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ABSTRACT

Text-to-Image (T2I) generation has long been an open problem, with compositional
synthesis remaining particularly challenging. This task requires accurate rendering
of complex scenes containing multiple objects that exhibit diverse attributes as
well as intricate spatial and semantic relationships, demanding both precise object
placement and coherent inter-object interactions. In this paper, we propose a novel
compositional curriculum reinforcement learning framework for T2I generation,
named CompGen, to address compositional weaknesses in T2I models. Specifi-
cally, we leverage scene graphs and introduce a novel difficulty criterion along with
a corresponding adaptive Markov Chain Monte Carlo graph sampling algorithm.
Using this difficulty-aware approach, we generate training datasets for Group Rela-
tive Policy Optimization (GRPO) comprising prompts and question-answer pairs
with varying complexity levels. We demonstrate that different training schedulers
yield distinct scaling curves for GRPO, with data distributions following easy-
to-hard progression or Gaussian sampling strategies producing superior scaling
performance than random. Our extensive experiments demonstrate that CompGen
significantly strengthens compositional generation capabilities for both diffusion
and auto-regressive T2I models, which highlights its effectiveness in enhancing the
compositional understanding of T2I generation systems.

1 INTRODUCTION

Text-to-Image (T2I) generation has achieved remarkable progress in synthesizing visually compelling
content from textual descriptions (Ramesh et al., 2022; Saharia et al., 2022; Podell et al., 2023;
Balaji et al., 2022). Despite these advances, current T2I models face significant limitations in
compositional synthesis, particularly in accurately rendering complex scenes containing multiple
objects with diverse attributes and intricate spatial relationships (Liu et al., 2022; Nie et al., 2024).
Thus, compositional T2I generation with complex numerical instructions (Huang et al., 2025; Hu
et al., 2024) is still an open problem. To cope with this challenge, plenty of literature focuses on
developing new network architectures such as attention models (Chefer et al., 2023; Rassin et al.,
2023; Meral et al., 2024; Kim et al., 2023), or introducing intermediate structures like object layout
(Chen et al., 2024; Dahary et al., 2024; Wang et al., 2024c). Unlike recent methods that require
synthesized ground-truth images (Gao et al., 2024; Sun et al., 2023a) or intermediate skeletons (Nie
et al., 2024) for supervised fine-tuning, our approach takes a data-centric perspective and enhances
compositional generalization solely through textual prompts, applying reinforcement learning (RL)
without requiring ground-truth image outputs. However, large-scale compositional RL training can
be highly unstable due to the heterogeneous capability requirements of compositional T2I generation
tasks, which encompass object existence, attribute existence, relational understanding, and numerical
counting.

To address this challenge, we propose CompGen, a novel compositional curriculum reinforcement
learning framework for text-to-image (T2I) generation. CompGen draws inspiration from human
cognitive development, which follows a curriculum learning progression: first mastering the recogni-
tion and generation of individual objects and their attributes within simple relational contexts, then
gradually learning to understand and create complex multi-object compositions involving multiple
relations. Specifically, our approach leverages scene graphs (Krishna et al., 2017) as a compositional
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Figure 1: Overview of our CompGen framework, which is incentivized to construct a curriculum
through end-to-end reinforcement learning without requiring ground-truth images.

representation of visual scenes to systematically generate training data with controllable complexity.
First, we employ LLMs to generate diverse scene graph assets, where each scene graph encodes
a structured representation of objects, their attributes, and relational dependencies. Second, we
introduce a novel difficulty criterion that quantifies compositional complexity based on scene graph
structural properties, including entity count, attribute diversity, and relational interconnectedness.
Third, leveraging this difficulty metric, we develop an adaptive Markov Chain Monte Carlo (MCMC)
sampling algorithm (Geyer, 1992) to systematically generate scene graphs at targeted complexity
levels, thereby enabling precise curriculum control throughout the training process. Finally, for
each sampled scene graph, we synthesize corresponding text prompts for image generation and
construct comprehensive visual question-answer pairs for assessments, namely object existence,
object counting, attribute recognition, and relational understanding. These question-answer pairs
subsequently serve as reward metrics within our RL framework, guiding the model toward improved
compositional reasoning performance.

Our extensive experiments demonstrate that CompGen significantly strengthens compositional gen-
eration capabilities across both diffusion and autoregressive T2I architectures. On five established
compositional generation benchmarks — GenEval (Ghosh et al., 2023), DPG (Hu et al., 2024),
TIFA (Hu et al., 2023), T2I-Bench (Huang et al., 2025), and DSG (Cho et al., 2023) — our approach
consistently outperforms baseline models, achieving an average improvement of 12.52% when ap-
plied to Stable-Diffusion-1.5 and 3.44% when applied to LlamaGen. Furthermore, our analysis
reveals that different training schedulers produce distinct scaling behaviors in GRPO training, with
easy-to-hard progression and Gaussian sampling strategies demonstrating superior compositional
performance and extending the scaling boundaries compared to random sampling approaches.

