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ABSTRACT

Computed Tomography (CT) is one of the most widely used and diagnostically
information-dense imaging modalities, covering critical organs such as the heart,
lungs, liver, and colon. Clinical interpretation relies on both slice-driven local fea-
tures (e.g., sub-centimeter nodules, lesion boundaries) and volume-driven spatial
representations (e.g., tumor infiltration, inter-organ anatomical relations). How-
ever, existing Large Vision—-Language Models (LVLMs) remain fragmented in CT
slice versus volumetric understanding: slice-driven LVLMs show strong general-
ization but lack cross-slice spatial consistency, while volume-driven LVLMs ex-
plicitly capture volumetric semantics but suffer from coarse granularity and poor
compatibility with slice inputs. The absence of a unified modeling paradigm
constitutes a major bottleneck for the clinical translation of medical LVLMs.
We present OmniCT, a powerful unified slice—volume LVLM for CT scenarios,
which makes three contributions: (i) Spatial Consistency Enhancement (SCE):
volumetric slice composition combined with tri-axial positional encoding intro-
duces volumetric consistency, and an MoE hybird projection enables efficient
slice-volume adaptation; (ii) Organ-level Semantic Enhancement (OSE): seg-
mentation and ROI localization explicitly align anatomical regions, emphasizing
lesion- and organ-level semantics; (iii) MedEval-CT: the largest slice—volume
CT dataset and hybrid benchmark integrates multi-level metrics for unified evalu-
ation. OmniCT consistently outperforms existing methods with a substantial mar-
gin across diverse clinical tasks, satisfies both micro-level detail sensitivity and
macro-level spatial reasoning, and establishes a new paradigm for cross-modal
medical imaging understanding. Our project is available at link.

1 INTRODUCTION

Large Vision—Language Models (LVLMs) have become a cornerstone of multi-modal artificial in-
telligence, demonstrating strong cross-modal representation and reasoning capabilities in both 2D
image understanding (Achiam et al.|[2023} |Li et al.| 2024a;|Zhu et al.,|2025; Bai et al.,[2025) and 3D
video perception (Lin et al.,2023aj [Li et al.|[2024a}; Zhang et al.| 2025 |Yuan et al.|[2025). Benefiting
from large-scale pre-training and modality alignment, LVLMs achieve remarkable performance in
open-domain tasks (Yue et al.l [2024; [Fu et al.l [2025), excelling in both generation and reasoning.
These advances establish LVLMs as a universal paradigm for unified vision—language modeling,
where the joint modeling of 2D and 3D modalities has emerged as a key design principle.

In recent years, the potential of LVLMs in medical imaging has received increasing attention, with
exploration in radiological imaging being particularly notable (Wu et al., [2025; Xu et al., [2025).
However, most existing methods are tailored to process either CT slices (Chen et al., 2024a; Lin
et al.| 2025) or volumetric data (Bai et al.l 2024} [Hamamci et al., 2024c), with limited focus on
cooperative processing. Slice-driven models leverage large-scale 2D pre-training to achieve strong
vision—language alignment and perform well in tasks such as lesion detection and radiology report
description, yet they fail to capture cross-slice spatial consistency. In contrast, volume-driven models
explicitly model voxel-level spatial structures, offering advantages in holistic spatial representation
and organ-level reasoning. Nevertheless, these models often lack sensitivity to fine-grained abnor-
malities and boundary morphology, and their architectures are difficult to adapt to slice-level tasks,
limiting their applicability across diverse medical scenarios. This persistent dichotomy between
slice and volume modeling constitutes a major bottleneck in the development of medical LVLM:s.
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Figure 1: (a) is the statistics of the proposed MedEval-CT-Dataset. (b) describes the simplified
architecture of proposed OmniCT. (c) shows that OmniCT consistently surpasses all baselines on
both slice-driven and volume-driven CT benchmarks.

Among various medical imaging modalities, CT is one of the most widely used and dense in infor-
mation, with hundreds of million performed each year globally. CT can cover critical organs such as
the heart, lungs, liver, and colon, and is widely applied in essential tasks including disease screen-
ing|Hu et al.|(2025)), lesion assessment|L1 et al.[(2025b)); Shui et al.| (2025)), and tumor staging (Bassi
et al.|, 2025). Its diagnostic process relies on both slice-level local imaging cues, such as sub-
centimeter pulmonary nodules or hepatic lesion boundaries, and volume-level spatial-topological
representations, such as tumor infiltration ranges or inter-organ anatomical relationships. Model-
ing along a single dimension alone cannot meet this dual requirement. Therefore, integrating the
complementary strengths of 2D and 3D modeling within a unified framework is not only a central
scientific challenge for CT understanding but also an inevitable step toward the clinical translation
of medical LVLMs.

We propose OmniCT (see Fig. [I), a powerful unified slice-volume LVLM for CT-centric under-
standing, which preserves the cross-modal alignment and generalization strengths of 2D models
while integrating the spatial structural awareness of 3D models. To bridge the modality gap between
slice and volume representations, we introduce a Spatial Consistency Enhancemen (SCE) strat-
egy. Unlike generic LVLMs that rely on frame sampling or key-frame stacking strategies (Xu et al.,
2024; L1 et al., |2024b; [Huang et al., 2024), SCE performs volumetric slice composition by struc-
turally combining adjacent slices along the channel dimension into locally consistent volumetric
units, thereby retaining contextual spatial transitions. It further incorporates a fri-axial positional
encoding, which injects 3D positional encodings into visual representations to enable volumetric
awareness while maintaining compatibility with slice-based inputs. In addition, a MoE hybrid pro-
Jection dynamically aligns slice and volume features within a shared representation space, ensuring
semantic unification with the Large Language Models (LLMs). Overall, SCE injects robust 2D/3D
spatial priors while achieving a balance between efficiency and adaptability.

In clinical diagnosis, image interpretation is performed at the organ level, where observations and
lesion localization are conducted within this scope (Shui et al., 2025). Building on this clinical re-
quirement, we propose Organ-level Semantic Enhancement (OSE). OSE performs task-guided
anatomical region localization, explicitly projecting critical organ regions into the token represen-
tation space and fusing them with global visual context, thereby embedding organ-centric semantics
into the representation. It then applies a adaptive aggregation to compress long-sequence represen-
tations: this mechanism preserves overall information coverage while adaptively magnifying smaller
organ regions and compressing larger ones, thus highlighting the most diagnostically relevant struc-
tures. In this way, OSE explicitly incorporates region priors with high task-relevant semantic load
while improving the relevance and interpretability of models in clinical tasks.

Existing medical benchmarks (Hu et al., 2024} |Yue et al., 2024; |Yamagishi et al., [2025) often
adopt multi-modality designs to evaluate the general capability of LVLMs, yet they fall short in
task alignment and clinical representativeness for CT interpretation. To address this gap, we in-
troduce MedEval-CT, the first holistic evaluation framework dedicated to CT images. At the data
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Figure 2: The architecture of OmniCT, a unified slice—volume LVLM paradigm.
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level, MedEval-CT-Dataset consolidates 1.7M slice-driven and volume-driven VQA samples across
7 clinical task types, establishing the largest CT resource to date (Fig.[T(a)). At the benchmark level,
MedEval-CT-Bench organizes hybrid evaluations along clinical problem types and organ distribu-
tions. At the toolkit level, MedEval-CT-Factory standardizes input handling, feature construction,
and multi-dimensional metrics, supporting statistical, semantic, and LLM-based evaluations. Col-
lectively, MedEval-CT institutionalizes fairness and comparability in medical LVLM evaluation,
while providing a scalable foundation for larger and more complex clinical scenarios.

Experimental results on multiple CT-centric benchmarks show that OmniCT achieves substantial
improvements over existing methods, as illustrated by the radar chart in Fig. [T[c), validating the
effectiveness of proposed unified slice-volume modeling paradigm. Our main contributions are:

e Unified LVLM Paradigm for CT Imaging: Bridges the gap between slice and volume represen-
tations, injecting 3D spatial priors while retaining the efficiency of 2D alignment.

o Representation Enhancements: We design SCE and OSE to bridge slice—volume gaps and em-
bed organ-centric semantics, yielding spatially coherent and clinically meaningful representations.

e MedEval-CT: Establishes the first holistic evaluation suite for CT imaging, augmented with 1.7M
multimodal VQA samples, enabling fair, comparable, and scalable assessment of medical LVLMs.

o Substantial Performances and Strong Baseline: OmniCT outperforms all medical LVLMs and
general LVLMs with a significant margin across multiple slice- and volume-driven CT benchmarks,
establishing a strong baseline for future research towards clinical medical LVLMs.

2 METHODOLOGY

We propose OmniCT, a unified slice—volume LVLM for CT-centric understanding (Fig.[2)). Unlike
prior medical LVLMs restricted to either 2D slices or 3D volumes, OmniCT incorporates SCE and
OSE to enable comprehensive CT representation.

