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ABSTRACT

Sparsity is a highly desired feature in deep neural networks (DNNs) since it en-
sures numerical efficiency, improves the interpretability of models (due to the
smaller number of relevant features), and robustness. For linear models, it is well
known that there exists a regularization path connecting the sparsest solution in
terms of the /! norm (i.e., zero weights) and the non-regularized solution. Very
recently, there was a first attempt to extend the concept of regularization paths
to DNNs by means of treating the empirical loss and sparsity (/! norm) as two
conflicting criteria and solving the resulting multiobjective optimization problem.
However, due to the non-smoothness of the /! norm and the high number of pa-
rameters, this approach is not very efficient from a computational perspective. To
overcome this limitation, we present an algorithm that allows for the approxima-
tion of the entire Pareto front for the above-mentioned objectives in a very efficient
manner. We present numerical examples using both deterministic and stochastic
gradients. We furthermore demonstrate that knowledge of the regularization path
allows for a well-generalizing network parametrization. To the best of our knowl-
edge, this is the first algorithm to compute the regularization path for non-convex
problems with millions of degrees of freedom.

1 INTRODUCTION

Machine Learning (ML) and in particular deep neural networks (DNNs) are nowadays an integral
part of numerous applications such as data classification, image recognition, time series predic-
tion, and language processing. Their importance continues to grow at great speed across numerous
disciplines and applications, and the increase in available computational capacity allows for the
construction of larger models. However, these advances also increase the challenges regarding the
construction and training of DNNs, e.g., the required training data, the training efficiency, and the
adaptability to changing external factors. This leads to the task of simultaneously fulfilling numer-
ous, sometimes contradictory goals in the best possible way.

Multiobjective optimization addresses the problem of optimizing several conflicting objectives. The
issue of having to trade between multiple, conflicting criteria is a universal problem, such as the
need to have an optimal tradeoff between cost and quality in a production process. In a similar
manner, conflicting criteria occur in various ways in ML. The main task is thus to identify the
set of optimal trade-off solutions (the Pareto set) between these conflicting criteria. This concerns
multitask problems (Sener & Koltun, [2018]), but also the training itself, where we want to minimize
the training loss, obtain sparse models and improve generalization.

Interestingly, we found that many papers on multicriteria machine learning do not address the true
nature of multiobjective optimization. The reason for this, is that when choosing very large neural
network architectures or even considering task-specific layers (Sener and Koltun, 2018)), the different
tasks are no longer conflicting. The network is simply too powerful such that both tasks can be
optimally handled simultaneously and there is no tradeoff. From an optimization point of view,
the Pareto front collapses into a single point. However, considering the strongly growing carbon
footprint of AI|Gibney|(2022), there is a growing interest in smaller models that are better tailored
to specific tasks. This is why we propose the use of models that are smaller and adapted to a
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certain task. While this will reduce the general applicability, multicriteria optimization can help
us to determine a set of compromising network architectures, such that we can adapt networks to
specific situations online (multicriteria decision making).

The joint consideration of loss and ¢! regularization is well-studied for linear systems. However, it
is much less understood for the nonlinear problems that we face in deep learning. In DNN train-
ing, the regularization path is usually not of interest. Instead, methods aim to find a single, suitable
trade-off between loss and ¢! norm (Chen et al. 2021} Bungert et al., 2022} [Fu et al., 2020; [2022;
Lemhadri et al., 2021). When interpreting the ¢! regularization problem as a multiobjective opti-
mization problem (MOP), a popular approach to obtain the entire solution set (the Pareto set) is via
continuation methods |Hillermeier| (2001); |Schiitze et al.|(2005). They usually consist of a predictor
step (along the tangent direction of the Pareto set) and a corrector step that converges to a new point
on the Pareto set close by. However, as the ¢ I norm is non-smooth, classical manifold continuation
techniques fail. Due to this fact, a first extension of regularization paths from linear to nonlinear
models was recently presented in (Bieker et al.| 2022), where continuation methods were extended
to non-smooth objective functions. Although this extension provides a rigorous treatment of the
problem, it results in a computationally expensive algorithm, which renders it impractical for DNNs
of realistic dimensions.