2 RELATED WORK

Large text-to-image (T2I) generative models have attracted considerable attention in recent years and
can be broadly categorized into two main families: diffusion-based models (Ramesh et al., 2022;
Rombach et al., 2022; Podell et al., 2023; Balaji et al., 2022) and auto-regressive models (Ramesh
et al., 2021; Yu et al., 2022; Chang et al., 2023). Beyond purely improving visual quality, recent
investigations (Wang et al., 2024a;b) have focused on enhancing prompt-following capabilities, par-
ticularly for compositional prompts. However, existing T2I models often struggle with compositional
understanding, leading to issues such as object omission and incorrect attribute binding (Okawa et al.,
2023; Huang et al., 2025). To address these limitations, recent efforts to improve compositional
alignment can be grouped into three main categories. Attention-based methods modify attention
maps within the UNet architecture to enforce object presence and spatial separation (Chefer et al.,
2023; Rassin et al., 2023; Feng et al., 2022; Meral et al., 2024; Kim et al., 2023). For instance,
DenseDiffusion (Kim et al., 2023) adjusts attention scores in both cross-attention and self-attention
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layers to ensure object features align with specified image regions, while CONFORM (Meral et al.,
2024) strengthens associations between relevant objects and attributes through contrastive objectives.
However, these approaches face scalability and computational efficiency limitations as they operate
only during inference. Planning-based methods utilize intermediate structures such as object layouts
— either manually defined (Chen et al., 2024; Dahary et al., 2024; Wang et al., 2024c) or generated
by large language models (Gani et al., 2023; Lian et al., 2023) — to guide image synthesis. Some
approaches incorporate additional modules like visual question-answering models or captioning
models for refinement (Yang et al., 2024; Wu et al., 2024; Wen et al., 2023); however, these additions
increase inference costs and may still suffer from incorrect attribute bindings due to inherent model
limitations. Learning-based methods focus on training-time improvements, including fine-tuning
diffusion models with vision-language supervision (Wang et al., 2024c; 2022; Fan et al., 2023) or
employing reinforcement learning techniques (Fan et al., 2023; Black et al., 2023). Caption-guided
optimization represents another promising direction in this category (Fang et al., 2023; Ma et al.,
2024). Unlike previous approaches that require additional inputs or architectural modifications,
our method adopts a data-centric strategy to enhance compositional generalization through textual
prompts and targeted training alone, without increasing inference costs or altering model architecture.

3 PRELIMINARY: SCENE-GRAPH AS A DIFFICULTY MEASURER

The core principle of CompGen is to progressively develop compositional generation capabilities
through curriculum learning, advancing from simple to complex samples. The central challenge in
this approach lies in establishing a principled framework for defining and quantifying the difficulty
of compositional samples. Following the formalized image representation framework introduced
by Krishna et al. (2017), scene graphs provide a structured approach to capturing compositional
complexity. We therefore propose to measure sample difficulty through the compositional complexity
inherent in scene graph structures. Formally, we provide the definition of difficulty based on scene
graphs as follows:
Definition 1 (Scene Graph Formulated Difficulty). Given a scene graph G = (O,A,R) where O is
the set of objects, A is the set of attributes associated with the objects, and R is the set of relations,
we measure the difficulty of G as:

Diff(G) = ∥O∥ ·max

(
1,

∥A∥
∥O∥

)
·max

(
1,

∥R∥
∥O∥

)
, (1)

where, the total number of objects is ∥O∥, the average attribute density is ∥A∥/∥O∥, and the average
relational connectivity is ∥R∥/∥O∥ per object, where relations are treated as directed edges in the
scene graph representation.

Eq. (1) demonstrates that the computational difficulty of G is determined by three key factors identified
by the total number of objects, the average attribute density and the average relational connectivity.
Consequently, the overall difficulty exhibits a positive correlation with the intrinsic complexity of the
scene graph, reflecting both its structural density and semantic richness.

4 COMPGEN: RL TRAINING WITH COMPOSITION CURRICULUM

Given the difficulty measure introduced in Definition 1, we can construct a mapping function
{G} → R+ over the space of scene graphs G. Building upon this foundation, we formualized our
problem as follows:
Definition 2 (Compositional Text-to-Image Generation with Difficulty Constraint RL). Given a
target difficulty range [Diffmin,Diffmax] where 0 < Diffmin ≤ Diffmax, our objective is to generate a
pair (T,R) consisting of: (i) An input text prompt T that describes a visual scene with compositional
complexity and (ii) A reward function R : I → R that evaluates generated images I ∈ I.

