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ABSTRACT

Large language models have demonstrated impressive reasoning capabilities, yet
they often suffer from inefficiencies due to unnecessarily verbose or redundant
outputs. While many works have explored reinforcement learning (RL) to enhance
reasoning abilities, most primarily focus on improving accuracy, with limited
attention to reasoning efficiency. Some existing approaches introduce direct length-
based rewards to encourage brevity, but this often leads to noticeable drops in
accuracy. In this paper, we propose BINGO, an RL framework that advances
length-based reward design to boost efficient reasoning. BINGO incorporates two
key mechanisms: a significance-aware length reward, which gradually guides the
model to reduce only insignificant tokens, and a dynamic length reward, which
initially encourages elaborate reasoning for hard questions but decays over time
to improve overall efficiency. Experiments across multiple reasoning benchmarks
show that BINGO improves both accuracy and efficiency. It outperforms the vanilla
reward and several other length-based reward baselines in RL, achieving a favorable
trade-off between accuracy and efficiency. These results underscore the potential
of training LLMs explicitly for efficient reasoning. Our code can be found at
https://anonymous.4open.science/r/Bingo-luck-1124.
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Figure 1: Performance overview of BINGO and other baselines. Left: Scatter plot of average
accuracy versus average response length on four benchmarks (MATH500, GSM8K, TheoremQA,
AIME2024) using DeepSeek-R1-Distill-Qwen-1.5B as the base model. Points nearer the top-right
corner represent a better balance of accuracy and efficiency. Right: Radar chart of length-normalized
accuracy for each method. Greater radial distances denote higher efficiency.

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2024; Gunasekar et al., 2023) have demonstrated impressive
reasoning capabilities across a variety of tasks, from arithmetic problem solving (Uesato et al., 2022;
Hendrycks et al., 2021; Veeraboina, 2023) to commonsense reasoning (Chen et al., 2023). A key
observation from recent work is that sufficiently large models can exhibit emergent reasoning abilities,
such as chain-of-thought (CoT) reasoning (Wei et al., 2022b), without explicit supervision (Wei et al.,
2022a; Suzgun et al., 2022). Despite these successes, a major challenge persists: LLMs often generate
unnecessarily verbose or redundant reasoning traces, leading to inefficiencies in computational cost,
redundancy, and latency.
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Improving reasoning efficiency of LLMs has thus emerged as an important research direction (Qu
et al., 2025; Sui et al., 2025; Li et al., 2025; Wang et al., 2025). Prior work in this area can be broadly
categorized into supervised fine-tuning (SFT) approaches (Xia et al., 2025; Xu et al., 2025a; Zhang
et al., 2025; Kang et al., 2024) and reinforcement learning (RL) approaches (Luo et al., 2025; Team
et al., 2025; Arora & Zanette, 2025; Aggarwal & Welleck, 2025; Yeo et al., 2025; Shi et al., 2025).
SFT-based methods focus on constructing compressed reasoning traces and training models to imitate
them. While these approaches can be effective, they rely on high-quality compressed supervision,
which is costly to obtain and often lacks generalizability across diverse tasks. RL-based methods
typically introduce length-based rewards that penalize overly long responses to encourage brevity.
However, the design of such rewards or penalties in RL-based methods remains underexplored and
is often overly simplistic. For example, O1-Pruner (Luo et al., 2025) applies a uniform penalty
to all samples, assuming that every response should be shortened. This assumption often leads to
performance degradation, as not all reasoning traces are equally verbose—some require more detailed
steps to arrive at the correct answer. To address this, other works have proposed more selective
penalty strategies, conditioning penalties on sample correctness (Qu et al., 2025; Team et al., 2025;
Yeo et al., 2025) or estimated difficulty (Shi et al., 2025). These approaches typically assign stronger
penalties to simpler questions and weaker ones to more challenging cases. However, accurately
estimating question difficulty remains a fundamental challenge, and unresolved hard questions often
lead to unnecessarily long responses, further undermining reasoning efficiency.

Despite growing interest, current designs of length-based rewards remain limited, as they often fail to
adequately promote concise reasoning while preserving answer accuracy. For example, prior work
has largely overlooked the impact of token-level contributions on the overall efficiency of reasoning.
In this work, we approach the problem from a novel perspective grounded in the concept of token
significance. Our motivation arises from observed token redundancy in LLMs (Hou et al., 2022;
Lin et al., 2025), where many tokens in chain-of-thought (CoT) reasoning contribute little to the
final answer. We posit that not all tokens are equally important for efficient reasoning—many are
insignificant, such as redundant phrases or unnecessary intermediate steps, and can be removed
without degrading performance. Existing reward designs often overlook this distinction. In contrast,
we introduce a significance-aware length reward that selectively penalizes only those insignificant
tokens which do not meaningfully contribute to the final answer, while preserving essential reasoning
steps.

We also observe that effectively handling hard questions is essential for efficient reasoning. Prior
work (Muennighoff et al., 2025; Wu et al., 2025) has shown that encouraging extended CoT reasoning
can improve performance by enabling deeper exploration, which may help solve more difficult
questions. Therefore, it is intuitive to use length as an incentive for hard questions. However, LLMs
should not only solve difficult questions accurately but also do so concisely. Applying a static length
incentive can lead to unnecessarily long responses, which may still fail to produce correct answers.
To address this, we incorporate a dynamic length reward that adapts over the course of training. This
reward is applied to significant tokens in incorrect samples to balance exploration and efficiency.
Specifically, it encourages longer reasoning in the early training phase to promote exploration, and
gradually shifts toward penalizing excessive length in later stages to promote conciseness.

Building on these insights, we introduce BINGO (Boosting Efficient ReasonING in Policy
Optimization), a RL framework that incorporates our two proposed reward mechanisms into standard
RL algorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017). This enables
joint optimization of both reasoning accuracy and efficiency. Extensive experiments across diverse
reasoning benchmarks show that BINGO significantly reduces redundant computation while maintain-
ing—or even improving—task accuracy, consistently outperforming strong baselines. As shown in
Figure 1, our method delivers substantial gains on both simple and challenging datasets. For example,
on the relatively straightforward GSM8K benchmark, it improves accuracy by 1.6 percentage points
while reducing response length by 57%. On the more challenging TheoremQA dataset, it achieves a
4.5-point accuracy improvement and a 60% reduction in response length.

In summary, this paper makes the following key contributions:

• Token Significance Insight. We introduce the concept of token significance in policy optimization,
distinguishing between significant and insignificant tokens in reasoning traces. This insight
motivates our significance-aware length reward, which explicitly penalizes uninformative tokens
while preserving critical reasoning content, enabling more targeted and effective length control.
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• Dynamic Length Control. We propose a dynamic length reward strategy that adjusts the reward
signal over the course of training—encouraging longer reasoning in the early stages to foster
exploration, and gradually promoting conciseness as the model converges.

• Efficiency-Oriented RL Framework. We develop BINGO, a new reinforcement learning frame-
work that integrates both reward strategies. Extensive experiments across multiple reasoning
benchmarks, along with comprehensive analyses, demonstrate its effectiveness.

2 RELATED WORK

Reinforcement Learning for Large Language Models. Reinforcement Learning (RL) (Kaelbling
et al., 1996) has emerged as a powerful paradigm for aligning large language models (LLMs) with
human preferences. In Reinforcement Learning from Human Feedback (RLHF) (Christiano et al.,
2017; Stiennon et al., 2020; Ouyang et al., 2022), the Proximal Policy Optimization (PPO) algorithm
(Schulman et al., 2017) is employed alongside human preference data to train a reward model that
steers the fine-tuning of LLMs. Building on PPO, subsequent works have proposed improved variants
to address its limitations. For instance, GRPO (Shao et al., 2024) improves the stability of reward
modeling, while REINFORCE++ (Hu, 2025) focuses on enhancing training efficiency. Beyond
alignment, RL has also shown promise in improving the reasoning capabilities of LLMs. Early
studies (Lightman et al., 2023; Uesato et al., 2022) demonstrated that reward-guided training can
enhance multi-step reasoning performance. More recently, DeepSeek-R1 (DeepSeek-AI et al., 2025)
demonstrated that large-scale RL can substantially boost reasoning ability across a wide range of
tasks, pointing to a promising direction for future work. RL has also been effectively applied in
domain-specific scenarios. For example, DeepRetrieval (Jiang et al., 2025) trains models to reason
over search engine interactions for improved information retrieval. Fortune (Cao et al., 2025) applies
RL to enhance symbolic table reasoning abilities in LLMs through formula.

Efficient Reasoning with Large Language Models. Recent advances have empowered lan-
guage models to perform strong reasoning via inference-time techniques such as chain-of-thought
prompting (Wei et al., 2023; Yao et al., 2023; Cao, 2024; Wang et al., 2023) and post-training
(Lightman et al., 2023; Uesato et al., 2022; DeepSeek-AI et al., 2025). More recent work has
shifted to optimizing both accuracy and efficiency. Some approaches improve efficiency at infer-
ence time, such as token-budget-aware reasoning (Han et al., 2025), or prompting strategies like
“reason-without-thinking” (Ma et al., 2025) and chain-of-draft (Xu et al., 2025b). Others apply
post-training optimization via supervised fine-tuning (SFT), including TokenSkip (Xia et al., 2025),
TwT (Xu et al., 2025a), LightThinker (Zhang et al., 2025), and C3oT (Kang et al., 2024). These
SFT methods primarily construct high-quality compressed reasoning paths containing key infor-
mation, and train the models on them. In parallel, RL-based approaches often improve efficiency
by incorporating length controls or penalties into their reward functions. For instance, O1-Pruner
(Luo et al., 2025) uses offline length rewards comparing samples against mean lengths. Kimi k1.5
(Team et al., 2025) applies online penalties to correct samples only. Efficient Reasoning (Arora &
Zanette, 2025) scales rewards inversely with output length. L1 (Aggarwal & Welleck, 2025) optimizes
accuracy under user-defined length constraints. Demystifying (Yeo et al., 2025) uses cosine-based
penalties—reducing length for correct outputs while encouraging extended reasoning for incorrect
ones. DAST (Shi et al., 2025) employs Token Length Budgets to dynamically adjust reasoning length
based on problem difficulty. Building on prior RL-based approaches, we advance length-based reward
design to enable LLMs to balance reasoning accuracy with computational efficiency.

3 METHODOLOGY

In this section, we introduce the design of the significance-aware length reward and the dynamic length
reward, and explain how these two reward mechanisms are integrated into the BINGO framework, as
illustrated in Figure 2. All notations are list at Appendix S.

3.1 TASK FORMULATION

Chain of Thought Reasoning. Let x denote a prompt, and let y = (y1, y2, . . . , yn) represent
the sequence generated by a language model parameterized by θ, where yi is the i-th token in the
sequence, and n is the total length of the sequence. Tokens are generated autoregressively from the
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Figure 2: Illustration of the BINGO framework. Given a generated CoT trace, the LLM first
distinguishes between significant and insignificant tokens. A dynamic length reward is then computed
based on token type and sample correctness. During the early exploration phase of training (k(t) ≥ β),
the reward encourages extended reasoning for significant tokens in incorrect samples while penalizing
insignificant tokens in all cases. As training progresses (k(t) < β), the reward shifts toward promoting
conciseness by discouraging both significant and insignificant length where appropriate. This two-
stage strategy allows the model to first explore broadly and then compress effectively. The aggregated
rewards are then used to update the policy via RL, resulting in more accurate and efficient reasoning.

conditional distribution:

πθ(y | x) =
n∏

t=1

πθ

(
yi | x, y1:i−1

)
, (1)

where the product runs over all tokens in the sequence, with each token yi (i.e, the action ai)
conditioned on the prompt x and the previous tokens y1:i−1 (i.e., the state si). Generation continues
until an end-of-sequence (EOS) token is produced, signaling the completion of the response. During
this process, the model may produce intermediate reasoning tokens, referred to as a chain of thought
(CoT) (Wei et al., 2022b), before generating the final answer. Therefore, the full output sequence,
denoted as y, consists of both the chain of thought and the final answer.