As research on regularization paths for nonlinear loss functions has focused on small-scale learning
problems until now, this work is concerned with large-scale machine learning problems. The main
contributions of this paper include:

* The extension of regularization paths from linear models to high dimensional nonlinear
deep learning problems. In fact, our algorithm is the first to provide the entire Pareto front
for a problem with millions of degrees of freedom.

* The demonstration of the usefulness of multiobjective continuation methods for the gener-
alization properties of DNNSs, as we can find sweet spots on the Pareto front very easily.

* A step towards more resource-efficient ML by beginning with very sparse networks and
slowly increasing the number of weights. This is in complete contrast to the standard
pruning approaches, where we start very large and then reduce the number of weights.

A comparison of our approach is further made with the standard approach of weighting the individ-
ual losses using an additional hyperparameter. The remainder of the paper is organized as follows.
First, we discuss related works, before introducing our continuation method. We then present a
detailed discussion of our extensive numerical experiments.

2 RELATED WORKS

2.1 MULTIOBJECTIVE OPTIMIZATION

In the last decades, many approaches have been introduced for solving nonlinear (Miettinen, |1998)),
non-smooth (Poirion et al.l 2017), non-convex (Miettinen, |1998)), or stochastic (Mitrevski et al.,
2021) multiobjective optimization problems, to name just a few special problem classes. In recent
years, researchers have further begun to consider multiobjective optimization in machine learning
(Qu et al.||2021; Jin & Sendhoft] 2008 Deb, |2011; Zhang & Li, [2007) and deep learning (Sener &
Koltun, 2018} Ruchte & Grabockal|2021). We provide an overview of the work that is most pertinent
to our own and direct readers to the works done by (Sener & Koltun, 2018)) and (Bieker et al.,[2022).
Different methods have been proposed to obtain Pareto optimal solutions such as evolutionary al-
gorithms which use the evolutionary principles inspired by nature by evolving an entire population
of solutions (Deb, [2001). Gradient-based techniques extend the well-known gradient techniques
from single-objective optimization to multiple criteria problems (Peitz & Dellnitz| 2018)). Set Ori-
ented Methods provide an approximation of the Pareto set through box coverings and often suffer
from the curse of dimensionality which makes applications in ML very expensive (Dellnitz et al.,
2005). Another deterministic approach are scalarization methods which involve the transformation
of MOP into (a series of) single objective optimization problems (Eichfelder, |2008)). These can then
be solved using standard optimization techniques. Examples include the weighted sum method,
epsilon constraint, Chebyshev scalarization, goal programming, min-max and augmented epsilon
constraint method (Ehrgott[2008, Kim & Weck|2006). Some drawbacks exist for the latter methods,
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most notably the incapability of some to handle non-convex problems, as well as the challenge to
obtain equidistant coverings. Notably, these drawbacks are most severe in the weighted sum method,
which is by far the most widely applied approach in ML when considering multiple criteria at the
same time (such as regularization terms). Moreover, the weighting has to be made a priori, which
makes selecting useful trade-offs much harder (Ehrgott, |2008} [Sener & Koltun, |2018)).

Continuation methods are another approach for the computation of the solutions of MOPs. These
methods were initially developed to solve complex problems starting from simple ones, using ho-
motopy approacheﬂ Also, they were used in predictor-corrector form to track manifolds (Allgower
& Georgl [1990; |Chow et all [1991). In the multiobjective setting, one can show that the Pareto
set is a manifold as wel if the objectives are sufficiently regular (Hillermeier, 2001). Hence, the
continuation method then becomes a technique to follow along the Pareto set in two steps; a) pre-
dictor step along the tangent space of the Pareto set which forms in the smooth setting a manifold
of dimension m - I (where m is the number of objective functions) (Hillermeier, |2001) and b) a
corrector step that obtains the next point on the Pareto set which is often achieved using multiob-
jective gradient descent. |Schiitze et al.| (2005) used the predictor-corrector approach to find points
that satisfy the Karush-Kuhn-Tucker (KKT) condition and to further identify other KKT points in
the neighbourhood.