2.1 SPATIAL CONSISTENCY ENHANCEMENT

To bridge the representational gap between slices and volumes, we propose Spatial Consistency
Enhancement (SCE) module, which injects volumetric priors into LLM while remaining compat-
ible with slice-driven approaches. SCE leverages Volumetric Slice Composition, Tri-Axial Posi-
tional Embedding, and MoE Hybrid Projection to unify 2D slices and 3D volumes into the LLM
space, enabling localized spatial perception, spatial position encoding, and seamless alignment of
slice/volume representations within the LLM space, respectively.

Volumetric Slice Composition (VSC). For a 3D CT volume V € RP*HXW where D, H,
W represent the dimensions along the z, y, and x directions, respectively, SCE structurally con-
catenates adjacent slices along the z axis to construct locally consistent volumetric units: §; =
Concat(Vs;_2, Vsi_1, Vsi) fori = 1,...,|D/3], where 3; € R¥>*#*W represents a reassem-
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bled unit that preserves cross-slice spatial transitions. For independent 2D slice inputs S =
{81,580}, 8 € RHXW "we simply replicate s; along the channel axis to construct ;. In this

way, both 2D slices and 3D volumes are unified as a series of reassembled units S = {5;]i € [1,7]},
and 3; has a size of 3 x H x W, where 3 is the channel number.

Tri-Axial Positional Embedding (TPE). Through volumetric slice composition, 2D slices or 3D

volume are transposed into unified units S of size Ny x 3 x H x W, which are processed by a vision
encoder ¢, (- | 6,,) with parameters 6,, to obtain patch-level visual tokens F:

F=0u(S [ 00) = {0031 | 0), .., (8w, | 6,)} € RN Wi, (1)

Here, H' = % and W' = % denote the spatial dimensions before flattening the patch features, and
the patch size for tokenization is 3 x K x K. N, represents the number of unified reassembled units
and can be regarded as a new depth dimension of reassembled units. To summarize, /N, reassembled
units are as inputs to generate Ny, x 1 x H’ x W’ tokens with a dimension of d,,.

To explicitly inject global volumetric awareness, we construct sinusoidal positional encodings P =

{PN: PH" PW'\ along the depth N, height H’, and width W’ dimensions of the reassembled
units. This yields tokens Z enriched with 3D positional priors:

Z=FoP=FaPY oP" epPV zcRNHWix(dtdtdtd) )
where @ denotes concatenating tokens with positional encodings along the feature dimension.

MoE Hybrid Projection. To mitigate token explosion and reduce redundancy in the visual token
representation of volumetric units for native volume input, we first perform a token-level unshuffle
operation on Z. This operation clusters spatially adjacent m x m tokens into more representations

while preserving spatial relationships, resulting in newly generated token representations Z:

Z Z/{(Z),éﬁ' c RNS><(H'/m)><(W’/m)><[(d1,+dz+dy+dm)><m2]’ 3)

where U denotes the token-level unshuffle operation, with m = 1 for slice inputs to preserve original
resolution. Subsequently, we employ a slice—volume hybrid Mixture of Experts (MoE) projection
(- | 6,) to align features with the LLM’s representation space, formally expressed as:

-7: 1/1(3 | 9 - {W57 Wm Wshare}) share U(W Z 1shce + W Z 1volume) (4)

where o(-) denotes the GELU activation function, and 1gjce and Lyoume are binary indicator func-
tions that represent routing conditions for the slice and volume features, respectively (1 if the condi-
tion is satisfied, and O otherwise). The final tokens Fhasasize of L xd ¢, where L = N x vrvn’
represents the total number of tokens, and d; denotes the output feature dimension of the MoE pro-
jector, which takes an input feature dimension of (d, + d, + d,, + d.) X m2.

Overall, the above SCE process generates unified CT tokens that are compatible with both 2D slices
and 3D volumes, while embedding spatial positional awareness. These unified tokens are subse-
quently projected into the LLM representation space via MoE hybrid projector, serving as the input
tokens for the LLM.

2.2 ORGAN-LEVEL SEMANTIC ENHANCEMENT

CT images typically have a large size, for instance, over 150x512x512, while lesions are often small
and localized. To enable clinically practical LVLMs capable of identifying abnormal features within
such high-dimensional data, we introduce an Organ-level Semantic Enhancement (OSE) module
within our unified framework, which consists of three components: anatomical region localization,
semantic feature aggregation, and context fusion.

Anatomical Region Localization. Given the visual token representation F e RExdn produced
by SCE, we perform region-wise selection based on spatial priors of the target organ o. The organ
mask is denoted as M, € RPXHXW ‘including 117 anatomical structures, which is generated by
TotalSegmentor [Wasserthal et al.|(2023)). This mask of D x H x W is mapped to the token size by
leveragmg the scahng relatlonshlp between pixels and vision tokens, resulting in the organ- specific
subset: F, = F [M ], where [/\/l ] denotes mask-based indexing for token selection. F represents

the selected tokens of size L, x dj for organ o by the organ mask M,.



Under review as a conference paper at ICLR 2026

Adaptive Organ-Level Feature Aggregation. Since different organs exhibit significant variation
in scale and token length, directly concatenating them with text tokens can lead to severe length
imbalance. To address this issue, we design a fixed-dimensional discriminative aggregation function

Agg(+), which compresses F, into a unified size:

fo = Agg(Fy), fo € REXdn F e REoXdn, (5)

where L. denotes the fixed number of aggregated tokens compressed from L,. This aggregation
not only reduces token redundancy but also introduces a “magnification effect” for small organs,
enhancing fine-grained lesion features. Simultaneously, it applies a “compression effect” to large
organs or global regions, effectively minimizing redundancy and preserving essential information.

Fmally, the organ-level aggregated representatlon fo is concatenated with the global visual tokens

Fto generate global-local vision tokens ]:os B .7-'05 E= [}' fo} and combined with text tokens £
as input to the LLM backbone, forming a semantically enhanced multimodal representation.

Overall, OSE enhances discriminative capability at the local (organ) level while maintaining contex-
tual consistency at the global level, thus delivering more relevant and interpretable representations
for downstream clinical reasoning tasks.

2.3 TRAINING STRATEGY

After applying Spatial Consistency Enhancement (SCE) and Organ-level Semantic Enhancement

(OSE), we obtain enhanced visual features ]:"og g € RE+L)xdn Meanwhile, the text query @ =
{q1,...,qm} is embedded with text embedding matrix ¢;(-|0;)

E= ¢t(Q\9t) S Rmx{ih.

The two modalities are concatenated into a unified input 7 = []:'OS £; &], which is fed into the LLM
to model the conditional probability distribution. The overall optimization objective is formulated
as minimizing the autoregressive cross-entropy loss:

{6,}, pretraining stage
E ~ log P( ;T 0 P . ) =7 6
min K7 y)~p ; og P(ye | y<; T; )1 {{ep,eum}, instruction tuning stage. ©

3 DATASET

Current medical benchmarks predominantly emphasize broad multi-modal capabilities, yet fall short
in capturing the domain-specific demands of CT-based clinical interpretation. To bridge this gap,
we introduce MedEval-CT, the first holistic evaluation framework for CT understanding, structured
along three complementary dimensions: data (MedEval-CT-Dataset), benchmarks (MedEval-CT-
Bench), and tools (Data Orchestration Engine and MedEval-CT-Factory).

3.1 MEDEVAL-CT

MedEval-CT-Dataset. We develop MedEval-CT-Dataset, the largest unified CT imaging resource
to date, containing over 1.7 million VQA samples (170,280 independent 3D volumes and 327,063
independent 2D slices), where the two sources do not overlap, and 2D slices are not derived from
the 3D volumes. For the 3D data, to fully leverage its spatial and semantic density, each volume
is associated with approximately 8 questions on average. In contrast, in the 2D scenario, most
slices correspond to a single question. The dataset supports both 2D interpretation (16.3%) and 3D
perception (83.7%). As shown in Fig.[3] the dataset is systematically partitioned across three dimen-
sions: task types, clinical categories, and organs, enabling multi-faceted evaluation of LVLMs. For
task types, it spans seven medical VQA scenarios, from structured to open-ended tasks: free-form
QA (38.0%), multi-choice (18.0%), short answers (13.7%), report generation (11.5%), description
(7.2%), dialogue (6.2%), and judgment (5.5%). Clinical categories reflect increasing difficulty, pro-
gressing from basic anatomical recognition to expert-level reasoning: General Imaging Recognition
(GIR, 21.9%), Medical Abnormality Identification (MAI, 23.6%), Advanced Imaging Interpretation
(AIl, 34.5%), and Clinical Reasoning/Decision (CRD, 19.9%). Organ-wise, it covers lungs (32.4%),
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Figure 3: (a) and (b) illustrate the data distribution of MedEval-CT-Bench at the slice and volume
levels, respectively, encompassing both the clinical-based categorization (4 types: GIR, MAI, All,
and CRD) and the organ-level distribution (13 organs). (c) presents the data engineering pipeline.

vessels (8.2%), heart (6.6%), liver (4.9%), kidneys (4.3%), and additional regions like spine, tra-
chea, and esophagus, ensuring robust anatomical diversity. Overall, MedEval-CT surpasses existing
datasets in scale and granularity, providing high-resolution distributions across tasks, clinical exper-
tise, and organs to advance the development of LVLMs for CT imaging. Data sources and other
details are presented in Appendix [Eand Table

MedEval-CT-Bench. Based on the MedEval-CT-Dataset, we further construct MedEval-CT-
Bench, the first systematic hybrid benchmark tailored for slice-volume CT. Its design emphasizes
task—organ dual balance: on the one hand, we perform stratified sampling across different clinical
problem types (GIR, MAI, AIl, and CRD), ensuring full task-spectrum coverage from low-level
interpretation to high-level reasoning; on the other hand, we maintain balanced organ representa-
tion, strengthening core organs (heart, lungs, liver, kidneys, etc.) while retaining long-tail structures
(spine, trachea, esophagus, etc.), thereby guaranteeing fairness and comparability in clinical. To
further improve clinical semantic fidelity, we propose clinical-granularity rewriting, which refines
test questions to a more fine-grained clinical level and adds more confounding answer options while
maintaining their diagnostic intent, ensuring they better reflect the variations encountered in real-
world diagnostic scenarios. In summary, MedEval-CT-Bench represents significant advancements
in task hierarchy, organ-level balance, and clinical authenticity, offering a more rigorous and de-
manding benchmark for CT understanding evaluation.

