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Abstract

Facial expression data is characterized by a significant imbalance, with most
collected data showing happy or neutral expressions and fewer instances of fear or
disgust. This imbalance poses challenges to facial expression recognition (FER)
models, hindering their ability to fully understand various human emotional states.
Existing FER methods typically report overall accuracy on highly imbalanced
test sets but exhibit low performance in terms of the mean accuracy across all
expression classes. In this paper, our aim is to address the imbalanced FER
problem. Existing methods primarily focus on learning knowledge of minor classes
solely from minor-class samples. However, we propose a novel approach to extract
extra knowledge related to the minor classes from both major and minor class
samples. Our motivation stems from the belief that FER resembles a distribution
learning task, wherein a sample may contain information about multiple classes.
For instance, a sample from the major class surprise might also contain useful
features of the minor class fear. Inspired by that, we propose a novel method that
leverages re-balanced attention maps to regularize the model, enabling it to extract
transformation invariant information about the minor classes from all training
samples. Additionally, we introduce re-balanced smooth labels to regulate the
cross-entropy loss, guiding the model to pay more attention to the minor classes by
utilizing the extra information regarding the label distribution of the imbalanced
training data. Extensive experiments on different datasets and backbones show
that the two proposed modules work together to regularize the model and achieve
state-of-the-art performance under the imbalanced FER task. Code is available at
https://github.com/zyh-uaiaaaal

1 Introduction

Facial expression recognition (FER) plays a crucial role in enabling machines to understand human
emotional states, thus facilitating the realization of machine intelligence [[18. |11} 25]. Recent research
efforts [42] 135/149] have employed in-the-wild datasets to train FER models, resulting in impressive
performance in terms of overall classification accuracy. However, these FER datasets suffer from a
significant imbalance, with a higher abundance of happy and neutral expression faces, which are easily
obtainable from the internet and daily life, compared to faces displaying negative expressions such as
fear or disgust [6} 32]. This imbalance can have adverse effects on human-computer interaction when
FER models misinterpret infrequently occurring negative emotions as frequently occurring positive
emotions.

In this paper, our objective is to investigate imbalanced learning in the context of FER. We observe
that existing FER methods [34}43) 142} |29]] yield relatively low performance in terms of the mean
accuracy across all classes, mainly due to the highly imbalanced nature of the training data. While
imbalanced (long-tailed) learning methods in the image classification domain have shown some
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improvements [52, 5], they provide limited enhancements in the mean accuracy within the FER
field. This can be attributed to several factors. Firstly, FER datasets typically contain a small number
of classes, resulting in marginal improvements in the mean accuracy of all classes. Secondly, the
increase in accuracy for minor classes often comes at the expense of decreased accuracy for major
classes. This imbalance disproportionately affects the overall accuracy, particularly when evaluating
on imbalanced test sets.

To address the aforementioned problem, our objective is to design a method that can maintain high
performance on major classes while improving the performance on minor classes to the greatest extent
possible. We refrain from modifying the dataset structure through under-sampling or over-sampling,
as these approaches may enhance the performance of minor classes at the expense of degrading the
performance on major classes. Instead, we aim to leverage each sample fully to extract additional
knowledge relevant to minor classes. Our motivation is that FER resembles a label distribution
learning task, implying that samples from major classes may contain information pertaining to minor
classes as well. For instance, the major class "surprise" shares certain similarities with the minor
class "fear".

Inspired by that, we propose a novel method that mines extra knowledge regarding minor classes from
samples belonging to both major and minor classes. This extra information enhances the recognition
performance on minor classes without significantly compromising the performance on major classes.
Specifically, we employ the concept of attention map consistency [[7]], which is utilized in the EAC
method [50] to prevent FER models from memorizing noisy labels. We observe that EAC employs
attention maps from all expression classes, rather than just the labeled class, to regularize a specific
sample, resembling the idea of label distribution learning. Building upon this insight, we introduce a
re-balanced attention consistency module to address the imbalanced FER task for the first time. In
our approach, attention maps for all expression classes can be extracted from a given FER sample.
We introduce re-balanced weights, following the design of [S]], which are set inversely proportional
to the effective number of samples belonging to each class. These weights facilitate the model in
extracting additional knowledge related to minor classes from all training samples. Furthermore,
as the classification loss may still be affected by the imbalanced data, we propose a re-balanced
smooth labels module that utilizes the acquired re-balanced weights and the extra knowledge of the
imbalanced label distribution. This module guides the model to focus more on minor classes during
the decision-making process.

