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Abstract

Math problems that involve both vision and
language pose a challenging multi-modal task
that requires the integration of visual informa-
tion, textual information, and strong numeri-
cal reasoning for adequately solving it. While
large language models (LLMs) have achieved
impressive performance on arithmetic word
problems based solely on text, we show that
introducing visual data significantly increases
the difficulty. Specifically, the compositional
task of counting objects following recogni-
tion becomes a formidable hurdle for math
problem-solving with large vision-language
models (LVLMs). The dual demand of rec-
ognizing objects and performing arithmetic rea-
soning poses a significant challenge, hinder-
ing LVLMs from excelling in the overarching
task. We show that the commonly employed
chain-of-thought (CoT) approach for decom-
posed reasoning, designed for LLMs, proves in-
effective when applied to this multimodal task.
As an alternative to demonstration-based CoT
we propose a novel decomposition prompting
approach, explicitly breaking down the task
into two stages as follows. The first stage per-
forms object detection and enumeration refer-
enced within the mathematical problem. The
second stage leverages the output from stage
one to directly address the posed math ques-
tion. Our results demonstrate that this approach
leads to stark performance improvements on es-
tablished benchmarks for visual and language
arithmetic problems. This breaks the chains of
CoT, paving the way towards developing new
and novel multimodal breakdown approaches.

1 Introduction

Math word problems (MWPs) constitute a category
of reasoning tasks demanding translation from real-
world scenarios into mathematical equations, ap-
plying arithmetic operations, and interpreting the
results back into meaningful solutions (Kushman
et al., 2014). Similar to other reasoning tasks such

as analogy problems (Webb et al., 2023) and com-
mon sense reasoning (Bisk et al., 2020), large lan-
guage models (LLMs, Brown et al., 2020a; Smith
et al., 2022; Chowdhery et al., 2023a) have exhib-
ited impressive reasoning capabilities in tackling
MWPs (Gaur and Saunshi, 2023).

Vision and language math problems (VLMP)
constitute a multi-modal task that builds upon the
foundation of MWP (Lu et al., 2023). Unlike MWP,
VLMP necessitates the integration of both visual
and linguistic modalities to solve the mathemati-
cal problem. The inclusion of two modalities re-
quires diverse cognitive abilities, specifically object
recognition from vision and quantitative reasoning
guided by textual cues. For instance, when posed
with the problem “How many figs will remain in
the image if Joe eats one?”, accurate detection of
the number of figs in the image becomes essential.

Similarly to LLMs, LVLMs evolved from be-
ing task-specific (fine-tuned), to instruction-tuned
general-purpose models. A commonly used ap-
proach to guide LLMs to complete complex tasks
is through chain-of-thought (CoT, Wei et al., 2022).
CoT does not only give examples of the task and
answer, but demonstrates to the model step-by-step
how to break the task into smaller more manage-
able tasks, in order to reach the correct answer.
This approach has been applied to LVLM question-
answering for the ScienceQA benchmark (Lu et al.,
2022a; Zhang et al., 2023).

In this work, we identify a key challenge with
the LVLM’s integration of object identification and
enumeration into mathematical problem-solving.
Specifically, despite applying the CoT approach
to demonstrate the two steps minimally required
for solving VLMP (object identification and enu-
meration, followed by numerical operations), the
LVLM’s ability to integrate them for problem-
solving remains limited, resulting in minimal per-
formance improvement relative to vanilla prompt-
ing. This suggests a possible limitation in the



LVLM’s ability to seamlessly combine these dis-
tinct skills despite its success in logical reason-
ing and accurate mathematical operations. Strik-
ingly, we are able to show that this discrepancy
occurs even when the LVLM correctly identifies
and counts the objects when explicitly prompted in
isolation to do so.

To overcome these limitations and close this
multimodal reasoning gap, we propose a novel yet
natural vision-and-language decomposed prompt-
ing method (henceforth: V&L DECOMP). This
approach deconstructs the VLMP task into two sub-
tasks: (i) a vision-focused query task: concentrates
on identifying and enumerating objects within the
image — specifically those that are relevant to the
math problem — effectively grounding the problem
in the visual context; and (ii) a language-focused
reasoning task: leveraging the identified objects,
this subtask employs textual reasoning to solve the
mathematical problem, establishing a clear con-
nection between the visual information and the
solution process. Notably, this decomposition is
made and streamlined explicitly, rather than by
demonstration as in CoT. Testing on the Clevr-
Math benchmark (Lindstrom and Abraham, 2022)
and a VLMP-filtered subset of the VQA2.0 dataset
(Goyal et al., 2017), shows that V&L DECOMP out-
performs CoT (+7% Clevr-Math, +28% VQAZ2.0).

