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Abstract
Diagnostic classification models (DCMs) are psychometric models that can be used to estimate the pres-
ence or absence of psychological traits, or proficiency on fine-grained skills. Critical to the use of any
psychometric model in practice, including DCMs, is an evaluation of model fit. Traditionally, DCMs have
been estimated with maximum likelihood methods and then evaluated with limited-information fit indices.
However, recent methodological and technological advances have made Bayesian methods for estimating
DCMs more accessible. When using a Bayesian estimation process, new methods for model evaluation
are available to assess model fit. In the current study, we conducted a simulation study to compare the
performance of traditional measures of model fit with Bayesian methods. The results indicate that Bayesian
measures of model fit generally outperform the more traditional limited-information indices. Notably,
flags for model misfit were more likely to be true positives when using Bayesian methods. Additionally,
Bayesian methods for model comparisons also showed better performance than has been reported for
methods traditionally in conjunction with a maximum likelihood estimation. In summary, the findings
suggest that Bayesian methods offer a better evaluation of model fit than more commonly used metrics.
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Diagnostic classification models (DCMs; Bradshaw, 2016; de la Torre & Sorrel, 2023; Rupp et al.,
2010) are confirmatory latent class models, in which each class represents a particular profile of
skill (also called "attribute") proficiency. Under the large umbrella of DCMs, there are different
models that make their own assumptions about how attributes interact with each other on items
that measure multiple attributes. For example, the deterministic-input, noisy “and” gate (DINA)
model assumes that respondents should be proficient on all attributes measured by an item in order
to provide a correct response (de la Torre & Douglas, 2004; Junker & Sijtsma, 2001). In contrast,
the deterministic-input, noisy “or” gate (DINO) model assumes that respondents should provide
a correct response if they are proficient on any of the attributes measured by the item (Templin
& Henson, 2006). In addition to models like the DINA and DINO that make strict assumptions
about attribute interactions, there are general models that make fewer assumptions and subsume the
more-restrictive models. One popular general DCM is the log-linear cognitive diagnostic model
(LCDM), in which proficiency on each attribute or set of attributes provides a unique increase to
probability of providing a correct response (Henson & Templin, 2019; Henson et al., 2009).

Given the range of available DCMs, it is important to evaluate the performance of the chosen
model. In general, model fit can be evaluated in two ways. Measures of absolute fit describe how
well an estimated model represents the observed data. Relative fit metrics directly compare the fit
of two or more competing models. In the following sections, we will discuss different methods for
assessing the absolute and relative fit of DCMs.
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1. Model Fit for DCMs
1.1 Absolute Fit
For DCMs estimated with a maximum likelihood process, the most common model-fit indices are so
called limited-information indices (Maydeu-Olivares & Joe, 2005, 2006), due to their use of lower-order
summaries of the contingency tables. The most widely used of these indices is the M2 statistic, which
has been adapted for DCMs by Hansen et al. (2016) and Liu et al. (2016).

When using a Bayesian estimation process, we can utilize posterior predictive model checks
(PPMC). To use PPMCs, we simulate new data sets from the joint posterior distribution and then
compare the simulated data sets to our observed data (Schad et al., 2021). For example, both Park
et al. (2015) and Thompson (2019) describe a PPMC for the raw-score distribution of an assessment,
which offers several theoretical advantages over limited-information methods. First, the raw-score
distribution accounts for item dependencies that are excluded when looking only at first- and second-
order probabilities, as in the M2. Second, the joint posterior used to simulate the replicated data sets
includes the estimated uncertainty in each of the parameters. Finally, because we are calculating an
empirical distribution for the PPMC, we do not have to depend on asymptotic assumptions that may
or may not be met.

1.2 Relative Fit
There are well documented methods for comparing competing models when using a maximum
likelihood estimation, such as the Akaike Information Criterion (AIC; Akaike, 1973) and the Bayesian
Information Criterion (BIC; Schwarz, 1978). Although commonly used, both the AIC and BIC have
significant drawbacks when using a Bayesian estimation, making their use inappropriate (for a full
discussion of limiations, see Berger et al., 2003; Gelman & Rubin, 1995; Hollenbach & Montgomery,
2020). Therefore, we must turn to other information criteria for comparing models, namely, leave-
one-out cross validation (LOO), as described by Vehtari et al. (2017). In short, the LOO uses the
posterior density to estimate out-of-sample predictive fit for a model, known as the expected log
predictive density (ELPD). We can then compare the ELPD for competing models. The model with
the largest value is the preferred model (i.e., expected to have the highest predictive accuracy).

1.3 The Current Study
Previous work has compared the efficacy of absolute (Hu et al., 2016) and relative (Lei & Li, 2016; Sen
& Bradshaw, 2017) fit measures for DCMs. However, these studies were limited to model-fit indices
that are possible when using maximum likelihood estimation. No research to date has compared the
performance of Bayesian measures of absolute model fit to the maximum likelihood-based methods.
Further, no study has yet examined the use of the LOO for DCMs, as all studies on relative fit
have focused on the AIC, BIC, and other similar metrics. In this study, we conducted a simulation
to evaluate how well Bayesian methods of model-fit performance compared to their maximum
likelihood-based counterparts.