Optimization Objective of Efficient Reasoning. The performance of the model in efficient reasoning
is assessed along two key dimensions: accuracy and efficiency.

Accuracy is measured by the Exact Match (EM) metric, which evaluates whether the model’s final
answer matches the ground truth. Let ẑ(y) denote the final answer extracted from the model-generated
sequence y, typically corresponding to its final segment. Let z be the ground-truth answer. Then EM
is defined as:

EM = Ex∼ϕEy∼πθ(·|x)1 [ẑ(y) = z] , (2)

where ϕ denotes the distribution over prompts. The indicator function returns 1 if the predicted
answer exactly matches the ground truth, and 0 otherwise.

Efficiency is measured by the response length L, typically defined as the number of tokens n in
the generated sequence y = (y1, y2, . . . , yn). While longer sequences may offer detailed reasoning,
they often result in higher computational cost. Thus, reducing unnecessary tokens without harming
accuracy is crucial for practical deployment. An ideal model achieves high EM while minimizing the
average response length L, striking a balance between correctness and conciseness.

3.2 SIGNIFICANCE-AWARE LENGTH REWARD

To enhance the efficiency of CoT generation, it is crucial to recognize that not all tokens in a CoT
sequence contribute equally to deriving the final answer. Significant tokens (such as key concepts,
essential terms, or mathematical equations) directly influence the final answer, whereas insignificant
tokens (including filler words or semantic connectors) contribute little to correctness. Distinguishing
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between these two token types is essential for improving CoT efficiency by directing computational
resources toward the most informative content.

We leverage LLMLingua-2 (Pan et al., 2024) as an off-the-shelf tool for estimating token-level
information content. LLMLingua-2 is a encoder language model, denoted as Me, specifically trained
to assess the significance of individual tokens for text compression. A more detailed discussion of
our token significance measurement approach is provided in Appendix E. We define the significance
score for each token as follows:

S(yi) = P (yi | y≤n;θMe
), (3)

where n is the total number of tokens in the output sequence.

Tokens with low importance scores are considered insignificant, while those with high scores are
deemed significant. Specifically, we classify tokens as follows:

Token yi is
{

insignificant, if S(yi) < τ,

significant, if S(yi) ≥ τ.
(4)

We then compute the total number of significant tokens Ls and insignificant tokens Lis in the response
as:

Ls =

n∑
i=1

1 (S(yi) ≥ τ) , Lis =

n∑
i=1

1 (S(yi) < τ) , (5)

where 1(·) is the indicator function, and τ is a pre-defined threshold. To encourage brevity while
maintaining reasoning quality, we introduce a significance-aware length reward that penalizes the
excessive use of insignificant tokens through a cosine-based decay:

ris(y) = cos

(
clip

(
Lis

Lis
ref
, 0,

π

2

))
+ 1[ẑ(y) = z] (6)

where Lis
ref denotes the number of insignificant tokens in a reference response. The cosine function

ensures a smooth, non-linear penalty that gradually decreases the reward as Lis increases, while the
clipping operation bounds the angle to the interval [0, π

2 ], preventing negative rewards. The final
reward combines this length-based penalty with an answer reward derived from the EM indicator,
ensuring that answer correctness is preserved.

This reward formulation ensures that shorter or equally concise responses—measured in terms of
insignificant content—receive higher rewards, while excessively verbose outputs are gently penalized.
Notably, our approach preserves natural fluency and coherence in generated text by constraining only
the aggregate length of insignificant tokens, without dictating specific token selections or sequences
in RL-based training. Compared to standard length-based penalties, our significance-aware approach
achieves equal or greater length reductions with less accuracy degradation by selectively penalizing
insignificant tokens, as theoretically justified in Appendix F.

3.3 DYNAMIC LENGTH REWARD FOR SIGNIFICANT TOKENS

While insignificant tokens are consistently penalized to reduce redundancy, significant tokens warrant
a more nuanced approach. In the early stages of training, allowing longer reasoning with significant
content can facilitate exploration and support the development of robust problem-solving strate-
gies. However, as training progresses, conciseness becomes increasingly important for improving
efficiency.

To accommodate this shift, we introduce a dynamic length reward for significant tokens that evolves
over time based on the model’s learning trajectory. This adaptive mechanism is guided by a dynamic
scaling factor that captures trends in accuracy and modulates the reward accordingly. Formally, the
length-based reward for significant tokens is defined as:

rs(y) =

{
k · Ls

Ls
ref
, if k ≥ β

−α · t · Ls

Ls
ref
, if k < β

(7)

where Ls represents the number of significant tokens in the generated output, Ls
ref is the corresponding

value from the reference model, and k is a dynamic scaling factor that reflects the reasoning trend
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during training. The training step t begins at 1 and increments gradually when k first falls below the
threshold β, which determines when the model transitions from incentivizing longer significant token
lengths to penalizing them. α is a weight that determines the rate of decay in this process. The value
of k is estimated by fitting a linear model to recent training steps:

k =

∑Sb

t=Sa
(t− t̄)(acct − acc)∑Sb

t=Sa
(t− t̄)2

(8)

where acct denotes the training batch accuracy at training step t, t̄ and acc are the mean step index
and mean accuracy over the interval [Sa, Sb]. A positive k indicates an upward accuracy trend,
suggesting that the model is still in an improvement phase. As training progresses and accuracy
plateaus, k approaches zero or becomes negative. The theoretical rationale behind the design of
our dynamic length reward schedule is discussed in detail in Appendix G. This dynamic adaptation
allows the model to balance early-stage exploration with late-stage compression, fostering reasoning
strategies that are both effective and efficient.

3.4 BOOSTING EFFICIENT REASONING IN POLICY OPTIMIZATION

We propose a novel reinforcement learning algorithm, BINGO (Boosting Efficient ReasonING in
Policy Optimization), designed to jointly optimize reasoning performance and efficiency. BINGO
extends the reinforcement learning framework—primarily based on Proximal Policy Optimization
(PPO) in this work—by introducing two key innovations: a significance-aware length reward and a
dynamic length reward.

As discussed in Section 3.2, we begin by categorizing tokens into significant and insignificant based
on their significance scores. To promote concise yet informative responses, we introduce a cosine-
based reward function that adjusts penalties according to the length composition of the response. For
correctly answered samples, the reward penalizes only the length of the insignificant portion, reducing
verbosity while preserving essential reasoning. For incorrect samples, the reward both penalizes the
use of insignificant tokens and encourages the generation of more significant reasoning content.

To balance exploration and efficiency over the course of training, we incorporate a time-dependent
mechanism that gradually reduces the incentive for longer responses. As detailed in Section 3.3, this
dynamic reward decays as the model converges, shifting the focus from exploration to conciseness.

The overall reward formulation integrates these components into a unified objective:

RBINGO(y) =


λc · ris(y)︸ ︷︷ ︸

Correct insignificant length reward

, if correct,

λis
w · [ris(y)− 1]︸ ︷︷ ︸

Incorrect insignificant length reward

+ min (0, rs(y)− λs
w)︸ ︷︷ ︸

Dynamic significant length reward

, if incorrect.
(9)

where the coefficient λc controls the strength of the penalty applied to correct responses, while λis
w

determines the magnitude of the penalty for incorrect ones. The parameter λs
w serves as a dynamic

threshold to balance exploration when the model generates incorrect outputs.

We optimize the policy using the proximal policy optimization objective with the reward RBINGO

defined by Equation 9. The surrogate objective is:

JBINGO(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, (10)

where:

• rt(θ) =
πθ(at|st)
πθold (at|st) is the importance sampling ratio,

• Ât is the advantage estimate at time step t, computed via generalized advantage estimation
using the final sequence-level reward RBINGO and the value predictions V (st).

• ϵ is a clipping parameter.
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Table 1: Comparison of different length-based rewards on reasoning benchmarks. Each method
is evaluated using DeepSeek-R1-Distill-Qwen-1.5B as the base model by answer accuracy (Acc,
%), response length (Len), and length-normalized accuracy (L-Acc, %). The best performance is
highlighted in dark blue, and the second-best in light blue.

Length-based Reward MATH500 GSM8K TheoremQA AIME2024
Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑

Vanilla PPO (Schulman et al., 2017) 81.4 2,771 66.2 85.4 1,310 78.2 32.3 4,146 22.7 26.7 6,961 10.3
O1-Pruner (Luo et al., 2025) 74.4 991 69.8 81.4 211 80.3 32.4 485 31.4 26.7 5,958 13.9
kimi-k1.5 (Team et al., 2025) 80.4 1,692 71.6 85.4 739 81.5 34.4 2,136 29.6 33.3 5,159 20.3
Effi. Reasoning (Arora & Zanette, 2025) 82.6 2,395 69.5 86.4 1,155 80.0 34.8 3,560 26.2 36.7 5,771 19.9
Demystifying (Yeo et al., 2025) 80.2 1,411 73.0 86.6 548 83.6 35.1 1,976 30.6 30.0 6,183 14.9
DAST (Shi et al., 2025) 81.2 1,770 71.9 82.0 456 79.6 35.2 2,325 29.8 36.7 5,400 21.4

Bingo (Ours)
Bingo-A 82.2 894 77.6 87.0 563 83.9 36.8 1,648 32.9 33.3 2,943 26.7
Bingo-E 80.6 779 76.7 86.7 345 84.9 36.7 1,584 33.0 33.3 2,943 26.7

Therefore, BINGO achieves a favorable trade-off between accuracy and efficiency by maximizing the
objective function JBINGO(θ).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND EVALUATION METRICS

We fine-tune two reasoning models, DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-
7B, along with an instruction-tuned model, Qwen2.5-Math-7B-Instruct, on the MATH (Hendrycks
et al., 2021) training split. Evaluation is conducted on four test sets: MATH500 (Hendrycks et al.,
2021), GSM8K (Cobbe et al., 2021), AIME2024 (Veeraboina, 2023), and THEOREMQA (Chen
et al., 2023). Among them, MATH500 serves as the in-distribution benchmark, while the others are
used as out-of-distribution test sets.

We compare our models with several baselines: the frozen Base model (zero-shot), a model fine-
tuned with the Vanilla PPO algorithm, and five state-of-the-art methods—DAST (Shi et al., 2025),
Demystifying (Yeo et al., 2025), Efficient Reasoning (Arora & Zanette, 2025), Kimi-k1.5 (Team
et al., 2025), and O1-Pruner (Luo et al., 2025). To isolate and evaluate the effectiveness of different
length-based reward designs, we re-implement the core length-reward components from all methods
within a unified PPO framework. This controlled setup allows direct assessment of whether the
reward designs themselves drive performance. For a more detailed description of the experimental
settings, please refer to Appendix I. A thorough hyperparameter study can be found in Appendix R.

We report two variants of our model: BINGO-A, the accuracy-preferred checkpoint, selected when
validation accuracy reaches its peak; and BINGO-E, the efficiency-preferred checkpoint, chosen when
response length stabilizes during continued training. This dual-reporting strategy enables practitioners
to choose a model variant based on their preference for accuracy or efficiency. They may correspond
to the same checkpoint.

To evaluate the reasoning efficiency of LLMs in this study, we report not only accuracy (Acc) and
response length (Len), but also introduce an additional metric: length-normalized accuracy (L-Acc).
This metric provides a more comprehensive measure of a model’s reasoning efficiency by jointly
considering correctness and conciseness. It is defined as:

L-Acc = Acc×
√
1− L

Lmax
, (11)

where L is the average response length and Lmax is the maximum allowable length. A detailed
definition and theoretical analysis of L-Acc are provided in Appendix H.

