
Published as a conference paper at ICLR 2022

ONLINE CONTINUAL LEARNING ON CLASS INCRE-
MENTAL BLURRY TASK CONFIGURATION WITH ANY-
TIME INFERENCE

Hyunseo Koh1,3,* Dahyun Kim2,3,* Jung-Woo Ha3 Jonghyun Choi3,4,†
1GIST, South Korea 2Upstage AI Research 3NAVER AI Lab. 4Yonsei University
hyunseo8157@gm.gist.ac.kr, kdahyun@upstage.ai
jungwoo.ha@navercorp.com, jc@yonsei.ac.kr

ABSTRACT

Despite rapid advances in continual learning, a large body of research is devoted to
improving performance in the existing setups. While a handful of work do propose
new continual learning setups, they still lack practicality in certain aspects. For
better practicality, we first propose a novel continual learning setup that is online,
task-free, class-incremental, of blurry task boundaries and subject to inference
queries at any moment. We additionally propose a new metric to better measure
the performance of the continual learning methods subject to inference queries
at any moment. To address the challenging setup and evaluation protocol, we
propose an effective method that employs a new memory management scheme
and novel learning techniques. Our empirical validation demonstrates that the
proposed method outperforms prior arts by large margins. Code and data splits
are available at https://github.com/naver-ai/i-Blurry.

1 INTRODUCTION

Continual learning (CL) is a learning scenario where a model learns from a continuous and online
stream of data and is regarded as a more realistic and practical learning setup than offline learning on
a fixed dataset (He et al., 2020). However, many CL methods still focus on the offline setup (Kirk-
patrick et al., 2017; Rebuffi et al., 2017; Saha et al., 2021) instead of the more realistic online setup.
These methods assume access to a large storage, storing the entire data of the current task and it-
erating on it multiple times. On the other hand, we are interested extensively in the more realistic
online setup where only a small memory is allowed as storage. Meanwhile, even for the online CL
methods, we argue they have room for more practical and realistic improvements concerning mul-
tiple crucial aspects. The aspects include the class distributions such as the disjoint (Rebuffi et al.,
2017) or the blurry (Aljundi et al., 2019c) splits and the evaluation metric that focuses only on the
task accuracy such as average task accuracy (Aavg).

The two main assumptions on the class distributions in existing CL setups, i.e., the disjoint and blurry
splits, are less realistic for the following reasons. The disjoint split assumes no classes overlap over
different tasks; already observed classes will never appear again.

The above is not plausible because already observed classes can still appear later on in real-world
scenarios (see Fig. 2 of (Bang et al., 2021)). On the other hand, in the blurry split (Aljundi et al.,
2019c) no new classes appear after the first task even though the split assumes overlapping classes
over tasks. This is also not plausible as observing new classes is common in real-world scenarios.

The typical evaluation metric such as Aavg in which the accuracy is measured only at the task
transition is also less realistic. It implicitly assumes that no inference queries occur in the middle of
a task. However, in real-world scenarios, inference queries can occur at any-time. Moreover, there
is no explicit task transition boundary in most real-world scenarios. Thus, it is desirable for CL
∗ indicates equal contribution.
† indicates corresponding author.
This work was done while HK, DK and JC were interns and an AI technical advisor at NAVER AI Lab.

1

https://github.com/naver-ai/i-Blurry

Published as a conference paper at ICLR 2022

models to provide good inference results at any time. To accurately evaluate whether a CL model is
effective at such ‘any-time’ inference, we need a new metric for CL models.

In order to address the issues of the current CL setups, we propose a new CL setup that is more
realistic and practical by considering the following criteria: First, the class distribution is comprised
of the advantages from both blurry and disjoint. That is, we assume that the model continuously
encounters new classes as tasks continue, i.e., class-incremental and that classes overlap across
tasks, i.e., blurry task boundaries, while not suffering from the restrictions of blurry and disjoint.
Second, the model is evaluated throughout training and inference such that it can be evaluated for
any-time inference. We call this new continual learning setup ‘i-Blurry’.

For the i-Blurry setup, we first propose a plausible baseline using experience replay (ER) with reser-
voir sampling and a tuned learning rate scheduling. While existing online CL methods are applicable
to the i-Blurry setup, they perform only marginally better than our baseline or often worse.

To better handle the i-Blurry setup, we propose a novel continual learning method, which improves
the baseline in three aspects. We design a new memory management scheme to discard samples
using a per-sample importance score that reflects how useful a sample is for training. We then
propose to draw training samples only from the memory instead of drawing them from both memory
and the online stream as is done in ER. Finally, we propose a new learning rate scheduling to
adaptively decide whether to increase or decrease the learning rate based on the loss trajectory,
i.e. a data-driven manner. To evaluate the algorithms in the new setup, we evaluate methods by
conventional metrics, and further define a new metric called ‘area under the curve of accuracy’
(AAUC) which measures the model’s accuracy throughout training.

We summarize our contributions as follows:

• Proposing a new CL setup called i-Blurry, which addresses a more realistic setting that is online,
task-free, class-incremental, of blurry task boundaries, and subject to any-time inference.

• Proposing a novel online and task-free CL method by a new memory management, memory usage,
and learning rate scheduling strategy.

• Outperforming existing CL models by large margins on multiple datasets and settings.
• Proposing a new metric to better measure a CL model’s capability for the desirable any-time

inference.

2 RELATED WORK

Continual learning setups. There are many CL setups that have been proposed to reflect the real-
world scenario of training a learning model from a stream of data (Prabhu et al., 2020). We catego-
rize them in the following aspects for brevity.

First, we categorize them into (1) task-incremental (task-IL) and (2) class-incremental learning
(class-IL), depending on whether the task-ID is given at test time. Task-IL, also called multi-head
setup, assumes that task-ID is given at test time (Lopez-Paz & Ranzato, 2017; Aljundi et al., 2018;
Chaudhry et al., 2019). In contrast, in class-IL, or single-head setup, task-ID is not given at test
time and has to be inferred (Rebuffi et al., 2017; Wu et al., 2019; Aljundi et al., 2019a). Class-IL
is more challenging than task-IL, but is also more realistic since task-ID will not likely be given in
the real-world scenario (Prabhu et al., 2020). Most CL works assume that task ID is provided at
training time, allowing CL methods to utilize the task ID to save model parameters at task bound-
aries (Kirkpatrick et al., 2017; Chaudhry et al., 2018b) for later use. However, this assumption is
impractical (Lee et al., 2019) since real-world data usually do not have clear task boundaries. To
address this issue, a task-free setup (Aljundi et al., 2019b), where task-ID at training is not avail-
able, has been proposed. We focus extensively on the task-free setup as it is challenging and being
actively investigated recently (Kim et al., 2020; Lee et al., 2019; Aljundi et al., 2019c).

We now categorize CL setups into disjoint and blurry setup by how the data split is configured. In
the disjoint task setup, each task consists of a set of classes disjoint from all other tasks. But the
disjoint setup is less realistic as the classes in the real-world can appear at any time not only in a
disjoint manner. Recently, to make the setup more realistic, a blurry task setup has been proposed
and investigated (Aljundi et al., 2019c; Prabhu et al., 2020; Bang et al., 2021), where 100 −M%
of the sampels are from the dominant class of the task and M% of the samples are from all classes,

2

Published as a conference paper at ICLR 2022

where M is the blurry level (Aljundi et al., 2019c). However, the blurry setup assumes no class is
added in new tasks, i.e., not class-incremental, which makes the setup still not quite realistic.

Finally, depending on how many samples are streamed at a time, we categorize CL setups into
online (Rolnick et al., 2018; Aljundi et al., 2019a; Chaudhry et al., 2019) and offline (Wu et al.,
2019; Rebuffi et al., 2017; Chaudhry et al., 2018b; Castro et al., 2018). In the offline setup, all data
from the current task can be used an unlimited number of times. This is impractical since it requires
additional memory of size equal to the current task’s data. For the online setup, there are many
notions of ‘online’ that differs in each literature. Prabhu et al. (2020); Bang et al. (2021) refer online
to a setup using each streamed sample only once to train a model while Aljundi et al. (2019c;a) refer
online to a setup where only one or a few samples are streamed at a time. We follow the latter as the
former allows storing the whole task’s data, which is similar to offline and less realistic.

In this work, we propose a novel CL setup that is online, task-free, class-incremental, of blurry task
boundaries, and subject to any-time inference as the most realistic setup for continual learning. Note
that task-free and class-incremental are compatible (Jin et al., 2020; van de Ven et al., 2021).

Continual learning methods. Given neural networks would suffer from catastrophic forget-
ting (McCloskey & Neal, 1989; Ratcliff, 1990), the online nature of streaming data in continual
learning generally aggravates the issue. To alleviate the forgetting, there are various proposals to
store the previous task information; (1) regularization, (2) replay, and (3) parameter isolation.