Data Orchestration Engine. We introduce a Data Orchestration Engine to support the construc-
tion of MedEval-CT. The engine comprises four complementary modules that collaborate across
key stages, forming a self-consistent medical knowledge pipeline. It enables end-to-end capabilities
for large-scale sampling, clinical consistency verification, structured task mapping, and semantic
refinement: (i) Corpus Selector: Combines LVLM capabilities with rule-based constraints to filter
CT samples from multi-source imaging datasets, ensuring representativeness across modality (2D
slice/3D volume), anatomy (heart, lungs, liver, etc.), resolution, and image quality. (ii) Integrity
Verifier: Leverages multi-modal reasoning and rule-based checks, supplemented by a 10% manual
audit, to guarantee alignment between images and texts in modality, organ semantics, and pairing
consistency. (iii) Task Mapper: Maps qualified samples to four clinical task categories and thirteen
organ classes, ensuring balanced task complexity and anatomical coverage in MedEval-CT-Bench.
(iv) Semantic Refiner: Rewrites test questions under clinical context, introducing synonymous
phrasing, terminology variations, and subtle confounding options to generate semantically simi-
lar but more discriminative multiple-choice items, thereby enhancing the benchmark’s ability to
evaluate clinical reasoning. Overall, the engine constructs a large-scale yet distribution-balanced
MedEval-CT-Dataset while ensuring that MedEval-CT-Bench achieves reliability in terms of task
hierarchy, organ balance, and clinical authenticity. Details are provided in the Appendix[H

MedEval-CT-Factory. We introduce MedEval-CT-Factory, an institutionalized evaluation factory
designed to address the heterogeneity of inputs, features, and outputs in medical LVLMs. At the
input level, the Factory standardizes diverse CT data formats, including DICOM, NIfTI, arrays,
and slice sequences, enabling seamless 2D/3D processing. At the feature level, it unifies model
inputs (single images, multi-slice sequences, videos, or volumes) via frame sampling, resampling,
and projection strategies. At the output level, it provides a multi-layer evaluation protocol, ranging
from statistical metrics (BLEU, ROUGE), to semantic metrics (BERTScore, embedding similarity),
and further to LLM-based evaluation simulating clinical reasoning. Overall, MedEval-CT-Factory
streamlines complex engineering workflows into a standardized framework, ensuring comparability
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Table 2: The comparison of OmniCT with other LVLMs on 2D CT benchamrks.

SLAKE VQA-RAD | OmniMedVQA RadFig-VQA
Model #Params Close Open | Close Open | Taskl Task2 Easy Medium Hard Avg.
Med-LVLM (Slice-centric)

HealthGPT 4B 7474 56.33 | 71.88 3345 | 57.36 54.20 70.81 7122 7290 || 62.54
HuatuoGPT-V-Qwen2.5 7B 72.68 44.19 | 7292 35.68 | 71.07 83.07 76.56 7376  71.74 || 66.85
MedGemma-4B-IT 4B 68.04 5395 | 56.25 33.55 | 61.42 67.00 64.59 6540  64.20 || 59.38

MedVLM-R1-2B 2B - - - - 59.90 67.37 5550 5451 55.56 -
Lingshu 7B 80.93 7423 | 75.00 34.62 | 68.02 69.97 77.51 7848  75.22 || 70.44

General-LVLM
InternVL3 8B 7320 60.88 | 69.79 34.79 | 63.96 71.78 68.42 7046  68.55 || 64.65
Qwen2.5-VL 8B 69.59 47.86 | 69.59 35.54 | 62.94 65.92 65.07  69.45  67.10 || 61.45
GPT5 - 78.35 45.86 | 70.83 41.05 | 67.00 69.10 80.86 7890  81.74 || 68.19
Med-LVLM (Multi-granularity)

RadFM 14B 51.03 43.88 | 53.12 20.29 | 30.97 28.29 23.92 19.75 17.83 || 32.12
OmniCT (Ours) 3B 77.84 8532 | 70.83 30.01 | 97.46 97.25 79.43  82.03  79.13 || 77.71
OmniCT (Ours) 7B 85.05 87.20 | 76.04 36.32 | 97.97 98.70 8230 8582  83.62 || 81.45

across models. Serving as the fourth pillar of the MedEval-CT paradigm alongside the Dataset,
Bench, and Engine, it will be open-sourced as a toolbox to enhance both the efficiency and fairness
of LVLM evaluation in the CT domain. (The framework and details of MedEval-CT-Factory are
shown in Appendix [G).

4 EXPERIMENTS
The Data Details, Model Details, and Implementation Details are shown in Appendix

4.1 MAIN EXPERIMENTS

Slice-driven Understanding. We systemat-

ically evaluate OmniCT on four mainstream Table 1: Ablation analysis of OmniCT.

VQA benchmarks. As shown in the Ta-  SCE OSE || Public Bench. | MedEval-CT-Bench

ble P} medical LVLMs (e.g., HuatuoGPT-V- | 20 3D |Organ Task Avg.
Qwen2.5, MedGemma) demonstrate relatively - - ;g-?ﬁ gg-éé ;g-% ;g-gé ;g-gé
strong medical semantic understanding in cer- i v 18074 6537 | 7702 7942 7862
tain tasks but remain limited in overall perfor- v/ || 8145 66.15 | 7824 8027 79.62

mance, often encountering bottlenecks on com-
plex tasks. In contrast, general LVLMs achieve competitive or even superior results on some bench-
marks, reflecting their strengths in language reasoning, but lack adaptation to CT images. For com-
parison, RadFM, although capable of handling both slice and volume inputs, achieves the weakest
performance across all slice benchmarks, with an average score of only 32.12, failing to meet the
demands of fine-grained CT tasks. Under the same evaluation protocol, OmniCT consistently sur-
passes existing models at both 3B and 7B scales: the 7B version achieves an average score of 81.45,
exceeding the second-best model Lingshu by more than +11.01. These results demonstrate the ro-
bustness and comprehensiveness of OmniCT on slice-driven tasks.

Volume-driven Understanding. As shown in Table 3] we further assess OmniCT on M3D, CT-
RATE, and 3D-RAD to evaluate its volumetric perception capability for CT volume. Results
show that existing volume-driven medical LVLMs (e.g., M3D-LaMed-7B/4B, CT-CHAT) achieve
strong performance on specific subtasks—for example, CT-CHAT reaches 86.46 on CT-RATE multi-
choice—but their overall averages remain below 36, highlighting limitations in coverage and stabil-
ity. General LVLMs also exhibit strong cross-modal generalization in certain volume tasks, with
GPT-5 leading multiple subtasks on 3D-RAD; however, their performance is highly inconsistent
and lacks domain adaptation to CT volume. By contrast, OmniCT achieves clear advantages at
both 3B and 7B scales: the 3B version reaches 87.38 on CT-RATE multi-choice with an average of
63.48, while the 7B version achieves 85.69 on the LTD task of 3D-RAD, pushing its overall average
to 66.15—significantly outperforming all compared models. In addition, considering the significant
importance of CT report generation, we performed 18-class abnormality label prediction for the re-
port generation task on CT-RATE using RadBERT (Yan et al.,[2022)). The results show that OmniCT
outperforms most volume-driven CT models and previous unified models (see Table [I6)), and per-
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Table 3: The comparison of OmniCT with other LVLMs on 3D CT benchamrks.