4.2 PERFORMANCE COMPARISON WITH BASELINE METHODS

BINGO outperforms existing methods in L-Acc: As shown in Table 1, both BINGO-A and BINGO-
E achieve the highest L-Acc across all four benchmarks, outperforming previous baselines such as
Vanilla PPO, Efficient Reasoning, and DAST.
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Table 2: Performance comparison across model scales and types. Accuracy (Acc), average
output length (Length), and length-normalized accuracy (L-Acc, %) on four benchmarks. The best
performance is highlighted in dark blue, and the second-best in light blue.

Method MATH500 GSM8K TheoremQA AIME2024
Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑

DeepSeek-R1-Distill-Qwen-1.5B
Base 63.2 3,913 45.7 73.2 2,025 63.5 18.7 5,741 10.3 16.7 7,027 6.3
PPO 81.4 2,771 66.2 85.4 1,310 78.2 32.3 4,146 22.7 26.7 6,961 10.3
Bingo-A (Ours) 82.2 894 77.6 87.0 563 83.9 36.8 1,648 32.9 33.3 2,943 26.7
Bingo-E (Ours) 80.6 779 76.7 86.7 345 84.9 36.7 1,584 33.0 33.3 2,943 26.7

DeepSeek-R1-Distill-Qwen-7B
Base 82.8 3,033 65.7 85.7 1,001 80.3 37.8 4,340 25.9 40.0 6,528 18.0
PPO 88.4 1,536 79.7 92.9 918 87.5 45.4 2,709 37.1 56.7 5,857 30.3
Bingo-A (Ours) 88.8 1,400 80.9 92.3 371 90.2 45.2 1,908 39.6 63.3 4,670 41.5
Bingo-E (Ours) 87.2 1,252 80.3 91.8 366 89.7 45.0 1,693 40.1 60.0 4,011 42.9

Qwen2.5-Math-7B-Instruct
Base 80.8 727 70.3 95.8 331 90.3 36.8 919 30.7 16.7 1,310 12.5
PPO 82.0 670 72.3 96.6 305 91.5 37.6 759 32.5 20.0 1,260 15.2
Bingo-A (Ours) 82.6 656 73.0 96.1 283 91.5 37.9 598 34.0 20.0 892 16.8
Bingo-E (Ours) 81.6 559 73.6 96.0 241 92.0 37.1 552 33.5 16.7 811 14.2
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Figure 3: Significant Length Ratio dynamics during training. The x-axis indicates training steps,
and the y-axis denotes the proportion of significant tokens in the generated responses. Each subplot
corresponds to one benchmark evaluated using DeepSeek-R1-Distill-Qwen-1.5B as the base model.
The blue curve represents the baseline method (Vanilla PPO), and the red curve represents our
approach (Ours).

BINGO-A improves accuracy while significantly reducing response length: BINGO-A reduces
average response length by up to 68% compared to Vanilla PPO (e.g., 894 vs. 2,771 tokens on
MATH500), demonstrating the model’s ability to generate concise and correct reasoning steps.

Existing baselines struggle with the trade-off between accuracy and brevity: Approaches like
Efficient Reasoning produce verbose outputs, while methods such as O1-Pruner overly shorten
responses, compromising accuracy.

4.3 PERFORMANCE EVALUATION ACROSS VARYING MODEL SCALES

BINGO achieves the best trade-off between accuracy and response length across different model
sizes: As shown in Table 2, both BINGO-A and BINGO-E consistently outperform all other methods
across various model sizes (1.5B and 7B parameters) and benchmarks, achieving the highest L-Acc
while maintaining competitive or superior accuracy.

BINGO-E offers a substantial reduction in response length without sacrificing accuracy: BINGO-
E reduces response length by up to 63% (e.g., 366 vs. 1,001 tokens on GSM8K) compared to the
Base model, while also improving accuracy by 6.1 percentage points, demonstrating the model’s
ability to generate concise and accurate reasoning steps.

4.4 ANALYSIS OF SIGNIFICANT VERSUS INSIGNIFICANT TOKEN RATIO

Significance-aware reward increases the proportion of significant tokens: As shown in Figure 3,
our significance-aware reward consistently improves the significant-token ratio across all datasets.
For example, the ratio increases from 0.71 to 0.75 (+4%) on the MATH500. Similarly, the STR
improves by about 2% on GSM8K and 5% on TheoremQA, indicating that our method retains the
essential reasoning steps while removing redundant or insignificant tokens.
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Table 3: Ablation study on reward components. Each method is evaluated using DeepSeek-R1-
Distill-Qwen-1.5B as the base model by answer accuracy (Acc, %), response length (Len), and
length-normalized accuracy (L-Acc, %). Values in parentheses indicate the relative drop in L-Acc
compared to BINGO-A. The best performance is highlighted in dark blue, and the second-best in
light blue.

Method MATH500 GSM8K TheoremQA AIME2024
Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑

Bingo-A (Ours) 82.2 894 77.6 87.0 563 83.9 36.8 1,648 32.9 33.3 2,943 26.7
Vanilla PPO 81.4 2,771 66.2 (-14.7) 85.4 1,310 78.2 (-6.8) 32.3 4,146 22.7 (-31.0) 26.7 6,961 10.3 (-16.4)
Significance-Aware Length Reward 81.4 1,734 72.3 (-5.3) 86.7 742 82.6 (-1.3) 36.0 2,841 29.1 (-3.8) 40.0 5,138 24.4 (-2.3)

w/o Cosine 78.6 1,750 69.7 (-7.9) 85.7 509 83.0 (-0.9) 35.3 2,414 29.7 (-3.2) 33.3 6,454 15.4 (-11.3)
w/o Significance Separation 79.8 1,666 71.2 (-6.4) 86.6 604 83.3 (-0.6) 36.9 2,328 31.3 (-1.6) 26.7 5,702 14.7 (-12.0)
w/o Length Incentive 77.8 1,400 70.8 (-6.8) 82.6 425 80.5 (-3.4) 35.7 1,636 32.0 (-0.9) 30.0 4,157 21.1 (-5.6)

Dynamic Length Reward 79.0 2,204 67.5 (-10.1) 84.3 955 79.2 (-4.7) 33.9 2,632 27.9 (-5.0) 30.0 5,047 18.6 (-8.1)

Improved reasoning efficiency with richer content: The increase in significant tokens leads to
shorter, more focused chains, as demonstrated by the reductions in response length shown in Table 2.
These concise outputs are not only shorter but also contain more meaningful content, resulting in
higher raw Acc and L-Acc, reinforcing the effectiveness of our reward strategy.

4.5 ABLATION STUDY

Combining Significance-Aware and Dynamic Length rewards yields the best trade-off: Table 3
shows that the joint use of both the Significance-Aware and Dynamic Length rewards (BINGO-A)
provides the best performance, achieving the highest accuracy and L-Acc across all four benchmarks,
while maintaining competitive or superior raw accuracy compared to other methods.

Removing key reward components degrades performance significantly: Ablations show that
removing any of the reward components leads to noticeable performance drops, particularly in terms
of L-Acc. These results confirm the complementary nature of the reward components and their crucial
role in optimizing the model’s efficiency and accuracy.

4.6 ADDITIONAL EXPERIMENTS AND ANALYSIS

BINGO improves across multiple RL algorithms: We evaluate the generalizability of our reward
design by integrating it into other RL algorithms, including RLOO, GRPO, and Reinforce++. As
shown in Appendix K, BINGO variants consistently outperform vanilla ones, achieving superior
performance in both accuracy and L-Acc.

BINGO effectively reduces response length, especially for incorrect samples: The distribution of
response lengths for correct vs. incorrect samples in Appendix O shows that BINGO significantly
shortens incorrect sample lengths compared to PPO. Furthermore, Figure 8 in Appendix O illustrates
that incorrect samples show a more significant reduction in response length during training, con-
firming the dynamic reward’s effectiveness. Figure 7 in Appendix N further shows that our method
consistently reduces response length more than PPO.

Analysis of significant token ratio and token-level significance visualization: Appendix L shows
that BINGO increases the proportion of significant tokens compared to baselines, while Appendix M
provides a token-level significance visualization, demonstrating how our approach retains essential
reasoning steps and eliminates redundancy.

Analysis confirms the effectiveness of dynamic and significance rewards: The analysis in Ap-
pendix P validates that our dynamic and significance rewards balance exploration and efficiency. A
case study in Appendix Q further demonstrates the practical impact of BINGO on reasoning efficiency.

5 CONCLUSION

In this paper, we introduce BINGO, a RL framework that enhances reasoning efficiency in LLMs.
By incorporating significance-aware and dynamic length rewards, BINGO strikes a strong balance
between exploration and conciseness, outperforming existing methods across multiple benchmarks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
https://arxiv.org/abs/2502.04463.

Lang Cao. GraphReason: Enhancing reasoning capabilities of large language models through a
graph-based verification approach. In Bhavana Dalvi Mishra, Greg Durrett, Peter Jansen, Ben
Lipkin, Danilo Neves Ribeiro, Lionel Wong, Xi Ye, and Wenting Zhao (eds.), Proceedings of
the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024),
pp. 1–12, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.nlrse-1.1/.

Lang Cao, Jingxian Xu, Hanbing Liu, Jinyu Wang, Mengyu Zhou, Haoyu Dong, Shi Han, and
Dongmei Zhang. Fortune: Formula-driven reinforcement learning for symbolic table reasoning in
language models. arXiv preprint arXiv:2505.23667, 2025.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. Theoremqa: A theorem-driven question answering dataset. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 7889–7901, Singapore,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.489. URL
https://aclanthology.org/2023.emnlp-main.489/.

Paul Francis Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. ArXiv, abs/1706.03741, 2017. URL
https://api.semanticscholar.org/CorpusID:4787508.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,

10

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2502.04463
https://aclanthology.org/2024.nlrse-1.1/
https://aclanthology.org/2023.emnlp-main.489/
https://api.semanticscholar.org/CorpusID:4787508


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/
abs/2306.11644.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning, 2025. URL https://arxiv.org/abs/2412.18547.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and
Denny Zhou. Token dropping for efficient BERT pretraining. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 3774–3784, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.262. URL
https://aclanthology.org/2022.acl-long.262/.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models.
ArXiv, abs/2501.03262, 2025. URL https://api.semanticscholar.org/CorpusID:
275342265.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models, 2023. URL https://arxiv.
org/abs/2310.05736.

Pengcheng Jiang, Jiacheng Lin, Lang Cao, R. Tian, S. Kang, Z. Wang, Jimeng Sun, and Jiawei
Han. Deepretrieval: Hacking real search engines and retrievers with large language models via
reinforcement learning. arXiv preprint arXiv: 2503.00223, 2025.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey. J. Artif. Intell. Res., 4:237–285, 1996. URL https://api.semanticscholar.
org/CorpusID:1708582.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness, 2024. URL https://arxiv.org/abs/2412.11664.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. Compressing context to enhance inference
efficiency of large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 6342–
6353, Singapore, December 2023a. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.391. URL https://aclanthology.org/2023.emnlp-main.391/.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models, 2023b. URL https://arxiv.org/abs/2310.06201.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhijiang
Guo, Le Song, and Cheng-Lin Liu. From system 1 to system 2: A survey of reasoning large
language models, 2025. URL https://arxiv.org/abs/2502.17419.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2412.18547
https://aclanthology.org/2022.acl-long.262/
https://api.semanticscholar.org/CorpusID:275342265
https://api.semanticscholar.org/CorpusID:275342265
https://arxiv.org/abs/2310.05736
https://arxiv.org/abs/2310.05736
https://api.semanticscholar.org/CorpusID:1708582
https://api.semanticscholar.org/CorpusID:1708582
https://arxiv.org/abs/2412.11664
https://aclanthology.org/2023.emnlp-main.391/
https://arxiv.org/abs/2310.06201
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2305.20050


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not all tokens are what you need, 2025.
URL https://arxiv.org/abs/2404.07965.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning, 2025.
URL https://arxiv.org/abs/2501.12570.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking, 2025. URL https://arxiv.org/abs/2504.
09858.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
ArXiv, abs/2203.02155, 2022. URL https://api.semanticscholar.org/CorpusID:
246426909.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor
Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang. Llmlingua-
2: Data distillation for efficient and faithful task-agnostic prompt compression, 2024. URL
https://arxiv.org/abs/2403.12968.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, Peng Li, Wei Wei, Jing Shao, Chaochao Lu, Yue Zhang, Xian-
Sheng Hua, Bowen Zhou, and Yu Cheng. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond, 2025. URL https://arxiv.org/abs/
2503.21614.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Shuming Shi, Jian Zhang, Yi Shen, Kai Wang, Shiguo Lian, Ning Wang, Wenjing Zhang, Jieyun
Huang, and Jiangze Yan. Dast: Difficulty-adaptive slow-thinking for large reasoning models, 2025.
URL https://arxiv.org/abs/2503.04472.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan J. Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback.
ArXiv, abs/2009.01325, 2020. URL https://api.semanticscholar.org/CorpusID:
221665105.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on efficient
reasoning for large language models, 2025. URL https://arxiv.org/abs/2503.16419.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/
abs/2210.09261.