Therefore, our methodology follows a structured pipeline: we first construct a scene graph G satisfying
the difficulty constraint Diffmin ≤ Diff(G) ≤ Diffmax, then derive the corresponding input text T
from this graph. These text prompts are processed by a T2I model to generate images I , which are
subsequently evaluated by the reward function R. The resulting rewards enable optimization of the
T2I model within a RL framework, ensuring adherence to the specified difficulty constraints.

3
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Based on the problem formulation above, our CompGen framework comprises three key components:
(i) scene graph generation under difficulty constraints, (ii) input text derivation from scene graphs, and
(iii) reward function design for reinforcement learning optimization. Each component is thoroughly
examined in the following subsections.

4.1 SCENE GRAPH GENERATION VIA ADAPTIVE MARKOV CHAIN MONTE CARLO

Given the target difficulty bounds Diffmin and Diffmax, we define the constrained sampling problem
as the task of generating scene graphs G such that Diffmin ≤ Diff(G) ≤ Diffmax. This problem
presents significant computational challenges, requiring efficient exploration of the high-dimensional
graph space while simultaneously maintaining detailed balance for unbiased sampling, preserving
structural validity of scene graphs, and enabling adaptive exploration under the imposed difficulty
constraints.

To overcome these challenges, we develop a Markov Chain Monte Carlo (MCMC) sampling strategy
(Brooks, 1998) that efficiently targets specific difficulty ranges. This approach enables sampling from
a distribution concentrated on graphs with desired difficulty levels while avoiding computationally
prohibitive explicit enumeration. Our method employs a set of four reversible graph transformation
operations T = {ti}4i=1, which correspond to node addition, node removal, edge addition, and
edge removal operations. These transformations are designed to ensure both ergodicity and detailed
balance—fundamental requirements for unbiased MCMC sampling. We further define Tvalid ⊆ T
as the subset of transformations that preserve essential graph properties, including connectivity and
structural validity. The sampling procedure is directed by an energy function (i.e., Energy(G)) that
quantifies the deviation from the target difficulty range:

Energy(G) := ∆(G) = Dist(Diff(G),Diffmin,Diffmax) =


Diffmin − Diff(G), if Diff(G) < Diffmin

Diff(G)− Diffmax, if Diff(G) > Diffmax

0, otherwise,
(2)

where Dist(Diff(G), [Diffmin,Diffmax]) is the distance function that quantifies the deviation of
a scalar Diff(G) from the target interval [Diffmin,Diffmax], with the specific computation given
above. We then adopt the Metropolis-Hastings algorithm (Chib & Greenberg, 1995) with acceptance
probability defined as:

Acc(G′|G) = min

(
1,

π(G′)q(G|G′)

π(G)q(G′|G)

)
, (3)

where π(G) ∝ exp(−Energy(G)/τ) is the target distribution and q(G′|G) is the proposal distribution.
Since all our graph operations are symmetric, the proposal ratio cancels, yielding:

Acc(G′|G) = min

(
1, exp

(
∆(G)−∆(G′)

τ

))
. (4)

To balance exploration and exploitation, we employ a logarithmic cooling schedule τ = 1/ log(t+2),
which allows broad early exploration and progressively tighter focus near the target range. To
avoid stagnation in local minima, the sampler reinitializes after a fixed number of stalled iterations,
reshuffling graph structures while preserving key properties such as node counts and edge density.

4.2 REINFORCEMENT LEARNING STRATEGIES WITH COMPOSITION CURRICULUM

Having obtained a scene graph G through the constrained sampling process according to the above
subsection, we turn to the generation of input text prompts T and the design of appropriate reward
functions R.

Input Text Generation. CompGen transforms structured scene graphs into natural language prompts
while preserving their original compositional difficulty. Given a scene graph G = (O,A,R) with
associated difficulty Diff(D) ∈ [Diffmin,Diffmax], we employ constrained Large Language Model
(LLM)-based generation with strict constraints to produce descriptions that exactly match the graph’s
specifications. The generation process combines precise constraints with LLM capabilities to maintain
strict fidelity to the source graph. This is achieved through three core mechanisms: mandatory
inclusion of all objects and attributes ensures exact term matching, while structural and multi-stage

4
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content validation preserve relationships and integrity. By combining the linguistic flexibility of
LLMs with systematic safeguards such as controlled temperature scheduling and iterative validation,
the process guarantees that the generated prompt fully reflects all elements of the original graph and
preserves its difficulty. While implementing, we use Deepseek-V3 (Liu et al., 2024) as the LLM.