(1) Regularization methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Lee et al., 2017b; Ebrahimi
et al., 2020) store previous task information in the form of model priors and use it for regularizing the
neural network currently being trained. (2) Replay methods store a subset of the samples from the
previous tasks in an episodic memory (Rebuffi et al., 2017; Castro et al., 2018; Chaudhry et al., 2019;
Wu et al., 2019; Kim et al., 2019) or keep a generative model that is trained to generate previous
task samples (Shin et al., 2017; Wu et al., 2018; Hu et al., 2019; Cong et al., 2020). The sampled or
generated examplars are replayed on future tasks and used for distillation, constrained training, or
joint training. (3) Parameter isolation methods augment the networks (Rusu et al., 2016; Lee et al.,
2017a; Aljundi et al., 2017) or decompose the network into subnetworks for each task (Mallya &
Lazebnik, 2018; Cheung et al., 2019; Yoon et al., 2020).

Since (1), (2), and (3) all utilize different ways of storing information that incurs parameter storage
costs, episodic memory requirement and increase in network size respectively, a fair comparison
among the methods is not straighforward. We mostly compare our method with episodic memory-
based methods (Aljundi et al., 2019a; Prabhu et al., 2020; Bang et al., 2021) due to performance, but
also with methods that use regularization as well (Chaudhry et al., 2018b; Wu et al., 2019).

Online continual learning. Despite being more realistic (Losing et al., 2018; He et al., 2020),
online CL have not been popular (Prabhu et al., 2020) due to the difficulty and subtle differences in
the setups in the literature. ER (Rolnick et al., 2018) is a simple yet strong episodic memory-based
online CL method using reservoir sampling for memory management and jointly trains a model
with half of the batch sampled from memory. Many online CL methods are based on ER (Aljundi
et al., 2019c;a). GSS (Aljundi et al., 2019c) selects samples based on cosine similarity of gradients.
MIR (Aljundi et al., 2019a) retrieves maximally interfering samples from memory to use for training.

Different from ER, A-GEM (Chaudhry et al., 2019) uses the memory to enforce constraints on the
loss trajectory of the stored samples. GDumb (Prabhu et al., 2020) only updates the memory during
training phase and trains from scratch at the test time only using the memory.

The recently proposed RM (Bang et al., 2021) uses an uncertainty-based memory sampling and
two-stage training scheme where the model trains for one epoch on the streamed samples and trains
extensively only using the memory at the end of each task, delaying most of the learning to the
end of each task. The uncertainty-based memory sampling is not well-suited for online CL and the
two-stage training leads to poor any-time inference. Our method outperforms all online CL methods
introduced in this section while strictly adhering to the online and task-free restrictions.

3 PROPOSED CONTINUAL LEARNING SETUP: I-BLURRY

For a more realistic and practical CL setup, considering real-world scenarios, we strictly adhere to
the online and task-free CL setup (Lee et al., 2019; Losing et al., 2018). Specifically, we propose

3

Published as a conference paper at ICLR 2022

N% Disjoint

BlurryM
Task @ t+1Task @ t

Class partitioning in i-Blurry-N-M

class

sa

m
pl

es

Class 5

Class 17

Class distribution in time

Class 13

Class 504

Class 245

Class 784
Always appears across tasks

Only appears at fixed tasks

class

sa

m
pl

es

Figure 1: i-Blurry-N -M split. N% of classes are partitioned into the disjoint set and the rest into
the BlurryM set where M denotes the blurry level (Aljundi et al., 2019c). To form the i-Blurry-
N -M task splits, we draw training samples from a uniform distribution from the ‘disjoint’ or the
‘BlurryM ’ set (Aljundi et al., 2019c). The ‘blurry’ classes always appear over the tasks while
disjoint classes gradually appear.

0 10k 20k 30k 40k 50k
samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

AAUC: 23.35%

Aavg: 61.52% RM

0 10k 20k 30k 40k 50k
samples

AAUC: 70.26%

Aavg: 73.90% CLIB (Ours)

(a) Rainbow Memory (RM) (Bang et al., 2021) (b) CLIB

Figure 2: Comparison ofAAUC withAavg . (a) online version of RM (Bang et al., 2021) (b) proposed
CLIB. The two-stage method delays most of the training to the end of the task. The accuracy-to-{#
of samples} plot shows that our method is more effective at any time inference than the two-stage
method. The difference in Aavg for the two methods is much smaller than that of in AAUC, implying
that AAUC captures the effectiveness at any-time inference better.

a novel CL setup (named as i-Blurry), with two characteristics: 1) class distribution being class
incremental and having blurry task boundaries and 2) allowing for any-time inference.

i-Blurry-N-M Split. We partition the classes into groups where N% of the classes are for disjoint
and the rest of 100−N% of the classes are used for BlurryM sampling (Aljundi et al., 2019c), where
M is the blurry level. Once we determine the partition, we draw samples from the partitioned groups.
We call the resulting sequence of tasks as i-Blurry-N -M split. The i-Blurry-N -M splits feature
both class-incremental and blurry task boundaries. Note that the i-Blurry-N -M splits generalize
previous CL setups. For instance, N = 100 is the disjoint split as there are no blurry classes. N = 0
is the BlurryM split (Aljundi et al., 2019c) as there are no disjoint classes. M = 0 is the disjoint
split as the blurry level is M = 0 (Bang et al., 2021). We use multiple i-Blurry-N -M splits for
reliable empirical validations and share the splits. Fig. 1 illustrates the i-Blurry-N -M split.

A New Metric – Area Under the Curve of Accuracy (AAUC). Average accuracy (i.e., Aavg =
1
T

∑T
i=1Ai where Ai is the accuracy at the end of the ith task) is one of the widely used measures

in continual learning. But Aavg only tells us how good a CL model is at the few discrete moments
of task transitions (5− 10 times for most CL setups) when the model could be queried at any time.
Thus, a CL method could be poor at any-time inference but the Aavg may be insufficient to deduce
that conclusion due to its temporal sparsity of measurement. For example, Fig. 2 compares the
online version of RM (Bang et al., 2021), which conducts most of the training by iterating over
the memory at the end of a task, with our method. RM is shown as it is a very recent method
that performs well on Aavg but particularly poor at any-time inference. Only evaluating with Aavg
might give the false sense that the difference between the two methods is not severe. However,
the accuracy-to-{# of samples} curve reveals that our method shows much more consistently high
accuracy during training, implying that our method is more suitable for any-time inference than RM.
To alleviate the limitations of Aavg, we shorten the accuracy measuring frequency to after every ∆n

4

Published as a conference paper at ICLR 2022

Sample-wise Importance

Online Stream

Model
Memory

Train

Random
Sampling User

Inference Query
?

Inference Result
Adaptive LR

Environment

?

? ?

Sample-wise Importance
Sampling

Figure 3: Overview of the proposed CLIB. We compute sample-wise importance during training to
manage our memory. Note that we only draw training samples from the memory whereas ER based
methods draw them from both the memory and the online stream.

samples are observed instead of at discrete task transitions. The new metric is equivalent to the area
under the curve (AUC) of the accuracy-to-{# of samples} curve for CL methods when ∆n = 1. We
call it area under the curve of accuracy (AAUC):

AAUC =

k∑
i=1

f(i ·∆n) ·∆n, (1)

where the step size ∆n is the number of samples observed between inference queries and f(·) is
the curve in the accuracy-to-{# of samples} plot. High AAUC corresponds to a CL method that
consistently maintains high accuracy throughout training.

The large difference in AAUC (see Fig. 4) implies that delaying strategies like the two-stage training
scheme are not effective for any-time inference, a conclusion harder to deduce with just Aavg .

4 METHOD

4.1 A BASELINE FOR I-BLURRY SETUP

To address the realistic i-Blurry setup, we establish a baseline for the challenging online and task-free
i-Blurry setup. For the memory management policy, we use reservoir sampling (Vitter, 1985) and
for memory usage, we we use experience replay (ER). For the LR scheduling, we use an exponential
LR schedule but reset the LR when a new class is encountered. Please see Sec. A.1 for details.

Note that the above baseline still has room to improve. The reservoir sampling does not consider
whether one sample could be more useful for training than the others. ER uses samples from the
stream directly, which can skew the training of CL models to recently observed samples. While
the exponential with reset does increase the LR periodically, the sudden changes may disrupt the
CL model. Thus, we discuss how we can improve the baseline in the following sections. The final
method with all the improvements is illustrated in Fig. 3.

4.2 SAMPLE-WISE IMPORTANCE BASED MEMORY MANAGEMENT

In reservoir sampling, the samples are removed from the memory at random. Inspired by works on
sample importance (Kloek & Van Dijk, 1978; LeCun et al., 1990; Chang et al., 2017; Katharopoulos
& Fleuret, 2018; Csiba & Richtárik, 2018), we propose a novel sampling strategy specific for CL
that removes samples from the memory based on sample-wise importance as following Theorem 1.