The continuation method has further been extended to regularization paths in machine learning (ML)
for linear models (Park & Hastiel 2007} \Guha et al., |2023). The regularization paths for nonlinear
models as a multiobjective optimization problem have been introduced recently although limited to
small dimensions since dealing with non-smoothness is difficult (Bieker et al., 2022).

2.2  MULTICRITERIA MACHINE LEARNING

In the context of multicriteria machine learning, several approaches have been used such as evolu-
tionary algorithms (Deb et al.| 2002} Bernad6 1 Mansilla & Garrell 1 Guiu, 2001} Jin & Sendhoff,
2008) or gradient-based methods (Sener & Koltun, 2018} |[Mitrevski et al., 2021). However, only a
few of these methods address high-dimensional deep learning problems or attempts to compute the
entire Pareto front. Furthermore, as discussed in the introduction, many researchers have introduced
architectures that are so powerful that even with the inclusion of the task-specific parts, the Pareto
front collapses into a single point (e.g., Sener & Koltun| (2018))). In the same way, the regulariza-
tion path is usually not of much interest in DNN training. Instead, most algorithms yield a single
trade-off solution for loss and ¢! norm that is usually influenced by a weighting parameter (Chen
et al.,|2021; |Bungert et al., [2022} |[Fu et al.} 2022; |[Lemhadri et al., [2021)). However, we here want to
pursue a more sustainable path with well-distributed solutions here, and we are interested in truly
conflicting criteria. The entire regularization path for DNNs (i.e., a MOP with training loss versus £
norm) was computed in (Bieker et al., [2022). However, even though the algorithm provably yields
the Pareto front, the computation becomes intractable in very high dimensions. Hence, the need to
develop an efficient method to find the entire regularization path and Pareto front for DNNs.

For high-dimensional problems, gradient-based methods have proven to be the most efficient. Ex-
amples are the steepest descent method (Fliege & Svaiter, [2000), projected gradient method (Drum-
mond & Tusem) |2004)), proximal gradient method (Tanabe et al.,[2019;|Chen et al.,|202 1)) and recently
accelerated proximal gradient (Tanabe et al.| 2023). Previous approaches for MOPs often assume
differentiability of the objective functions but the /! norm is not differentiable, so we use the multi-
objective proximal gradient (MPG) to ensure convergence. MPG has been described by Tanabe et al.
(2019) as a descent method for unconstrained MOPs where each objective function can be written
as the sum of a convex and smooth function, and a proper, convex, and lower semicontinuous but
not necessarily differentiable one. Simply put, MPG combines the proximal point and the steepest
descent method and is a generalization of the iterative shrinkage-thresholding algorithms (ISTA)
(Combettes & Wajs| [2005; Beck & Teboulle, [2009) to multiobjective optimization problems.

"These are approaches that involve starting at a simple-to-calculate solution and then continuously vary
some parameter to increase the problem difficulty step by step, until finally arriving at the solution of the
original problem, which is often very hard to compute directly (Forster, [1995).

2To be more precise, the set of points satisfying the Karush-Kuhn-Tucker (KKT) necessary conditions for
optimality along with the corresponding KKT multipliers form a manifold of dimension m — 1.
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3 CONTINUATION METHOD

3.1 SOME BASICS ON MULTIOBJECTIVE OPTIMIZATION

A multiobjective optimization problem can be mathematically formalized as

F1(0)
min : , (MOP)
OcR™ :
Fn(0)
where F; : R®™ -+ RV ¢ = 1,...,m are the generally conflicting objective functions and 6 the

parameters we are optimizing over. In general, there does not exist a single point that minimizes all
criteria simultaneously, the solution to (MOP) is the Pareto set of optimal compromises.