To demonstrate the effectiveness of our proposed method, we conducted extensive experiments
on different FER datasets, including datasets with varying imbalance factors [5]]. Ablation studies
confirmed that each proposed module contributes to the enhancement of mean accuracy, and the
two modules synergistically achieve state-of-the-art performance. Moreover, we evaluated the
generalization ability of our method by combining it with different backbones including transformers.
The experimental results showcased that our method is lightweight, easy to implement, and seamlessly
compatible with various backbones, thus significantly improving their performance.

The main contributions of our work are listed as follows:

* We highlight the imbalanced learning problem in FER and find existing methods in the
large-scale image classification field might fall short in the FER field, we benchmark existing
FER methods utilizing both overall accuracy and mean accuracy on all classes.

* We propose a novel method consisting of two modules: re-balanced attention consistency
(RAC) and re-balanced smooth labels (RSL). RAC mines extra knowledge pertaining to
minor classes from both major and minor samples, thereby enhancing performance on
minor classes without compromising performance on major classes. RSL leverages the
imbalanced label distribution to further regularize the classification loss and prioritize the
decision-making process for minor classes.

* Qur proposed method is easy to implement, lightweight, and seamlessly compatible with
different backbone architectures including transformers. Through extensive experiments,
we validate that our proposed method achieves state-of-the-art performance in terms of
both overall accuracy and mean accuracy of all classes across different FER datasets and
backbone architectures.



2 Related work

Facial expression recognition methods in recent years primarily focus on extracting effective features
from in-the-wild datasets using deep learning models [22} 46} [13| 116, 20} 24} 21} 23]]. In-the-wild
datasets [26} 6] pose greater challenges and are more prone to noise due to label inaccuracies, difficult
poses, occlusions, and low-quality images compared to laboratory collected datasets [30, [14} 40].
These factors adversely affect the recognition performance of facial expression recognition (FER)
models. Several works have addressed the real-world FER task. SCN [42]] introduces a learnable
temperature and a relabel module to weight FER samples and suppress noise. DMUE [37]] learns
sub-modules for each class to handle noisy labels. RUL [49] treats expression uncertainty as a
relative concept and learns uncertainty values for images through comparisons, aiding overall feature
learning. TransFER [45] pioneers the use of vision transformers for in-the-wild FER. EAC [50]
employs erasing attention map consistency to prevent FER models from memorizing noisy labels in
real-world FER datasets.

While these approaches achieve impressive overall accuracy on test sets, they tend to exhibit lower
performance in terms of mean accuracy of all classes, particularly for minor classes. In fact, previous
works primarily focus on mitigating noise in in-the-wild datasets, often overlooking the imbalanced
nature of FER datasets. In this work, our objective is to address imbalanced learning in in-the-wild
FER datasets and provide an orthogonal supplement for previous works.

Imbalanced learning in real-life datasets, where certain classes have a majority of samples while
others have very few, has been addressed through three perspectives: data pre-processing, loss
re-weighting, and model ensemble. This paper primarily focuses on the first two categories, as model
ensemble methods [44] 48] are computationally intensive. Data pre-processing methods commonly
involve data re-sampling [31} 38]]. However, studies [[15||52] have shown that data re-sampling can
negatively impact representation learning. Over-sampling may introduce duplicated samples, leading
to the increased risk of overfitting, while under-sampling may discard valuable examples. Another
technique is data augmentation [4} 53], which applies predefined transformations to augment the
dataset, particularly for minority classes. However, finding effective augmentation methods for facial
expression recognition (FER) data, which contain specific local features related to expressions, can
be challenging. Loss re-weighting methods assign different weights to classes or instances during
training, known as loss re-weighting [27, 39,41} 5]]. The aim is to propagate appropriate gradient
values for all classes during training.