Reward Generation. For any text-to-image (T2I) model, generated images can be obtained from
input text prompts. We evaluate the compositional accuracy of these images through structured
question-answering pairs, which are systematically constructed from the sampled scene graphs.
Specifically, we choose a programmatic approach (Gao et al., 2024) to generate precise and compre-
hensive binary questions that fully cover the scene graphs. Questions are generated directly from
scene graphs G = (O,A,R). Since the scene graph encodes three types of information—objects,
attributes, and relations—and the number of repeated objects is also a critical factor, we design
four types of questions to cover all aspects: object verification questions (Qobj) assessing presence
of o ∈ O, count questions (Qcount) verifying the number of occurrences of repeated objects in
O, attribute validation questions (Qattr) checking a ∈ A for corresponding objects, and relation
confirmation questions (Qrel) verifying r ∈ R between object pairs.

Given the binary question-answer pairs we constructed, and inspired by VQAScore (Lin et al., 2024),
we adopt a multimodal large language model (MLLM)’s predicted probability of answering “yes”
as the initial fine-grained reward score. We take the average of the VQA scores for all questions
corresponding to each image as the reward signal for reinforcement training, enabling the T2I model
to perform policy updates. For ease of notation, we use preward(·) to denote the MLLM in use. While
practical, we apply Llava-v1.6-13B (Liu et al., 2023), and we also evaluate different MLLMs in
Section 5.3

RL Training. During training, we employ Group Relative Policy Optimization (GRPO) to optimize
T2I model’s compositional generation ability. For each text prompt T sampled from dataset D,
GRPO generates G distinct images {I(1), I(2), . . . , I(G)} using the current policy pθold . The policy is
optimized by maximizing:

JGRPO(θ) = ET∼D

[
1

G

G∑
i=1

(
min

( πθ

πθold

Ai, clip
( πθ

πθold

, 1− ϵ, 1 + ϵ
)
Ai

)
− β KL

(
pθ(·|T )

∥∥∥pref(·|T )
))]

,

(5)

where πθ = pθ(I
(i)|T ) denotes the probability of generating image I(i) given text prompt T under the

current policy, πθold = pθold(I
(i)|T ) is the probability under the old policy, ϵ and β are hyperparameters

for clipping and KL regularization respectively, and pref is the reference policy.

For each generated image I(i), we evaluate its quality using binary question-answer pairs through our
reward model as:

r
(i)
j = preward(answerj |I(i), questionj), (6)

where r
(i)
j ∈ [0, 1] represents the reward model’s confidence that image I(i) correctly answers binary

question. The overall reward for image I(i) is computed as the average score across all the sampled
questions: r(i) = 1

M

∑M
j=1 r

(i)
j , where M is the number of samples. The advantages are normalized

within each group of G images:

Ai =
r(i) − mean({r(k)}Gk=1)

std({r(k)}Gk=1)
, (7)

where mean({r(k)}Gk=1) and std({r(k)}Gk=1) denote the mean and standard deviation of rewards
within the group, ensuring zero-mean unit-variance normalization of advantages.

5
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Table 1: Comparison of different T2I models on compositional generation benchmarks. Upward
arrows indicate improvement direction; red numbers show improvement magnitude over baseline.

Model # Params GenEval DPG TIFA T2I-Bench DSG Avg.

Diffusion

Stable-Diffusion-1.4 0.9B 42.04% 61.89% 79.14% 30.80% 61.71% 55.12%

Stable-Diffusion-1.5 0.9B 42.08% 62.24% 78.67% 29.94% 61.57% 54.90%

Stable-Diffusion-2.1 0.9B 50.00% 65.47% 82.00% 32.01% 68.09% 59.51%

Playground-V2 2.6B 59.00% 74.54% 86.20% 36.13% 74.54% 66.08%

Stable-Diffusion-XL 2.6B 55.87% 74.65% 83.50% 31.30% 83.40% 65.74%

Diffusion Transformer

PixArt-α 0.6B 48.00% 71.11% 82.90% 41.17% 71.11% 62.85%

Lumina-Next 1.7B 46.00% 75.66% 79.98% 34.57% 70.61% 61.36%

AutoRegressive

Show-o 1.3B 56.00% 67.27% 86.28% 29.00% 77.00% 63.11%

LlamaGen 775M 31.28% 42.92% 75.03% 33.26% 58.30% 48.16%

Emu3 14B 54.00% 74.19% 81.86% 31.20% 70.31% 62.31%

minDALL-E 1.3B 23.00% 55.23% 79.40% 18.98% 45.63% 44.45%

Ours

Stable-Diffusion-1-5 w/ours 0.9B 53.88% (↑11.80) 78.67% (↑16.43) 85.71% (↑7.04) 37.68% (↑7.74) 77.16% (↑15.59) 66.62% (↑11.72)