12

https://arxiv.org/abs/2404.07965
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2504.09858
https://arxiv.org/abs/2504.09858
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.04472
https://api.semanticscholar.org/CorpusID:221665105
https://api.semanticscholar.org/CorpusID:221665105
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL https://www.kaggle.com/
datasets/hemishveeraboina/aime-problem-set-1983-2024.

Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang, Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai
Wong, Heng Ji, and Kam-Fai Wong. Harnessing the reasoning economy: A survey of efficient
reasoning for large language models, 2025. URL https://arxiv.org/abs/2503.24377.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022a.
URL https://arxiv.org/abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Un-
derstanding chain-of-thought length in llms, 2025. URL https://arxiv.org/abs/2502.
07266.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Control-
lable chain-of-thought compression in llms, 2025. URL https://arxiv.org/abs/2502.
12067.

Jingxian Xu, Mengyu Zhou, Weichang Liu, Hanbing Liu, Shi Han, and Dongmei Zhang. Twt:
Thinking without tokens by habitual reasoning distillation with multi-teachers’ guidance, 2025a.
URL https://arxiv.org/abs/2503.24198.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less, 2025b. URL https://arxiv.org/abs/2502.18600.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

13

https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2211.14275
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://arxiv.org/abs/2503.24377
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2503.24198
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2305.10601


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms, 2025. URL https://arxiv.org/abs/2502.03373.

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression, 2025. URL https:
//arxiv.org/abs/2502.15589.

14

https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.15589
https://arxiv.org/abs/2502.15589


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Contents of Appendix

A Use of LLM Assistance 16

B Ethics Statement 16

C Reproducibility Statement 16

D Limitations and Future Work 16

E Discussion of Token Significance Measurement 17

F Theoretical Analysis of Significance-Aware Length Reward 17

G Theoretical Discussion of Dynamic Length Reward 19

H Definition and Theoretical Analysis of Length-normalized Accuracy 20

I Detailed Settings of Experiments 21

J Performance under Extended Sampling Settings 23

K Performance across Different Reinforcement Learning Algorithms 24

L Analysis of Significant Token Ratio 25

M Token-level Significance Visualization 25

N Analysis of Response Lengths Trends during Training 26

O Analysis of Response Lengths Dynamics for Correct vs. Wrong Samples 26

P Analysis of Incorrect Response Length under Different Reward Designs 28

Q Case Study 29

R Hyperparameter Study 32

S Notation Table 33

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A USE OF LLM ASSISTANCE

In preparing this manuscript, we used large language models (LLMs) solely as writing assistants
to help with grammar checking, improving sentence structure and readability, ensuring consistent
technical terminology, condensing verbose passages, and formatting citations according to confer-
ence guidelines. All research contributions—including ideas, experimental design, data analysis,
mathematical derivations, and scientific conclusions—are entirely the authors’ original work. The
authors take full responsibility for all content presented in this paper.

B ETHICS STATEMENT

Our research focuses on improving the efficiency of large language model reasoning through rein-
forcement learning techniques, which poses no direct ethical concerns regarding human subjects, as
no human data collection or experimentation was conducted. All datasets used (MATH, GSM8K,
TheoremQA, AIME2024) are publicly available benchmarks with proper citations. We acknowledge
the broader implications of more efficient LLM reasoning, including potential dual-use concerns, but
emphasize that our contributions aim to reduce computational costs and environmental impact of AI
systems. The research was conducted with academic integrity, and all authors have reviewed and
agree with the content presented. There are no conflicts of interest to declare.

C REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive implementation details throughout the paper.
Section 3 describes our complete algorithmic framework, including all hyperparameters and reward
formulations. Section 4.1 details our experimental setup, while Appendix I provides comprehensive
settings including training and evaluation configurations, dataset settings, optimization parameters,
data splits, evaluation metrics, and computational requirements. All experiments use publicly
accessible pre-trained models (DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B,
and Qwen2.5-Math-7B-Instruct) and datasets available on HuggingFace. Our code is available
through an anonymous link in the abstract and as a zip file in the supplemental materials, and will be
made publicly available upon acceptance.

D LIMITATIONS AND FUTURE WORK

Limitations. Despite the promising results of the BINGO framework, there are some limitations that
need to be acknowledged:

• Task-Specific Performance Variability: While BINGO performs well across several reasoning
benchmarks, its performance may vary on more domain-specific or highly complex tasks. Tasks
requiring intricate domain knowledge or long-term dependencies may still present challenges.

• Computational Resources for Training: The reinforcement learning framework utilized by
BINGO requires considerable computational resources for training, which may limit its scalability
to larger datasets and more complex tasks.

Future Work. Several directions can be explored to improve upon BINGO:

• Expanding to Diverse Domains and Tasks: To broaden the applicability of BINGO, it would be
beneficial to extend its evaluation to more complex, domain-specific reasoning tasks. This could
involve tasks in specialized fields like legal reasoning or advanced scientific modeling.

• Handling Long-Term Dependencies: Exploring ways to better handle tasks that require long-term
memory or reasoning across large spans of text could make the framework more effective for
complex problem-solving scenarios.

• Improving Training Efficiency: Future efforts could focus on reducing the computational cost of
training by utilizing techniques like transfer learning or distillation, making the framework more
accessible for large-scale applications.
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E DISCUSSION OF TOKEN SIGNIFICANCE MEASUREMENT

As introduced in Section 3.2, we adopt LLMLingua-2 (Pan et al., 2024) to measure token significance.

A variety of methods have been proposed to mitigate token redundancy in large language models (Hou
et al., 2022; Lin et al., 2025), including prompt compression techniques (Li et al., 2023a; Pan et al.,
2024; Jiang et al., 2023). One intuitive approach, Selective Context (Li et al., 2023b), estimates token
importance using a semantic confidence score derived from language modeling:

S(yi) = − logP (yi | y<i; θML
), (12)

where yi is the i-th token, and θML
denotes the parameters of a unidirectional language model. This

score reflects the model’s uncertainty about each token, using randomness as a proxy for importance.
However, this method suffers from two main limitations: (1) position bias, where tokens toward the
end of a sequence are systematically assigned lower importance, and (2) the architectural constraint
of unidirectional models like GPT, which lack access to future context and thus provide a limited
view of token-level informativeness.

In contrast, when designing a significance-aware length reward, we leverage LLMLingua-2 to compute
token significance using:

S(yi) = P (yi | y≤n;θMe
), (13)

where θMe denotes the parameters of a bidirectional encoder model. Unlike unidirectional architec-
tures, LLMLingua-2—built on BERT-like models—leverages both preceding and succeeding context
to evaluate each token, thereby alleviating position bias and enabling a more accurate and holistic
assessment of informativeness. Therefore, LLMLingua-2 serves as a more effective off-the-shelf tool
for estimating token-level information content. It is a language encoder model specifically trained to
assess the significance of individual tokens for the purpose of text compression. Given a generated
sequence y = (y1, y2, . . . , yn), each token yi receives an importance score S(yi), which is used to
distinguish between significant and insignificant reasoning steps.

The advantage of using LLMLingua-2 over Selective Context for measuring token significance has
also been validated by recent work such as TokenSkip (Xia et al., 2025).

F THEORETICAL ANALYSIS OF SIGNIFICANCE-AWARE LENGTH REWARD

Preliminaries and Notation. Given a prompt x, the policy πθ generates a chain-of-thought (CoT)
sequence Y = (y1, . . . , yT ), from which a deterministic decoder produces a final answer Ẑ ∈ Z . To
assess the relative informativeness of each token, we compute a significance score using LLMLingua-
2 (Pan et al., 2024):

S(yi) = P (yi | Y ; θMe), (14)

where θMe
denotes the parameters of a bidirectional encoder model. Unlike unidirectional predictors,

LLMLingua-2 uses both left and right context to provide a holistic estimate of token informativeness.
Based on a fixed threshold τ , we partition the sequence as:

Ysig = {yi : S(yi) ≥ τ}, Yinsig = {yi : S(yi) < τ}, (15)

where Ysig and Yinsig denote the sets of significant and insignificant tokens, respectively.

Motivation for a Mutual Information Proxy. In principle, each token’s importance could be
measured by its mutual information with the final answer, I(yi;Z⋆). However, computing the exact
joint distribution p(yi, Z

⋆) is intractable due to the vast generation space and limited supervision.
Instead, we employ a proxy that is (i) efficient to compute for each token and (ii) monotonically
correlated with I(yi;Z

⋆).

LLMLingua-2 (Pan et al., 2024) satisfies these requirements by training under an information bottle-
neck objective:

I(T ;Y )− β I(T ;Z⋆), (16)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where T is the retained subsequence. Tokens with low conditional probability typically carry little
additional information about Z⋆, while high-probability tokens preserve essential semantics.

Assumption 1 (Fidelity of the Mutual Information Proxy). There exist constants c > ε > 0 such that

I(yi;Z
⋆) ≤ ε (∀ yi ∈ Yinsig), I(yj ;Z

⋆) ≥ c− ε (∀ yj ∈ Ysig). (17)

Lemma 1 (Bounded Accuracy Loss). Let Ẑfull denote the answer decoded from the full CoT, and Ẑsig
the answer decoded after removing Yinsig. Under Assumption 1, the increase in error probability is
bounded: ∣∣∣Pr[Ẑsig ̸= Z⋆]− Pr[Ẑfull ̸= Z⋆]

∣∣∣ ≤ ε. (18)

Proof. Let Y = (y1, . . . , yT ) and Ysig = Y \ Yinsig. By the chain rule:

I(Y ;Z⋆) = I(Ysig;Z
⋆) +

∑
yi∈Yinsig

I(yi;Z
⋆ | Y<i), (19)

and each term in the sum is at most ε. Therefore,

I(Y ;Z⋆)− I(Ysig;Z
⋆) ≤ Tε, (20)

and by Fano’s inequality, this gap translates into an error increase of at most ε.

Definition 1 (General vs. Significance-Aware Length Reward). For a generated trace Y , define two
reward functions:

Rlen(Y ) = 1[Ẑ(Y ) = Z⋆]− λ |Y |, (21)

Rsig(Y ) = 1[Ẑ(Y ) = Z⋆]− λ |Yinsig|. (22)

Here, Rlen penalizes total length, while Rsig penalizes only insignificant tokens.

Theorem 1 (Benefit of the Significance-Aware Reward). Let πθ be updated by a single PPO step
using either reward, with the same coefficient λ > 0. If

λ >
ε

Eπθ
[|Ysig|]

, (23)

then
Eπθ

[Rsig(Y )] > Eπθ
[Rlen(Y )]. (24)

Proof. Lemma 1 implies

E[Rsig]− E[Rlen] = λE[|Ysig|]−∆acc, (25)

where
0 ≤ ∆acc ≤ ε. (26)

Under the stated bound on λ, the difference is strictly positive.