3 Method

In this section, we present a novel method for imbalanced facial expression recognition. Our approach
focuses on extracting extra information of minor classes from both minor and major class samples,
rather than solely relying on minor class samples. We introduce two modules, namely re-balanced
attention consistency (RAC) and re-balanced smooth labels (RSL), to guide the model to extract
balanced information from the entire training set.

3.1 Re-balanced attention consistency

We first introduce attention map consistency [7]], which regularizes the attention maps to follow the
same spatial transform if the input images are spatially transformed, which can help the model to
learn transformation invariant features. EAC designs an imbalanced framework to utilize attention
map consistency to prevent the models from memorizing the noisy labels. We find that instead of only
extracting attention maps of the latent truth like utilizing GradCAM [36], EAC uses attention maps
of all classes to regularize the FER model. We speculate that the reason lies in that utilizing attention
maps of all classes is similar to label distribution learning [3} 51} [19], which mines information
of several classes from one training sample. Inspired by that, we adapt attention map consistency
to solve the imbalanced learning problem of FER for the first time. To be more specific, given a
sample, the attention maps of all expression classes should follow the same spatial transform if the
given sample is spatially transformed. Thus, the model could mine useful minor-class information
from all samples instead of only the samples from the minor classes. Furthermore, we introduce
the re-balanced attention consistency to regularize the model to focus more on the minor classes
to achieve balanced learning. We set different weights to the attention maps of different classes



Original
= x — F Mean

FC class 1 class L

GAP i
Re-balanced Re-balanced Consistency

loss weight loss

Flipped __ ~ _
f [ﬁ - "‘;: E @
E % F Mean Flip

Figure 1: The illustration of re-balanced attention consistency. We propose re-balanced attention
consistency to facilitate the model to mine extra transformation invariant knowledge of minor classes
from both major and minor-class samples, which boosts the classification accuracy on minor classes
while do not degrade the high accuracy on major classes.

and guide the model to learn more invariant information related to minor classes. Inspired by [3],
which designs a re-weighting scheme that uses the effective number of samples of each class to
re-balance the classification loss, we propose to use the effective number of samples to inversely the
weigh attention maps of different classes. In the following, we formulate the re-balanced attention
consistency module in detail.

Given images x, we first flip them to get their flipped counterparts X. The features of x and X are

extracted from the last convolutional layer, denoted as F € RNVXCXHXW anq | ¢ RNXCxH W
where N, C, H and W respectively represent the number of images, channels, height and width.

We input F and F to the global average pooling (GAP) layer to get features f € RN *CX1x1 and
f € RVXCX1X1 ‘and then resize them to N x C'. The classification loss is computed according to

W, 1 W, 1
cls - N Z 10g
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where W, is the y;-th weight of the fully connected (FC) layer and y; is the label of x;, L is the total
number of expression classes. CAM [53] is utilized to compute attention maps A € RV *ExHxW
and A € RNXLXHXW for x and X following

A(i, 1 hyw) = ZWZC (i,¢, h,w), 2)

where i, [, ¢, h, w represent the sample, expression class, channel, height and width number. We then
re-balance the attention maps A and A through weight B € R’ to get the re-balanced attention maps
M and M following
M(i,l, h,w) = By - A(i, 1, h,w). 3)
The balance weight B € R’ is enlightened by the re-balanced weight based on the effective number
in [5]], which is computed following 4
1—

e )
where n; is the number of training samples in class I, 5 € [0, 1) is the hyperparameter controlling
the re-balanced weight, a larger value of 5 emphasizes more of the minor samples, following [3]],
we set the 5 as 0.9999 across all our experiments. As the attention map before and after the flip
transformation should be consistent with each other, we compute the consistency loss between M
and F'lip(M) following

N L H W
lcons = NLHW X;ZZ Z HM Z,l,h ’LU Flzp(M)(z,l,h,w)Hg (5)

=1 [l=1 h=1w=1
The training loss is computed as

B =

lirain = leis + )\lconsa (6)
where ) is the weight of the attention consistency loss, which determines the relative importance of
the consistency loss compared to the classification loss in the overall training objective.
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Figure 2: The illustration of re-balanced smooth labels. We propose re-balanced smooth labels to
utilize the existing prior knowledge about the label distribution of the training set to guide the model
towards placing more emphasis on minor classes during decision-making, while maintaining high
performance on major classes.