Definition 1 (Miettinen| (1998)) A point 6* € R" is Pareto optimal if there does not exist another
point 0 € R™ such that f;(0) < f;(0*) foralli = 1,...,m, and f;(0) < f;(6*) for at least
one index j. The set of all Pareto optimal points is the Pareto set, which we denote by P. The set
F(P) C R™ in the image space is called the Pareto front.

The above definition is not very helpful for gradient-based algorithms. In this case, we need to rely
on first order optimality conditions (also known as Karush-Kuhn-Tucker (KKT) conditions).

Definition 2 (Hillermeier (2001)) A point 0* € R" is called Pareto critical if there exist an o € R™
witha; > Oforalli =1,...,mand ZZ’;I o, = 1, satisfying

> a;VF(07) =0. (1)
=1

In this work, we consider two objective functions, namely the empirical loss and the ¢! norm of the
neural network weights. The Pareto set connecting the individual minima (at least locally), is also
known as the regularization path. In terms of an MOP, we are looking for the Pareto set of

min E(z,y)NDl[ﬁ(f(97 LU), y)] , (MODNN)
gecR™ 5H9||1

where (x,y) € X x ) is labeled data following a distribution D, the function f : R* x X — Y
is a parameterized model and L(-, -) denotes a loss function. The second objective is the weighted
' norm X ||0]|; to ensure sparsity. Our goal is to solve MoDNN]|to obtain the regularization path.

However, this problem is challenging, as the /! norm is not differentiable.

Remark 3 A common approach to solve the problem [MOP| (including all sorts of regularization
problems) is the use of the weighted sum method using an additional hyperparameter \:

;Q%R%F(a):;xim(o) with N\ >0Vie {l,...,m} and ;)\izl. 2)

3.2 PROXIMAL GRADIENT METHOD

Given functions of the form F; = f; 4 g;, such that f; : R™ — R is convex and smooth, and g; is
convex and non-smooth with computable proximal operator prox,

Definition 4 (Proximal operator) Given a convex function g : R™ — R, the proximal operator is

prox,(0) = argmin {g(6) + 56 ~ 013 .

PpER™

In the problem [MoDNN]|we have F1(0) = f1(0) = E(zy)~p[L(f(0,2),y)] and F>(0) = g2(0) =
L16]|1. The proximal operator prox 1.y, (0) has a simple closed form. This allows for an efficient
implementation of Algorithm [T} which yields a single Pareto critical point for MOPs with objectives
of such type. [Tanabe, Fukuda, and Yamashital (2019) have proved that this algorithm converges to
Pareto critical points.
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Algorithm 1 Multiobjective Proximal Gradient (Tanabe et al.|(2019) )

Input Initialize k£ = 0.
Parameter 0° € R", step size h > 0.
Output: 6*
1: Compute the descent direction d* by solving

. 1
" = argmin {un(d) + IR} where vold) = max (VA0 0400+ ) - 0.0}
cRn i=1,....,m

2: if d¥ = 0, STOP
3: Update §%t1 = g% 4 q*
4: Setk =k + 1and gotostep 1

Remark 5 Proximal gradient iterations are “forward-backward” iterations, "forward” referring to
the gradient step and "backward” referring to the proximal step. The proximal gradient method is
designed for problems where the objective functions include a smooth and a nonsmooth component,
which is suitable for optimization with a sparsity-promoting regularization term.

3.3 A PREDICTOR-CORRECTOR METHOD

This section describes our continuation approach to compute the entire Pareto front of problem
Fig.[I] shows an exemplary illustration of the Pareto front approximated by a finite set of
points that are computed by consecutive predictor and corrector steps. After finding an initial point
6° on the Pareto front, we proceed along the front. This is done by first performing a predictor step
in a suitable direction. As this will take us away from the front (Hillermeier, 2001} Bieker et al.,
2022), we need to perform a consecutive corrector step that takes us back to the front.