Practical Implication. The significance-aware reward achieves the same or greater length reduction
with provably smaller accuracy degradation than a general length reward. By selectively penalizing
insignificant tokens, it still encourages conciseness while maintaining fidelity. With LLMLingua-2
providing a fast proxy for token–answer informativeness, this reward design supports both principled
and practical optimization for efficient reasoning.
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G THEORETICAL DISCUSSION OF DYNAMIC LENGTH REWARD

We provide a theoretical discussion of the motivation for our dynamic length reward schedule by
addressing three key questions:

1. Why does encouraging longer chains of thought (CoT) during early training help exploration?
2. Why does applying a fixed length penalty throughout training limit performance?
3. Why does dynamically flipping the reward from positive to negative upon convergence yield

better accuracy–efficiency trade-offs?

1. Longer CoT Enables Richer Exploration.

Let Pt(L) denote the model’s distribution over output length L at training step t. Define the expected
accuracy given length L as

Acc(L) = Pr[Ẑ = Z⋆ | L(Y ) = L], (27)

where Ẑ is the predicted answer and Z⋆ the ground-truth. Empirically, Acc(L) follows a saturating
“S-curve”:

d

dL
Acc(L) > 0 for L < L⋆,

d

dL
Acc(L) ≈ 0 for L ≥ L⋆, (28)

where L⋆ is the length at which accuracy saturates. The expected accuracy at step t is

Acct =
∑
L

Pt(L)Acc(L). (29)

Shifting probability mass toward longer CoT (up to L⋆) thus increases Acct, since longer reasoning
expands exploration and raises the chance of discovering correct solution patterns.

Takeaway. Rewarding longer CoT early boosts exploration and accelerates convergence toward
high accuracy.

2. Static Length Penalty Causes Premature Compression.

Consider a fixed penalty λ > 0, yielding reward

Jstatic(L) = Acc(L)− λL. (30)

The optimal length Ls under this objective satisfies

d

dL
Acc(L)

∣∣
L=Ls

= λ. (31)

Since d
dL Acc(L) vanishes for L ≥ L⋆, any λ > 0 forces Ls < L⋆, implying

Acc(Ls) < Acc(L⋆). (32)

Thus the model truncates its CoT before accuracy has fully converged.

Takeaway. Static penalties enforce efficiency too early, sacrificing potential accuracy gains.

3. Dynamic Penalty Supports a Two-Phase Curriculum.

We introduce a time-dependent penalty λt:

λt =

{
γ, t < t0 (exploration phase),

α (t− t0), t ≥ t0 (compression phase),
(33)

where γ < 0, and t0 is the step at which validation accuracy stabilizes, i.e.,

∆Acct =
Acct −Acct−∆

∆
< β. (34)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Phase I (Exploration). During early training, we set λt < 0, effectively turning the penalty into a
bonus:

J(L) = Acc(L)− λtL, with − λt > 0,

which encourages longer outputs. Since Acc(L) increases with L up to L⋆, this promotes

Lt → L⋆, Acct → Acc(L⋆). (35)

Phase II (Compression). As training progresses, λt transitions from negative to positive and
increases gradually. When λt > 0, the derivative of the reward at L⋆ is

d

dL

[
Acc(L)− λtL

]∣∣∣∣
L=L⋆

=
d

dL
Acc(L⋆)− λt < 0, (36)

so extending beyond L⋆ reduces reward. The policy thus shortens to a new equilibrium Ld:

d

dL
Acc(L)

∣∣
L=Ld

= λt, Ld < L⋆, Acc(Ld) ≈ Acc(L⋆). (37)

Comparison to Static Penalty. The final dynamic reward is

Jdyn = Acc(Ld)− λTLd, (38)

and under the concavity of Acc(L) one can show

Jdyn − Jstatic =
[
Acc(Ld)−Acc(Ls)

]
− λT (Ld − Ls) ≥ 0, (39)

i.e., dynamic scheduling yields no worse and often strictly better reward. This holds because for
concave functions

Acc(Ld)−Acc(Ls) ≥ Acc′(Ld)(Ld − Ls), (40)
and with Acc′(Ld) = λT , the inequality follows.

Efficiency Metric. Define length-normalized accuracy

L-Acc(L) = Acc(L)

√
1− L

Lmax
. (41)

In practice, dynamic scheduling often achieves similar or higher accuracy with shorter or comparable
length, leading to

L-Acc(Ld) > L-Acc(Ls). (42)

Conclusion. Our dynamic length reward realizes the curriculum

explore freely (λ ≤ 0) −→ accuracy convergence −→ gradual compression (λ ↑). (43)

This schedule lets the model reach its accuracy ceiling Acc(L⋆) before enforcing brevity, achieving
better accuracy–efficiency trade-offs than static schemes.

H DEFINITION AND THEORETICAL ANALYSIS OF LENGTH-NORMALIZED
ACCURACY

Length-Normalized Accuracy.

To evaluate reasoning efficiency, we adopt a length-normalized accuracy metric, denoted as L-ACC,
which balances correctness with brevity. Formally, it is defined as:

L-Acc = Acc×
√

1− L

Lmax
, (44)

where Acc ∈ [0, 1] denotes exact-match accuracy, L is the number of tokens in the model’s response,
and Lmax is a dataset-specific upper bound on response length. The multiplicative factor penalizes
longer outputs in a sub-linear manner, rewarding models that solve problems with fewer tokens.
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Specifically, we set Lmax = 8192 for the two
DeepSeek-based reasoning models, and Lmax =
3000 for the Qwen2.5-Math-7B-Instruct model, since
reasoning-oriented models generally generate longer
outputs than instruction-tuned models. The multi-

plicative factor
√
1− L

Lmax
weights accuracy by a

sub-linear penalty on sequence length, so the met-
ric rewards correct solutions that are delivered with
fewer tokens. Normalizing by Lmax makes the score
comparable across datasets of very different scale,
while the square-root ensures a smooth, continuous
trade-off: the first tokens cut away improve the score
more than later ones, mirroring human tolerance for
moderate verbosity but aversion to extreme length.
When L = Lmax the metric collapses to zero, pre-
venting models from exchanging unbounded length
for marginal accuracy gains; when L = 0 it reduces to the raw accuracy, preserving credit for
perfectly concise answers.

Penalty Behavior and Physical Intuition. The penalty term
√

1− L
Lmax

is continuous, monoton-
ically decreasing, and bounded between 0 and 1. It applies no penalty when L = 0, and reduces
the reward to zero when L = Lmax, even if the answer is correct. Crucially, the square-root form
introduces diminishing returns: trimming early redundant tokens provides larger gains in L-ACC
than removing tokens later in the sequence. This design mirrors human preferences—we tolerate
moderate verbosity, but disfavor excessive detail. It also echoes the behavior of L2 regularization,
where larger values are penalized more aggressively, while smaller deviations are softly constrained.

Gradient Analysis. To understand its optimization implications, we analyze the gradient of the
penalty term with respect to L:

d

dL

(√
1− L

Lmax

)
= − 1

2Lmax
·
(
1− L

Lmax

)−1/2

. (45)

This derivative diverges as L → Lmax, indicating that long outputs are heavily penalized. In contrast,
when L is small, the gradient approaches zero, and the penalty becomes negligible. This behavior
encourages models to first eliminate highly redundant tokens, while maintaining stability for shorter
outputs.

Optimization Benefits. Unlike hard constraints on length, this formulation yields a smooth and
differentiable reward signal, making it well-suited for reinforcement learning algorithms such as
PPO. It provides stable guidance throughout training and enables the model to trade off between
accuracy and length in a controlled and interpretable manner. As shown in Figure 4, the penalty curve
strongly discourages excessively long outputs while allowing flexibility in moderately verbose cases,
contributing to more efficient and human-aligned reasoning. Notably, the curve becomes steep as
the response length approaches Lmax, meaning that small increases in length lead to sharp drops
in reward; conversely, it flattens near L = 0, where changes in length have only a minor effect on
the reward. This property ensures that the model is heavily penalized for extreme verbosity while
remaining tolerant of brief explanatory content.

I DETAILED SETTINGS OF EXPERIMENTS

Prompt. All experiments use the prompt: "Let’s think step by step and output
the final answer within \boxed{}."

Models. Our experiments involve a mix of proprietary and open-source models. The models evaluated
in this study include:

• DeepSeek-R1-Distill-Qwen-1.5B (MIT License): A fine-tuned model with 1.5 billion parame-
ters, used to evaluate the proposed method.
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• DeepSeek-R1-Distill-Qwen-7B (MIT License): A fine-tuned model with 7 billion parameters,
also used to evaluate the proposed method.

• Qwen2.5-Math-7B-Instruct (Apache-2.0 License): An instruction-tuned model with 7 billion
parameters, used to further assess the efficiency and accuracy in reasoning tasks.

Datasets. We evaluate our models on several datasets covering both in-distribution (ID) and out-of-
distribution (OOD) tasks. The evaluation framework encompasses:

• MATH (Hendrycks et al., 2021): A comprehensive training dataset containing 7,500 mathemati-
cal problems across various difficulty levels and topics.

• MATH500 (Hendrycks et al., 2021): A carefully selected 500-problem subset from the MATH
test set, serving as our primary in-distribution evaluation benchmark.

• GSM8K (Cobbe et al., 2021): Grade school math word problems requiring multi-step reasoning,
used for out-of-distribution evaluation on elementary-level mathematics.

• TheoremQA (Chen et al., 2023): A challenging dataset requiring theorem application and
symbolic reasoning across STEM domains, used for out-of-distribution evaluation.

• AIME2024 (Veeraboina, 2023): Problems from the prestigious American Invitational Mathe-
matics Examination, representing the most challenging out-of-distribution evaluation.

These datasets are arranged in increasing order of difficulty: GSM8K < MATH500 < THEOREMQA
< AIME2024, offering a comprehensive evaluation of models’ reasoning capabilities across varying
complexity levels, as summarized in Table 4.

Table 4: Overview of datasets used for training and evaluation.

Type Dataset # Train # Test Domain Task Type Difficulty Source
Training MATH (Hendrycks et al., 2021) 7,500 – Mathematics Problem Solving Mixed Link

ID Test MATH500 (Hendrycks et al., 2021) – 500 Mathematics Problem Solving Medium-Hard Link

OOD Test
GSM8K (Cobbe et al., 2021) – 1,319 Elementary Math Word Problems Easy Link
TheoremQA (Chen et al., 2023) – 800 STEM Theorem Application Hard Link
AIME2024 (Veeraboina, 2023) – 30 Competition Math Advanced Problem Solving Very Hard Link

Preprocessing and Tokenization. Each model uses its corresponding tokenizer to process the input
sequences. Tokenization ensures compatibility with the model’s input structure, using special tokens
to denote the start and end of sequences.

Training Procedure. All models are trained for a total of 50 epochs using the Proximal Policy
Optimization (PPO) algorithm, optimizing for both accuracy and efficiency. The actor and critic
models are initialized with the same parameters, and training is conducted with the following
hyperparameters: actor learning rate = 5× 10−5, critic learning rate = 1× 10−6, mini-batch size
= 512, and KL-divergence coefficient = 0.001. Evaluation is performed periodically at every training
step to monitor progress, and the best model checkpoints are selected for final testing.

Decoding Configurations. We conduct both training and evaluation under carefully controlled
decoding settings. During training, we adopt sampling generation with temperature = 1.0, top_k =
−1, and top_p = 1.0 to encourage exploration, following the default configuration of the VERL
framework for comparability with prior work. A single response (n = 1) is generated per prompt,
with the maximum prompt length capped at 1,024 tokens for efficiency. The maximum response
length is set to 8,192 tokens for DeepSeek models and 3,000 tokens for Qwen-Math models.