3.2 Re-balanced smooth labels

In Section@ we introduced the re-balanced attention consistency module, which enables the model
to extract balanced and transformation invariant knowledge of minor classes from all training samples,
resulting in improved classification accuracy for those classes. However, the imbalanced training
set can still negatively impact the classification loss, denoted as [.;s. To address this, we present the
re-balanced smooth labels module in this section. This module aims to regulate the classification loss
and promote balanced learning.

We denote the prediction of the FER model towards x; as p;, where p; is the likelihood the model
assigns to the ¢-th given sample x;, the one-hot label of x; is denoted as y;. For simplicity, we re-write
the classification loss towards x; as Eq. Iand things are the same with x;.
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where y(i,1) is "1" for the correct class of x; and "0" for the rest. For a FER model trained with
a re-balanced smooth label of parameter o, we minimize instead the cross-entropy between the
re-balanced targets y, and the model’s outputs p,, where

y(i7 l) = (1 - O‘)y(i’ l) + aBl/L> (8)

B, is the re-balanced weight of the class [ given in Section

3.3 Discussion with existing works

Our most related work is EAC. Though both methods utilize attention map consistency, EAC aims to
address the noisy label learning task, while our method focuses on imbalanced learning. Furthermore,
the motivations of the two works are different. EAC utilizes the difference of attention maps before
and after the transformation to prevent the model to memorize noisy labels, while we propose the
re-balanced attention consistency to guide the model to extract useful features related to minor classes
from both major and minor samples. We novelly solve the imbalanced FER task through a label
distribution learning perspective. We also propose a re-balanced smooth labels module to further
regularize the classification loss from the negative effect of the imbalanced training set. We use the
extra knowledge of label distribution to facilitate the model to focus more on the prediction of minor
classes. The motivation of effectively utilizing all training samples to deal with imbalanced FER and
increase the performance of minor classes led to the title of our paper: leave no stone unturned.



Table 1: Comparison with different methods on RAF-DB using pre-trained ResNet-18 as backbone.
* denotes that we copied the accuracy from the original paper. We arrange the expression classes
according to their sample numbers and observe that they exhibit varying levels of difficulty. For
instance, despite having a small number of training samples, all methods achieve relatively high
performance on the anger class. On the other hand, the disgust and fear classes prove to be the most
challenging, and our method achieves the highest accuracy on these two classes. We report the last
epoch accuracy of all methods, we also display the best accuracy of our method for reference.

Method Conference Happiness Neutral Sadness Surprise Disgust Anger Fear Overall Mean
Baseline - 9544 8853 8556 8359 58.75 78.40 59.46 87.42 78.53
CB [5] CVPR’19  95.11 90.74 84.73 86.93 64.38 73.46 59.46 88.04 79.26
SCN [42] CVPR’20 94.77 90.29 80.33 86.93 60.00 76.54 4595 86.73 76.40
BBN [52] CVPR’20 9359 91.62 8494 8480 61.88 77.78 52.70 87.39 78.19
PT*[12] TAFFC’21 96.00 92.00 87.00 87.00 55.00 81.00 54.00 88.80 78.86
RUL [49] NeurIPS’21 9578  87.06 86.19 89.36 65.00 83.33 64.86 88.66 81.66
EAC[S50] ECCV’22 9595 92.06 87.03 88.15 66.88 85.80 58.11 89.90 82.00
Ours NeurIPS’23 9637  89.56 89.33 87.84 66.89 80.86 66.22 89.77 82.44
Ours (best) NeurIPS’23  96.03  87.79 89.33  87.23 73.13 84.57 70.27 89.80 84.05

4 Experiments

4.1 Datasets

RAF-DB [26] has 30,000 facial expression images, which are annotated with basic or compound
expressions by 40 trained annotators. In our experiment, we only utilize the 7 basic expressions and
these include 12,271 images for training and 3,068 images for testing. We report the mean accuracy
on all expressions to evaluate the imbalanced learning performance of different methods.