Predictor step: Depending on the direction we want to proceed in, we perform a predictor step
simply by performing a gradient step or proximal point operator step:

0"+ = 0 — nVB (2 y)~p L(f (0", 2),1)], )

or 9k+1 = prOXWH'”l(ek). (4)
Eq.[3is the gradient step for the loss objective function (i.e., “move left” in Fig. [I)) and ] represents
the shrinkage performed on the ¢! norm (i.e., “move down” in Fig. . Note that this is a deviation
from the classical concept of continuation methods as described previously, where we compute the
tangent space of a manifold. However, due to the non-smoothness, the Pareto set of our problem
does not possess such a manifold structure, which means that we cannot rely on the tangent space.
Nevertheless, this is not necessarily an issue, as the standard approach would require Hessian infor-
mation, which is too expensive in high-dimensional problems anyway. The approach presented here
is significantly more efficient, even though it may come at the cost that the predictor step is sub-

Corrector step T
F, il ..
Cighe

Pareto Front

F,

Figure 1: Sketch of the continuation method; The predictor steps are shown in black and blue for Egs. andE]
respectively. The corrector step is shown in red.
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optimal. Despite this fact, we found in our numerical experiments that our predictor nevertheless
leads to points close enough for the corrector to converge in a small number of iterations.

Corrector step: For the corrector step, we simply perform multiobjective gradient descent using
the multiobjective proximal gradient method (MPG). As our goal is to converge to a point on the
Pareto front, this step is identical for both predictor directions.

The method is summarized in Algorithm 2] for both directions, which only differ in terms of line 4.

Algorithm 2 Predictor-Corrector Method

Input: Number of predictor-corrector runs Neope, P+ {}

Parameter: Initial parameter §° € R", learning rate 7

Output: P approximate Pareto set

: Compute update to 6° using Algorithm [I| with initial value 6° and step size h = 1.

: Update P = P U {0°}

s forn=1:(Neon: — 1) do
Compute predictor 6;; by performing a predictor step from 6"~! with Eq.[3 or
Compute corrector §” by applying Algorithmwith initial value 6 and step size h = 1.
Update P = PU {6}

end for

AN O ol i

4 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments for our algorithm and the resulting improvements
in comparison to the much more widely used weighted sum approach (Eq. 2).

In real-world problems, uncertainties and unknowns exist. Our previous approach of using the full
gradient on every optimization step oftentimes makes it computationally expensive, as well as unable
to handle uncertainties (Mitrevski et al.,2021). A stochastic approach is included in our algorithm to
take care of these limitations. The stochasticity is applied by computing the gradient on mini-batches
of the data.

4.1 EXPERIMENTAL SETTINGS

To evaluate our algorithm, we first perform experiments on the Iris dataset (Fisher, |1988)). Although
this dataset is by now quite outdated, it allows us to study the deterministic case in detail. We then
extend our experiments to the well-known MNIST dataset (Deng), 2012)) and the CIFAR10 dataset
(Krizhevsky et al., 2014) using the stochastic gradient approach. The Iris dataset contains 150
instances, each of which has 4 features and belongs to one of 3 classes. The MNIST dataset contains
70000 images, each having 784 features and belonging to one of 10 classes. The CIFAR10 dataset
contains 60000 images of size 32x32 pixels with 3 color channels and contains images belonging to
one of 10 classes. We split the datasets into training and testing sets in a 8020 ratio.

We use a dense linear neural network architecture with two hidden layers for both the Iris and
MNIST datasets (4 neurons and 20 neurons per hidden layer, respectively), with ReLU activation
functions for both layers. For the CIFAR10 dataset, two fully connected linear layers after two
convolutional layers are used. Cross-Entropy is used as the loss function.

We compare the results from our algorithm against the weighted sum algorithm in Eq.[2} where A is
the weighting parameter. We choose 44 different values for A for the Iris and MNIST dataset, and
20 different A values for CIFAR10, chosen equidistantly on the interval [0, 1] and solve the resulting
problems using the ADAM optimizer (Kingma & Ba,|2017).