For evaluation, we emphasize efficiency and stability by adopting greedy decoding, consistent with
VERL defaults and prior studies (Yeo et al., 2025; Cui et al., 2025). Specifically, evaluation uses
greedy decoding with temperature = 0, and one response per input (n = 1). The same maximum
response lengths as in training are applied (8,192 for DeepSeek, 3,000 for Qwen-Math). We also
conducted experiments under extended sampling configurations, with comprehensive results presented
in Appendix J.

Evaluation Metrics. We evaluate the models using the following metrics:

• Exact Match (EM): Measures the proportion of exact matches between the generated output
and the ground-truth answer.

• Response Length (Len): Measures the number of tokens in the output sequence.
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• Length-Normalized Accuracy (L-Acc): A metric that balances accuracy and efficiency by
considering both correctness and response length.

Baselines. We compare the BINGO framework with the following baselines:

• DAST (Shi et al., 2025): Uses dynamic length penalties based on problem difficulty.
• Efficient Reasoning (Arora & Zanette, 2025): Scales down positive rewards to encourage

brevity.
• Kimi-k1.5 (Team et al., 2025): Applies online length penalties.
• O1-Pruner (Luo et al., 2025): Applies offline length penalties based on length comparisons

with reference sequences.
• Demystifying (Yeo et al., 2025): Applies a symmetric penalty strategy for response lengths,

encouraging both shorter and more extensive reasoning depending on correctness.

Rather than directly comparing published baselines—which employ diverse frameworks (e.g., SimPO,
GRPO) and differ in their on-policy versus off-policy implementations—we isolate and re-implement
only the length-based reward components proposed in each work. All these reward designs are
integrated into a unified PPO framework. This approach enables a fair comparison focused specifically
on the effectiveness of different reward formulations for improving reasoning efficiency.

Software and Hardware. The experiments are conducted with Python 3.11, PyTorch v2.4.0, and
CUDA 12.8 for model training and inference. We use 4 NVIDIA A100 80GB PCIe GPUs for training
the 7B model and 2 NVIDIA H100 80GB PCIe GPUs for training the 1.5B model. For inference, 2
NVIDIA H100 80GB PCIe GPUs are used to accelerate processing.

J PERFORMANCE UNDER EXTENDED SAMPLING SETTINGS

We conducted additional experiments using sampling decoding to assess the robustness of our
approach under more exploratory conditions. These experiments employed an extended configuration
with a 32,768-token output limit, three samples per prompt, temperature of 0.6, and top-p of 1.0.
We evaluated the base DeepSeek-R1-Distill-Qwen-1.5B model, vanilla PPO, our proposed Bingo
method, and selected competitive baselines to ensure comprehensive comparison.

Table 5: Performance comparison under sampling decoding settings. Each method is evaluated
using DeepSeek-R1-Distill-Qwen-1.5B as the base model with sampling parameters (32,768 token
limit, 3 samples, temperature = 0.6, top-p = 1.0). Metrics include answer accuracy (Acc, %), response
length (Len), and length-normalized accuracy (L-Acc, %). The best performance is highlighted in
dark blue, and the second-best in light blue.

Method MATH500 GSM8K TheoremQA AIME2024
Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑

Base 81.6 5,155 74.9 83.7 1,748 81.4 31.7 7,598 27.8 17.8 15,703 12.8
Vanilla PPO 82.3 2,694 78.8 86.5 1,050 85.1 33.4 3,616 31.5 28.9 7,389 25.4
O1-Pruner 80.1 1,283 78.5 85.2 352 84.7 34.7 1,095 34.1 28.9 4,636 26.8
Demystifying 81.3 1,945 78.9 86.8 483 86.2 35.2 1,863 34.2 30.0 5,891 27.2
DAST 83.5 2,053 80.8 84.1 375 83.6 35.4 2,954 33.8 36.7 5,072 33.7

Bingo (Ours)
Bingo-A 85.1 1,114 83.6 88.4 483 87.7 37.9 1,592 37.0 38.9 3,110 37.0
Bingo-E 84.2 983 82.9 88.1 217 87.8 37.7 1,004 37.1 37.6 2,817 35.9

Table 5 presents the accuracy and average response length across four benchmarks under these
sampling conditions. The results demonstrate that Bingo maintains its efficiency advantage even
with sampling decoding, achieving strong accuracy while generating substantially shorter outputs
than all baseline methods. This finding confirms that our reward design effectively promotes concise
reasoning regardless of the decoding strategy employed.

Although these extended settings yielded accuracy improvements, they required approximately five
times the computational resources and training time compared to greedy decoding. Given this
substantial computational overhead, we selected single-response greedy decoding as our primary
evaluation protocol to maintain experimental feasibility while still providing meaningful performance
assessments. The sampling results presented here validate that our approach remains effective under
more computationally intensive conditions.
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Table 6: Comparison of reinforcement learning algorithms on four reasoning benchmarks. Each
method is evaluated using DeepSeek-R1-Distill-Qwen-1.5B as the base model by answer accuracy
(Acc, %), response length (Len), and length-normalized accuracy (L-Acc, %). Bingo-based variants
consistently outperform their vanilla counterparts across different RL optimizers (PPO, RLOO,
GRPO, Reinforce++). Numbers in parentheses show the L-Acc gain over the corresponding vanilla
baseline, with green indicating improvement.

Method MATH500 GSM8K TheoremQA AIME2024

Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑ Acc↑ Len↓ L-Acc↑

Base 63.2 3,913 45.7 73.2 2,025 63.5 18.7 5,741 10.3 16.7 7,027 6.3

Vanilla PPO 81.4 2,771 66.2 85.4 1,310 78.2 32.3 4,146 22.7 26.7 6,961 10.3
Bingo-PPO 82.2 894 77.6 (+11.4) 87.0 563 83.9 (+5.7) 36.8 1,648 32.9 (+10.2) 33.3 2,943 26.7 (+16.4)

Vanilla RLOO 76.8 2,413 64.5 77.3 1,588 69.4 30.0 3,162 23.5 26.7 6,025 13.7
Bingo-RLOO 78.0 1,985 67.9 (+3.4) 80.7 450 78.5 (+9.1) 32.0 2,230 27.3 (+3.8) 33.3 5,583 18.8 (+5.1)

Vanilla GRPO 76.4 2,533 63.5 77.8 804 73.9 29.2 2,946 23.4 26.7 6,096 13.5
Bingo-GRPO 79.4 1,753 70.4 (+6.9) 80.0 449 77.8 (+3.9) 31.9 2,298 27.0 (+3.6) 30.0 5,886 15.9 (+2.4)

Vanilla Reinforce++ 76.2 2,842 61.6 82.0 1,291 75.2 28.0 3,977 20.1 30.0 6,168 14.9
Bingo-Reinforce++ 78.4 2,070 67.8 (+6.2) 81.0 640 77.8 (+2.6) 33.1 2,566 27.4 (+7.3) 30.0 5,885 15.9 (+1.0)
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Figure 5: Length–accuracy results for nine optimization algorithms on four datasets. Bars show
the number of tokens generated using DeepSeek-R1-Distill-Qwen-1.5B as the base model at the
checkpoint that yields the reported accuracy (left axis). Each bar is partitioned into significant (dark)
and insignificant (light) segments, and the percentage above the bar indicates the share of significant
tokens. The solid line (right axis) gives the corresponding answer accuracy. Our methods, Bingo-A
and Bingo-E, attain the highest accuracy while using the fewest tokens and achieving the greatest
proportion of significant tokens, highlighting their superior reasoning efficiency.

K PERFORMANCE ACROSS DIFFERENT REINFORCEMENT LEARNING
ALGORITHMS

To evaluate the generalizability of our reward design, we integrate it into multiple on-policy rein-
forcement learning (RL) algorithms, including PPO, RLOO, GRPO, and Reinforce++. As shown in
Table 6, Bingo-enhanced variants consistently outperform their vanilla counterparts across all four
benchmarks in both accuracy and length-normalized accuracy (L-Acc). Among them, BINGO-PPO
delivers the strongest overall performance, achieving the highest or second-highest scores on all
datasets while substantially reducing output length. Moreover, the benefits of Bingo extend beyond
PPO: each Bingo variant improves L-Acc over its baseline by a clear margin, demonstrating that
our reward formulation generalizes well across different policy optimization strategies. These gains
are observed not only on in-distribution datasets like MATH500 and GSM8K, but also on more
challenging out-of-distribution settings such as AIME2024, highlighting the robustness of our
approach. Overall, the results confirm that a principled and learnable length-aware reward offers a
consistent advantage across a variety of reasoning tasks and RL algorithms.
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Problem: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts for $5.00. How much does he
spend on yogurt over 30 days?
Response of BINGO:
Okay,soTerryeats2yogurteachday,andthey’reonsalewhere4yogurtcost$5.00.Ineedtofigureouthowmuchhe
spendsover30days.Hmm,letmebreakthisdownstepbystep. ... Since4yogurtcost$5,andheneeds60yogurt,which
is15sets,so15times$5is$75.Terryspends75.00dollarsonyogurtover30days.
(553 tokens with 57% Significant)
Response of Vanilla PPO:
Okay,soTerryeats2yogurtperday.He’splanningtobuythemonsalewherethey’re4for$5.00.Ineedtofigureout
howmuchhe’llspendover30days.Wait,letmedouble-checkthat. ... Wait,anotherwaytothinkaboutit: ... so12*$5
=$60.52yogurtis13sets,so13*$5=$65.56yogurtis14sets,so14*$5=$70.60yogurtis15sets,so15*$5=$75.
Yep,that’sconsistent.Ithinkthat’ssolid.So,Terryspends$75.00onyogurtover30days.Terryspends75dollarson
yogurtover30days. (916 tokens with 52% Significant)
Final Answer: 75.

Figure 6: Token-level significance visualization for a sample reasoning task. Each token is colored
based on its predicted significance: red indicates significant tokens (darker = more significant), and
blue indicates insignificant tokens (darker = less significant). The response from BINGO (top) is
shorter and more concentrated around meaningful reasoning steps, while the Vanilla PPO response
(bottom) is longer and contains more exploratory and redundant language. The visualization illustrates
how Bingo encourages more efficient and focused reasoning.

L ANALYSIS OF SIGNIFICANT TOKEN RATIO

We employ the DeepSeek-R1-Distill-Qwen-1.5B model, trained exclusively on the MATH
corpus. To evaluate its generalization beyond the training distribution, we test the model on the
in-distribution split MATH500 as well as three out-of-distribution (OOD) benchmarks: GSM8K,
THEOREMQA, and AIME2024. Figure 5 shows that our approaches, Bingo-A and Bingo-E, achieve
the most favorable length-accuracy trade-off across all four benchmarks.

• Efficiency at peak accuracy. At the checkpoints that obtain their highest accuracy, both Bingo
variants require only about20% of the tokens used by the Base model on MATH500, with similarly
large reductions on GSM8K, THEOREMQA, and AIME2024.

• Preservation of informative content. Bingo increases the share of significant tokens to 75–81%,
showing that the shortened rationales shed mainly redundant rather than essential reasoning steps.

• Difficulty-dependent length trends. Token counts grow with task difficulty: the two harder
benchmarks, THEOREMQA and AIME2024, demand considerably longer rationales and yield
lower absolute accuracy than MATH500 and GSM8K. Even under these tougher conditions,
Bingo still delivers the highest accuracy while generating the fewest tokens.

• Alleviating the length–accuracy trade-off. Baselines that compress reasoning without account-
ing for token importance (e.g., O1-Pruner) exhibit marked accuracy declines, whereas Bingo
maintains—and in some cases slightly improves—task performance.

• Robustness across tasks. The same advantage holds for algebraic, commonsense, formal-logic,
and competition-style benchmarks, underscoring the generality of the significance-aware and
dynamic length rewards.