FERPIus [1] is extended from FER2013 [6] with finer labels. It is collected by the Google search
engine with ten crowd-sourced annotators labeling each image. The most voting category is used as
the annotation for a fair comparison with other FER methods [43}|37]. We utilize the same 7 classes
with RAF-DB, which results in 24,941 images for training and 3,137 images for testing.

AffectNet [32] is a large-scale FER dataset, which contains eight expressions (7 basic expressions
and contempt). There are a total of 286,564 training images and 4,000 test images. We carry out
experiments with both 7 basic classes and 8 classes. As the test set of AffectNet is balanced, the
mean accuracy on all expressions is the same with the overall accuracy.

4.2 Implementation details

To make fair comparisons with other methods, we compare all methods under the same backbone
of MS-Celeb-1M [8]] pre-trained ResNet-18. We also test the effectiveness of our method under
different backbones including MobileNet [10], ResNet-50 [9] and Swin Transformer [28]. The
facial expression images are detected and aligned using MTCNN [47]. The image size is 224 x 224,
the learning rate is set to 0.0001. We use Adam [17] optimizer with weight decay of 0.0001 and
ExponentialLR learning rate scheduler with a gamma of 0.9. The max training epoch T, is set to
60. The consistency weight A is set to 2 and the smooth parameter « is set to 0.1 according to the
ablation study in section All experiments are conducted on 4 NVIDIA RTX 2080Ti.

4.3 Experiments on imbalanced FER datasets

We conduct experiments on the RAF-DB dataset to evaluate the performance of different methods in
imbalanced learning. We report the classification accuracy of each class and the overall and mean
accuracy to assess their effectiveness. The baseline method involves training with the pre-trained
ResNet-18 without additional modules. We compare our method with imbalanced learning methods
CB, BBN, and state-of-the-art FER methods SCN, PT, RUL, and EAC. To obtain the mean accuracy,
we re-implement these methods based on their open-source code. The results in Table|1|demonstrate
that our method achieves the highest overall accuracy of 89.77% and mean accuracy of 82.44% on
the RAF-DB dataset using ResNet-18 as the backbone.



Table 2: Comparison with different methods on AffectNet using pre-trained ResNet-18 as backbone.
We carry out experiments with both 7 and 8 classes.

Method Conference Happiness Neutral Sadness Anger Surprise Fear Disgust Contempt Mean

SCN [42] CVPR20 9520 82.70 4420 56.30 35.80 38.00 20.90 - 53.30
BBN [52] CVPR’20 87.00 57.10 66.80 5830 54.90 71.10 30.10 - 60.76
RUL [49] NeurIPS’21 90.50 6240 64.70 69.30 60.80 49.00 34.20 - 61.56
EAC [50] ECCV’22 9140 6450 65.70 66.30 61.60 60.90 45.80 - 65.17
Ours NeurIPS’23  86.20  59.00 64.20 66.50 57.80 64.50 61.90 - 65.73

SCN [42] CVPR’20 94.60 7490 58.20 63.80 40.90 43.20 30.80 220 51.08
BBN [52] CVPR’20 7840 5840 60.60 67.70 59.40 55.00 37.00 46.70 57.90
RUL [49] NeurIPS’21 71.00 63.40 46.60 54.90 53.70 58.60 44.70 47.70 55.08
EAC [50] ECCV’22  84.00 58.80 65.00 6590 62.20 60.30 46.10 4190 60.53
Ours NeurIPS’23  78.60  54.30 63.80 59.50 57.60 64.10 59.40 60.00 62.16

Based on the accuracy of each class, which is not commonly reported in previous works, we observe
varying levels of difficulty among the expression classes. For instance, despite having very few
training samples, all methods achieve relatively high performance on the anger class. We speculate
that the distinct features associated with anger make it easier for FER models to detect. On the other
hand, the disgust and fear classes prove to be the most challenging, with all methods exhibiting low
accuracy. However, our method outperforms others on these two classes, achieving accuracies of
66.89% and 66.22% respectively. This highlights the effectiveness of our approach in extracting extra
knowledge from both major and minor-class samples to address the imbalanced learning problem.