LlamaGen w/ours 775M 35.71% (↑4.43) 48.67% (↑5.75) 77.92% (↑2.89) 36.14% (↑2.88) 59.57% (↑1.27) 51.60% (↑3.44)

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. To thoroughly assess the model’s compositional capability, we evaluate
it on the following five compositional benchmarks: (i) Geneval (Ghosh et al., 2023), (ii) T2I-
CompBench (Huang et al., 2025), (iii) TIFA (Hu et al., 2023), (iii) DPG-Bench (Hu et al., 2024),
(iv) DSG (Cho et al., 2023). We provide a detailed description for each dataset in Appendix A.

Baseline Models. To validate the effectiveness of our proposed method, we conduct comprehensive
comparisons against several state-of-the-art text-to-image generation models. These include diffusion
models such as Stable Diffusion 1.4/2.1 (Rombach et al., 2022), Playground v2 (Li et al.), and Stable
Diffusion XL (Podell et al., 2023); Diffusion Transformer-based models including PixArt-alpha (Chen
et al., 2023) and LUMINA-NEXT (Zhuo et al., 2024); as well as auto-regressive T2I models such as
Show-o (Xie et al., 2024), Emu3 (Sun et al., 2023b) and minDALL-E (Kim et al., 2021).

To generate high-quality training data for compositional RL, we employ the CompGen framework
to construct 10K samples evenly distributed across difficulty levels ranging from 1 to 10. Each
sample includes text prompts and corresponding question-answer pairs, with answers set to “yes” to
enable a VQA model to evaluate whether the generated images contain the described content. To
demonstrate the effectiveness and generalizability of our CompGen for enhancing compositional
generation capabilities of T2I models, we select Stable-Diffusion v1.5 (Rombach et al., 2022) and
LlamaGen (Sun et al., 2024), which cover two prominent T2I model architectures.

5.2 PERFORMANCE COMPARISONS AND ANALYSIS

CompGen significantly enhances T2I compositional generation capabilities. Our experimental
results demonstrate that CompGen consistently delivers substantial improvements across all com-
positional generation benchmarks. Specifically, when applied to Stable Diffusion 1.5, CompGen
achieves an average performance gain of 11.72%, elevating the baseline from 54.90% to 66.62%.
This enhanced performance not only surpasses the original baseline but also outperforms several
stronger contemporary models, including Stable Diffusion 2.1 (59.51%), PixArt-α (62.85%), and
even competitive autoregressive models like Emu3 (62.31%). Notably, our enhanced SD-1.5 model
with only 0.9B parameters achieves comparable or superior compositional generation performance to
much larger models such as Playground-V2 (2.6B, 66.08%), demonstrating the efficiency and effec-
tiveness of our approach in bridging the compositional generation gap without requiring substantial
architectural modifications or parameter scaling.
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Table 2: Performance changes of CompGen with various reward models.

Model Reward Model GenEval DPG TIFA T2I-Bench DSG Avg.

Diffusion

Stable-Diffusion-1.5 – 42.08% 62.24% 78.67% 29.94% 61.57% 54.10%

Stable-Diffusion-1.5 w/ VQAScore LLaVA-v1.6-13B 44.02% 73.41% 80.19% 36.36% 73.23% 61.42%

CompGen (Stable-Diffusion-1.5)

CLIP-FlanT5-XXL 45.11% 71.26% 81.42% 31.60% 73.74% 60.62%

InstructBLIP 42.04% 64.00% 76.29% 39.21% 64.58% 57.22%

LLaVA-v1.5-13B 49.23% 74.54% 84.84% 37.43% 75.97% 64.40%

LLaVA-v1.6-13B 53.88% 78.67% 85.71% 37.68% 77.16% 66.62%

AutoRegressive

LlamaGen – 31.28% 42.92% 75.03% 33.26% 58.30% 48.16%

LlamaGen w/ VQAScore LLaVA-v1.6-13B 33.15% 44.51% 75.94% 34.28% 59.46% 49.47%

CompGen (LLamaGen)