2. Method
To evaluate the performance of Bayesian absolute- and relative-fit indices for DCMs, we conducted
a simulation study where we manipulated the number of assessed attributes (two or three), the
minimum number of items measuring each attribute (five or seven), the sample size (500 or 1,000).
These factors were chosen to represent test designs that are commonly seen in applied research
(e.g., Bradshaw et al., 2014; Templin & Hoffman, 2013). These factors resulted in a total of eight
test-design conditions. Within each test-design condition, we also manipulated the data-generating
model (LCDM or DINA) and the estimated model (LCDM or DINA) to evaluate the performance
of model-fit metrics when the estimated model should and should not fit the data. With fully crossed
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data-generating and estimating models, there are four modeling conditions, resulting in 32 total
conditions across all test designs. We conducted 50 replications per condition.

The simulation and subsequent analyses were conducted in R version 4.3.3 (R Core Team, 2024).
All DCMs were estimated using Stan (Carpenter et al., 2017) via the measr package (Thompson,
2023a, 2023b). All R code for the simulation and subsequent analyses is available in a public OSF
project repository.1

2.1 Data Generation
Within each condition, the true attribute profile for each respondent was determined by a random
draw from all possible profiles. Additionally, each simulated assessment measured two or three
attributes, with each attribute measured by at least five or seven items. The total number of items for
each simulated assessment is therefore the product of the number of attributes and the minimum
number of items for each attribute. In the simulation, the Q-matrix for each simulated assessment
was specified so that the first three items measuring each attribute were single-attribute items.
The remaining two or four items for each attribute (for the five-item and seven-item conditions,
respectively) had a 50% chance of also measuring a second attribute.

Item-parameter generation depended on the data-generating model. In conditions where data
were generated from the LCDM, item parameters included item intercepts, main effects, and interac-
tions, all of which are on the log-odds scale. Item intercepts were drawn from a uniform distribution
ranging from -3.0 to 0.6, and main effects were drawn from a uniform distribution ranging from
1.0 to 5.0. In the LCDM, interaction terms are constrained to be greater than -1 times the smallest
main effect to ensure monotonicity of the model. Thus, the interaction parameters were drawn
from a uniform distribution ranging from the calculated lower bound to 2.0. In conditions where
data were generated from the DINA model, item parameters include the slipping and guessing
parameters, which are both on the probability scale. Parameters were generated on the log-odds scale
and converted to probability values. Guessing parameters were drawn from a uniform distribution
ranging from -3.0 to 0.6, consistent with the LCDM intercepts. Slipping parameters were generated
from a uniform distribution ranging from 1.0 to 5.0, consistent with the main effects in the LCDM.

2.2 Simulation Process and Analysis
Both an LCDM and a DINA model were estimated using the simulated data set. We then calculated
indices of absolute fit (i.e., M2 and raw-score PPMC χ2) and relative fit (i.e., LOO) for each model.
When data were generated from the LCDM, we expected the LCDM to show adequate model fit
and be the preferred model, as the DINA model was underspecified. On the other hand, when data
were generated from the DINA model, we expected both models to show adequate absolute fit, as
the LCDM subsumes the DINA model. However, because the LCDM was overspecified in this
condition, we expected the DINA model to be preferred by the relative-fit indices.

For each absolute-fit index, an estimated model was flagged for misfit if the p-value or the ppp was
less than .05 for the M2 and PPMC χ2, respectively. We then used the flags to calculate the positive
and negative predictive values (Altman & Bland, 1994; Smith, 2012). The positive predictive value
(PPV) is the proportion of positive results that are true positives. Similarly, the negative predictive
value (NPV) is the proportion of models in which the fit index indicated adequate model fit where
we expected it.

Finally, for relative fit, we determined the preferred model by calculating the difference and
standard error of the difference between the LOOs for each of the estimated models. Using the
criteria suggested by Bengio and Grandvalet (2004), when the difference between the criterion for
the LCDM and the DINA model was greater than 2.5 times the standard error of the difference, we
determined that the preferred model was the model with the largest ELPD. When the difference was
less than 2.5 times the standard error, we determined the models to be equally fitting and, therefore,
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selected the more parsimonious model (i.e., the DINA model) as the preferred model. We then
calculated the proportion of replications within each condition in which the LOO selected the correct
(i.e., data-generating) model.

The expected results for each combination of generating and estimating models are shown in
Table 1.