Theorem 1. Let C = M ∪ {(xnew, ynew)}, M be a memory from the previous time step,
(xnew, ynew) be the newly encountered sample, l(·) be the loss and θ be the model parameters.
Assuming that the model trained with the optimal memory,M∗ will induce maximal loss decrease
on C, the optimal memory is given byM∗ = C \ {(x̄, ȳ)} with

(x̄, ȳ) = arg min
(xi,yi)∈C

Eθ

 ∑
(x,y)∈C

l(x, y; θ)− l (x, y; θ −∇θl(xi, yi; θ))

 . (2)

Proof. Please see Sec. A.2 for the proof.

5

Published as a conference paper at ICLR 2022

Theorem 1 states that when a new sample is appended to the memory and a sample has to be dis-
carded, we should discard the sample that incurs the least loss decrease i.e., least useful for training.
We solve Eq. 2 by keeping track of the sample-wise importanceHi:

Hi = Eθ

 ∑
(x,y)∈C

l(x, y; θ)− l (x, y; θ −∇θl(xi, yi; θ))

 . (3)

Intuitively, H is the expected loss decrease when the associated sample is used for training. We
update H associated with the samples used for training after every training iteration. Specifically,
the model is trained with a random batch from the memory. Then, for all samples in C, we measure
the loss difference before and after training with the batch. If the loss decreases, the importance
scores of the samples in the batch increase and vice versa. Note that because the importance score
of a sample is relative to that of other samples in the memory, when the importance scores of the
samples in the batch decrease, the scores of the samples not in the batch increase comparatively.
Thus, two types of samples have high importance scores; 1) samples that were in the batch when the
loss decreased and 2) samples that were not in the batch when the loss increased.

The expectation in Eq. 3 is taken over θ’s optimization trajectory i.e., over time. For computational
efficiency, we use the exponential moving average as empirical estimates instead. The empirical
estimates are calculated by the discounted sum of the differences between the actual loss decrease
and the predicted loss decrease (see Alg. 1). The memory is updated whenever a new sample is
encountered, and the full process is given in Alg. 2. The memory management strategy significantly
outperforms reservoir sampling, especially with memory only training.

4.3 MEMORY ONLY TRAINING

ER uses joint training where half of the training batch is obtained from the online stream and the
other half from memory. However, we argue that using the streamed samples directly will skew the
training to favor the recent samples more. Thus, we propose to use samples only from the memory
for training, without using the streamed samples. The memory works as a distribution stabilizer
for streamed samples through the memory update process (see Sec. 4.2), and samples are used for
training only with the memory. We observe that the memory only training improves the performance
despite its simple nature. Note that this is different from Prabhu et al. (2020) as we train with the
memory during the online stream but Prabhu et al. (2020) does not.

4.4 ADAPTIVE LEARNING RATE SCHEDULING

The exponential with reset scheduler resets the LR to the initial value when a new class is encoun-
tered. As the reset occurs regardless of the current LR value, it could result in a large change in LR
value. We argue that such abrupt changes may harm the knowledge learned from previous samples.

Instead, we propose a new data-driven LR scheduling scheme that adaptively changes the LR in a
data-driven manner based on how good the LR is for optimizing over the memory.

Specifically, from the current base LR η̄ and step size γ < 1, we try both a high LR η̄/γ and a low
LR η̄ · γ for training. For each LR, we keep a history of length m that tracks the loss decrease for
each LR. When both histories are full, we perform a Student’s t-test with significance level α = 0.05
to compare the LRs. If one LR is better, the base LR is set to the better LR, i.e., η̄γ or η̄ · γ.

We depict this scheme in Alg. 3 in Sec. A.4. The adaptive LR is important for CL methods because
the data distribution changes over time and adapting to the current training data is more useful.

With all the proposed components, we call our method Continual Learning for i-Blurry or (CLIB).

5 EXPERIMENTS

Experimental Setup. We use the CIFAR10, CIFAR100, TinyImageNet, and ImageNet datasets for
empirical validations. We use the i-Blurry setup with N = 50 and M = 10 (i-Blurry-50-10) for
our experiments unless otherwise stated. All results are averaged over 3 independent runs except
ImageNet (Wu et al., 2019; Bang et al., 2021; Prabhu et al., 2020). For metrics, we use the average

6

Published as a conference paper at ICLR 2022

Methods CIFAR10 CIFAR100 TinyImageNet ImageNet

AAUC Aavg AAUC Aavg AAUC Aavg AAUC Aavg

Joint Training‡ (Soft Upper Bound) 96.03 79.89 53.05 69.26

EWC++ (Kirkpatrick et al., 2017) 57.34±2.10 60.33±2.73 35.35±1.96 38.78±2.32 22.26±1.15 24.39±1.18 24.81 26.21
BiC (Wu et al., 2019) 58.38±0.54 61.49±0.68 33.51±3.04 37.61±3.00 22.80±0.94 24.90±1.07 27.41 28.38
ER-MIR (Aljundi et al., 2019a) 57.28±2.43 61.93±3.35 35.35±1.41 38.28±1.15 22.10±1.14 24.54±1.26 20.48 20.68
GDumb (Prabhu et al., 2020) 53.20±1.93 55.27±2.69 32.84±0.45 34.03±0.89 18.17±0.19 18.69±0.45 14.41 14.21
RM† (Bang et al., 2021) 23.00±1.43 61.52±3.69 8.63±0.19 33.27±1.59 5.74±0.30 17.04±0.77 6.22 28.30
Baseline-ER (Sec. A.1) 57.46±2.25 60.17±2.96 35.61±2.08 39.10±2.02 22.45±1.15 24.54±1.26 25.16 26.50

CLIB (Ours) 70.26±1.28 73.90±0.22 46.67±0.79 49.22±0.79 23.87±0.68 25.05±0.52 28.16 28.88

Table 1: Comparison of online CL methods on the i-Blurry setup for CIFAR10, CIFAR100, Tiny-
ImageNet and ImageNet. ‘Joint Training‡’ shows the final accuracy of non-CL joint training as a
soft upper bound where all relevant hyper-parameters were kept consistent with other compared CL
methods. CLIB outperforms all other CL methods by large margins on both the AAUC and the Aavg .

0 10k 20k 30k 40k 50k
samples

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0 10k 20k 30k 40k 50k
samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0 20k 40k 60k 80k 100k
samples

0.00
0.05
0.10
0.15
0.20
0.25
0.30

CLIB (Ours) ER (baseline) EWC++ BiC ER-MIR GDumb RM

0 256k 512k 768k 1.0m 1.3m
samples

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

(a) CIFAR10 (b) CIFAR100 (c) TinyImageNet (d) ImageNet

Figure 4: Accuracy-to-{number of samples} for various CL methods on CIFAR10, CIFAR100,
TinyImageNet and ImageNet Our CLIB is consistent at maintaining high accuracy throughout in-
ference while other CL methods are not as consistent.
accuracy (Aavg) and the proposed AAUC (see Sec. 3). Additional discussion with other metrics such
as the forgetting measure (Flast) can be found in Sec. A.10.

Implementation Details. For all methods, we fix the batch size and the number of updates per
streamed samples observed when possible. For CIFAR10, we use a batch size of 16 and 1 updates per
streamed sample. When using ER, this translates to 8 updates using the same streamed batch, since
each batch contains 8 streamed samples. For CIFAR100, we use a batch size of 16 and 3 updates
per streamed sample. For TinyImageNet, we use a batch size of 32 and 3 updates per streamed
sample. For ImageNet, we use a batch size of 256 and 1 update per every 4 streamed samples. We
use ResNet-18 as the model for CIFAR10 and ResNet-34 for CIFAR100 and TinyImageNet. For
all methods, we apply AutoAugment (Cubuk et al., 2019) and CutMix (Yun et al., 2019) following
RM (Bang et al., 2021). For memory size, we use 500, 2000, 4000, 20000 for CIFAR10, CIFAR100,
TinyImageNet, ImageNet, respectively. We use 5 tasks for CIFAR10, CIFAR100, and TinyImageNet
and 10 tasks for ImageNet. We follow prior works (Bang et al., 2021; Prabhu et al., 2020) for
choosing number of updates per sample, memory size, batch size, and number of tasks. Additional
analysis on the sample memory size and number of tasks can be found in Sec. A.6. Adam optimizer
with initial LR of 0.0003 is used. Exponential with reset LR schedule is applied for all methods
except ours and GDumb, with γ = 0.9999 for CIFAR datasets and γ = 0.99995 for TinyImageNet
and ImageNet. Ours use adaptive LR with γ = 0.95,m = 10 for all datasets, GDumb (Prabhu
et al., 2020) and RM (Bang et al., 2021) follow original settings in their respective paper. All
experiments were performed based on NAVER Smart Machine Learning (NSML) platform (Kim
et al., 2018; Sung et al., 2017). All code and i-Blurry-N -M splits (see Supp.) is at https:
//github.com/naver-ai/i-Blurry.