Model #Params M3D Mo CEIEQTE 3D-RAD Avg.
Cap Close Open . . Report | 1.O. AD. ED. STD. LID.
choice  Entity
Med-LVLM (Volume-centric)

M3D-LaMed-7B 7B 2479 7578 56.09 | 47.44 18.15 16.18 | 16.85 16.71 18.00 2547 24.17 30.88
M3D-LaMed-4B 4B 46.30 75.08 53.83 | 59.29 13.66 13.46 | 17.60 17.49 40.25 2540 2431 35.15
CT-CHAT 8B 21.21 3588 21.81 | 86.46 49.95 46.76 | 31.56 29.98 4533 1295 13.68 3597

General-LVLM
MiniCPM-V-4_5 9B 18.44 4320 26.89 | 69.21 26.21 23.21 | 28.03 29.80 3098 12.70 16.32 29.54
Qwen2.5-VL. 8B 22.62 48.64 2899 | 61.34 37.51 26.84 | 30.51 30.60 41.28 9.19 13.05 31.87
GPT5 - 21.66 50.36 33.60 | 64.27 34.44 24.86 | 3298 3522 67.00 59.07 7797 45.59

Med-LVLM (Multi-granularity)

RadFM 14B 22.62 3039 19.82 | 63.93 19.52 17.92 | 2325 24.67 2920 44.11 4299 || 30.77
OmniCT (Ours) 3B 27.75 81.24 62.16 | 87.38 63.43 51.67 | 52.02 5143 8475 6443 72.05 63.48
OmniCT (Ours) 7B 26.61 83.84 63.88 | 89.80 63.99 5248 | 53.68 51.97 87.77 6791 85.69 || 66.15

forms similarly to models specifically designed for CT volume report generation (Hamamci et al.,
2024b;|D1 Piazza et al.,[2025)). This validates the superiority of OmniCT in 3D spatial modeling and
cross-task consistency. Across both slice-driven and volume-driven benchmarks, OmniCT demon-
strates stable and comprehensive superiority at different scales, highlighting its holistic perception
of spatial-semantic features in CT volume understanding tasks.

4.2 ABLATION ANALYSIS

We conduct a systematic ablation study on the proposed SCE and OSE modules on multiple public
2D/3D CT benchmarks and our MedEval-CT-Bench, while keeping the MoE Hybrid Projection
fixed, as it is a necessary design for coupling 2D slices and 3D volumes. Results are shown in
Table E} On the 2D slice benchmarks, the baseline achieves an average score of 79.38; introducing
SCE alone improves performance to 80.14, while adding OSE alone yields 80.74. When both are
combined, the performance further increases to 81.45, achieving the best results. On the 3D volume
benchmarks, the baseline starts at 62.17; adding SCE improves it to 63.68, while adding OSE alone
boosts it to 65.37. The complete model combining both modules reaches the highest score of 66.15.
On the MedEval-CT-Bench, OmniCT consistently outperforms the baseline with the addition of
the SCE and OSE. The improvements in both organ-level and clinical-level tasks further validate
the effectiveness of these two modules. Overall, both SCE and OSE contribute significantly to
performance gains, with even stronger effects observed on volume-driven tasks, demonstrating the
effectiveness and complementarity of the proposed enhancements.

4.3 IN-DEPTH STUDY

(i) Performance Advantages of Mixed Data Training. As shown in Figure ffa), OmniCT con-
sistently achieves the best performance across different proportions of mixed data, demonstrating
its strong adaptability to cross-modal modeling. OmniCT exhibits strong performance even under
single-modality training. We attribute this behavior to the combination of a unified single-tower
semantic space and the MoE Hybrid Projection, which together enable projection patterns learned
from slices to extend naturally to volumes, and symmetrically allow volume-trained representations
to transfer back to slice. A more detailed analysis of this mechanism is provided in Appendix

(ii) 2D Encoders vs. 3D Encoders. Given the inherent differences in design objectives and input
modes, directly applying 3D encoders to 2D inputs often requires artificial adaptations such as depth
replication, which compromises the fairness of comparison. Therefore, we conduct evaluations in
native 3D settings. As shown in Figure d(b), even though M3D-CLIP (Bai et al.,[2024) is pretrained
with contrastive learning on the M3D dataset, it does not exhibit a clear advantage over 2D encoders
such as DINOv3 (245 tokens) (Siméoni et al., [2025) and SigLIP (405 tokens) (Zhai et al.| [2023)),
despite using the largest number of visual tokens (512). These results indicate that, at this stage, 2D
encoders not only provide a more natural compatibility with both 2D and 3D inputs but also demon-
strate stronger generalization across tasks, organs, and modalities. To assess the generality of this
finding, we additionally evaluate several recent native 3D encoders (Wan et al} [2025; [Wang et al.,
2023) under the same protocol; the results are provided in Table[T3] It is worth noting that we are
not claiming that 2D features can fully represent 3D volumes. Instead, we offer a more measured as-
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Figure 4: (a) Comparison of OmniCT with 2D/3D LVLMs on 2D/3D benchmarks using 30%, 100%
training data of 2D, 3D, and mixed 2D/3D. (b) The study of using a 3D vision encoder, 2D vision
encoders by different pre-training ways. (c) Per-organ performance heatmap of 2D/3D models and
OmniCT on 2D/3D MedEval-CT-Bench. (d) Performance heatmaps by clinical task category and
bar charts comparing performance with clinical knowledge requirements across task categories.

sessment: at the current stage, through structured reorganization and volume-level embedding, more
generalizable 2D encoders can robustly carry 3D spatial information. This design does not collapse
dimensionality; rather, it retains spatial structures and relationships that remain interpretable from a
3D perspective on top of a 2D semantic backbone.

(iii) Organ- and Task-level Performance Analysis. On the organ level(Figuredc)), OmniCT con-
sistently outperforms baselines across the chest, transition zone, and abdomen. The advantage is
particularly striking for anatomically challenging small organs such as the pancreas and esopha-
gus, where most existing LVLMs suffer severe performance degradation. This highlights OmniCT’s
ability to capture fine-grained organ semantics and boundary cues, effectively filling a critical blind
spot of prior models in handling complex anatomical structures. On the task level(Figure [@{d)),
performance shows a clear gradient with respect to clinical difficulty: while most models display a
significant gap between low-level anatomical recognition and high-level reasoning, OmniCT main-
tains consistently strong results across all levels, substantially narrowing this gap. This stability
demonstrates that OmniCT not only enhance local anatomical discriminability but also reinforce
consistency in clinical reasoning.

5 RELATED WORK

Slice-driven Medical LVLMs. Early explorations focused on adapting general LVLM paradigms
to the medical domain, such as LLaVA-Med (L1 et al.,2023) and Med-Flamingo (Moor et al.,|2023)),
which leveraged medical image—text pairs and instruction data to enable initial medical capabilities.
Subsequently, a series of more general-purpose medical LVLMs emerged, including RadFM (Wu
et al., [2025), BiomedGPT (Luo et al., [2023), HuatuoGPT-Vision (Chen et al., |2024a), and Ling-
shu (Xu et al., 2025)). These models advanced the field through large-scale data curation (Bansal
et al., 2024), reasoning-enhanced training strategies (Pan et al.l 2025} |Xu et al., 2025), multi-task
generalization (Jiang et al., |2024), and domain-specific knowledge integration (Sellergren et al.,
2025)). Recently, models such as CXR-LLaVA (Lee et al.,[2025) and EyecareGPT (Li et al.,|2025a)
have demonstrated stronger adaptability and diagnostic value in modality-specific and specialty-
oriented tasks (Xie et al., |2025; |[Hao et al.| 2025). Nevertheless, despite substantial progress in data
scale, architectural design, and task diversity, slice-driven medical LVLMs remain constrained by
their reliance on planar inputs, limiting their ability to capture the spatial consistency and cross-slice
dependencies essential for CT understanding.

Volume-driven Medical LVLMs. To overcome the limitations of 2D modeling, research has in-
creasingly turned to 3D volumetric imaging, employing dedicated datasets, 3D encoders, and cross-
modal alignment modules to strengthen spatial modeling in clinical tasks (Wu et al., 2025). M3D-
LaMed (Bai et al.| 2024)) established a comprehensive evaluation system across multiple volumetric
medical tasks, while CT-CHAT (Hamamci et al.l 2024c) introduced paired chest CT data and an
architecture tailored for fine-grained analysis and dialog-based interaction. At the methodological
level, Med-2E3 (Shi et al.| |2024) combined 2D and 3D encoders and enhanced reasoning consis-
tency through dynamic cross-slice scoring, whereas Med3DInsight (Chen et al.| |2024b)) aligned a
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3D encoder with a 2D LVLM, achieving strong performance in both segmentation and classifica-
tion. Nevertheless, the lack of a unified clinical evaluation framework and efficient slice—volume
collaboration mechanisms continues to limit adaptability and scalability.

6 CONCLUSION

We propose OmniCT, a unified slice-volume LVLM for CT analysis. Through the proposed SCE
and OSE modules, OmniCT achieves spatially coherent and clinically grounded representations,
leading OmniCT to realize new state-of-the-art performances on multiple benchmarks. We further
propose MedEval-CT, a unified, fair, and comprehensive evaluation framework for 2D/3D CT analy-
sis. Detailed evaluations reveal that existing general-purpose and medical LVLMs exhibit significant
performance biases across clinical tasks for different organs. In contrast, OmniCT demonstrates ex-
ceptional capability with balanced performance across all organs, which will encourage LVLMs to
focus on enhancing clinical capabilities for various organs in the CT domain.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were
involved in this study. All medical imaging datasets used in our experiments, including SLAKE,
VQA-RAD, OmniMedVQA, RadFig-VQA, M3D, CT-RATE, and 3D-RAD, are publicly available
under relevant research licenses and comply with usage guidelines, ensuring no violation of privacy
or ethical standards. No personally identifiable information (PII) was included, and all CT data were
pre-processed (e.g., windowing, resampling, and anonymization) before use. We took special care to
avoid any misuse of data and to ensure that all evaluations were conducted fairly and transparently.
Our contributions focus solely on methodological and benchmarking innovations, without clinical
or diagnostic decision-making implications.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All code, configurations,
and the constructed MedEval-CT-Dataset, MedEval-CT-Bench, and MedEval-CT-Factory will be re-
leased in an open repository with detailed documentation. The experimental setup, including model
architectures, training hyperparameters, optimization strategies, is described in full detail in the
main text and appendix. In addition, we rely on multiple widely used public datasets (e.g., SLAKE,
VQA-RAD, M3D, CT-RATE) to facilitate verification and cross-comparison. Our proposed Data
Orchestration Engine ensures consistent data preprocessing and evaluation, further improving re-
producibility across different models.