Looking ahead, we envision a “decompose by
demonstration” approach for LVLMs inspired by
our decomposition approach, subsequently formu-
lating strategies and implementing an appropriate
plan for solving a multimodal problem. Crucially,
such a plan should allow the model to delegate
specific tasks to specialized modalities in areas it
lacks proficiency. Such strategies could potentially
enhance multimodal problem-solving even further.

2 LVLMs and Prompting: Preliminaries

Large Vision and Language Models (LVMLs)
The prevalent structure for large vision-language
models (LVLMs, Li et al., 2023) is founded on a
two-part backbone: (i) a Vision-Language Model
(VLM) — this component serves as a bridge be-
tween visual and textual data, establishing a shared
embedding space. Within this space, both images
and their textual descriptions are represented as
comparable points. Contrastive Language-Image
Pre-training (CLIP, Radford et al., 2021) exempli-
fies this approach. (ii) a Large Language Model
(LLM) — this component leverages both the lan-

guage prompt and the image embedding generated
by the VLM (part (i)). Despite the demonstrated
capabilities of VLMs in object recognition and enu-
meration guided by a text-label (Jiang et al., 2023)
and the remarkable capability of LLMs in solving
MWP (Chen et al., 2022; Gaur and Saunshi, 2023;
Yang et al., 2023; Imani et al., 2023), a performance
gap remains in the VLMP task. As evidenced by
MathVista (Lu et al., 2023), humans still outper-
form LVLMs by a margin of 15.5% on this task.

Prompting Strategies Chain-of-Thought (CoT)
prompting is a recently developed technique that
aims to improve the reasoning abilities of large
language models (LLMs, Brown et al., 2020b;
Chowdhery et al., 2023b) by explicitly encouraging
them to explain their thought process step-by-step
(Wei et al., 2022; Kojima et al., 2022). Program-
of-Thoughts (PoT) builds upon the idea of CoT
(Chen et al., 2022), using formal language elements
like conditional statements and logical operators to
guide the LLM through the problem-solving pro-
cess. This allows the answer to delegate the com-
putation steps to an external language interpreter,
potentially simplifying implementation.

Both of these methods take a step-by-step ap-
proach, breaking the overall task into subtasks,
and they both utilize demonstrations, where the
model implicitly acquires knowledge of the task
structure from observed solutions and explanations.
However, the decomposition is done implicitly, and
without explicitly planning the distinct subtasks at
inference time. This enables knowledge transfer
through demonstration sequences but leaves the
concrete problem-solution structure implicit. In
contrast, DECOMP (Khot et al., 2022) proposed
for LLMs decomposes tasks by creating a plan-
ning prompt and then delegating the subtasks to
different LLM handlers. Adapting these learn-by-
demonstration-and-explanation approaches to mul-
timodal tasks presents substantial challenges. Re-
cent efforts demonstrated CoT application to only
one benchmark, scienceQA (Zhang et al., 2023).

Contrary to such implicit learning from demon-
strations and explanations, here we propose to ex-
plicitly decompose the prompting process, delegat-
ing the distinct tasks to the relevant task handlers.
This entails segmenting a specific problem instance
within the overall task into modality-specific sub-
tasks. Subsequently, the input prompt is explicitly
divided into smaller, targeted sub-prompts, each
delegated to specialized handlers tailored to their
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Figure 1: Illustration of a vanilla vision-language prompting compared to vision-language decomposed prompting.

respective modality. Furthermore, our approach
builds on successive prompting (Dua et al., 2022),
where the output of one subtask is passed to be
used in prompting the handler in the next subtask.

3 The V&L DECOMP Approach

Due to the inherently multimodal nature of the
VLMP task, requiring reasoning over both vi-
sual and textual information, we propose a vision-
language decomposed prompting approach (V&L
DEcoMP, Figure 1). This approach breaks down
the problem into two key sub-tasks, respective of
the different modalities: (i) a vision-focused query
task — focuses on identifying and enumerating ob-
jects relevant to the mathematical question within
the image. This effectively grounds the problem
in the visual context and extracts key elements for
further processing. (ii) a language-focused reason-
ing task — leveraging the identified objects from
the first sub-task, this stage employs textual reason-
ing to solve the mathematical problem. It utilizes
the extracted visual information alongside the tex-
tual prompt to reach a solution through symbolic
manipulation or mathematical reasoning processes.