We further carry out experiments on AffectNet, which is one of the largest and most imbalanced
datasets available for FER. From the results in Table[2} we could draw the conclusion that our method
achieves the best mean accuracy on the test set under both 7 or 8 classes. Besides, we notice that
our method improves existing methods on the minor classes of fear (Fea), disgust (Dis), contempt
(Con) by remarkable margins, which illustrates that our method is more suitable for the imbalanced
learning of FER task. Our method even achieves 60.00% accuracy on the contempt class under 8
classes. Furthermore, our method clearly decreases the test accuracy gap between happy (78.60%)
and contempt (60.00%) compared with other methods under 8 classes, which means our method is
fairer and achieves a more balanced test accuracy.

4.4 Experiments with different imbalance factors

Following existing imbalanced learning methods [15 |33} 2] in the image classification field, we also
construct imbalanced FER datasets with different imbalance factors. The definition of the imbalance
factor of a dataset is following [5] as the number of training samples in the largest class divided by
the smallest. Given the imbalance factor, the imbalanced FER datasets are created by reducing the
number of training samples per class according to an exponential function n = n; !, where [ is the
class index, n, is the original number of training images and p € (0, 1). Due to space limitation, the
sample number of each class is summarized in the supplementary material. We evaluate our method
on RAF-DB and FERPlus datasets with imbalance factors ranging from 50 to 150, as shown in
Table [3|and Table ] The results demonstrate the superior performance of our method across different
imbalance factors. Specifically, compared to the state-of-the-art FER method EAC, our method
consistently improves upon it with 4.09%, 3.26%, 1.67% and 2.13%, 2.62%, 4.15% regrading mean
accuracy of all classes on RAF-DB and FERPIlus respectively.

4.5 Different backbones

We evaluate the generalization ability of our method by combining it with four different backbones:
MobileNet, ResNet-18, ResNet-50, and Tiny Swin Transformer, on RAF-DB. The results consistently
demonstrate the improvement in imbalanced learning performance across different backbones. We
also observe that different backbones have a notable effect on the performance of imbalanced
learning. Notably, when combined with Tiny Swin Transformer, our method achieves state-of-the-art
performance with accuracy of 71.62% and 85.00% on the most difficult expression classes of fear
and disgust, respectively, as well as an overall accuracy of 92.31% and a mean accuracy of 87.71%.



Table 3: Comparison with other methods on RAF-DB with different imbalance factors. Disgust and
fear are the most difficult classes. Our method achieves the highest accuracy on the overall, mean
accuracy and the accuracy on the most difficult classes under different imbalance factors.

Method Imbalance Happiness Neutral Sadness Surprise Disgust Anger Fear

Overall Mean

Baseline 50 95.95 87.35 79.08 84.19 3938 6420 2.70 83.28 64.69
BBN 50 93.59 9191 81.80 8298 41.25 71.60 37.84 85.01 71.57
EAC 50 95.53 93.82 82.01 89.06 50.00 70.99 29.73 87.09 73.02
Ours 50 96.37 90.00 8536 8541 53.75 73.46 55.41 87.65 77.11
Baseline 100 91.72 8794 7385 81.76 10.63 5494 0.00 80.96 58.12
BBN 100 94.94 9338 7134 8237 36.88 6543 31.08 83.44 67.92
EAC 100 95.27 92.06 83.68 8997 36.88 62.35 2838 85.79 69.80
Ours 100 96.37 91.18 82.85 86.63 44.38 6543 44.59 86.47 73.06
Baseline 150 95.86 90.29 75773 7751 938 4691 0.00 80.11 56.53
BBN 150 94.85 93.53 74.69 81.46 30.00 55.56 2838 8292 6549
EAC 150 96.20 91.62 7782 79.64 36.25 59.88 39.19 84.13 68.66
Ours 150 96.62 9191 7929 8389 36.25 61.11 43.24 85.20 70.33

Table 4: Comparison with other methods on FERPlus with different imbalance factors. Our method
achieves the highest accuracy on the overall, mean accuracy and the accuracy on the most difficult

classes (fear and disgust) under different imbalance factors.