CLIP-FlanT5-XXL 32.47% 44.57% 75.98% 33.71% 58.60% 49.07%

InstructBLIP 32.03% 44.75% 75.54% 33.52% 57.98% 48.76%

LLaVA-v1.5-13B 31.09% 45.72% 75.96% 31.28% 57.54% 48.32%

LLaVA-v1.6-13B 35.71% 48.67% 77.92% 36.14% 59.57% 51.60%

Stronger base models exhibit greater improvements with CompGen. Our analysis reveals a
compelling correlation between base model capability and the magnitude of improvement achieved
through CompGen training. The more capable Stable Diffusion 1.5 baseline (54.90%) experiences a
substantial 11.72% improvement, with particularly pronounced gains in DPG (+16.43%) and DSG
(+15.59%) benchmarks that specifically evaluate complex compositional reasoning. In contrast,
the weaker LlamaGen baseline (48.16%) shows more modest improvements of 3.44% on average,
with relatively smaller gains across individual benchmarks. This pattern suggests that CompGen’s
effectiveness is amplified when applied to models with stronger foundational generation capabilities.

CompGen generalizes beyond compositionality without overfitting to training objectives. As
illustrated in Figure 3, our enhanced models maintain high-quality image generation across diverse
scenarios while significantly improving compositional accuracy. The qualitative results demonstrate
that CompGen effectively improves complex multi-object compositions, spatial relationships, and
attribute bindings while preserving overall image fidelity and avoiding the introduction of artifacts.

5.3 ABLATION STUDY

Ablation on Reward Design. We conduct an ablation study comparing our fine-grained reward
design against VQAScore (Lin et al., 2024) to validate the effectiveness of our compositional reward
formulation. While VQAScore employs a single binary question asking whether the prompt matches
the image, our approach decomposes the evaluation into multiple fine-grained aspects including
object existence, attribute presence, relational understanding, and counting accuracy. As shown in
Table 2, our CompGen framework consistently outperforms VQAScore across both diffusion and au-
toregressive models. Specifically, when applied to Stable-Diffusion-1.5 with LLaVA-v1.6-13B as the
reward model, CompGen achieves 66.62% average performance compared to 61.42% for VQAScore,
representing a substantial 5.2 percentage point improvement. The gains are particularly pronounced
on complex compositional benchmarks like GenEval (+9.86%) and DPG (+5.26%), demonstrating
that fine-grained reward signals better capture the nuanced requirements of compositional generation.
Interestingly, while autoregressive models show more modest improvements (51.60% vs 49.47% for
LlamaGen), the consistent gains across different architectures validate the generalizability of our
reward design.

Ablation on Reward Model. To investigate the impact of reward model capability on CompGen
performance, we conduct ablation experiments across four different vision-language models: LLaVA-
v1.6-13B (Liu et al., 2023), LLaVA-v1.5-13B (Liu et al., 2023), CLIP-FlanT5-XXL (Radford et al.,
2021), and InstructBLIP-FlanT5-XXL (Dai et al., 2023). All experiments utilize our compositional
fine-grained reward design with uniformly sampled 10K training data on both Stable-Diffusion-1.5
and LlamaGen base models. As shown in Table 2, the choice of reward model significantly influences

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

SD1.5 SD2.1 SDXL Lumina-Next CompGen

Two golden-brown spring rolls with a  crispy texture sit  on a woven bamboo mat. The setting sun casts a
warm, orange hue over the scene, highlighting the glistening sheen of the freshly fried appetizers. Near the
spring rolls, a small dish of dipping sauce reflects the sunset's glow, enticing one to indulge in the savory treat.

Two young girls are trekking on a dirt trail that meanders through a dense forest on a large, imposing mountain.
The trees enveloping the path are lush and varying shades of green. Each girl is holding a brightly colored
umbrella to shield themselves from the elements. The mountain's peak looms in the distance, partially obscured
by the canopy of towering trees.

A punk rock squirrel in a studded leather jacket shouting into a microphone while standing on a stump.

Figure 2: Qualitative comparison of compositional generation across CompGen and other strong T2I
models.

the effectiveness of our approach, with LLaVA-v1.6-13B consistently achieving the best performance
across all benchmarks. Specifically, LLaVA-v1.6-13B outperforms the second-best LLaVA-v1.5-13B
by 2.22% and 3.28% average improvement for diffusion and autoregressive models respectively,
highlighting the importance of advanced vision-language understanding capabilities. Notably, the
performance gap between different reward models is more pronounced in diffusion models (66.62%
vs 57.22% for best vs worst) compared to autoregressive models (51.60% vs 48.32%), suggesting that
diffusion models are more sensitive to reward signal quality. InstructBLIP shows surprisingly weaker
performance despite being instruction-tuned, potentially due to its limited compositional reasoning
capabilities.