In stage (i), we extract entities using an LLM
(GPT-4) from the input question X = zq, x1, ..., Ty
where {z;}i—o is a sequence of tokens, and the
output is a set of entity spans from X, denoted
as F ={e| e = ¥, - Yn)0 < m <
n, Vi € {0,1,...,m},35,0 < j < n,y; = z;}.
We then generate a prompt querying about all the
entities found in the question. PY= Concat({"How
many e; are in the image and what are they?")l
E; € E,0 =17 < m}). For example, £ ={‘blue

objects’, ‘blocks’}, then P° = “How many blocks
are in the image and what are they? How many
blue objects are in the image and what are they?”.
In stage (ii), we pass the prompt P° and the im-
age [ to an LVLM and receive the sequence output
Y% = LVLM(P", I). In the second stage, we con-
catenate the question X and the output of the first
stage: P' = Concat(Y",z). We then pass the
image I and the prompt P! to an LVLM to receive
the final answer V' = LVLM(P"', I).

4 Experiments

Goal We set out to empirically quantify the per-
formance gap and subsequently evaluate the effec-
tiveness of our proposed V&L DECOMP in address-
ing the performance gap on VLMP tasks.

Datasets To analyze the challenges in the VLMP
task, we evaluate our method on two datasets:
Clevr-Math (Lindstrom and Abraham, 2022),
and arithmetic problems extracted from VQA2.0
(Goyal et al., 2017). We use a subset of 400 VLMPs
from Clevr-Math (built on Clevr, Johnson et al.,
2017). This selection covers 100 problems each
in addition (Add.), subtraction (Sub.), adversarial
(Adver.), and multi-hop subtraction. MathVista
(Lu et al., 2023) extracted 188 math problems from
VQAZ2.0. Out of this, we extracted 25 VLMPs that:
(1) include arithmetic (addition, subtraction, mul-
tiplication, or division) (ii) are not strict counting
problems or shape size comparisons; (iii) do not
require world knowledge (e.g., “What is the MPG
of an average city bus?”); and crucially, (iv) require
both image and text to answer the problem.



Test Development
VQA2.0 Clevr-Math Clevr-Math
All All  Add. Sub. Adver. Mult. | All  Add. Sub. Adver. Mult.

Vanilla 0.28 0.51 0.63 049 048 044 1052 075 051 043 0.39

CoT 0.32 050 064 053 051 033 | 050 069 055 0.37 0.38

V&L DECOMP 0.60 0.57 0.73 051 053 0.51 | 054 0.78 0.55 0.38 0.44

Table 1: Test and development sets accuracies for Clevr-Math and VQA2.0
Clevr-Math VQA2.0
CA correct isolated ~ correct math wrong wrong OR CA correct isolated  correct math wrong wrong OR
OR and WA in CA OR in CA in WA OR and WA in CA OR in CA in WA
c 1% c i c I c i c I c 1% c 7 c o c 1% c 1%
Vanilla 37 046 14 0.39 37 1 11 030 42 1 7 028 8 0.44 7 1 0 0 18 1
CoT 35 044 11 0.31 35 1 5 014 44 0.98 8 032 8 0.47 8 1 0 0 17 1
;&L 39 049 0 0.00 39 1 3008 41 1 15 0.60 1 0.10 15 1 1 0.07 10 1
ECOMP

Table 2: Analyzed predictions on 80/25 Clevr-Math/VQA2.0 samples, showing accuracy (1) and count (c) for
correct (CA) and incorrect responses (WA); correct mathematics, and incorrect object recognition (OR) in responses.

Models We leveraged the OpenAl’s multimodal
GPT-4 model with vision capabilities (GPT—4V)1
and GTP-4 model version 0613, with temperature
0 in both models for consistent text generation.

5 Results

Table 1 presents the performance of three prompt-
ing strategies on the VQA2.0 and Clevr-Math
datasets. Notably, our V&L DECOMP approach
achieves accuracy gains of 7% and 28% over CoT
on Clevr-Math and VQAZ2.0, respectively. This
disparity in improvement can be attributed to the
differing mathematical complexities of the datasets.
VQAZ2.0 poses a greater challenge due to its inclu-
sion of multiplication, division, and larger numbers
(tens of thousands), requiring intricate mathemati-
cal reasoning from the model.