Table 1. Expected Model-Fit Results

Generating model Estimated model Absolute-fit flag Relative-fit preference

DINA NoDINA
LCDM No

DINA

DINA YesLCDM
LCDM No

LCDM

3. Results
3.1 Absolute Model Fit
Across all conditions, the M2 statistic had a PPV of .753 and an NPV of .964. In contrast, the PPMC
χ2 had a PPV of .919 and an NPV of .952. The NPVs indicate that negative test values for both
metrics (i.e., a nonsignificant result) were usually true negatives. On the other hand, the PPVs
indicate that positive test results (i.e., a significant result that indicates model misfit) were a true
positive only 75% of the time for the M2 statistic, compared to 92% of the time for the PPMC χ2

statistic.
When looking at the PPVs and NPVs by test-design condition, as shown in Figure 1, we see that

the NPVs for each metric are similar for all test designs. The condition-specific results are consistent
with the overall results, which showed similar NPVs for the M2 and the PPMC χ2. However, the
PPVs for the M2 are consistently lower than the PPVs for the PPMC χ2. This difference becomes
more pronounced as the data set becomes larger (i.e., larger samples, more attributes). Thus, as the
sample gets larger and the test design gets more complex, the M2 becomes more likely to result in a
false positive, indicating model misfit when there is in fact none. On the other hand, the PPMC χ2

demonstrated consistently high PPVs across all simulation conditions.

3.2 Relative Model Fit
Evaluations of relative fit are only meaningful when the competing models have been found to have
adequate absolute model fit (Sen & Bradshaw, 2017). Accordingly, for the relative-fit results, we
filtered the simulation output to include only replications in which both the LCDM and the DINA
model showed adequate absolute model fit. Using the absolute-fit findings in the previous section,
we used the PPMC χ2 statistic to determine absolute fit. Table 2 shows the number of replications
by test-design condition and data-generating model in which both estimated models demonstrated
adequate absolute fit. As expected, both the estimated DINA model and the LCDM often had
adequate absolute fit when data were generated from the DINA model, as the LCDM subsumes the
DINA model. In contrast, it was much less likely that both models would show adequate absolute fit
when data were generated from the LCDM.

Across all conditions, the LOO determined the correct model in 82% of replications. Figure 1
shows the percentage of replications in which the LOO selected the correct model by test-design
condition and data-generating model. When the LCDM was used to generate the data and both the
LCDM and the DINA model showed adequate absolute fit, the LOO always selected the correct
model (i.e., the LCDM). On the other hand, when the DINA model was used to generate the data,
the LOO selected the LCDM as the preferred model in up to 34% of replications. Thus, even when
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Figure 1. Positive and Negative Predictive Values, by Test-Design Condition

Table 2. Number of Replications in Which Both Models Demonstrated Absolute Fit

Test Designs Data-generating model

Attributes Items Sample size DINA LCDM

2 5 500 49 17

2 5 1,000 43 10

2 7 500 48 9

2 7 1,000 47 1

3 5 500 47 0

3 5 1,000 43 0

3 7 500 49 21

3 7 1,000 47 1

the DINA model was used to generate the data and the estimated DINA model showed adequate
model fit, the LOO still preferred the more-complex model in some situations. However, even with
a slight preference for the more-complex model, the LOO still identified the correct model in more
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than 65% of replications in all conditions.

Figure 2. Positive and Negative Predictive Values, by Test-Design Condition

4. Discussion
In this study, we examined the performance absolute and relative model-fit indices for Bayesian
DCMs. Overall, the findings support the use of Bayesian estimation for DCMs to facilitate the use of
Bayesian methods for model evaluation.

Across all conditions, the M2 statistic performed well, with results consistent with previous
research evaluating the efficacy of the method (e.g., Liu et al., 2016). However, the PPMC χ2 statistic
showed comparable or improved performance in all conditions. Although both the M2 and PPMC
χ2 had similar negative predictive values, the PPMC χ2 had consistently higher positive predictive
values. Thus, when using the PPMC χ2, practitioners can be more confident that a positive test
result truly indicates model misfit. This is likely because the M2 captures only two moments of the
data, whereas the PPMC χ2 is able to capture higher-order moments and reflect discrepancies that
may be missed by the M2.

When evaluting relative fit, the LOO showed good performance, selecting the correct model in
82% of replications. In contrast, the AIC and BIC have been found to identify the correct model in
as few as 30% of replications (Sen & Bradshaw, 2017). The performance of the LOO in this study
compared to reported performance of the AIC and BIC means that using a Bayesian estimation
process to access the LOO for model comparisons offers a marked improvement over methods that
are used with a maximum likelihood estimation.

The present study offers evidence that the PPMC χ2 and LOO, which can only be utilized when
a Bayesian estimation is used, offer improvements over existing maximum likelihood measures of
model fit under a limited set of test designs. Future work should examine performance of these
metrics under more complex designs (e.g., more attributes, more-complex item structures). By
using improved methods for model evaluation, we can have greater confidence that the inferences of
respondent proficiency we draw from DCMs are valid indications of the respondents’ knowledge
and skills.
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