The experiments for the Iris and MNIST datasets are carried out on a machine with 2.10 GHz 12th
Gen Intel(R) Core(TM) i7-1260P CPU and 32 GB memory, using Python 3.8.8 while the CIFAR10
experiment is carried out on a compute cluster with an NVIDIA A100 GPU, 64 GB Ram and an
32-Core AMD CPU with 2.7GHz using Python 3.11.5. The source code is included as a zip file in
the supplementary material (and will be made available via github after the review phase).
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Figure 2: Pareto front approximation for the Iris dataset using Algorithm 2 (red symbols) versus the reference
Pareto front in “blue” (computed using the same algorithm with very small step sizes and many different initial
conditions) with unscaled ¢! norm.

To illustrate the behavior of our algorithm, we first study the Iris dataset in a deterministic setting.
To obtain a baseline, we have executed Algorithm [2| using very small step sizes. Interestingly, the
Pareto set and front consist of multiple components, which we were only able to find by repeated
application of the continuation method with random initial conditions (multi-start). The resulting
solution is shown in blue in Fig. 2| where three connected components of the Pareto critical points
are clearly visible. As this approach is much too expensive for a realistic learning setting (the
calculations took close to a day for this simple problem), we compare this to a more realistic setting
in terms of step sizes. The result is shown via the red symbols. Motivated by our initial statement
on more sustainable network architectures, we have initialized our network with all weights being
very close to zero (the black “e” in Fig.|2) and then proceed along the front towards a less sparse but
more accurate architecture

As we do not need to compute every neural network parametrization from scratch, but use our
predictor-corrector scheme, the calculation of each individual point on the front is much less time-
consuming than classical DNN training. Moreover, computing the slope of the front from consec-
utive points allows for the online detection of relevant regions. Very small or very large values for
the slope indicate that small changes in one objective lead to a large improvement in the other one,
which is usually not of great interest in applications. Moreover, this can be used as an early stopping
indicator to avoid overfitting, as we will see in the next example.

4.2 RESULTS

Motivated by these promising results, we now study the MNIST data set in a stochastic setting
(i.e., using mini batches for the loss function). To obtain the initial point on the Pareto front using

>Due to symmetries, an initialization with all zeros poses problems in terms of which weights to activate,
etc., see Bieker et al.| (2022)) for details.

9 . 100
=—e— train == train acc
8 == test 98| —o= testacc
7 ® initial point 926
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loss £ norm
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Figure 3: @ The Pareto front for the MNIST data set (in black), where the initial point is shown in blue. The
red curve shows the performance on the validation set. Non-sparse networks clearly tend to overfit. (b) The
prediction accuracy versus £ norm, where the overfitting regime becomes apparent once more.
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Figure 4: Comparison between the predictor-corrector (CM) approach and weighted sum (WS) approach the
MNIST dataset. The figures show the same plots as Fig.[3] but include the WS solutions. A clustering around
the sparse and non-regularized solutions is evident, even though we have used equidistantly distributed weights

A

—e=— train » b =@ train (CM)
50 —e=— test 2000 =—@= test (CM)
—e— initial point # train (WS)
" *®  test (WS)
1500
£ £
S 30 S
< < 1000
- -
- =
20
500
10
0 I sz iz *
1.3 14 15 16 17 18 19 20 21 1.2 14 1.6 1.8 2.0 2.2
loss loss
(a) (b)

Figure 5: @) The Pareto front for the CIFAR10 data set (in black), where the initial point is shown in blue. The
red curve shows the performance on the test set. Non-sparse networks clearly tend to overfit. (b) The same
plots as @) but including the WS solutions. A clustering around the sparse and non-regularized solutions is
evident in the WS method plot, even though we have used equidistantly distributed weights \.