Baselines. We compare our method with both online CL methods and ones that can be extended
to the online setting; EWC++ (Chaudhry et al., 2018b), BiC (Wu et al., 2019), GDumb (Prabhu
et al., 2020), A-GEM (Chaudhry et al., 2019), MIR (Aljundi et al., 2019a) and RM (Bang et al.,
2021). ·† indicates that the two-stage training scheme (Bang et al., 2021) is used. For details of the
online versions of these methods, see Sec. A.5. Note that A-GEM performs particularly worse (also
observed in (Prabhu et al., 2020; Mai et al., 2021)) as A-GEM was designed for the task-incremental
setup and our setting is task-free. We discuss the comparisons to A-GEM in Sec. A.7.

5.1 RESULTS ON THE I-BLURRY SETUP

In all our experiments, we denote the best result for each of the metrics in bold.

7

https://github.com/naver-ai/i-Blurry
https://github.com/naver-ai/i-Blurry

Published as a conference paper at ICLR 2022

Varying N N = 0 (Blurry) N = 50 (i-Blurry) N = 100 (Disjoint)

AAUC Aavg AAUC Aavg AAUC Aavg

EWC++ 53.24±0.56 57.04±0.94 57.34±2.10 60.33±2.73 77.64±1.81 77.80±1.93
BiC 51.51±0.12 54.88±0.30 58.38±0.54 61.49±0.68 78.78±1.52 80.12±2.20

ER-MIR 52.21±0.85 56.33±0.47 57.28±2.43 61.93±3.35 76.49±1.97 78.20±2.01
GDumb 45.86±0.80 46.37±2.09 53.20±1.93 55.27±2.69 65.27±1.54 66.74±2.39

RM† 22.54±1.11 54.07±0.70 23.00±1.43 61.52±3.69 33.17±3.71 66.67±2.38
Baseline-ER 53.28±0.57 57.13±1.01 57.46±2.25 60.17±2.96 77.82±2.06 77.47±2.69

CLIB (Ours) 68.87±0.83 72.79±0.96 70.26±1.28 73.90±0.22 78.58±2.09 77.96±3.28

Varying M M = 10 M = 30 M = 50

AAUC Aavg AAUC Aavg AAUC Aavg

EWC++ 57.34±2.10 60.33±2.73 65.71±2.20 69.94±3.01 68.01±0.85 73.26±2.33
BiC 58.38±0.54 61.49±0.68 65.88±3.24 70.31±4.88 68.08±3.72 73.33±1.21

ER-MIR 57.28±2.43 61.93±3.35 65.99±2.28 70.47±3.41 68.13±0.65 73.33±1.21
GDumb 53.20±1.93 55.27±2.69 54.73±1.54 54.63±2.39 53.86±0.59 52.82±1.24

RM† 23.00±1.43 61.52±3.69 26.60±1.74 61.52±0.48 28.32±5.08 59.32±4.57
Baseline-ER 57.46±2.25 60.17±2.96 65.92±2.25 70.04±2.87 68.26±0.84 73.16±1.49

CLIB (Ours) 70.26±1.28 73.90±0.22 75.04±2.81 77.87±2.57 75.14±1.27 78.30±2.01

Table 2: Analysis on various values of N (top) and M (bottom) in the i-Blurry-N -M setup using
CIFAR10 dataset. For varying N , we use M = 10. For varying M , we use N = 50. Note that
N = 0 corresponds to the blurry split and N = 100 corresponds to the disjoint split. For N = 100,
CLIB outperforms or performs on par with other CL methods. For N = 0, the gap between CLIB
and other methods widens. For N = 50, CLIB again outperforms all comparisons by large margins.
For varying M , CLIB outperforms all comparisons excepting only the Aavg when M = 0.

We first compare various online CL methods in the i-Blurry setup on CIFAR10, CIFAR100, TinyIm-
ageNet and ImageNet in Table 1. On CIFAR10, proposed CLIB outperforms all other CL methods
by large margins; at least +12.67% in AAUC and +12.85% in Aavg . On CIFAR100, CLIB also out-
performs all other methods by large margins; at least +11.47% in AAUC and +10.18% in Aavg . On
TinyImageNet, all methods score very low. Nonetheless, CLIB outperforms other CL methods by
at least +2.71% in AAUC and +1.90% in Aavg . Surprisingly on ImageNet, most methods perform
slightly better than on TinyImagenet. We believe the reason is that the samples per class is the same
with TinyImageNet (e.g., 20) but ImageNet has higher resolution images, making learning from
those images easier than TinyImageNet. On ImageNet, CLIB still outperforms other CL methods
by at least +2.60% in AAUC and +2.06% in Aavg. Since, CLIB uses memory only training scheme,
the distribution of the training samples are stabilized through the memory (see Sec. 4.3) which is
helpful in the i-Blurry setup where the model encounters samples from more varied classes.

Note that Rainbow Memory (RM) (Bang et al., 2021) exhibits a very different trend than other
compared methods. On TinyImageNet, it performs poorly. We conjecture that the delayed learning
from the two-stage training is particularly detrimental in larger datasets with longer training duration
and tasks such as TinyImageNet. On CIFAR10 and CIFAR100, RM performs reasonably well in
Aavg but poorly inAAUC. This verifies that its two-stage training method delays most of the learning
to the end of each task, resulting in a poor any-time inference performance measured byAAUC. Note
that Aavg fails to capture this; on CIFAR10, the difference in Aavg for CLIB and RM is +13.27%
which is similar to other methods but the difference forAAUC is +47.55% which is noticeably larger
than other methods. Similar trends can be found on other datasets as well.

We also show the accuracy-to-{# of samples} curve for the CL methods on CIFAR10, CIFAR100,
TinyImageNet and ImageNet for comprehensive analysis throughout training in Fig 4. Interestingly,
RM shows a surged accuracy only at the task transitions due to its two-stage training method and
the accuracy is overall low. Additionally, GDumb shows a severe decreasing trend in accuracy as
tasks progress. It is because the ‘Dumb Learner’ trains from scratch at every inference query leading
to accuracy degradation. In contrast, CLIB not only outperforms other methods but also shows the
most consistent accuracy at all times. More discussion of other methods are in Sec. A.9.

5.2 ANALYSIS ON DISJOINT CLASS PERCENTAGES (N) AND BLURRY LEVELS (M).

We further investigate the effect of differentN andM values in the i-Blurry-N-M splits with various
CL methods and summarize the results for varying values of the disjoint class percentages such as

8

Published as a conference paper at ICLR 2022

Methods CIFAR10 CIFAR100

AAUC Aavg AAUC Aavg

CLIB 70.26±1.28 73.90±0.22 46.67±0.79 49.22±0.79
w/o Sample Importance Mem. (Sec.4.2) 53.75±2.11 56.31±2.56 36.59±1.22 38.59±1.21
w/o Memory-only training (Sec.4.3) 67.06±1.51 71.65±1.87 44.63±0.22 48.66±0.39
w/o Adaptive LR scheduling (Sec.4.4) 69.70±1.34 73.06±1.35 45.01±0.22 48.97±0.12

Table 3: Ablations for proposed components of our method using CIFAR10 and CIFAR100 dataset.
All proposed components improve the performance, with sample-wise importance based memory
management providing the biggest gains. While adaptive LR scheduling provides small gains in
CIFAR10, the gains increase in the more challenging CIFAR100.

N = 0, 50, 100 in Table 2 (top). For N = 0, CLIB outperforms other methods by at least +16.59%
in AAUC and +16.36% in Aavg . For N = 100, the performance is similar for the majority of the
methods, with CLIB being the best in AAUC. For N = 50, CLIB outperforms all comparisons by at
least +12.55% in AAUC and +13.31% in Aavg . Even though CLIB was designed with the i-Blurry
setup in mind, it also outperforms other CL methods in conventional setups such as the N = 100
(disjoint) or the N = 0 (blurry) setups. It implies that CLIB is generally applicable to online CL
setups and not restricted to just the i-Blurry setup. Meanwhile, except GDumb, all methods show
similar performance on the N = 100 (disjoint) setup. The results imply that the i-Blurry setup
differentiates CL methods better than the more traditionally used disjoint setup.

Following Bang et al. (2021), we additionally summarize the results for varying values of the blurry
level such as M = 10, 30, 50 in Table 2 (bottom). We observe that CLIB again outperforms or
performs on par with other CL methods on various blurry levels.

5.3 ABLATION STUDIES

We show the ablation studies (on CIFAR10/100) for each of the proposed components in Table 3.