Table 2 reveals that even when models correctly
identify and count objects in an isolated prompt,
they still provide incorrect answers (WA) to the
main VLM task when prompted again on the same
image, mainly in CoT and Vanilla prompting strate-
gies. Notably among all approaches, our V&L DE-
COMP approach performs best in mitigating this
phenomenon. Table 2 also reveals that inaccurate
object recognition was a major factor contributing
to incorrect responses across all strategies. This
was further confirmed by an oracle experiment con-
ducted on the Clevr-Math validation set. In this
experiment, GPT-4V was provided with the ground-
truth object labels from the image annotations. This
intervention resulted in a significant improvement

lhttps://platform.openai.com/docs/guides/
vision

in model accuracy, reaching 79.25%. Additionally,
more objects in the images significantly hinder (p
< 0.001) LVLM’s performance in the Clevr-Math
validation set, as shown by a strong negative Spear-
man’s ranking correlation (-0.92, Spearman, 1961).
These findings highlight the critical role of robust
object recognition in achieving high performance
on VLMP tasks. Furthermore, these findings, cou-
pled with the superior performance of our V&L
DECOMP prompting strategy, suggest that decom-
posing the problem by addressing object recogni-
tion as a separate subtask, potentially through ded-
icated VLMs trained specifically for this purpose,
could be a promising avenue for future research.

6 Conclusion

This study has demonstrated the potential of
the novel vision-language decomposed prompting
method (V&L DECOMP) in addressing the chal-
lenges of Vision and Language Math Problems
(VLMP). By deconstructing the VLMP task into
two focused subtasks, respective of the different
modalities, we have been able to significantly im-
prove the performance of large vision-language
models (LVLMs) in streamlining the object identifi-
cation and enumeration into mathematical problem-
solving. The V&L DECOMP approach has shown
a marked increase in accuracy on two datasets, out-
performing the chain-of-thought (CoT) approach.
These findings underscore the importance of modal-
specific decompositions in enhancing the reasoning
capabilities of LVLMs, paving the way for solving
more complex multi-modal reasoning tasks in the
future, and leaving ample space for researching
such decomposition learning by demonstration.


https://platform.openai.com/docs/guides/vision
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Limitations

Limited VLMP Datasets The current scarcity
of visual and language math problem (VLMP)
datasets has constrained the scope of experimen-
tal analysis in this research. While MathVista
(Lu et al., 2023) categorizes three VLMP datasets:
IconQA (Lu et al., 2021), TabWMP (Lu et al.,
2022b), and Clevr-Math (Lindstrom and Abraham,
2022); only Clevr-Math contains VLMPs that re-
quire arithmetic operations and present problems
over natural images. IconQA contains less than a
handful of VLMP problems that go beyond count-
ing and comparisons, whereas TabWMP contains
questions over images of tables only, with no natu-
ral images. Although Clevr-Math contains VLMPs,
approximately 5% of the data contains incorrect
labels. Therefore, we implemented a manual cura-
tion process to rectify these inconsistencies within
a representative subset (400 samples) of the test set.
This approach, while mitigating the impact of la-
bel noise, is inherently costly and time-consuming
and limits the scale of results we can provide, com-
pared with the full dataset. Alternative strategies,
such as synthetic question-answer pair generation
or crowdsourcing data, are beyond the scope of the
present (short focused) contribution and we leave
it for future research.

Decomposition with Expert Models The corre-
lation shown between incorrect answers and inac-
curate object recognition in Section 5, suggests that
object recognition remains a significant hurdle in
VLMP tasks. V&L DECOMP possesses a unique
advantage in addressing this, as it partitions the task
into subtasks. Theoretically, the first stage could
utilize a specialized VLM adept at object counting.
However, at present, we have not identified a VLM
that surpasses GPT-4V. We conducted a quantita-
tive analysis on 30 randomly selected images from
the COCO dataset (Lin et al., 2014), which con-
tain between 2-10 objects. When comparing the
performance of Blip2 (Li et al., 2023) and GPT-4V,
we found that GPT-4V was superior. Exploring the
potential of integrating models that specialize in
different aspects of the task, is left for future work.

Explicit vs. Implicit Decomposition While our
V&L DECOMP approach demonstrates improved
performance in the VLMP task, its scalability raises
concerns given the pre-defined task planning (al-
though instance-specifics details are handled auto-
matically at inference time). This contrasts with

known methods for learning-by-demonstration-
and-explanation, which are significantly easier to
create and are readily producible — and yet, as
we empirically show here, fall surprisingly short
in their efficacy to handle the complications of
multimodal reasoning. Therefore, future research
should explore effective methods for learning-by-
demonstrations beyond simple CoT approaches,
for modality-aware decompositions in the vision-
and-language domains, while incorporating lessons
learned from the V&L DECOMP approach.
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A CoT Prompting Examples

From VQA2.0 You are asked to answer a math-
ematical <question> about an image. Before
answering the question, here are examples of
question-answer pairs. Use this approach when
answering the <question>. Example 1: If we re-
move one lamp from the room in the image how
many lamps will be left?