Algorithm[I] we perform 500 iterations. For the subsequent steps, 7 iterations are used for a predictor
step and 20 for a corrector step repeated 43 times i.e., Neone = 44. Figs. 3] (@) and (b) show the
Pareto front and accuracy versus £ norm, respectively. In this setting, we have started with a point in
the middle of the front in blue and then apply the continuation method twice (once in each direction).
As indicated above, we observe overfitting for non-sparse architectures, which indicates that we do
not necessarily have to pursue the regularization path until the end, but we can stop once the slope
of the Pareto front becomes too steep. This provides an alternative training procedure for DNNs
where in contrast to pruning we start sparse and then get less sparse only as long as we don’t run
into overfitting.

Fig. ] shows the comparison of our results to the weighted sum (WS) approach in Eq.[2} For the WS
approach, we compute 200 epochs per point on the front repeated 44 times i.e., Ny = 44 equidis-
tantly distributed weights A, where A € [0,1]. In total the WS approach needs 5 times as many
epochs as the continuation method (Algorithm |2)) and therefore 5 times as many forward and back-
ward passes. We see also, that the WS approach results in clustering around the unregularized and
very sparse solutions, respectively. In contrast, we obtain a similar performance with a much sparser
architecture using continuation. This shows the superiority of the continuation method and also
highlights the randomness associated with simple regularization approaches when not performing
appropriate hyperparameter tuning.

To further test the performance of our algorithm on a higher-dimensional DNN, we extend our
experiment to a much more complex neural network architecture with two convolutional layers and
two linear layers having a total of 4, 742, 546 parameters as shown in table[I} We observe that our
method provides well-spread points for the Pareto front. Fig. [5a shows the initial point obtained
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Data (parameters) Method Num Computation . Accuracy .
. . . Training Testing
iterations time (secs)
Accuracy Accuracy
WS 49.28e6 1140 98.83% 94.94%
MNIST (16, 330)
CM 9.3e6 329 97.92% 95.66%
WS 1.77¢6 575 68.81% 38.08%
CIFARI0 (4, 742, 546)
CM 1.95e6 1193 52.64% 50.93%

Table 1: Settings and Results on MNIST and CIFARI10 dataset. For each metric, the best performance per
architecture is in bold.

after 2000 iterations and the subsequent points obtained using the predictor step (7 iterations) and
corrector step (25 iterations) for a total of 20 points on the front.

Fig.[5b]shows the comparison of the CM with the WSS for the CIFAR10 dataset and it can be observed
once again—as for MNIST—that the WS yields clusters at the minima of the individual objectives
and tends to overfit. For the WS method, an epoch size of 118 for each 20 points on the front is
used with A € [0,1]. The CM provides a good trade-off between sparsity and loss in DNNs, not
just a very sparse DNN. Hence, we obtain a well-structured regularization path for nonlinear high
dimensional DNNS.

Finally, we note that once an initial point on the Pareto front for the predictor-corrector method
(CM) is identified, which is comparable to the complexity of the scalarized problem, the follow-up
computations require fewer iterations and are much cheaper, when compared with the WS method.

5 CONCLUSION

We have presented an extension of regularization paths from linear models to high-dimensional
nonlinear deep learning models. This was achieved by extending well-known continuation meth-
ods from multiobjective optimization to non-smooth problems and by introducing more efficient
predictor and corrector steps. The resulting algorithm shows a performance that is suitable for high-
dimensional learning problems.

Moreover, we have demonstrated that starting with sparse models can help to avoid overfitting and
significantly reduce the size of neural network models. Due to the small training effort of consec-
utive points on the Pareto front, this presents an alternative, structured way to deep neural network
training, which pursues the opposite direction than pruning methods do. Starting sparse, we increase
the number of weights only as long as we do not obtain a too-steep Pareto front, as this suggests
overfitting.

For future work, we will consider more objectives. Our approach works very well on extremely
high-dimensional problems (e.g., CIFAR-10) with two objectives, where the Pareto front is a line.
Extending our work to cases with more than two objective functions will require significant exten-
sions to the concept of adaptive Pareto exploration (e.g., (Schiitze et al.||2019). Since the Pareto set
becomes a higher-dimensional object, it will no longer be useful to compute the entire set but steer
along desired directions in order to meet a decision maker’s desired trade-off.
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