Sample-wise Importance Based Memory Management. We replace the ‘sample-wise importance
memory management’ module with the reservoir sampling. As shown in the table, the removal of our
memory management strategy degrades the performance in both AAUC and Aavg on both CIFAR10
and CIFAR100. As explained in Sec. 4.2, reservoir sampling removes samples at random, hence
samples are discarded without considering if some samples are more important than others. Thus,
using sample-wise importance to select which sample to discard greatly contributes to performance.

Memory Only Training. We replace the memory usage strategy from our memory only training
with ER. Training with ER means that samples from both the online stream and the memory are
used. Without the proposed memory only training scheme, the performance degrades across the
board by fair margins. As the streamed samples are being used directly without the sample memory
acting as a distribution regularizer (see Sec. 4.3), the CL model is more influenced by the recently
observed samples, skewing the training and resulting in worse performance.

Adaptive Learning Rate Scheduling. We change the LR scheduling from adaptive LR to expo-
nential with reset. The performance drop is larger in the more challenging CIFAR100 where more
training iterations make the ablated model suffer more from a lack of good adaptive LR scheduling.

6 CONCLUSION

We question the practicality of existing continual learning setups for real-world application and pro-
pose a novel CL setup named i-Blurry. It is online, task-free, class-incremental, has blurry task
boundaries, and is subject to any-time inference. Additionally, we propose a new metric to better
evaluate the effectiveness of any-time inference. To address this realistic CL setup, we propose
a method which uses per-sample memory management, memory only training, and adaptive LR
scheduling, named Continual Learning for i-Blurry (CLIB). Our proposed CLIB consistently out-
performs existing CL methods in multiple datasets and setting combinations by large margins.

9

Published as a conference paper at ICLR 2022

ETHICS STATEMENT

All continual learning (CL) methods including the proposed one would adapt and extend the already
trained AI model to recognize better with the streamed data. The CL methods will expedite the
deployment of AI systems to help humans by its versatility of adapting to a new environment out of
the factory or research labs. As all CL methods, however, would suffer from adversarial streamed
data as well as data bias, which may cause ethnic, gender or biased gender issues, the proposed
CLIB would not be an exception. Although the proposed CLIB has no intention to allow such
problematic cases, the method may be exposed to such threats. Relentless efforts should be made
to develop mechanisms to prevent such usage cases in order to make the continuously updating
machine learning models safer and enjoyable to be used by humans.

REPRODUCIBILITY STATEMENT

We take the reproducibility of the research very seriously and release all codes, data splits and
containers (e.g., Docker) that include the general framework, learned models, and downstream tasks
at https://github.com/naver-ai/i-Blurry.

ACKNOWLEDGEMENT

This work was partly supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No.2022R1A2C4002300) and Institute for Information
& communications Technology Promotion (IITP) grants funded by the Korea government (MSIT)
(No.2020-0-01361-003 and 2019-0-01842, Artificial Intelligence Graduate School Program (Yonsei
University, GIST), and No.2021-0-02068 Artificial Intelligence Innovation Hub)).

REFERENCES

R. Aljundi, P. Chakravarty, and T Tuytelaars. Expert Gate: Lifelong Learning with a Network of
Experts. In CVPR, 2017. 3

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In ECCV, 2018. 2

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. Advances
in Neural Information Processing Systems, 32:11849–11860, 2019a. 2, 3, 7, 15

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–
11263, 2019b. 2

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In NeurIPS, pp. 11816–11825, 2019c. 1, 2, 3, 4, 15, 17

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 8218–8227, 2021. 1, 2, 3, 4, 6, 7, 8, 9, 14,
15

Francisco M. Castro, Manuel J. Marin-Jimenez, Nicolas Guil, Cordelia Schmid, and Karteek Ala-
hari. End-to-end incremental learning. In ECCV, 2018. 3

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. Advances in Neural Information
Processing Systems, 30:1002–1012, 2017. 5

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In ECCV, 2018a. 17

10

https://github.com/naver-ai/i-Blurry

Published as a conference paper at ICLR 2022

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In ECCV, 2018b. 2,
3, 7, 15, 18, 20

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with A-GEM. In ICLR, 2019. 2, 3, 7, 15

B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. Olshausen. Superposition of Many Models
into One. In NeurIPS, 2019. 3

Yulai Cong, Miaoyun Zhao, J. Li, Sijia Wang, and L. Carin. GAN memory with no forgetting. In
NeurIPS, 2020. 3

Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. The Journal of Machine
Learning Research, 19(1):962–982, 2018. 5

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
Learning augmentation strategies from data. In CVPR, June 2019. 7

S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach. Uncertainty-Guided Continual Learning
with Bayesian Neural Networks. In ICLR, 2020. 3

J. He, R. Mao, Z. Shao, and F. Zhu. Incremental Learning In Online Scenario. In CVPR, 2020. 1, 3

Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma, Dongyan Zhao, and
Rui Yan. Overcoming catastrophic forgetting via model adaptation. In ICLR, 2019. 3

Xisen Jin, Junyi Du, and Xiang Ren. Gradient based memory editing for task-free continual learning.
arXiv preprint arXiv:2006.15294, 2020. 3

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018. 5

C. Kim, J. Jeong, and G. Kim. Imbalanced Continual Learning with Partitioning Reservoir Sam-
pling. In ECCV, 2020. 2

Dahyun Kim, Jihwan Bae, Yeonsik Jo, and Jonghyun Choi. Incremental learning with
maximum entropy regularization: Rethinking forgetting and intransigence. arXiv preprint
https://arxiv.org/abs/1902.00829, 2019. 3

Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong Kim, Heungseok Park, Soeun Park, Hyunwoo
Jo, KyungHyun Kim, Youngil Yang, Youngkwan Kim, et al. Nsml: Meet the mlaas platform with
a real-world case study. arXiv preprint arXiv:1810.09957, 2018. 7

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017. 1, 2, 3, 7, 14

Tuen Kloek and Herman K Van Dijk. Bayesian estimates of equation system parameters: an ap-
plication of integration by monte carlo. Econometrica: Journal of the Econometric Society, pp.
1–19, 1978. 5

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990. 5

Jeongtae Lee, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. ICLR, 2017a. 3

Sang-Woo Lee, Jin-Hwa Kim, JungWoo Ha, and Byoung-Tak Zhang. Overcoming catastrophic
forgetting by incremental moment matching. In NeurIPS, 2017b. 3

11

Published as a conference paper at ICLR 2022

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. In International Conference on Learning Representations,
2019. 2, 3

Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-
class incremental learning without forgetting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12245–12254, 2020. 14

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
NIPS, 2017. 2

Viktor Losing, Barbara Hammer, and Heiko Wersing. Incremental on-line learning: A review and
comparison of state of the art algorithms. Neurocomputing, 275:1261 – 1274, 2018. ISSN 0925-
2312. 3

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. arXiv preprint arXiv:2101.10423,
2021. 7, 14, 17, 18

A. Mallya and S. Lazebnik. PackNet: Adding Multiple Tasks to a Single Network by Iterative
Pruning. In CVPR, 2018. 3

M. McCloskey and Neal. Catastrophic interference in connectionist networks: The sequential learn-
ing problem. Psychology of Learning and Motivation, 24:109–165, 1989. 3

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the role of training regimes in continual learning. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
2020. 14

Ameya Prabhu, P. Torr, and Puneet K. Dokania. GDumb: A simple approach that questions our
progress in continual learning. In ECCV, 2020. 2, 3, 6, 7, 15, 17, 18

R. Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
forgetting functions. Psychological Review, 97(2):285–308, 1990. 3

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental classifier and representation learning. In CVPR, 2017. 1, 2, 3, 14, 15

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne. Experience
replay for continual learning. arXiv preprint arXiv:1811.11682, 2018. 3

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv,
abs/1606.04671, 2016. 3

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021. 1

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NeurIPS, 2017. 3

Nako Sung, Minkyu Kim, Hyunwoo Jo, Youngil Yang, Jingwoong Kim, Leonard Lausen, Youngk-
wan Kim, Gayoung Lee, Donghyun Kwak, Jung-Woo Ha, et al. Nsml: A machine learning
platform that enables you to focus on your models. arXiv preprint arXiv:1712.05902, 2017. 7

Gido M van de Ven, Zhe Li, and Andreas S Tolias. Class-incremental learning with generative
classifiers. In CVPR, 2021. 3

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985. 5

Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de Weijer, and Bogdan Raducanu.
Memory Replay GANs: learning to generate images from new categories without forgetting. In
NeurIPS, 2018. 3

12

Published as a conference paper at ICLR 2022

Yue Wu, Yan-Jia Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In CVPR, 2019. 2, 3, 6, 7, 15

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust continual
learning with additive parameter decomposition. In ICLR, 2020. 3

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, pp.
6023–6032, 2019. 7

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, 2017. 3

13

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 ADDITIONAL DISCUSSION FOR OUR BASELINE

In constructing our baseline, we used the reservoir sampling for memory management and ER for
memory usage. We used reservoir sampling as it is widely used in the online and task-free setups
with good performance. Note that in online CL, memory management policies that use the entire
task’s samples at once, such as herding selection (Rebuffi et al., 2017), mnemonics (Liu et al., 2020),
and rainbow memory (Bang et al., 2021) are inapplicable.
For the memory usage, we use ER which draws half of the training batch from the stream and the
other half from the memory, following a large number of online CL methods based on ER with good
performance (Mai et al., 2021).
For the LR scheduling, we first note that other CL methods use either (1) exponential decay (Rebuffi
et al., 2017; Kirkpatrick et al., 2017; Mirzadeh et al., 2020) or (2) constant LR. We do not use (1) as
it is hyper-parameter sensitive; the decay rate that works for CIFAR10 decayed the LR too quickly
for larger datasets such as CIFAR100. If the LR is decayed too fast, the LR becomes too small to
learn about new classes that are introduced in the future. Thus, we use exponential LR scheduler
with the modification that the LR is reset when a new class is observed. Comparing with the constant
LR, we obtain slightly better performance for EWC++ and our baseline on CIFAR10, as shown in
Table 9. Thus, we denote this LR schedule as the exponential with reset and use it in our baseline.