These findings confirm that explicitly modeling token significance and adaptively scheduling length
rewards enables language models to reason both accurately and efficiently.

M TOKEN-LEVEL SIGNIFICANCE VISUALIZATION

Figure 6 provides a token-level significance visualization for a sample reasoning task. The problem
involves calculating the cost of yogurt based on a given sale, and both the BINGO and Vanilla PPO
models generate responses to solve the problem. Each token in the generated response is color-coded
based on its predicted significance, with red indicating significant tokens and blue representing
insignificant ones. Darker shades of red and blue correspond to higher significance levels.

The response from BINGO (top) is notably shorter and more focused on the key reasoning steps,
highlighting the model’s ability to concentrate on relevant tokens while avoiding unnecessary elabora-
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Figure 7: Response length trends during training across four datasets. The y-axis shows the
number of tokens generated per response using DeepSeek-R1-Distill-Qwen-1.5B as the base model;
the x-axis denotes training steps. The red line represents our method, and the blue line corresponds to
Vanilla PPO. Across all tasks, our method consistently produces shorter and more stable responses,
demonstrating improved reasoning efficiency without compromising task performance.
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Figure 8: Response length dynamics for correct vs. wrong samples during training. The x-axis
indicates training steps, and the y-axis denotes response length in tokens for models trained on
DeepSeek-R1-Distill-Qwen-1.5B as the base model. The blue line tracks correctly answered samples,
while the yellow line tracks incorrectly answered samples. In the early stages, incorrect samples
produce substantially longer responses, reflecting the effect of our length-incentive mechanism. As
the dynamic length reward gradually diminishes, the response length for incorrect samples falls more
sharply than that for correct samples, illustrating the model’s adaptive pruning of redundant reasoning
steps.

tion. In contrast, the Vanilla PPO response (bottom) is longer, with a higher proportion of redundant
and less informative tokens, reflecting a less efficient reasoning process. This visualization clearly
demonstrates how BINGO encourages more concise and targeted reasoning, optimizing for both
accuracy and efficiency by emphasizing significant steps in the reasoning process.

N ANALYSIS OF RESPONSE LENGTHS TRENDS DURING TRAINING

Figure 7 presents the evolution of response length over training steps for Vanilla PPO and our method
on four benchmarks. Our approach consistently yields substantially shorter outputs than Vanilla
PPO throughout training, demonstrating effective removal of redundant tokens, and converges more
smoothly, reflecting robust length regularization. The reduction in response length is most pronounced
on the more demanding tasks—MATH500 and AIME2024—where Vanilla PPO produces very long
sequences, yet our method maintains a compact reasoning footprint. Importantly, this improvement
generalizes across diverse reasoning styles, from arithmetic problems in GSM8K and formal-logic
questions in THEOREMQA to academic and competition-style challenges, confirming that our reward
design enhances reasoning efficiency without compromising training stability.

O ANALYSIS OF RESPONSE LENGTHS DYNAMICS FOR CORRECT VS. WRONG
SAMPLES

Figure 8 illustrates how response length evolves for correct and incorrect samples under our approach.
In the early phase of training, incorrect samples produce markedly longer outputs than correct ones,
demonstrating the impact of our length-incentive mechanism in promoting thorough exploration on
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Figure 9: Distribution of response lengths for correct vs. incorrect samples. Histograms show
the frequency of token lengths in model outputs across four benchmarks using DeepSeek-R1-Distill-
Qwen-1.5B as the base model. Each plot compares correct responses (blue) and incorrect responses
(orange). The top row corresponds to our method, while the bottom row shows results from Vanilla
PPO. Across all datasets, incorrect samples are more likely to produce longer outputs, while correct
samples tend to cluster in shorter length ranges. Compared to Vanilla PPO, our method produces a
sharper, more compact distribution concentrated in shorter length regions.

challenging cases. As the dynamic length reward takes effect around mid-training, the length for
wrong samples declines steeply—outpacing the reduction seen for correct samples—and the gap
between the two curves narrows. By later stages, both curves converge toward similarly concise
rationales, indicating that the model has learned to apply efficient reasoning uniformly. This behavior
confirms that our combination of significance-aware and dynamic rewards not only drives exploration
where needed but also enforces brevity once sufficient understanding is achieved, resulting in a
balanced, adaptive pruning of redundant tokens.

To examine how response length relates to answer correctness, we compare output length distributions
of our method and the Vanilla PPO baseline across four benchmarks using DeepSeek-R1-Distill-Qwen-
1.5B. As shown in Figure 9, correct responses consistently exhibit shorter lengths than incorrect ones
across all tasks. Our method further produces sharply concentrated distributions for correct samples,
suggesting more focused and efficient reasoning. In contrast, Vanilla PPO outputs are generally
longer and more dispersed, with substantial overlap between correct and incorrect cases. Notably, the
length of incorrect samples is substantially reduced compared to Vanilla PPO, suggesting that the
dynamic reward mechanism—which gradually penalizes verbosity during training—plays a role in
guiding more efficient responses.
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Figure 10: Effect of Reward Design on Incorrect Response Length. We visualize the aver-
age significant response length of incorrect predictions during training on four benchmarks using
DeepSeek-R1-Distill-Qwen-1.5B as the base model. Compared to the variant without incentive, our
full method produces longer responses for incorrect samples, suggesting that the significance-aware
reward encourages more thorough exploration when the model is uncertain. In contrast, removing
the dynamic reward leads to persistently longer outputs, whereas our full method shows a clear
reduction in response length over time, confirming the effectiveness of dynamic reward scheduling in
promoting concise reasoning. Together, these trends highlight the complementary roles of the two
reward components in balancing exploration and efficiency.

P ANALYSIS OF INCORRECT RESPONSE LENGTH UNDER DIFFERENT REWARD
DESIGNS

To gain deeper insights into the effect of our reward design during training, we analyze the sig-
nificant response length of incorrect predictions—a proxy for the model’s exploratory behavior
under uncertainty. As shown in Figure 10, our full method generates longer responses for incorrect
samples compared to the version without incentive across all four benchmarks, indicating that
the significance-aware reward successfully promotes deeper reasoning attempts when the model is
uncertain. In contrast, removing the dynamic reward leads to consistently longer outputs throughout
training, while our method gradually reduces response length over time. This trend confirms that
dynamic reward scheduling effectively encourages concise reasoning as the model matures. Together,
these findings highlight the complementary roles of the two reward components: one enhances
exploration during failure, and the other improves efficiency during learning progression.
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Q CASE STUDY

To further assess the reasoning quality and output efficiency of our method, we conduct two case
studies comparing the Base model, PPO, and our BINGO framework across two model scales. As
shown in Figures 11 and 12, the Base model often produces excessively long and repetitive outputs,
sometimes exceeding 5,000 words, and either fails to converge or hides the correct answer deep
within verbose reasoning or terminated generations without a final answer. PPO improves conciseness
but occasionally generates incorrect outputs or retains unnecessary repetition in intermediate steps. In
contrast, BINGO consistently produces correct, well-structured solutions while significantly reducing
output length—achieving up to 3x compression over PPO in the 7B setting. These examples demon-
strate the effectiveness of our reward design in balancing reasoning depth and brevity, encouraging
the model to generate focused and efficient reasoning even on complex tasks.
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Problem: Find the greatest integer less than (
√
7 +

√
5)6. (Do not use a calculator!)

✗ Response of Base Model with 2509 words:
Okay, so I need to find the greatest integer less than ((

√
7 +

√
5)6/4). Hmm, that sounds a bit

intimidating at first, but maybe I can break it down step by step. Let me think about how to approach
this without a calculator, so I have to rely on algebraic manipulations and maybe some patterns or
properties of exponents. First, I remember that expressions like ((

√
a +

√
b)n) can sometimes be

simplified using binomial expansions, but that might get messy for the sixth power. Alternatively,
I recall that sometimes pairing such terms can lead to simplifications. Maybe I can consider the
conjugate of (

√
7 +

√
5), which is (

√
7 −

√
5), and see if their product is a nice number. Let me

compute · · · Maybe I can find a recurrence relation or some pattern for (xn + yn). Let me try
computing some lower powers to see if I can spot a pattern. Let’s compute (x + y) : (x + y =

(
√
7+

√
5)+(

√
7−

√
5) = 2

√
7). Hmm, that’s interesting. Let’s compute · · ·Okay, so (x2+y2 = 24).

Let’s compute (x3 + y3). Maybe I can use the identity (x3 + y3 = (x + y)(x2 − xy + y2)). · · ·
But when I computed (x6) directly, I got approximately 13535.988656. So, which is correct? Wait,
perhaps I made a mistake in the direct expansion. Let me check the expansion again. Wait, in
the direct expansion, I had:(x6 = 6768 + 1144

√
35). So, 1144 ×

√
35 ≈ 1144 × 5.916074 ≈

6767.988656 So, · · · So, which is correct? Wait, perhaps I made a mistake in the direct expansion.
Let me check the expansion step by step. · · · So, that’s correct. But in the direct expansion, I have
(x6 ≈ 13535.988674). So, which is correct? Wait, perhaps I made a mistake in the direct expansion.
Let me check the expansion again. Wait, · · ·

✗ Response of PPO with 403 words:
To find the greatest integer less than (

√
7 +

√
5)6, we can use the property that (

√
7 +

√
5)n +

(
√
7 −

√
5)n is an integer for any positive integer n. Since

√
7 −

√
5 is a small positive number

(approximately 0.4142), (
√
7−

√
5)6 will be a small number close to 0. Let’s denote x =

√
7 +

√
5

and y =
√
7 −

√
5. Then, x + y = 2

√
7 and x − y = 2

√
5. However, directly using this

might not help. Instead, we know that x6 + y6 is an integer. Since y < 1, y6 is very small, so
x6 is slightly less than an integer. Therefore, the greatest integer less than x6 is x6 + y6 − 1.
We need to compute x6 + y6. To find this, we can use recurrence relations or expand step by
step. However, a more efficient way is to compute powers step by step: First, compute x2 =
(
√
7+

√
5)2 = 7+2

√
35+5 = 12+2

√
35. Next, y2 = (

√
7−

√
5)2 = 7−2

√
35+5 = 12−2

√
35.

Then, x3 + y3 = (x + y)(x2 + y2 − xy) = 2
√
7 · (24 − 5) = 2

√
7 · 19 = 38

√
7. Similarly,

x3 − y3 = (x − y)(x2 + y2 + xy) = 2
√
5 · (24 + 5) = 2

√
5 · 29 = 58

√
5. However, this is

getting complex. Instead, we can compute x6 + y6 using the recurrence relation. Let Sn = xn + yn.
Then, S0 = 2, S1 = 2

√
7, S2 = 24, S3 = 38

√
7, S4 = 24 · S2 − S2

1 = 24 · 24 − (2
√
7)2 =

576− 28 = 548, S5 = S4 ·S1−S3 ·S2 = 548 · 2
√
7− 38

√
7 · 12 = (1096

√
7− 456

√
7) = 640

√
7,

S6 = S5 ·S1−S4 ·S2 = 640
√
7 ·2

√
7−548 ·24 = 640 ·2 ·7−548 ·24 = 8960−13152 = −4192.

Thus, x6 + y6 = −4192. Since y6 is positive, x6 = −4192 − y6. Therefore, x6 is slightly
less than -4192. But this contradicts since x > 1. Wait, actually, y =

√
7 −

√
5 ≈ 0.4142,

so y6 ≈ (0.4142)6 ≈ 0.004. Thus, x6 = −4192 − y6 ≈ −4192.004, which is negative. This
[Generation Termination without final answer]

✓ Response of Bingo with 470 words:
Okay, so I need to find the greatest integer less than (

√
7 +

√
5)6. Hmm, that sounds like I need

to compute (
√
7 +

√
5)6 and then take the floor of that value. But since I can’t use a calculator,

I have to figure out a way to compute this without approximating. I remember that expressions
like (

√
a+

√
b)n can sometimes be simplified using binomial expansion or by recognizing patterns.

