample space for researching 313

such decomposition learning by demonstration. 314
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Limitations315

Limited VLMP Datasets The current scarcity316

of visual and language math problem (VLMP)317

datasets has constrained the scope of experimen-318

tal analysis in this research. While MathVista319

(Lu et al., 2023) categorizes three VLMP datasets:320

IconQA (Lu et al., 2021), TabWMP (Lu et al.,321

2022b), and Clevr-Math (Lindström and Abraham,322

2022); only Clevr-Math contains VLMPs that re-323

quire arithmetic operations and present problems324

over natural images. IconQA contains less than a325

handful of VLMP problems that go beyond count-326

ing and comparisons, whereas TabWMP contains327

questions over images of tables only, with no natu-328

ral images. Although Clevr-Math contains VLMPs,329

approximately 5% of the data contains incorrect330

labels. Therefore, we implemented a manual cura-331

tion process to rectify these inconsistencies within332

a representative subset (400 samples) of the test set.333

This approach, while mitigating the impact of la-334

bel noise, is inherently costly and time-consuming335

and limits the scale of results we can provide, com-336

pared with the full dataset. Alternative strategies,337

such as synthetic question-answer pair generation338

or crowdsourcing data, are beyond the scope of the339

present (short focused) contribution and we leave340

it for future research.341

Decomposition with Expert Models The corre-342

lation shown between incorrect answers and inac-343

curate object recognition in Section 5, suggests that344

object recognition remains a significant hurdle in345

VLMP tasks. V&L DECOMP possesses a unique346

advantage in addressing this, as it partitions the task347

into subtasks. Theoretically, the first stage could348

utilize a specialized VLM adept at object counting.349

However, at present, we have not identified a VLM350

that surpasses GPT-4V. We conducted a quantita-351

tive analysis on 30 randomly selected images from352

the COCO dataset (Lin et al., 2014), which con-353

tain between 2-10 objects. When comparing the354

performance of Blip2 (Li et al., 2023) and GPT-4V,355

we found that GPT-4V was superior. Exploring the356

potential of integrating models that specialize in357

different aspects of the task, is left for future work.358

Explicit vs. Implicit Decomposition While our359

V&L DECOMP approach demonstrates improved360

performance in the VLMP task, its scalability raises361

concerns given the pre-defined task planning (al-362

though instance-specifics details are handled auto-363

matically at inference time). This contrasts with364

known methods for learning-by-demonstration- 365

and-explanation, which are significantly easier to 366

create and are readily producible — and yet, as 367

we empirically show here, fall surprisingly short 368

in their efficacy to handle the complications of 369

multimodal reasoning. Therefore, future research 370

should explore effective methods for learning-by- 371

demonstrations beyond simple CoT approaches, 372

for modality-aware decompositions in the vision- 373

and-language domains, while incorporating lessons 374

learned from the V&L DECOMP approach. 375
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A CoT Prompting Examples541

From VQA2.0 You are asked to answer a math-542

ematical <question> about an image. Before543

answering the question, here are examples of544

question-answer pairs. Use this approach when545

answering the <question>. Example 1: If we re-546

move one lamp from the room in the image how547

many lamps will be left?548

There are 2 lamps in the image. Any additional549

lights are merely mirror reflections. Then if we550

remove 1 lamp there will be only one lamp. Mathe-551

matically, this is represented as 2-1=1552

Example 2: What is the ratio of women to men?553

There are 3 women and 2 men in the image. To find554

the ratio, we divide the number of women by the555

number of men, resulting in 3/2.556

From Clevr-Math You are asked to answer a557

mathematical <question> about an image. Be-558

fore answering the question, here are examples of559

question-answer pairs. Use this approach when an-560

swering the <question>. Example 1: Subtract all561

brown things. Subtract all brown cylinders. How562

many objects are left?563

a. There are 2 brown things in the image: 1 big564

brown metal cylinder and 1 big brown metal sphere.565

b.There is 1 brown cylinder in the image: 1 big 566

brown metal cylinder. c. There are 6 objects in the 567

image in total: 1 big brown metal cylinder, 1 big 568

green metal cylinder, 1 gray small rubber cube, 1 569

cyan small rubber cube, 1 big blue rubber cube, 570

1 big brown metal sphere. d. After subtracting 571

the 2 brown things we are left with 4 objects in 572

the image. We don’t need to subtract the brown 573

cylinder again as we already subtracted it as part of 574

‘brown things’. My answer is: 4. Another example: 575

Add two cyan blocks. How many cyan objects are 576

there? 577

a. There is 1 cyan object in the image: 1 large cyan 578

metal cylinder. b. After adding 2 cyan blocks, there 579

are 3 cyan objects in the image. My answer is: 3. 580

B Additional Results 581

The Object Recognition Challenge All three 582

prompting strategies exhibit a strong, negative cor- 583

relation between success rate and the number of 584

objects in the image, as shown in Table 3. Each 585

strategy’s Spearman’s rank correlation coefficient 586

is less than -0.85 and statistically significant (p < 587

0.05), indicating that increased object count consis- 588

tently hinders model performance across all strate- 589

gies. 590

Correlation p-value
Vanilla -0.92 0.001
CoT -0.85 0.007
V&L DECOMP -0.91 0.002

Table 3: Spearman’s ranking correlation between suc-
cess rate and the number of objects in the image.

Error Analysis Building upon the initial analy- 591

sis, Table 4 dives deeper into error patterns across 592
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Incorrect VLMP answers correct VLMP answers with errors
Vanilla CoT V&L DECOMP Vanilla CoT V&L DECOMP
c µ c µ c µ c µ c µ c µ Example Explanation

Total 43 0.54 45 0.56 41 0.51 1 0.3 5 0.14 3 0.08 NA NA

Counting 30 0.70 27 0.60 29 0.70 7 0.64 4 0.8 3 1
Answer: There are 10
objects in total.. Counted 10 objects instead of 9

Hallucination 19 0.44 20 0.44 13 0.31 8 0.73 3 0.6 1 0.33

Question: ...How many
blue blocks are left?
Answer: ...there is only 1
small blue metal/shiny cube...

There are no blue cubes in the image.

Reasoning 1 0.02 2 0.04 1 0.02 1 0.33 0 0 0 0

Question: Subtract all small
cyan matte cylinders.
Subtract all cyan cylinders.
Answer: Subtracting the small
cyan matte cylinder and the cyan
cylinder, there is 1 object left.

Subtracted the same object twice

Table 4: Error Analysis for Different Prompting Strategies in Clevr-Math Validation Set.

the three prompting strategies. Using an 80-sample593

study from the Clevr-Math validation set, the analy-594

sis categorizes errors into three key phenomena: (i)595

Counting errors – Inaccurate object quantification596

within the image. (ii) Hallucinations – Introduc-597

tion of non-existent objects into the model’s inter-598

pretation. (ii) Reasoning errors – Faulty logical599

processes applied by the model, such as double-600

subtracting the same object. Analysis of error types601

reveals that V&L DECOMP exhibits the lowest fre-602

quency of explanatory errors, regardless of whether603

the final answer is correct or incorrect. Count-604

ing errors were the most prevalent, followed by605

‘hallucinations’.‘Reasoning’ errors are relatively606

negligible. Notably, V&L DECOMP consistently607

demonstrated the least susceptibility to hallucina-608

tions across both answer categories. Conversely,609

vanilla prompting yielded the highest frequency of610

counting errors, regardless of answer correctness.611

8