A.2 PROOF OF THEOREM 1

We give the proof of Theorem 1 below. Our assumption is that when selecting memoryM from a
set of candidates C, we should select M so that optimizing on M maximizes the loss decrease on C.
In equations, optimal memoryM∗ is

M∗ = arg max
M⊂C, |M|≤m

∑
(x′,y′)∈M

∑
(x,y)∈C

Eθ [l(x, y; θ)− l(x, y; θ −∇θl(x′, y′; θ))] (4)

= arg max
M⊂C, |M|≤m

 ∑
(x′,y′)∈C

∑
(x,y)∈C

Eθ [l(x, y; θ)− l (x, y; θ −∇θl(x′, y′; θ))]

−
∑

(x′,y′)∈C\M

∑
(x,y)∈C

Eθ [l(x, y; θ)− l (x, y; θ −∇θl(x′, y′; θ))]

 (5)

= arg min
M⊂C, |M|≤m

∑
(x′,y′)∈C\M

∑
(x,y)∈C

Eθ [l(x, y; θ)− l (x, y; θ −∇θl(x′, y′; θ))] , (6)

where θ is the model parameter, l is the loss function, and m is the memory size. Since we perform
memory update after every streamed sample, the problem reduces to selecting one sample (x̄, ȳ) to
remove when the memory is full. Thus, C \M = {(x̄, ȳ)}. The optimal removed sample (x̄∗, ȳ∗)
would be

(x̄∗, ȳ∗) = arg min
(x̄,ȳ)∈C

Eθ

 ∑
(x,y)∈C

l(x, y; θ)− l (x, y; θ −∇θl(x̄, ȳ; θ))

 . (7)

A.3 DETAILS ON SAMPLE-WISE IMPORTANCE BASED MEMORY MANAGEMENT

We describe the details of our sample-wise importance based memory management here. We update
H, the estimate of sample-wise importance for episodic memory, after every model update. The
details are in Alg. 1. The runtime complexity of updating the sample-wise importance is O(M)
where M is the fixed memory size. Because the memory size is kept constant regardless of the data
size, the algorithm can scale to larger datasets. Note that for practical efficiency, Alg. 1 can be used
after every k model updates instead of every model update as described above. With the sample-wise
importance scores, we update the memory everytime a new sample is encountered. The details are
in Alg. 2.

14

Published as a conference paper at ICLR 2022

Algorithm 1 Update Sample-wise Importance
1: Input model fθ, memoryM, sample-wise importance H, previous loss lprev, indices used for

training I, update coefficient λ
2: lcur = 1

|M|
∑

(x,y)∈M l(x, y; θ) . Obtain memory loss
3: ∆l = lprev − lcur . Obtain memory loss decrease
4: ∆lpred = 1

|I|
∑
i∈I Hi . Memory loss decrease prediction using current H

5: for i ∈ I do
6: UpdateHi ← Hi + λ(∆l −∆lpred) . Update H for samples used for training
7: end for
8: Update lprev ← lcur
9: OutputH, lprev

Algorithm 2 Sample-wise Importance Based Memory Update
1: Input model fθ, memoryM, memory size m, sample (x̂, ŷ), per-sample criterion H, previous

loss lprev
2: if |M| < m then . If the memory is not full
3: UpdateM←M∪ {(x̂, ŷ)} . Append the sample to the memory
4: ī = |M|
5: else . If the memory is already full
6: ymax = arg maxy |{(xi, yi)|(xi, yi) ∈M∪ {(x̂, ŷ)}, yi = y}| . Find the most frequent label
7: Iymax = {i|(xi, yi) ∈M, yi = ymax}
8: î = arg mini∈Iymax

Hi . Find the sample with the lowest importance

9: Update lprev ← m
m−1 lprev − 1

m−1 l(xî, yî; θ)

10: UpdateMî ← (x̂, ŷ) . Replace that sample with the new sample
11: end if
12: Update lprev ← |M|−1

|M| lprev + 1
|M| l (θ, x̂, ŷ)

13: Iŷ = {i|(xi, yi) ∈M, yi = ŷ, i 6= î}
14: UpdateHî ←

1
|Iŷ|

∑
i∈Iŷ Hi . Initialize the importance for the new sample

15: OutputM,H, lprev

A.4 ADAPTIVE LEARNING RATE SCHEDULER

We describe the adaptive LR schedule from 4.4 in Alg. A.4. We fix the significance level to the
commonly used α = 0.05. Our adaptive LR scheduling decreases or increases the LR based on its
current value. Thus, the rate in which the LR can change is bounded and sudden changes in LR do
not happen.

A.5 DETAILS ON THE ONLINE VERSIONS OF COMPARED CL METHODS

We implemented online versions of RM (Bang et al., 2021), EWC++ (Chaudhry et al., 2018b),
BiC (Wu et al., 2019), GDumb (Prabhu et al., 2020), A-GEM (Chaudhry et al., 2019), GSS (Aljundi
et al., 2019c) and MIR (Aljundi et al., 2019a) by incorporating ER and exponential decay with reset
to the methods whenever possible. There is no specified memory management strategy for EWC++,
and BiC uses herding selection from iCaRL(Rebuffi et al., 2017). However, herding selection is not
possible in online since it requires whole task data for calculating class mean, so we attach reservoir
memory to both methods instead. EWC++ does not require any other modification.

Additional modification should be applied to bias correction stage of BiC. BiC originally performs
bias correction at end of each task, but since evaluation is also performed at the middle of task in our
setup, we modified the method to perform bias correction whenever the model receives inference
query.

In RM, their memory management strategy based on uncertainty is not applicable in an online setup,
since it requires uncertainty rankings of the whole task samples. Thus, we replace their sampling
strategy with balanced random sampling, while keeping their two-stage training scheme. Methods

15

Published as a conference paper at ICLR 2022

Algorithm 3 Adaptive Learning Rate Scheduler
1: Input current LR η, current base LR η̄, loss before applying current LR lbefore, current loss lcur,

LR performance history H(high) and H(low), LR step γ < 1, history length m, significance level
α

2: ldiff = lbefore − lcur . Obtain loss decrease
3: Update lbefore ← lcur
4: if η > η̄ then . If LR is higher than base LR
5: UpdateH(high) ← H(high) ∪ {ldiff} . Append loss decrease in high LR history
6: if |H(high)| > m then
7: UpdateH(high) ← H(high) \ {H(high)

1 }
8: end if
9: else . If LR is lower than base LR

10: UpdateH(low) ← H(low) ∪ {ldiff} . Append loss decrease in low LR history
11: if |H(low)| > m then
12: UpdateH(low) ← H(low) \ {H(low)

1 }
13: end if
14: end if
15: if |H(high)| = m and |H(low)| = m then . If both histories are full
16: p = OneSidedStudentsTTest

(
H(low),H(high)

)
. Perform one-sided Student’s t-test with alternative hypothesis µlow > µhigh

17: if p < α then . If pvalue is significantly low
18: Update η̄ ← γ2 · η̄ . Decrease base LR
19: UpdateH(low),H(high) = ∅, ∅ . Reset histories
20: else if p > 1− α then . If pvalue is significantly high
21: Update η̄ ← 1

γ2 · η̄ . Increase base LR

22: UpdateH(low),H(high) = ∅, ∅
23: end if
24: end if
25: if η > η̄ then . Alternately apply high and low LR (note that γ < 1)
26: Update η = γ · η̄
27: else
28: Update η = 1

γ · η̄
29: end if
30: Output η, η̄, lbefore,H(low),H(high)

that were converted from offline to online, namely EWC++, BiC, and RM, may have suffered some
performance drop due to deviation from their original methods.