There are 2 lamps in the image. Any additional
lights are merely mirror reflections. Then if we
remove I lamp there will be only one lamp. Mathe-
matically, this is represented as 2-1=1

Example 2: What is the ratio of women to men?

There are 3 women and 2 men in the image. To find
the ratio, we divide the number of women by the
number of men, resulting in 3/2.

From Clevr-Math You are asked to answer a
mathematical <question> about an image. Be-
fore answering the question, here are examples of
question-answer pairs. Use this approach when an-
swering the <question>. Example 1: Subtract all
brown things. Subtract all brown cylinders. How
many objects are left?

a. There are 2 brown things in the image: [ big
brown metal cylinder and 1 big brown metal sphere.

b.There is 1 brown cylinder in the image: 1 big
brown metal cylinder. c. There are 6 objects in the
image in total: 1 big brown metal cylinder, 1 big
green metal cylinder, 1 gray small rubber cube, 1
cyan small rubber cube, 1 big blue rubber cube,
1 big brown metal sphere. d. After subtracting
the 2 brown things we are left with 4 objects in
the image. We don’t need to subtract the brown
cylinder again as we already subtracted it as part of
‘brown things’. My answer is: 4. Another example:
Add two cyan blocks. How many cyan objects are
there?

a. There is I cyan object in the image: 1 large cyan
metal cylinder. b. After adding 2 cyan blocks, there
are 3 cyan objects in the image. My answer is: 3.

B Additional Results

The Object Recognition Challenge All three
prompting strategies exhibit a strong, negative cor-
relation between success rate and the number of
objects in the image, as shown in Table 3. Each
strategy’s Spearman’s rank correlation coefficient
is less than -0.85 and statistically significant (p <
0.05), indicating that increased object count consis-
tently hinders model performance across all strate-
gies.

Correlation  p-value

Vanilla -0.92 0.001
CoT -0.85 0.007
V&L DECOMP | -0.91 0.002

Table 3: Spearman’s ranking correlation between suc-
cess rate and the number of objects in the image.

Error Analysis Building upon the initial analy-
sis, Table 4 dives deeper into error patterns across



Incorrect VLMP answers

correct VLMP answers with errors

Vanilla CoT V&L DECOMP | Vanilla CoT
c L c 1 c L c puoc p o c

V&L DECOMP

Example

Explanation

Total 43 054 45 056 41 0.51 1 03 5 014 3

NA

NA

Counting 30 070 27 0.60 29 0.70 7 064 4 08 3

Hallucination 19 044 20 044 13 0.31 8 073 3 06 1

Reasoning 1002 2 004 1 0.02 1 033 0 0 O

Answer: There are 10

objects in total..

Question: ...How many

blue blocks are left?

Answer: ...there is only 1
small blue metal/shiny cube...
Question: Subtract all small
cyan matte cylinders.

Subtract all cyan cylinders.
Answer: Subtracting the small
cyan matte cylinder and the cyan
cylinder, there is 1 object left.

Counted 10 objects instead of 9

There are no blue cubes in the image.

Subtracted the same object twice

Table 4: Error Analysis for Different Prompting Strategies in Clevr-Math Validation Set.

the three prompting strategies. Using an 80-sample
study from the Clevr-Math validation set, the analy-
sis categorizes errors into three key phenomena: (i)
Counting errors — Inaccurate object quantification
within the image. (ii) Hallucinations — Introduc-
tion of non-existent objects into the model’s inter-
pretation. (ii) Reasoning errors — Faulty logical
processes applied by the model, such as double-
subtracting the same object. Analysis of error types
reveals that V&L DECOMP exhibits the lowest fre-
quency of explanatory errors, regardless of whether
the final answer is correct or incorrect. Count-
ing errors were the most prevalent, followed by
‘hallucinations’.‘Reasoning’ errors are relatively
negligible. Notably, V&L DECOMP consistently
demonstrated the least susceptibility to hallucina-
tions across both answer categories. Conversely,
vanilla prompting yielded the highest frequency of
counting errors, regardless of answer correctness.