Maybe I can pair (
√
7 +

√
5) with (

√
7−

√
5) because their product is 7 - 5 = 2, which is nice. Let

me denote x =
√
7 +

√
5andy =

√
7−

√
5. Then, x× y = 2. I also know that x+ y = 2

√
7 and

x − y = 2
√
5. Since x and y are conjugates, maybe I can find a recurrence relation for xn + yn.

Let me compute x1 + y1 = 2
√
7 ≈ 5.2915, x2 + y2 = (x + y)2 − 2xy = (2

√
7)2 − 2 × 2 =

28 − 4 = 24,x3 + y3 = (x + y)(x2 + y2 − xy) = 2
√
7 × (24 − 2) = 2

√
7 × 22 = 44

√
7 ≈

44 × 2.6458 ≈ 116.315, x4 + y4 = (x2 + y2)2 − 2(xy)2 = 242 − 2 × (4) = 576 − 8 = 568,
x5 + y5 = (x + y)(x4 + y4) − xy(x3 + y3) = 2

√
7 × 568 − 2 × (44

√
7) = 1136

√
7 − 88

√
7 =

1048
√
7 ≈ 1048× 2.6458 ≈ 2767.318, x6 + y6 = (x3 + y3)2 − 2(xy)3 = (44

√
7)2 − 2× (8) =

1936 × 7 − 16 = 13552 − 16 = 13536, So x6 + y6 = 13536. But since y =
√
7 −

√
5, which is

less than 1 (since
√
7 ≈ 2.6458,

√
5 ≈ 2.236, soy ≈ 0.4098). Therefore, y6 is a very small positive

number, less than 1. Therefore, x6 = 13536− y6. Since y6 is positive, x6 < 13536 Thus, the integer
part of x6 is 13535. Therefore, the greatest integer less than (

√
7+

√
5)6 is 13535. **Final Answer**:

13535 </think> To find the greatest integer less than (
√
7 +

√
5)6, we denote x =

√
7 +

√
5 and

y =
√
7 −

√
5. We know that x · y = 2, x + y = 2

√
7, and x − y = 2

√
5. We use the recurrence

relation for xn + yn: - x1 + y1 = 2
√
7 - x2 + y2 = 24 - x3 + y3 = 44

√
7 - x4 + y4 = 568 -

x5+y5 = 1048
√
7 - x6+y6 = 13536. Since y =

√
7−

√
5 is less than 1, y6 is a very small positive

number. Therefore, x6 = 13536− y6, which is slightly less than 13536. Thus, the greatest integer
less than (

√
7 +

√
5)6 is 13535.

Final Answer: 13535.

Figure 11: Case study under the DeepSeek-R1-Distill-Qwen-1.5B model with three settings: Base,
PPO, and Bingo. Blue highlights some redundant and repetitive tokens, while red marks omitted
content and the final answer.
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Problem: In how many ways can 8 people sit around a round table if 3 of the people – Pierre,
Rosa, and Thomas – all want to sit together? (Two seatings are considered the same if one is a
rotation of the other.)

✗ Response of Base Model with 5783 words:
Okay, so I have this function f(x) =

√
(x− 1)/(x − 2), and I need to find the smallest possible

integer value for x such that f(x) is a real number. Hmm, let me think about how to approach
this. First, I remember that for a square root to be real, the expression inside the square root, which
is called the radicand, must be greater than or equal to zero. So, in this case, the radicand is (x -
1). That means x - 1 has to be greater than or equal to zero. Let me write that down: x − 1 ≥ 0
Solving for x, I add 1 to both sides: x ≥ 1 Okay, so x has to be at least 1. But wait, there’s also
the denominator in the function, which is (x - 2). For the function to be defined, the denominator
can’t be zero because division by zero is undefined. So, I need to make sure that x - 2 is not equal
to zero. Let me write that condition: · · · But x can’t be 2, so the next integer after 1 is 2, which
is excluded. So, the next integer is 3. wait, is 3 the smallest integer that satisfies both conditions?
Let me check. · · · wait, if x is 1, then f(x) is 0, which is real. So, 1 is a valid value. But is 1 the
smallest integer? · · · wait, but hold on, the problem says "the smallest possible integer value for
x." So, 1 is the smallest integer in the domain. So, 1 is the answer. But wait, hold on, I just thought
of something. The function f(x) is defined as

√
(x− 1)/(x − 2). So, for x = 1, it’s 0, which is

fine. But is 1 the smallest integer? Or is there a smaller integer? But integers go down to negative
infinity, but x can’t be less than 1 because of the square root. So, 1 is the smallest possible integer. · · ·
So, 1 is the smallest integer in the domain, so that’s the answer. But just to make sure, let me think
about the function’s domain. · · · But wait, hold on, I just thought of something else. The problem is
asking for the smallest possible integer value for x such that f(x) has a real number value. So, 1 is
the smallest integer, but is 1 the smallest integer in the domain? Yes, because x can’t be less than 1.
But wait, let me think about the function again. If x is 1, f(x) is 0, which is real. So, 1 is acceptable.
So, 1 is the answer. · · · So, the integers in the domain are 1, 3, 4, 5, etc. So, the smallest integer is 1.
Therefore, the [Generation Termination without final answer]

✓ Response of PPO with 437 words:
To determine the smallest possible integer value for x such that f(x) =

√
x−1
x−2 has a real number value,

we need to consider the conditions under which the function is defined. 1. Numerator Condition:
The expression inside the square root, x − 1, must be non-negative because the square root of a
negative number is not a real number. x − 1 ≥ 0 ⇒ x ≥ 1 2. Denominator Condition: The
denominator, x−2, must not be zero because division by zero is undefined. x−2 ̸= 0 ⇒ x ̸= 2
3. Combined Domain: Combining the above conditions, x must be greater than or equal to 1 but
not equal to 2. x ≥ 1 and x ̸= 2 4. Smallest Integer Value: The smallest integer greater than
or equal to 1 is 1. However, we need to check if x = 1 satisfies the conditions. - For x = 1:
f(1) =

√
1−1
1−2 = 0

−1 = 0 Since 0 is a real number, x = 1 is valid. Therefore, the smallest possible

integer value for x is 1. To determine the smallest possible integer value for x such that f(x) =
√
x−1
x−2

has a real number value, let’s analyze the function step by step. 1. Numerator Condition: - The
expression inside the square root, x− 1, must be non-negative because the square root of a negative
number is not a real number. x − 1 ≥ 0 ⇒ x ≥ 1 2. Denominator Condition: - The
denominator, x−2, must not be zero because division by zero is undefined. x−2 ̸= 0 ⇒ x ̸= 2
3. Combined Domain: - Combining the above conditions, x must be greater than or equal to 1 but
not equal to 2. x ≥ 1 and x ̸= 2 4. Smallest Integer Value: - The smallest integer greater than
or equal to 1 is 1. However, we need to check if x = 1 satisfies the conditions. - For x = 1:
f(1) =

√
1−1
1−2 = 0

−1 = 0 Since 0 is a real number, x = 1 is valid. Therefore, the smallest possible
integer value for x is:1

✓ Response of Bingo with 155 words:
First, I need to determine the domain of the function f(x) =

√
x−1
x−2 to find the smallest integer x

for which f(x) is a real number. I know that for the square root to be real, the expression inside
must be non-negative. So, x − 1 ≥ 0, which implies x ≥ 1. Additionally, the denominator x − 2
cannot be zero, so x ̸= 2. Combining these conditions, the domain is x ≥ 1 with x ̸= 2. The
smallest integer greater than or equal to 1 is 1, but I need to check if x = 1 is valid. Plugging in
x = 1, the denominator becomes −1, which is allowed, and the square root is 0. So f(1) = 0,
which is a real number. Therefore, the smallest possible integer value for x is 1. </think> The
function f(x) =

√
x−1
x−2 is defined when the expression inside the square root is non-negative and

the denominator is not zero. 1. **Square Root Condition:** x− 1 ≥ 0. x ≥ 1. 2. **Denominator
Condition:** x − 2 ̸= 0. x ̸= 2. Combining these conditions, the domain of f(x) is x ≥ 1 with
x ̸= 2. The smallest integer value for x that satisfies these conditions isx = 1.

Final Answer: 1.

Figure 12: Case study under the DeepSeek-R1-Distill-Qwen-7B model with three settings: Base,
PPO, and Bingo. Blue highlights some redundant and repetitive tokens, while red marks omitted
content and the final answer.
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R HYPERPARAMETER STUDY

We evaluated several combinations of hyperparameters for BINGO on the GSM8K dataset using
DeepSeek-R1-Distill-Qwen-1.5B as the base model. Table 7 reports the accuracy and output length
across different settings.

Table 7: Performance of BINGO under different hyperparameter settings on GSM8K.

λc λis
w λs

w S β α τ Acc. Len.

2 2 5 5 2 0.5 0.5 86.6 570
2 2 5 10 5 0.2 0.8 86.7 585
5 5 5 10 2.5 0.4 0.6 86.9 578
5 5 5 10 2.5 0.5 0.5 87.0 563

Hyperparameter Definitions:

• λc: Insignificant Length Reward Weight for Correct Samples.
• λis

w : Insignificant Length Reward Weight for Incorrect Samples.
• λs

w: Significant Length Reward Weight for Incorrect Samples.
• S: Slope interval for the Dynamic Length Reward.
• β: Threshold for Training Phase Transition.
• α: Decay Factor for Dynamic Length Reward.
• τ : Threshold for Significant Tokens.

As shown in Table 7, the performance of BINGO remains stable, with both accuracy and output length
exhibiting only minor fluctuations across the tested hyperparameter ranges. This indicates that the
method is robust to hyperparameter choices. Since the last configuration achieves the best overall
performance, we fixed these hyperparameters for methods and datasets to ensure consistency and
fairness in comparison.
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S NOTATION TABLE

Table 8 offers a detailed overview of the notations utilized in this paper, along with their respective
explanations. It serves as a handy reference to assist readers in grasping the concepts discussed in our
work.

Table 8: Notation used throughout the paper

Notation Description
General

y Sequence of tokens generated by the language model
x Input prompt for the language model
n Total length of the sequence y
yi i-th token in the generated sequence y
ẑ(y) Extracted final answer from the generated sequence y
z Ground-truth answer

Eπθ
Expectation over policy πθ

A(L) Expected accuracy as a function of output length L
L Length of the output sequence generated by the model

Lmax Maximum response length in the dataset
Acc Exact match accuracy of the final output

L-Acc Length-normalized accuracy, defined as Acc×
√
1− L

Lmax

S(yi) Significance score of token yi
Ls Number of significant tokens in the response
Lis Number of insignificant tokens in the response
τ Threshold for classifying a token as significant or insignificant

Reinforcement Learning
πθ Policy parameterized by θ

Ât Advantage estimate at time step t
rt(θ) Importance sampling ratio for policy optimization
RBINGO Reward function in the BINGO framework

JBINGO(θ) PPO objective with BINGO reward function
ϵ Clipping parameter in the PPO objective

Rewards and Penalties
ris(y) Reward for insignificant tokens in sequence y
rs(y) Reward for significant tokens in sequence y
λc Coefficient for penalty on correct responses
λw Coefficient for penalty on incorrect responses
k Dynamic scaling factor for length reward
α Scaling factor for the decay in dynamic length reward
β Threshold for transition between exploration and compression in dynamic reward

Length Penalty
Lis

ref Reference number of insignificant tokens
Ls

ref Reference number of significant tokens
k(t) Dynamic scaling factor for adjusting length reward over time

Miscellaneous
Me Model used to estimate token significance (LLMLingua-2)
1[·] Indicator function (1 if true, 0 otherwise)
Ysig Set of significant tokens in the sequence y
Yinsig Set of insignificant tokens in the sequence y
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