A.6 ANALYSIS ON SAMPLE MEMORY SIZE AND NUMBER OF TASKS

We conduct analysis over various sample memory sizes (K) and summarize results in Table 4. We
observe that CLIB outperforms other CL methods in both AAUC and Aavg no matter the memory
size. It is interesting to note that CLIB with a memory size of K = 200 outperforms other CL
methods with a memory size of K = 1000 in the AAUC and performs on par in Aavg . Thus, CLIB
is the only method using memory only training scheme but is the least sensitive to memory size. It
implies that our memory management policy is the most effective, which shows the superiority of
our per-sample memory management method.

We additionally conduct analysis on the number of tasks used for the CIFAR100 dataset and
summarize the results in Table 5. Note that we use CIFAR100 as CIFAR10 has too few classes to
divide into longer task sequences. We observe that CLIB outperforms other CL methods in both
AAUC and Aavg even when the number of tasks increase from 5 to 10 or 25. Moreover, CLIB shows
only minor performance drops with increasing number of tasks, indicating that CLIB is capable of
achieving high performance in the long-run.

Interestingly, we note that BiC shows a slight performance increase when the number of
tasks is increased to 10 or 25. We believe this is because BiC uses separate bias parameters for

16

Published as a conference paper at ICLR 2022

Methods K=200 K=500 K=1000

AAUC Aavg AAUC Aavg AAUC Aavg

EWC++ 52.06±2.24 54.09±3.57 57.34±2.10 60.33±2.73 60.93±1.02 65.86±2.05
BiC 53.00±1.03 54.36±1.64 58.38±0.54 61.49±0.68 61.52±2.24 64.82±1.15

ER-MIR 51.63±2.43 54.40±3.50 57.28±2.43 61.93±3.35 61.18±1.08 66.05±2.29
GDumb 42.54±2.01 43.99±2.28 53.20±1.93 55.27±2.69 66.55±1.10 69.21±1.29

RM† 21.24±1.35 46.79±3.78 23.00±1.43 61.52±3.69 26.13±1.61 72.29±2.17
Baseline-ER 52.11±2.32 54.34±3.34 57.46±2.25 60.17±2.96 61.18±1.08 66.05±2.29

CLIB (Ours) 64.67±1.86 66.06±1.78 70.26±1.28 73.90±0.22 73.00±1.30 77.87±1.15

Table 4: Analysis on various sample memory sizes (K) using CIFAR10. The i-Blurry-50-10 splits
are used. The results are averaged over 3 runs. CLIB outperforms all other CL methods by large
margins for all the memory sizes. CLIB uses the given memory budget most effectively, showing
the superiority of our per-sample memory management method.

Methods 5 Tasks 10 Tasks 25 Tasks

AAUC Aavg AAUC Aavg AAUC Aavg

EWC++ 35.35±1.96 38.78±2.32 32.25±1.56 34.85±1.71 27.08±1.56 29.46±1.65
BiC 33.51±3.04 37.61±3.00 35.29±1.07 37.40±1.04 34.68±1.16 35.55±1.38

ER-MIR 35.35±1.41 38.28±1.15 33.65±1.51 35.29±1.56 28.16±1.29 30.00±1.17
GDumb 32.84±0.45 34.03±0.89 31.22±0.51 32.35±1.73 30.79±0.90 31.87±1.08

RM† 8.63±0.19 33.27±1.59 6.56±0.43 34.93±3.94 3.66±0.10 36.85±1.17
Baseline-ER 35.61±2.08 39.10±2.02 32.46±1.35 34.76±1.34 28.35±1.56 30.45±1.43

CLIB (Ours) 46.67±0.79 49.22±0.79 44.61±1.16 46.15±1.07 43.09±1.04 43.64±1.08

Table 5: Analysis on the number of tasks on CIFAR100. The i-Blurry-50-10 splits are used. The
results are averaged over 3 runs. CLIB outperforms all other CL methods by large margins, even
when the task sequences becomes longer. Additionally, CLIB does not suffer severe performance
drops as the number of tasks increase, indicating that CLIB is well-suited for long-run CL problem
setups as well.

each task, longer task sequences allows more fine-grained bias correction and may actually be
favorable for BiC. We also point out that the absolute performance of BiC is still lacking. Thus, it
may imply that the bias correction of BiC contributes to strong stability in the stability-plasticity
trade-off (Chaudhry et al., 2018a), which help maintain performance for longer task sequences
where forgetting would be more severe. However, as stability is enforced strongly, BiC might lack
plasticity to sufficiently learn from new data, resulting in low performance overall.

We also note that EWC++ and Baseline-ER have the same AAUC and Aavg values up to the
second decimal places in the 10 tasks setting. This may imply that EWC++ is seldom beneficial
over Baseline-ER as the added episodic memory negates the need for the regularization in EWC++.

A.7 ADDITIONAL COMPARISONS WITH A-GEM

We present additional comparisons to A-GEM. Note that as A-GEM was designed for the task-
incremental setting, it performs very poorly in our i-Blurry setup which is task-free. Notably, it
achieves only 4.62 AAUC and 6.94 Aavg on CIFAR100, but other works (Prabhu et al., 2020; Mai
et al., 2021) have also reported very poor performance for A-GEM in their studies as well.

A.8 COMPARISONS TO OTHER MEMORY MANAGEMENT CL METHODS

We present additional comparison to CL methods that use a different memory management strategy
in Table 7. GSS (Aljundi et al., 2019c) is added as an additional comparison while Baseline-ER is
used to represent the reservoir sampling. CLIB outperforms both methods by large margins in both
AAUC and Aavg, implying that the sample-wise importance memory management method is better
than reservoir or GSS-greedy.

17

Published as a conference paper at ICLR 2022

Methods CIFAR10 CIFAR100

AAUC Aavg AAUC Aavg

EWC++ 57.34±2.10 60.33±2.73 35.35±1.96 38.78±2.32
BiC 58.38±0.54 61.49±0.68 33.51±3.04 37.61±3.00

ER-MIR 57.28±2.43 61.93±3.35 35.35±1.41 38.28±1.15
A-GEM 39.29±2.88 44.85±4.70 4.62±0.23 6.94±0.51
GDumb 53.20±1.93 55.27±2.69 32.84±0.45 34.03±0.89

RM† 23.00±1.43 61.52±3.69 8.63±0.19 33.27±1.59
Baseline-ER 57.46±2.25 60.17±2.96 35.61±2.08 39.10±2.02

CLIB (Ours) 70.26±1.28 73.90±0.22 46.67±0.79 49.22±0.79

Table 6: Additional comparisons to A-GEM with various online CL methods on the i-Blurry setup
for CIFAR10 and CIFAR100 are shown. The i-Blurry-50-10 splits are used for all the datasets and
the results are averaged over 3 runs. A-GEM performs very poorly, especially on CIFAR100 as it
was designed for the task-incremental setting whereas i-Blurry setup is task-free. CLIB outperforms
all other CL methods by large margins on both the AAUC and the Aavg .

Methods Mem. Management CIFAR10 CIFAR100

AAUC Aavg AAUC Aavg

GSS GSS-Greedy 55.51±3.33 59.27±4.36 30.09±1.38 35.06±1.43
Baseline-ER Reservoir 57.46±2.25 60.17±2.96 35.61±2.08 39.10±2.02

CLIB (Ours) Sample-wise Importance 70.26±1.28 73.90±0.22 46.67±0.79 49.22±0.79

Table 7: Comparisons to other CL methods with different memory management strategies in the
i-Blurry setup for CIFAR10 and CIFAR100 are shown. The i-Blurry-50-10 splits are used for all
the datasets and the results are averaged over 3 runs. CLIB outperforms all other CL methods by
large margins on both the AAUC and the Aavg implying that the sample-wise importance memory
management method is effective.

A.9 ADDITIONAL DISCUSSION OF OTHER METHODS

We present additional discussion on compared methods in Table 1.

A.9.1 BASELINE-ER

ER has been reported to be a simple yet strong method for online CL. (Prabhu et al., 2020; Mai et al.,
2021) We also observed strong performance for Baseline-ER, as other methods such as EWC++,
BiC, and MIR only show marginal to no improvements. However, by using different memory man-
agement and memory usage strategy, CLIB was able to outperform Baseline-ER by large margins

A.9.2 EWC++

EWC is a regularization-based method, which regularizes parameters based on the parameter’s im-
portance measured by the accumulated Fisher Information. Note that EWC calculates importance
of parameters to regularize them, while CLIB calculates importance of samples to manage episodic
memory. We use an online version of EWC, called EWC++, proposed in (Chaudhry et al., 2018b).
EWC++ shows almost no improvement over Baseline-ER, possibly because it was developed as
a method to prevent forgetting without using episodic memory. Since episodic memory with ER
alleviates most of the forgetting, EWC++ have reduced effect in preventing forgetting, while its
side-effect of reducing intransigence still exists (Chaudhry et al., 2018b).