5.4 CURRICULUM LEARNING EXTENDS PERFORMANCE SCALING BOUNDARY.

We investigate three curriculum learning strategies (Parashar et al., 2025) that control the presentation
of training samples according to their difficulty as follows. (i) The easy-to-hard sampling strategy
follows a deterministic schedule where samples are organized from easy to hard, enabling the model to
gradually acquire increasingly complex patterns. (ii) The balance sampling strategy instead performs
uniform random sampling across all difficulty levels, ensuring unbiased exposure throughout training.
(iii) The Gaussian sampling strategy models the sampling distribution with a bell-shaped curve
whose center progressively moves from easier to harder samples, with tunable parameters controlling
the spread and transition speed. Here, we investigate whether curriculum learning can effectively
extend the training boundary using Stable Diffusion 1.5 as the base model and test on the GenEval
Benchmark. We provide a detailed description in Appendix B.

Our experimental results demonstrate that curriculum learning strategies significantly enhance Comp-
Gen performance and successfully extend the scaling boundary beyond conventional training ap-
proaches. As illustrated in Figure 4, all three curriculum strategies substantially outperform the
baseline model, which maintains a static accuracy of 42% regardless of training duration. The balance
sampling strategy achieves a peak performance of 52.1% at 420 training steps, representing a 24%
relative improvement over the baseline. More remarkably, the easy-to-hard sampling strategy reaches
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 w/ VQAScore w/ CLIP-FlanT5-XXL  w/ InstructBLIP w/ LLaVA-v1.5-13B CompGen

A  kitchen featuring a large stainless steel refrigerator with a double-door design. The refrigerator stands next
to sleek, dark wooden cabinets that reach up to the ceiling. In front of the refrigerator, there is a kitchen
island with a white marble countertop, and hanging above are three modern pendant lights with a
brushed metal finish.

A kids' book cover with an illustration of white dog driving a red pickup truck.

Three-quarters front view of a red 1997 Porsche 911 coming around a curve in a mountain road and
looking over a green valley on a cloudy day.

Figure 3: Qualitative comparison of compositional generation across CompGen and ablation models.

53.8% accuracy at 580 steps, while Gaussian sampling attains the highest peak performance of 54.6%
at 500 steps — a 30% relative improvement.

20 100 180 260 340 420 500 580 660
Training Steps
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Peak: 52.1% Peak: 53.8%
Peak: 54.6%

Base
Balance Sampling
Easy to Hard Sampling
Gaussian Sampling

Figure 4: Scaling trend of CompGen with different curricu-
lum learning strategies.

Crucially, these results reveal that cur-
riculum learning not only improves ab-
solute performance but also extends the
effective training horizon: while tra-
ditional approaches plateau early, cur-
riculum strategies continue scaling per-
formance gains well beyond 500 train-
ing steps before exhibiting gradual de-
cline. The Gaussian sampling strat-
egy demonstrates the most efficient scal-
ing trajectory, achieving optimal perfor-
mance with fewer training steps, while
easy-to-hard sampling exhibits the most
extended scaling boundary, maintain-
ing competitive performance the longest
during extended training.

6 CONCLUSION

In this work, we introduced CompGen, a novel compositional curriculum reinforcement learning
framework that leverages scene graphs and incorporates a principled difficulty criterion with adaptive
MCMC sampling, our approach, free from the requirements of need of ground-truth images, sys-
tematically improves the ability of T2I models to generate complex scenes with multiple objects,
diverse attributes, and intricate spatial-semantic relationships. In the future, it would be interesting to
explore more sophisticated metrics that incorporate semantic complexity, visual realism requirements,
and cross-modal alignment challenges. Additionally, developing adaptive curriculum strategies that
dynamically adjust difficulty based on model performance might further optimize training efficiency.
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ETHICS STATEMENT

This work focuses on the study of text-to-image generation and synthesis. All datasets used in
our experiments are publicly available and commonly adopted in prior research. We followed the
respective dataset licenses and usage terms. No personally identifiable information (PII) or sensitive
private data was collected, generated, or annotated by the authors. Our study does not raise direct
ethical concerns such as misuse of personal data, harmful content generation, or bias amplification
beyond what is already inherent in the benchmark datasets. All generated images in our experiments
are for research purposes only and do not involve the creation of deceptive or malicious content.