Method Imbalance Neutral Happiness Surprise Sadness Anger Fear Disgust Overall Mean

Baseline 50 86.42 93.17 89.14 76.56 83.88 46.99 2222 85.85 71.20
BBN 50 84.31 91.38 93.18 77.60 84.98 54.22 33.33 8559 74.14
EAC 50 90.09 95.63 90.15 7630 84.62 49.40 3333 88.11 74.22
Ours 50 91.19 94.06 91.67 7995 82.05 56.63 38.89 88.68 76.35
Baseline 100 90.32 93.56 87.63 66.80 78.21 46.99 2222 8543 69.39
BBN 100 88.62 91.71 93.18 7474 81.32 51.81 38.89 86.48 74.32
EAC 100 90.73 95.30 90.66  74.48 81.32 53.45 27.78 87.87 73.39
Ours 100 91.56 94.85 9242 7734 82.78 5422 38.89 88.81 76.01
Baseline 150 91.28 93.84 89.14  63.02 78775 4458 11.11 8549 67.39
BBN 150 90.09 92.61 9343  67.19 79.12 46.99 33.33 86.01 71.82
EAC 150 93.12 94.74 89.65 71.35 7875 39.76 22.22 87.41 69.94
Ours 150 93.94 94.51 90.40 71.88 79.12 5542 33.33 88.30 74.09

Table 5: The performance of our method under different backbones. We find that backbones have
a significant influence on the accuracy. Our method consistently improves the performance under
different backbones and achieves the state-of-the-art overall accuracy of 92.31% and mean accuracy

of 87.71% with Tiny Swin Transformer (Swin-T).

Backbone Happiness Neutral Sadness Surprise Disgust Anger Fear Overall Mean
MobileNet 93.84 83.09 77.62 8875 45.00 7531 56.76 83.96 74.34
MobileNet+Ours ~ 94.26 88.82 81.38 8328 59.38 74.07 59.46 86.15 77.24
ResNet-18 95.44 88.53 8556 8359 5875 7840 59.46 8742 78.53
ResNet-18+Ours  96.37 89.56 8933 87.84 66.89 80.86 66.22 89.77 82.44
ResNet-50 94.77 8779 87.03 8571 6875 84.57 60.81 88.33 81.35
ResNet-50+Ours ~ 95.95 87.65 89.75 8875 80.63 85.19 66.22 90.29 84.88
Swin-T 97.05 91.62 87.87 90.27 78.75 86.42 60.81 91.30 84.68
Swin-T+Ours 96.96 92.06 88.28 9240 85.00 87.65 71.62 9231 87.71




Table 6: Ablation study of our proposed two modules re-balanced attention consistency (RAC) and
re-balanced smooth labels (RSL). Both of the two modules can improve the performance based on
the baseline, while they can cooperate to achieve the best performance.

RAC RSL Happiness Neutral Sadness Surprise Disgust Anger Fear Overall Mean
95.44 88.53  85.56 83.59  58.75 78.40 59.46 8742 78.53

v 96.29 89.26  87.87 88.75  65.63 76.54 59.46 89.08 80.54
v 94.60 9044  85.15 82.07 5750 80.86 64.86 87.48 79.35

v v 96.37 89.56  89.33 87.84  66.89 80.86 66.22 89.77 82.44
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Figure 3: The hyperparameter study of the consistency weight A and the smooth parameter c.

4.6 Ablation study

We conduct an ablation study on RAF-DB to evaluate the contribution of each proposed module. The
results in Table [6]demonstrate the effectiveness of both the re-balanced attention consistency (RAC)
and re-balanced smooth labels (RSL) in improving the baseline method’s performance. Interestingly,
we observe that utilizing only the RAC module achieves superior performance compared to using only
the RSL module. This could be attributed to the additional information provided by the re-balanced
attention map consistency. Moreover, combining both RAC and RSL modules results in even better
performance, indicating their effective collaboration in addressing the imbalanced FER task.