We believe these measures will enable the community to replicate our work, benchmark future
models fairly, and extend the development of medical LVLMs in CT understanding.
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A APPENDIX

Section[B] LLM usage statement.

Section[C Notation Table.

Section[Dl Extended Related Work.

Section [E] Implementation Details.

Section[F Data Orchestration Engine.
Section[G] Mechanism of MedEval-CT-Factory

Section[H] Supplementary experiments.

B LLM USAGE STATEMENT

In this work, we used LLMs for data-cleaning tasks; the sections where LLMs were involved are
indicated in the manuscript. Additionally, GPT-5 was used to perform grammar checks on the
manuscript text during writing.

C NOTATION TABLE

To provide a comprehensive overview of the notations used throughout the paper, we present a
summary of notations in Table 4| as a quick reference to facilitate the understanding and recall of
each symbol.

D EXTENDED RELATED WORK

In recent times, the release of multiple multi-modal large language models (MLLMs) has driven
innovations in vision-language fusion, long temporal sequence processing, and scenario adaptabil-
ity (Hong et al.| 2025} |Team et al., 2025)), laying a solid foundation for cross-domain applications.
Prominent foundation models such as Qwen2.5-VL Bai et al.| (2025), GPT-40 |Achiam et al.| (2023)),
Claude 3.5 /Al (2024), InternVL3 [Zhu et al.| (2025), and the latest GPT-5 (Wang et al., |2025) have
continuously advanced in multi-modal understanding, long-sequence processing, multi-task learn-
ing, and vertical domains like healthcare |Arora et al.| (2025), demonstrating exceptional potential.
These advancements are primarily driven by high-quality data curation and iterative algorithmic
optimization. However, as foundation models, maintaining a balance between general-purpose ca-
pabilities and domain-specific expertise remains a significant challenge.

E IMPLEMENTATION DETAILS

Data Details. For 2D slice evaluation, we construct test sets based on SLAKE (Liu et al., 2021)),
VQA-RAD (Lau et all [2018), OmniMedVQA (Hu et all [2024), and RadFig (Yamagishi et al.,
20235)), where all samples are systematically filtered by the data engine (Section 3] to retain only
high-quality CT VQA data. For 3D volume evaluation, we adopt existing benchmarks including
M3D (Bai et al., 2024), CT-RATE (Hamamci et al.| [2024a), and 3D-RAD (Gai et al., [2025) to
cover the full spectrum of CT volumetric scenarios. Regarding evaluation metrics, Accuracy is
used for closed-end and multiple-choice tasks, while open-ended QA is assessed by a weighted
combination of BLEU (Papineni et al., 2002), ROUGE (Lin, [2004), Token-F1 (Saab et al.l [2024),
and BERTScore (Zhang et al.,2019), balancing lexical matching with semantic alignment to achieve
multi-level quality measurement. For data pre-processing, all CT volumes with preserved metadata
are windowed to [—1000, 1000] and resampled to 32 x 384 x 384.

Model Details and Implementation Details. We use siglip-so400m-patch14-384 (Zhai et al.,[2023)
as the vision encoder and Qwen2.5 (Team), [2024) as the backbone LLM, with AdamW as the opti-
mizer. During pretraining, only the MoE Hybrid projection layer is updated to perform cross-modal
alignment, with a learning rate of 2 x 10~*. In the vision instruction tuning stage, both the projection
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layer and LLM parameters are optimized, with the learning rate reduced to 5 x 10~ to ensure stable
convergence. All experiments are trained with a global batch size of 256 and a warmup—cosine learn-
ing rate scheduler. Unless otherwise specified, experiments are conducted under the 7B parameter
scale. The specific hyperparameter settings can be found in Table [5]

F DATA ORCHESTRATION ENGINE

The construction of MedEval-CT is powered by the proposed Data Orchestration Engine, which
integrates four complementary modules. Specifically, the Corpus Selector and Integrity Verifier
are implemented with Qwen2 . 5-VL—-72B (Bai et al.,|2025), while the Task Mapper and Semantic
Refiner leverage Qwen3-237B-A3B |Yang et al.| (2025), thereby exploiting the complementary
strengths of different models in large-scale data filtering and semantic refinement. The specific
prompt designs for each module can be found in Fig.[3

To ensure the reliability and independence of MedEval-CT, we proactively conduct a systematic
audit of potential data overlap during its construction. For the slice datasets, we note that RO-
COv2, PubMedVision, LLaVA-Med, and RadFig-VQA originate from PMC-OA (Lin et al.,|2023b).
Although these four datasets follow their own automated curation pipelines, we further apply a two-
stage deduplication strategy within them: perceptual hashing (pHash) is used to cluster visually sim-
ilar images, followed by BiomedCLIP (Zhang et al., [2023) feature matching to remove image—text
pairs with high semantic similarity. For the volume datasets, we strictly adhere to the official splits
of M3D, CT-RATE, and 3D-RAD; even in cases where datasets share underlying CT volumes, we
avoid any cross-dataset training or evaluation. Throughout the pipeline, we retain only modality-
consistent and high-quality CT scans, filtering out blurry, artifact-heavy, or low-resolution samples.
These measures allow MedEval-CT to maintain strict separation in data sourcing, partitioning, and
deduplication, effectively minimizing the risks of training—testing contamination and data leakage.

To further address the concern that using Qwen-family models in both the data pipeline and the
LLM base model might introduce family-specific bias or circularity, we additionally instantiate
OmniCT with a different LLM backbone, Phi-4-mini (Abouelenin et al., 2025), while keeping the
training data and optimization protocol unchanged. As shown in Table[6| OmniCT with Phi-4-mini
achieves performance that is highly comparable to, and on several benchmarks slightly better than,
the Qwen2.5-3B variant across both slice-driven (SLAKE, VQA-RAD, OmniMedVQA, RadFig-
VQA) and volume-driven (M3D, CT-RATE, 3D-RAD, MedEval-CT-Bench) benchmarks. This con-
sistency indicates that the observed gains mainly stem from the proposed unified framework itself
rather than from any base model-specific preference or bias induced by the models used in the data
construction pipeline.

G MECHANISM OF MEDEVAL-CT-FACTORY

The logical structure of MedEval-CT-Factory is illustrated in Figure [§] This section explains its
design motivations and module responsibilities from a framework-level perspective.

Unified Processing of Heterogeneous Formats. MedEval-CT-Factory begins at the input level,
where commonly used medical imaging formats are standardized. Medical data often come in di-
verse forms such as DICOM, NIfTI, NRRD, 3D arrays, RGB slices, and slice sequences, which dif-
fer significantly in metadata organization, spatial resolution, and storage layouts. The Factory maps
these heterogeneous inputs into a unified representation through designated loading rules, enabling
subsequent modules to perform slice-volume unified processing without relying on format-specific
operations.

Lightweight but Unified Feature Construction. Building on the standardized inputs, the Fac-
tory provides a lightweight yet flexible feature construction layer. Instead of enforcing any model-
specific preprocessing pipeline, it offers general-purpose mechanisms such as frame sampling, slice
aggregation, 2D-3D projection, and resampling, allowing various LVLMs to interface with the eval-
uation workflow in a consistent manner.

Multi-dimensional Evaluation Protocols. At the output level, MedEval-CT-Factory integrates
multiple evaluation strategies to accommodate the diversity of outputs produced by medical LVLMs.
Rather than imposing a rigid scoring pipeline, it provides a composable and extensible evaluation
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You are a medical multimodal quality control assistant. Given a medical
image and its corresponding text input, determine whether this image—text
pair is a valid CT dataset. Evaluate the following aspects:

1. Modality Check:

o Confirm whether the image is a CT scan (computed tomography).
Exclude non-CT images such as X-ray, MRI, ultrasound, or
natural photographs.

2. Image Quality Assessment:

o Detect any noise, motion artifacts, distortions, color
shifts/pseudo-coloring, or incomplete slices that degrade
diagnostic quality.

o Verify that grayscale intensity resembles standard CT features
(close to Hounsfield Unit range, without unnatural colors or
abnormal contrast).

3. Text—Image Consistency:

o Check whether the text matches the image (e.g., it should
mention CT or be relevant to CT content).

o Flag cases where the text is unrelated, mismatched, or
inaccurate.

4. Overall Usability:

o Mark as Valid only if the image is a CT scan, the quality is
acceptable, and the text is relevant to the image.

o Otherwise, mark as Invalid and briefly explain the reason (e.g.,
wrong modality, low quality, text—image mismatch).