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we provide a comprehensive description of datasets, model im-
plementations, and experimental settings in the main paper and the appendix. The benchmarks and
evaluation metrics we used are standard and publicly available. All baselines are either taken from
released model checkpoints or trained/evaluated with publicly accessible open-source implementa-
tions. To further promote reproducibility, hyperparameters, training details, and evaluation protocol
are clearly documented. We release our code at https://anonymous.4open.science/
status/T2I-Scaling-D1CC to enable the community to fully reproduce our results. We
commit to following ICLR guidelines for transparency and reproducibility in scientific reporting.
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A DATASET

To thoroughly assess the model’s compositional capability, we evaluate it on the following five
compositional benchmarks: (i) Geneval (Ghosh et al., 2023) consists of 553 highly structured
prompts spanning six key evaluation dimensions: single object, dual objects, color, count, spatial
positioning, and attribute binding. (ii) T2I-CompBench (Huang et al., 2025) comprises 6,000
compositional text prompts categorized into three main areas—attribute binding, object relationships,
and complex compositions—and further divided into six subcategories: color binding, shape binding,
texture binding, spatial relationships, non-spatial relationships, and complex compositions. (iii)
TIFA (Hu et al., 2023) evaluates generation quality through 4,000 diverse text prompts and 25,000
automatically generated questions using a VQA (Visual Question Answering) model. It spans 12
question categories, including existence verification, object count, color identification, and spatial
reasoning. (iii) DPG-Bench (Hu et al., 2024) includes 1,065 densely annotated prompts with an
average token length of 83.91. These prompts describe complex visual scenarios involving multiple
objects and modifiers. (iv) DSG (Cho et al., 2023) is an evaluation framework for text-to-image
models that generates precise, semantically grounded questions in dependency graphs. DSG ensures
reliable evaluations and is supported by the open-sourced DSG-1k benchmark, containing 1,060
diverse prompts.

B COMPOSITION CURRICULUM

• Balance Scheduling. As a straightforward method to prevent forgetting, the balance scheduling
strategy allows for sampling from all tasks with equal probability throughout the entire training
process. This can be viewed as a basic form of curriculum learning, or more generally, as the
default behavior of most policy optimization algorithms when task difficulty is not considered. For
M tasks, the sampling probability Pbalanced(i, j) for task j at any training iteration i is set to:

Pbalanced(i, j) =
1

M
This means that at each training step, all tasks have an equal chance of being selected. While
this method effectively prevents the model from forgetting previously learned tasks, it might
introduce more difficult tasks too early, leading to reward sparsity issues and potentially hindering
the curriculum learning strategy from achieving optimal results.

• Easy-to-Hard Scheduling. Timestep curriculum learning strategies adopt a phased approach,
dividing the training process into a series of incrementally difficult stages. In each training phase,
the model focuses solely on tasks of a specific difficulty level. We can define the sampling indicator
function for task j at training iteration i as Ptimestep(i, j). For a total of M tasks (j = 1, . . . ,M ),
this function takes a value of 1 if the current training iteration i falls within the predefined stage
[τj , τj+1] for task j; otherwise, it is 0. Here, τj denotes the starting training step for the j-th stage,
with τ1 = 0 and τM+1 = NT being the total number of training steps. This implies that at a given
iteration i, only tasks corresponding to the current stage are sampled for training.

Ptimestep(i, j) =

{
1, if τj ≤ i < τj+1

0, otherwise

Therefore, at training step i, the sampling distribution will be [Ptimestep(i, 1), . . . ,Ptimestep(i,M)].
• Gaussian Scheduling. Gaussian scheduling models task sampling as a mixture of Gaussian

distributions to provide flexible and fine-grained control over the training process.
Each task k (k = 1, . . . ,K) is assumed to follow a one-dimensional Gaussian distribution with the
same variance σ2 but different means

µk = k − 1.

A latent curriculum position xt moves from easier to harder tasks as training step t increases:

xt =

(
t

T

)β

(K − 1),

where T is the total number of training steps, β > 0 controls the moving speed of xt, and K is the
number of tasks.
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The unnormalized sampling score for task k at step t is

SGaussian(t, k) = exp

(
− (xt − µk)

2

2σ2

)
,

where σ determines the sampling concentration.
The normalized sampling probability is

PGaussian(t, k) =
SGaussian(t, k)

K∑
m=1

SGaussian(t,m)

.

Smaller σ produces sharper, stage-like transitions, while larger σ smooths the task shifts. A lower
β slows the move toward harder tasks, allowing more training on easy tasks in the early phase.

C USE OF LLMS

During the preparation of this manuscript, we made limited use of publicly available large language
models (LLMs) to assist with English writing. All technical content, including the formulation of
ideas, design of methodologies, implementation of experiments, and interpretation of results, was
entirely conceived and written by the authors without the involvement of LLMs. The role of LLMs
was strictly confined to stylistic and linguistic improvements, in a manner comparable to grammar- or
spell-checking software. We ensured that no novel research insights, data, or analyses were generated
by LLMs, and all scientific claims and results presented in this work remain the sole responsibility of
the authors.
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