18

Published as a conference paper at ICLR 2022

A.9.3 BIC

BiC uses episodic memory and a distillation loss for training and has an additional bias-correction
step to correct the model’s bias towards current task’s classes. BiC shows strong performance on
the disjoint task split. However, it performs poorly for the blurry and the i-Blurry splits, possibly
because the bias correction using only two parameters for previous and current tasks cannot correctly
capture the bias in the presence of blurry classes.

A.9.4 ER-MIR

Note that ER-MIR performs surprisingly similar to the Baseline-ER for CIFAR10, possibly because
they are both based on ER. However, ER-MIR does not scale well to larger datasets potentially
because its memory usage scheme is not effective for larger datasets.

To extensively highlight the differences between MIR and CLIB, we first have to point out
that sample memory methods can be discussed in two aspects: memory management and memory
usage. MIR uses reservoir sampling for memory management and an improved version of experi-
ence replay (ER) for memory usage. MIR improves the memory usage by selecting samples from
memory that would suffer the largest loss increase if streamed data were used to train the model
(called ‘maximally interfered retrieval’ or MIR).

MIR can be viewed as using some form of ‘importance weighting’, and has some similari-
ties with our method in the sense that they both utilize the change in loss to determine which
samples are used for training. However, these two are different as MIR uses importance scores for
selecting samples from a constructed memory whereas CLIB uses it for constructing the memory.
Also, MIR assigns high importance scores to samples that show large increases in individual loss
when current streamed data are used for training. In contrast, CLIB assigns high importance
scores to samples that cause large decreases in memory’s total loss when that sample is used for
training. Lastly, MIR’s importance score is temporary, as new importance scores are calculated
every iteration, while CLIB accumulates the measured importance scores over time to calculate the
overall importance scores.

Our method performs better than MIR possibly because sample-wise importance memory
considers each samples’ importance whereas reservoir sampling does not and memory-only training
is not skewed by recently seen samples whereas joint training is. Note that since we are selecting
random samples in the memory usage step, a possible future direction would be improving the
memory usage as done in MIR.

A.9.5 GDUMB

GDumb utilizes a greedy sampler, which stores samples greedily, and a dumb learner, which
trains a new model from scratch using only the memory whenever an inference query is made.
While we also train only using the memory, we have a completely different memory management
method that updates both the model and the memory during training. Because GDumb trains
from scratch, its performance degrades in the later phases as it cannot accumulate past knowl-
edge. Not only that, because GDumb has to train from scratch for every inference query, it takes
more computation than other methods when there are many inference queries for any-time inference.

A.9.6 RAINBOW MEMORY

Rainbow memory uses uncertainty based memory management with a two-stage training method
that prolongs most of the training until the end of a task. As such, RM performs very poorly on our
AAUC metric as it measures any-time inference performance. Nevertheless, RM performs strongly
with respect to the Aavg metric which shows the usefulness of our proposed AAUC .

19

Published as a conference paper at ICLR 2022

Methods CIFAR10 CIFAR100 TinyImageNet ImageNet

AAUC Aavg Flast AAUC Aavg Flast AAUC Aavg Flast AAUC Aavg Flast

EWC++ 57.34±2.10 60.33±2.73 28.84±2.35 35.35±1.96 38.78±2.32 32.11±5.28 22.26±1.15 24.39±1.18 31.65±1.50 24.81 26.21 44.08
BiC 58.38±0.54 61.49±0.68 22.50±4.38 33.51±3.04 37.61±3.00 23.10±2.87 22.80±0.94 24.90±1.07 27.01±0.83 27.41 28.38 36.12

ER-MIR 57.28±2.43 61.93±3.35 27.10±2.17 35.35±1.41 38.28±1.15 31.76±4.14 22.10±1.14 24.54±1.26 34.57±1.39 20.48 20.68 66.96
GDumb 53.20±1.93 55.27±2.69 18.80±3.40 32.84±0.45 34.03±0.89 22.44±3.52 18.17±0.19 18.69±0.45 17.14±1.13 14.41 14.21 31.18

RM† 23.00±1.43 61.52±3.69 7.01±2.74 8.63±0.19 33.27±1.59 7.76±1.21 5.74±0.3 17.04±0.77 9.40±0.40 6.22 28.3 10.71
Baseline-ER 57.46±2.25 60.17±2.96 30.20±2.96 35.61±2.08 39.10±2.02 31.31±1.96 22.45±1.15 24.54±1.26 33.02±1.10 25.16 26.50 44.22

CLIB (Ours) 70.26±1.28 73.90±0.22 23.08±2.68 46.67±0.79 49.22±0.79 23.93±0.66 23.87±0.68 25.05±0.52 23.34±1.96 28.16 28.88 38.66

Table 8: Additional comparisons including the Flast measure of various online CL methods on the
i-Blurry setup for CIFAR10, CIFAR100, TinyImageNet and ImageNet are shown. The i-Blurry-50-
10 splits are used for all the datasets and the results are averaged over 3 runs except ImageNet. Ours
outperforms all other CL methods by large margins on both the AAUC and the Aavg . While CLIB
does not explicitly handle forgetting, it shows similar Flast with most methods. The best result for
each of the metrics is shown in bold.

0 10000 20000 30000 40000 50000
samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CLIB(Ours)
EWC

MIR
RM

ER
BiC

GDumb

Figure 5: Accuracy-to-# of samples curve for the blurry setup (no new classes are encountered after
the first task). We can see that there is no performance drop for all methods because no new classes
are encountered after the first task.

A.10 ADDITIONAL RESULTS WITH THE FLAST MEASURE

We report the result of the forgetting measure (Chaudhry et al., 2018b) here. As in the i-Blurry setup
it is not clear which classes belong to each task, we calculate the forgetting class-wise. Note that
while forgetting is a useful metric for analyzing stability-plasticity of the method, lower forgetting
does not necessarily mean that a CL method is better. For example, if a method do not train with the
new task at all, its forgetting will be 0.

Also, we do not propose a new forgetting measure for anytime inference. It is because forgetting is
measured with the best accuracy of each class, and best accuracy usually occur at the end of each
task. Thus, measuring the best accuracy among all inferences would not be much different from best
accuracy among the inferences at the end of each task.

Surprisingly, CLIB shows similar Flast values to most other methods despite not explicitly designed
to handle catastrophic forgetting. We believe that the episodic memory used in our memory only
training reduces catastrophic forgetting of our method to be similar to other methods.

20

Published as a conference paper at ICLR 2022

Methods LR Schedule AAUC Aavg

Baseline-ER Constant 56.73±1.73 58.18±3.41
Exp w/ Reset 57.46±2.25 60.17±2.96

EWC++ Constant 56.54±1.57 57.92±3.26
Exp w/ Reset 57.34±2.10 60.33±2.73

Table 9: Comparison between exponential with reset schedule and constant LR on CIFAR10 are
shown. It shows that our baseline LR schedule, exponential with reset, is reasonable. It shows better
performance than constant LR, especially in Aavg metric.

Interestingly, RM shows the best Flast results on all datasets. We believe it is because of RM’s
two-stage training scheme, which greatly reduces the effect of the streamed data during training.
This prevents dominant classes in the task from achieving very high accuracy. Since forgetting
is calculated as the difference between the best accuracy and the last accuracy for each class, the
forgetting is reduced as the best accuracy itself has been lowered.

Note that GDumb is even less affected by streamed data as it does not train with streamed data at all.
However, GDumb does not accumulate learned knowledge, leading to decreasing accuracy as the
number of samples per class in the memory decreases. Thus, while GDumb scores relatively good
in forgetting considering the decreasing accuracy trend, it ultimately scores worse in forgetting than
RM.

A.11 ADDITIONAL DISCUSSION ON POTENTIAL PERFORMANCE DROP AT LATER PHASES

We discuss the potential cause for the ‘performance drop’ of CLIB in the i-Blurry setup as is shown
in Fig. 4. We argue that the ‘performance drop’ is attributed to the number of encountered classes
increasing in i-Blurry setups at later phases. To see what would happen when the number of en-
countered classes do not increase at later phases, we show the accuracy-to-# of samples curve for
the blurry setup results in Table 2 for N = 0 in Fig. 5, where no new classes are encountered after
the first task. There is no apparent performance drop at later phases for all methods, which supports
our argument that the drop is due to more and more classes being encountered at later phases.

A.12 PERFORMANCE OF EXPONENTIAL WITH RESET LR SCHEDULE

We show brief results for the LR schedule used in our baseline in Table 9. We compare the constant
LR with the exponential with reset used in our baseline. The exponential with reset is better than the
constant LR, which is why we used it in our baseline.

21