Output format:

« Validity: Valid / Invalid
- Reason: short explanation

Identify the primary organ or anatomical region mentioned in the question, and
map it to one of the categories:

1. lungs
2 heart

3. liver

4.spleen

5. kidneys

6. pancreas

7.stomach

8. bowel (small_bowel, duodenum, colon)
9. head (brain, skull)

10. gallbladder

1. adrenal_gland

12. esophagus

13. trachea

14. thyroid_gland

15. urinary_bladder

16. prostate

17. vessels

18. muscles

19. spine

20. ribs_sternum

21. upper_extremities
22. lower_extremities
23. others (not included above, or unclear)
Rules:

- If multiple organs are mentioned, choose the most relevant/primary organ.

- If the question only refers to modality or general region (not a specific
organ) — choose 23. others.

« If the question is vague or unclear — choose 23. others.

Output format:

lorgan_class: [1-23]

Task Mapper

medical logic while increasing clinical through

Inputs:

« original_question: the original question
« original_answer: the correct answer
Steps:

1. Interpret Context

2. Rewrite Question
o Convert into a concise, clear four—option multiple-choice question.
3. Generate Distractors
o Provide three distractors that are:
= Relevant: connected to the medical context but incorrect.

4. Output Format
Return in JSON:

<Rewritten question>",

,
"correct_answer": "<Correct option, equivalent to original_answer>"

Rules

« Exactly one correct answer, three distractors.
« Correct answer must match original_answer.
» Randomize correct answer position.

- Distractors may use similar organs, diseases, or imaging findings to increase difficulty.

You are a Medical Data Integrity Verifier. The samples you receive have already
passed an initial filtering step (Corpus Selector) and are considered possible CT
image—text pairs. Your role is to conduct a stricter integrity audit, ensuring the
data is sufficiently reliable and standardized for training high—-quality medical
multimodal models.

Evaluate each sample from the following perspectives:

1. Data Completeness:

o Verify that the image is presented as a coherent slice or volume, with
no missing parts or corrupted frames.

o Check that the text description is semantically complete, not
truncated, garbled, or nonsensical.

2. Data Consistency:

o Ensure the image and text remain consistent in details (e.g.,
anatomical focus, scan type, common CT terminology).

o Flag subtle mismatches (e.g., text mentions contrast agent but the
image does not show contrast features).

3. Format and Standardization:

o Confirm that the image adheres to basic medical imaging conventions
(grayscale representation, consistent orientation, no artificial
coloring).

o Ensure the text is clear, medically relevant, and not casual or
irrelevant.

4. Potential Flaws and Risks:

o Identify latent issues such as mild artifacts, unusual labeling, or
vague descriptions.

o Judge whether these flaws undermine the usability of the sample.

5. Final Judgment:

o Mark as High-Quality / Complete & Valid only if no serious flaws are
detected.

o Otherwise, mark as Risky / Low—Quality and briefly explain the issue.

Output format:

« Integrity Check: Complete & Valid / Risky
* Reason: short explanation

Classify the question into one of the following clinical task categories:
A. General Organ Understanding

- Basic tasks: modality identification (CT/MRI/Ultrasound), body
region classification, organ count.
B. Abnormality Detection

- Entry-level tasks: presence of abnormality, lesion, tumor, mass,
abnormal density.
C. Medical Image Analysis

- Intermediate tasks: measuring tumor size, segmentation of
organ/lesion, nodule detection, structural assessment.
D. Clinical Reasoning

« Advanced tasks: diagnostic reasoning, malignancy judgment,
staging (e.g., TNM), clinical interpretation from imaging.
Rules:

« If the question is about basic attributes = A
- If about presence/absence of abnormality/lesion/tumor — B
- If about quantitative analysis, segmentation, or structural features
-C
- If about diagnosis, reasoning, or staging — D
Output format:
task_class: [A-D]

. 3
Task Mapper

[You are a medical data engineer tasked with rewriting medical Q&A problems into standardized four-option multiple-choice questions. Your goal is to preserve the
i distractors.

o Ensure the rewritten question is medically accurate and consistent with the original.

= Plausible: challenging enough to mislead weaker models, yet identifiable as wrong with proper reasoning.
= Professional: use accurate medical terminology, avoid trivial errors.

"A. <Option A>", "B. <Option B>", "C. <Option C>", "D. <Option D>"

Semantic Refiner

Figure 5: Prompt template of data orchestration engine for generating MedEval-CT.
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space: (i) statistical metrics (BLEU, ROUGE, METEOR) for measuring surface-level textual align-
ment; (ii) semantic metrics (BERTScore, embedding similarity) for assessing semantic correspon-
dence; and (iii) LLM-based evaluation for simulating clinical reasoning, offering more qualitative
judgments aligned with medical scenarios. Users may flexibly select appropriate evaluation layers
according to task requirements without being restricted to a single metric.

Overall, the Factory provides a structured, extensible, and model-agnostic framework for conducting
consistent and reproducible CT LVLM evaluation. Although not all modules are used in every
experiment, its modular design offers room for future extensions.

H SUPPLEMENTARY EXPERIMENTS.

H.1 MEDEVAL-CT-BENCH

Across both MedEval-CT-Bench-2D (Table([8) and MedEval-CT-Bench-3D (Table[9), OmniCT con-
sistently achieves the highest overall performance, with averages of 79.80 and 77.63, respectively,
surpassing strong baselines such as GPT-5-mini, Lingshu, CT-CHAT, and M3D-LaMed. It demon-
strates robust gains across diverse organs (e.g., liver, kidneys, heart, spine) and task levels (GIR,
MALI, AIl, CRD), excelling particularly in advanced interpretation and reasoning. These results
highlight the effectiveness of our unified slice—volume paradigm in delivering stable, cross-task
generalization and comprehensive CT understanding.

H.2 SUPPLEMENTARY ABLATION.

(i) Analysis of Cross-Modal Generalization. To understand the source of OmniCT’s cross-modal
generalization, we analyze the roles of (i) the unified single-tower semantic space and (ii) the MoE
Hybrid Projection (MHP). The single-tower backbone embeds 2D slices and 3D volumes into a
shared semantic neighborhood, preventing the semantic drift commonly observed in dual-encoder
designs. MHP further learns a modality-adaptive mapping from visual tokens to the LLM space, al-
lowing the projection behavior learned from 2D slices to transfer effectively to 3D representations,
and vice versa. To disentangle the contributions of the two components, we compared a dual-tower
without MHP configuration against the single-tower with MHP under the same training setup, and
observed a substantial degradation in cross-modal generalization. The results are reported in Ta-
ble [[0] Therefore, these two components form a coherent mechanism that supports cross-modal
transfer: unified semantics provide a common representational anchor, and MHP supplies the flexi-
bility needed to align slice- and volume-based tokens under a unified LVLM interface.

(ii) t-SNE Visualization of MoE Hybird Projection. To further examine whether the two experts
in the MoE hybrid projection (MHP) module learn distinguishable token transformations, we project
their output embeddings into a 2D space using t-SNE. As shown in Fig.[f] the features routed to the
2D expert and the 3D expert form two clearly separated clusters. This separation emerges without
any explicit supervision enforcing modality-specific behavior; instead, it arises from the structural
differences in the inputs (e.g., voxelized tokens with VSC/TPE for 3D vs. planar tokens for 2D)
and their decoupled optimization paths before entering the shared semantic space. The visualization
supports that the two experts encode modality-dependent transformations, serving the intended role
of normalizing heterogeneous inputs before alignment with the LLM.

(iii) Analysis of Organ-level Semantic Enhancement. The OSE module leverages organ segmen-
tation as a structural regional prior rather than a supervision target. The segmentation masks indicate
organ regions with high semantic load for typical CT-based reasoning, from which OSE aggregates
a compact set of discriminative tokens, while all global tokens are preserved in the feature stream. In
this way, OSE explicitly strengthens organ-level semantics without sacrificing global context. Since
the module relies on organ-level structural consistency instead of pixel-level boundary fitting, the
high stability of TotalSegmentor in thoracoabdominal CT (average Dice 94.3% (Wasserthal et al.,
2023)) is well suited for providing such regional cues. To evaluate the effectiveness of OSE and to
rule out potential bias introduced by the segmentation model, we designed three alternative strate-
gies: (i) removing ROI regions, (ii) random ROI pooling, and (iii) directly concatenating native ROI
tokens. As shown in Table[TI] removing ROISs yields the expected performance drop; random pool-
ing brings limited gains mainly due to weak alignment effects arising from repeated visual tokens;
and direct concatenation of native ROI tokens produces variable-length sequences that prevent stable
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Figure 6: t-SNE plot showing distinct clusters of 2D and 3D expert features after MoE hybrid
projection.

semantic compression and offer no performance benefit. In contrast, OSE’s fixed-dimensional adap-
tive aggregation preserves global information coverage while emphasizing diagnostically critical
regions, making it better suited to the structured requirements of medical image analysis.