4.7 Hyperparameter study

We carry out experiments on RAF-DB to study the effect of different hyperparameters to our method.
We plot the results in Figure[3]

Consistency weight A The results demonstrate that our method exhibits low sensitivity to the
consistency weight A, with both the mean accuracy and overall accuracy varying within a small range
of 1% as A changes from 0.05 to 4. Notably, the optimal value for A in our method is found to be
2, indicating that larger values may excessively prioritize consistency loss over classification loss,
potentially leading to a decrease in classification accuracy. Conversely, smaller values of A\ may fail
to effectively regulate the model in extracting additional knowledge related to minor classes from all
samples, thus negatively impacting accuracy.

Smooth parameter o« The smooth parameter, ranging from 0 to 1, determines the strength of the
latent truth (set as 1 — o). We evaluate different values of o from 0.05 to 0.4 and find that the optimal
value is a = 0.1. A larger o negatively impacts performance as the excessive smooth effect hampers
the model’s ability to learn useful information. On the other hand, a smaller « fails to effectively
utilize the prior knowledge of label distribution to prioritize minor classes.

4.8 Visualization results

We provide visualization results to illustrate the effectiveness of our proposed method. The learned
attention maps, as shown in Figure 4} reveal three key observations. First, our method consistently
learns attention maps that are more consistent across different transformations, enabling the FER
model to capture transformation invariant information for various expression classes. Second, our
method effectively extracts additional knowledge related to minor classes (e.g., disgust and fear)
from samples of major classes (e.g., sadness and surprise), as there are shared features between major



baseline ours

Figure 4: The attention maps corresponding to different classes learned by different methods. We
utilize the attention map of a certain class to mine transformation invariant information of that class.
The attention maps of the labels are marked by red. Attention maps learned by our method are more
consistent before and after the flip transformation across all different classes. Furthermore, shown in
the last two columns, our method can mine extra knowledge related to the minor classes like fear (the
open mouth feature) from the samples of major classes of surprise.

Table 7: Other transformation methods for re-balanced attention consistency.

Method Happiness Neutral Sadness Surprise Disgust Anger Fear Overall Mean

Intensity 95.02 86.47 82.01 82.98 63.13 72.84 56.76 86.05 77.03
Scaling 95.78 91.91 84.31 85.41 75.00 82.10 60.81 89.37 82.19
Ours 96.37 89.56 89.33 87.84 66.80 80.86 66.22 89.77 82.44

and minor classes in FER. For instance, the first column in the right part of Figure 4] demonstrates
how our method captures the mouth corner feature associated with disgust from a sample labeled as
sadness. Furthermore, the last two columns in the figure show that our method identifies the open
mouth feature shared by fear and surprise, allowing us to extract fear-related features from surprise
samples. More results in the Supp. material. Third, our method produces non-overlapping attention
maps for different classes, in contrast to the baseline method. For example, for the sample labeled as
sadness, the attention maps for happiness and sadness learned by our method do not overlap, while
they overlap in the baseline method. This indicates that the attention maps learned by our method are
more meaningful and distinct.

4.9 Other transformations

Flipping of the images is shown to introduce the notion of re-balanced attention consistency. In
this section, we investigate whether some other transformations (e.g., scaling, intensity attenuation,
or gain) work well under the imbalanced FER task. The results on RAF-DB in Table [7)illustrate
that intensity transformation performs poorly, while scaling performs well, which almost surpasses
our method. The reason lies in that attention map consistency regularizes the model to focus on
the same regions before and after the transformation, which incorporates spatial information as the
attention map in our method has height and width dimensions. Thus, the transformation should be
spatial-related transformation to maximize the function of the method.

5 Conclusion

In this paper, we investigate the imbalanced learning problem in facial expression recognition (FER).
We observe that existing imbalanced learning methods tend to improve performance on minor classes
at the expense of major classes. Motivated by the label distribution learning characteristic of FER, we
propose a novel approach to extract additional knowledge about minor classes from both major and
minor class samples. This allows us to enhance the performance on minor classes while maintaining
high performance on major classes. Our method consists of two modules: re-balanced attention
consistency and re-balanced smooth labels, which regulate attention maps and classification loss,
respectively. Instead of relying on traditional over-sampling or under-sampling techniques, our
method effectively utilizes all training samples and incorporates prior knowledge of the imbalanced
data distribution to prioritize minor classes. Through extensive experiments on various imbalanced
FER datasets and with different backbones, we validate the effectiveness of our proposed method.
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