(iv) Ablation of Adaptive Feature Aggregation. We further examined the impact of different
2D/3D aggregation token settings (map, m3p) on model performance (Table . The results show
that moderate aggregation (e.g., mop = 81,,m3p = 90) consistently improves both 2D and 3D
performance compared to the baseline without OSE. As the aggregation context continues to grow,
the gains diminish and eventually decline, likely due to excessive semantic overlap with global
features that disperses the model’s effective visual attention. Overall, these observations indicate
that an appropriately sized set of aggregated tokens can effectively enhance organ-level semantics,
increase the information density of visual tokens, and maintain a favorable balance between accuracy
and computational cost.

(v) Robustness of MedEval-CT-Bench to Answer Leakage To reduce the risk that models exploit
language artifacts instead of visual evidence, MedEval-CT-Bench’s multiple-choice questions are
constructed with a clinical-granularity refiner that rewrites prompts using synonymous expressions,
refines clinical wording, and injects stronger distractor options. This preserves the underlying diag-
nostic intent while weakening template-like phrasing, simple co-occurrence patterns, and answer-
position biases. We further conduct two stress tests on MedEval-CT-Bench: (i) an image—question
mismatch setting, where questions are randomly paired with incorrect CT scans/volumes, and (ii)
a noise substitution setting, where images are replaced by noise. As shown in Table both 2D
(6-way choice, random ~16.7%) and 3D (4-way choice, random ~25%) accuracies drop sharply
toward near-random levels under mismatch/noise, while remaining high with normal inputs.

(iv) Unified Representation Gains. To further examine the feasibility and utility of using a 2D
encoder as the semantic backbone for incorporating 3D spatial cues, we conduct a balanced sub-
sampling study across slice-driven and volume-driven data. Specifically, we perform controlled ab-
lations using 25%, 50%, and 100% of the available samples for each modality (results in Table .
Across all settings, joint training consistently yields measurable performance gains. These results
indicate that, under the current scale of available pretraining resources, 2D encoders exhibit more
mature semantic generalization and thus serve as a reliable representational anchor for constructing
3D inputs. With structured spatial injection, the unified representation acquires effective volumetric
awareness, enabling synergistic improvements across both slice- and volume-level tasks.

H.3 CASE STUDY

In Figure [/} the Ground Truth highlights portal hypertension, cirrhotic changes, intrahepatic bile
duct cystic dilatations with the central dot sign, and additional renal and gallstones. M3D-LaMed-
7B, while mentioning hepatic and portal abnormalities, overemphasizes tumor invasion with in-
correct findings, and GPT-5 completely deviates with irrelevant head CT descriptions. In con-
trast, OmniCT accurately captures the key clinical features—portal hypertension, splenomegaly,
mild ascites, cirrhosis, Caroli disease signs, and urinary/gallstones—closely matching the Ground
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Please caption this
scan with findings.

Evidence of portal hypertension: splenomegaly as
well as coronary and para-esophageal collaterals. The|
liver volume redistribution and subtle liver surface
irregularity are in favor of cirrhotic changes. Multiple
focal cystic dilations of intrahepatic bile ducts are

visible, more prominent in the right liver lobe, some of
them show the central dot sign in favor of Caroli
disease. Several small renal stones and a calcified
gallstone are other findings.

Evidence of portal hypertension is present, including
splenomegaly and mild ascites. The liver shows
cirrhotic changes with surface irregularity and volume
redistribution. Multiple intrahepatic bile duct cystic
dilations are noted, more pronounced in the right lobe,
some demonstrating the central dot sign consistent
with Caroli disease. Additional findings include a
calcified gallstone and several small renal stones.

A8 J

M3D-LaMed-7B

Large heterogeneous arterial enhancing masslinithe left ]
hepaticllobe with portal venous phase washout. The mass

is diffusely infiltrating the liver and there is evidence of

..Background features of cirrhosis and portal
hypertension, including ascites, porto-systemic varices,
and
- likely reflects an element of chronic
thrombus/occlusion in addition to the more recent tumor

\\ in vein. /

GPT-5

NonZcontrastiaxialliead!CT: The cerebral hemispheres
are symmetric with preserved gray—white matter
differentiation and normal sulcation. The ventricles and
basal cisterns are normal in size and configuration, and
there is no midline shift. No acute intracranial
hemorrhage, mass effect, extra-axial fluid collection, or
territorial infarct is identified. The calvarium is intact
without fracture. The visualized orbits appear symmetric,
and the paranasal sinuses and mastoid air cells are clear.

Overall appearance is

Figure 7: A case study comparing CT findings generated by different medical LVLMs with the

clinical ground truth.

Truth with clinically coherent language, demonstrating its superior spatial-semantic consistency in

chest—abdominal CT interpretation.
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Model MedEval-CT-Factory Bench
Efficiency
Statistical Metrics Semantic Metrics
AR = 204 BERTSCOre/ ‘G5 Decision-
IJDIJD BLEU ROUGE @ METEOR EE Embedding Model % Making

Fairness

LLM-as-Judge

nu Comparing/
=) Verification

Figure 8: MedEval-CT-Factory offers a unified pipeline for standardized medical imaging prepro-

cessing and fair, consistent evaluation of medical LVLMs across multiple benchmarks.
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Table 4: Notations.

Notation Description
Y € RPXHXW 3D CT volume with depth D, height H, and width W
D, HW Volume dimensions along z-, y-, and x-axis, respectively

V. € R]XHXW

J

s: € RIXHXW
%

S ={s1,...,sn}

S8 = COHC&t(Vsi_2, Vsi—1, Vsi)

éi ERSXHXW
S={3|ie1,n]}
N;

Gu(- | 6v)
]:'GRNSXH/XW/qu,
H =2 w =%

K
dy
P ={pPN: P PV}

Y(- | Op)

9;7 = {WS7 Wv, Wshare}
W37 W’U7 Wihare
1slice7 1volume

o)
F € REXds
L=N LW
dy
Mo c RDXHXW
M,
F, € REoxdn
L,
Agg(:)
fo c RLexdn
L.
FosEe
&
Q={q,.-..qm}
b1 (16:)
E e R™*n
T = [Fosg; €]
Y= (yl,---,ym)
Pyt | y<+;T50)
D
ep = {W57 an Wsharc}
O1im

j-th 2D slice extracted from the 3D volume
Independent 2D slice input

Collection of independent 2D slice inputs
Reassembled volumetric unit

Reassembled unit with 3-channel slice composition
Set of all reassembled slice units

Number of reassembled units (new depth dimension)
Vision encoder with parameters 6,

Patch-level visual tokens extracted from S

Spatial resolution of patch features after tokenization
Patch size (stride along spatial dimensions)
Dimension of visual tokens

Sinusoidal positional encodings along depth, height, width
Tokens enriched with tri-axial positional priors
Feature dimensions of depth/height/width positional encodings
Token-level unshuffle operation

Window size for unshuffle (m=1 for slice input)
Token representations after unshuffle

Slice—volume hybrid MoE projection function
Parameters of MoE projector

Slice-specific, volume-specific, and shared projection matrices
Binary indicator functions for slice/volume routing
GELU activation function

Projected tokens aligned with LLM space

Total number of projected tokens

Output feature dimension of MoE projector

Organ mask for organ o (from TotalSegmentor, 117 structures)
Organ mask mapped to token resolution

Subset of tokens selected by M,

Number of tokens belonging to organ o

Organ-level feature aggregation function

Aggregated tokens for organ o

Fixed number of aggregated tokens after compression
Global-local vision tokens after OSE fusion

Text tokens

Input text query sequence

Text embedding function with parameters 6,

Text token embeddings

Unified multimodal input sequence

Target output sequence

Conditional probability distribution from LLM
Training data distribution

Parameters of the slice—volume hybrid MoE projector
Parameters of the LLM backbone
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Table 5: Overview of Hyperparameter Configurations.

Hyperparameter OmniCT-3B OmniCT-7B

Stage-1 Stage-2 Stage-1 Stage-2
Optimizer AdamW AdamW AdamW AdamW
Learning Rate of Adapter 2e-4 Se-5 2e-4 Se-5
Learning Rate 2e-4 Se-5 2e-4 Se-5
Global Batch Size 256 256 256 256
Weight Decay 0 0 0 0
LR Scheduler warm up-cosine warm up-cosine warm up-cosine warm up-cosine
Warmup Ratio 0.03 0.03 0.03 0.03
Epoch 1 1 1 1
Max Sequence Length 2048 2048 2048 2048

Table 6: Performance of OmniCT with different LLM backbones on 2D and 3D CT benchmarks.

Base Model #Params ‘ SLAKE VQA-RAD OmniMedVQA RadFig-VQA M3D CT-RATE 3D-RAD MedEval-CT-Bench
Qwen2.5-3B 3B 81.6 50.4 97.4 80.2 57.1 67.5 64.9 75.9
Phi-4-mini 3.8B 81.1 55.3 96.9 84.4 56.4 674 66.9 76.2
Table 7: Overview of datasets incorporated in MedEval-CT.
Dataset ‘ Task Type Training Size  Test Size Source License
M3D-Cap ‘ Report Generation 116065 100 Radiopaedia Apache-2.0
M3D-vqa Multi-Choice Question 240929 5000 Radiopacdia Apache-2.0
Short VQA 240929 5000
s Report Generation 93822 6076 Istanbul Medipol University RYV.NC_QA_
CT-RATEV2 ‘ Free-form QA 693760 24149 Mega Hospital CC-BY-NCSA40
Short VQA 9709 4692 Istanbul Medinol Universi
3D-RAD Judgment 100170 23472 B A CC-BY-NC-SA-4.0
. X . ega Hospital
Multi-Choice Question 26316 5746
ROCOV2 ‘ Image Captioning 18663 - PMC-OA Apache-2.0
- Image Captioning 113142 -
PubMedVis PMC-OA Apache-2.
ubMedVision ‘ Dialogue 112649 . C-O. pache-2.0
RadFig-VQA ‘ Multi-Choice Question 46696 2084 PMC-OA CC-BY-NC-SA-4.0
OmniMedVQA ‘ Multi-Choice Question 14230 1579 part of 73 datasets CCBY & Apache-2.0
LLaVA-Med ‘ Dialogue 10622 - PMC-15M Apache-2.0
MEDPIX-ClinQa |~ [™Age Captioning 3895 ) MEDPIX 2.0 Apache-2.0
Dialogue 3895 -
Short VQA 1040 61
VQA-
QA-RAD ‘ Judgment 1248 96 MEDPIX cco
Short VQA 2598 234 Medical Segmentation Decathlon
SLAKE ‘ Judgment 2280 194 ChestXray-NTHCCCHAOS CC-BY-4.0
Table 8: MedEval-CT-Bench-2D
Model || Qwen2.5-VL InternVL3-8B RadFM Lingshu HealthGPT MedVLM-R1 MedGemma-4B  gpt-5-mini | Ours
lungs 72.50 66.25 18.99 70.00 63.75 70.00 66.25 71.25 74.68
heart 69.76 65.85 5.39 77.07 68.29 61.95 66.83 76.47 80.39
liver 76.95 70.17 10.20 86.44 75.25 62.71 68.47 75.59 82.31
spleen 57.38 54.10 10.00 68.85 59.02 47.54 60.66 67.21 68.33
kidneys 72.48 75.19 9.34 80.62 65.12 59.30 60.47 78.29 82.10
pancreas 72.00 66.00 8.08 84.00 71.00 62.00 66.00 75.00 78.79
stomach 64.91 68.42 7.14 71.93 73.68 56.14 64.91 78.95 75.00
bowel 67.84 70.27 9.76 69.46 72.16 63.51 62.43 71.08 83.47
esophagus 58.33 58.33 8.57 58.33 69.44 50.00 52.78 63.89 80.00
trachea 59.26 51.85 7.69 59.26 66.67 51.85 59.26 62.96 73.08
vessels 65.88 70.98 7.87 76.47 69.80 54.51 65.10 75.20 80.71
spine 73.33 81.67 6.78 81.67 76.67 66.67 66.67 70.00 83.05
others 72.25 78.75 9.27 85.25 76.00 78.00 76.50 72.25 86.47
GIR 67.75 72.16 13.95 75.41 66.36 64.97 67.75 72.56 70.70
MAI 67.03 72.53 8.29 87.91 76.92 84.07 77.47 56.04 88.95
AIL 75.62 69.71 9.73 76.76 65.90 62.29 59.05 69.90 86.83
CRD 69.14 71.11 6.95 78.33 74.67 60.23 67.82 79.15 81.78
Average 68.38 68.43 9.29 75.75 70.04 62.10 65.20 71.52 79.80

24



Under review as a conference paper at ICLR 2026

Table 9: MedEval-CT-Bench-3D

Model || Qwen2.5-VL  MiniCPM-V-4.5 CT-Chat M3D-LaMed-Phi-3-4B  M3D-LaMed-Llama-2-7B  gpt-5-mini | Ours
lungs 52.07 47.66 52.07 54.27 62.26 53.72 67.22
heart 54.45 59.16 51.83 58.64 63.87 54.45 86.91
liver 55.14 55.39 60.40 75.94 67.42 62.91 80.20
spleen 51.88 45.94 64.38 76.88 74.06 48.44 71.25
kidneys 47.87 41.60 55.89 71.68 80.20 44.11 78.20
pancreas 41.38 40.52 56.47 76.72 70.69 43.53 75.00
stomach 36.92 40.65 62.62 68.22 71.50 52.80 64.02
bowel 47.32 40.28 60.56 74.93 71.75 47.61 80.00
esophagus 44.68 46.81 48.94 40.43 76.60 29.79 63.83
trachea 61.41 65.27 84.57 68.81 82.96 64.31 89.39
vessels 50.88 51.63 54.14 64.16 71.68 52.13 84.46
spine 45.98 52.87 77.01 67.82 72.41 55.17 83.91
others 51.63 48.12 61.15 64.91 68.42 52.63 81.45
GIR 45.83 39.34 46.45 75.98 80.88 47.92 77.82
MAI 61.89 64.32 76.34 66.75 70.08 51.15 86.06
AIL 46.40 45.29 63.10 67.26 73.28 51.06 77.18
CRD 49.47 48.00 56.01 63.92 64.45 58.12 72.78
Average 49.72 48.99 60.70 66.90 72.27 51.17 77.63

Table 10: Ablation of MoE Hybird Projection.

Training Strategy | Perf. 2D  Perf. 3D | Avg.
SigLip + M3D-CLIP (w/o MHP) 34.57 30.58 32.58
SigLip + Siglip (w/ MHP) 5530 4861 | 51.96

Table 11: Ablation analysis of adaptive organ-level feature aggregation.

ROI Strategy | Perf. 2D Perf. 3D | Avg.
No OSE 78.68 62.17 70.43
OSE w/ native ROI 78.37 62.24 70.31

OSE w/ random ROI 80.13 64.22 72.18
OSE w/ adaptive ROI 81.45 66.15 73.80

Table 12: Ablation of the OSE aggregation ratios for 2D and 3D tokens. msp and mgp denote the
numbers of aggregated organ-level tokens for 2D slices and 3D volumes, respectively.

myp mgp | Perf.2D  Perf. 3D | Avg.

0 0 78.68 62.17 70.43
36 40 80.66 63.81 72.24
81 90 81.45 66.15 73.80
144 160 81.23 66.04 73.64
225 250 80.64 65.48 73.06

Table 13: 2D vs. 3D Encoder Comparison.

Encoder | Token Budget Ratio | Plane Phase Organ Abnormality Location | Avg.
SigLip 1.00x 99.5 90.2 78.4 79.2 67.4 82.9
M3D-CLIP 1.26 x 99.0 84.8 77.1 78.2 63.1 80.4
DINOv3 0.61x 99.5 88.0 77.8 78.9 65.3 81.9
VideoMAEv2 0.97x 91.3 74.7 76.9 753 62.8 76.2
Wan2.1-VAE 1.42% 97.9 76.4 77.1 74.7 63.9 78.0
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Table 14: Organ-level accuracy on MedEval-CT-Bench under normal, image—question mismatch,
and noise settings
Organ \ 2D Normal 2D Mismatch 2D Noise \ 3D Normal 3D Mismatch 3D Noise

lungs 74.7 23.1 19.5 67.2 29.4 27.3
heart 80.4 24.0 14.9 86.9 31.8 20.1
liver 82.3 19.9 20.9 80.2 30.5 25.8
spleen 68.3 13.7 17.4 71.3 28.4 29.0
kidneys 82.1 25.1 21.1 78.2 22.3 22.6
pancreas 78.8 24.9 15.2 75.0 30.2 23.4
stomach 75.0 21.7 14.4 64.0 19.0 22.7
bowel 83.5 22.2 19.4 80.0 30.1 27.9
esophagus 80.0 20.3 18.0 63.8 28.6 29.2
trachea 73.1 18.0 20.6 89.4 21.8 24.1
vessels 80.7 239 19.8 84.5 30.1 28.6
spine 83.1 17.2 17.8 83.9 28.9 17.1
others 86.5 229 14.6 81.5 29.7 27.0

Table 15: Ablation study of unified representation gains.
Training Strategy Ratio | SLAKE VQA-RAD RadFig-VQA | M3D-VQA CT-RATE 3D-RAD

2D-Only 25% 70.6 62.5 717.2 - - -
3D-Only 25% - - - 65.8 84.5 65.4
Mixed 25% 722 62.5 78.2 69.9 84.9 66.9
2D-Only 50% 75.8 66.7 79.4 - - -
3D-Only 50% - - - 72.7 86.2 67.2
Mixed 50% 71.3 70.8 79.8 73.6 87.1 68.1
2D-Only 100% 81.0 72.3 78.2 - - -
3D-Only 100% - - - 74.4 86.6 68.6
Mixed 100% 81.2 71.8 81.9 74.7 86.6 69.3

Table 16: Performance of 18 types of anomaly label prediction.

Model | Precision Recall F1
RadFM 13.1 6.4 7.2
M3D-LaMed-7B 8.1 2.5 3.5
M3D-LaMed-4B 16.5 8.4 9.6
CT-CHAT 24.3 38.8 27.2
CT2Rep 41.6 38.1 36.7
CT-AGRG 37.8 55.4 42.1
OmniCT 41.7 36.5 36.3
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