
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LORA-ENSEMBLE: EFFICIENT UNCERTAINTY
MODELLING FOR SELF-ATTENTION NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerous real-world decisions rely on machine learning algorithms and require
calibrated uncertainty estimates. However, modern methods often yield overcon-
fident, uncalibrated predictions. The dominant approach to quantifying the un-
certainty inherent in the model is to train an ensemble of separate predictors and
measure their empirical variance. In an explicit implementation, the ensemble
has high computational cost and memory footprint, especially if the base model
itself is already large, like modern transformers. This motivates efforts to de-
velop implicit ensemble methods that emulate the ensemble without explicitly in-
stantiating all its members. We introduce LoRA-Ensemble, a parameter-efficient
ensembling method for self-attention networks. It is based on Low-Rank Adap-
tation (LoRA), originally developed for efficient LLM fine-tuning, and extends it
into an implicit ensembling scheme, where all ensemble members share the same,
pre-trained self-attention network, but have individual low-rank matrices for the
attention projections. The resulting method not only outperforms state-of-the-art
implicit techniques like BatchEnsemble, but even matches or exceeds the accuracy
of an Explicit Ensemble, while at the same time achieving superior calibration.

1 INTRODUCTION

Machine learning models are increasingly applied also in fields where incorrect estimates can have
severe consequences, e.g., autonomous driving, medical diagnosis, (extreme) weather event predic-
tion, or decision support for agriculture. In such applications well-calibrated predictive uncertainties
are crucial to enable self-diagnosis. Uncertainty can be separated into two components. Aleatoric
uncertainty, a.k.a. irreducible noise, is inherent in the data. In contrast, epistemic uncertainty stems
from a lack of knowledge about certain regions of the input space, due to a lack of training data Der
Kiureghian & Ditlevsen (2009).

Quantification of epistemic uncertainty in large machine learning models is non-trivial. Analytical
computation is usually intractable, thus research has focused on efficient approximations Graves
(2011); Blundell et al. (2015); Welling et al. (2011). To date, probabilistic ensembles remain the
best-performing approach Lakshminarayanan et al. (2017). In a naı̈ve implementation, such an
ensemble consists of multiple independently trained models. Individual models are interpreted as
Monte Carlo samples from the posterior weight space and are used to obtain an unbiased estima-
tor of the posterior distribution. To achieve a low correlation between ensemble members one can
capitalize on the stochastic nature of the training process and start from different initial weights,
and/or sample different random batches of data. The basic principle is that the predictions of differ-
ent ensemble members will agree near observed training samples, whereas they may vary far away
from the training data. Their spread therefore serves as a measure of epistemic uncertainty. Empir-
ically, even small ensembles often capture the uncertainty well (in expectation), i.e., they are well
calibrated.

An issue with naı̈ve ensembles is that their computational cost and memory footprint grow propor-
tional to the number of ensemble members. For smaller models, the added cost and energy use
may be acceptable. But for modern neural networks with up to several billion parameters, hardware
restrictions render the naı̈ve approach intractable, in particular, one can no longer hold the entire
ensemble in memory. Consequently, research has focussed on ways to create ensembles implicitly,
without requiring multiple copies of the full base model Wen et al. (2020); Wenzel et al. (2020);

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Huang et al. (2017); Turkoglu et al. (2022). Unfortunately, most of these parameter-efficient en-
sembling techniques are not applicable to the newest generation of neural networks. Transformer
networks Vaswani et al. (2017) have become popular due to their superior ability to capture complex
structures in data. However, implicit ensembling schemes tend to underperform for transformers, as
demonstrated in our experiments, or are incompatible with them, as detailed in Appendix V.

Several studies have shown that modern neural networks are heavily overparametrized and that their
results have low intrinsic dimension Li et al. (2018a); Aghajanyan et al. (2020). This led Hu et al.
(2021) to propose Low-Rank Adaptations (LoRAs) as a way of fine-tuning Large Language Models
(LLMs) for different tasks while avoiding the prohibitively large memory and compute requirements
of retraining them. It turns out that the weight matrices in such models can be factorized to have
very low rank, with hardly any loss in prediction performance.

We show that LoRA can also serve as a basis for a novel, parameter-efficient ensemble method tai-
lored to the transformer architecture. In line with the trend towards parameter-efficient fine-tuning,
our method uses a pre-trained transformer model, which is expanded into an implicit ensemble
by varying the LoRA factorization, while keeping the backbone weights frozen. In this way, our
method requires a small number of additional parameters to turn an existing transformer model into
a diverse ensemble whose performance across various tasks is comparable to an Explicit Ensemble.
In summary, our contributions are:

• We introduce LoRA-Ensemble, a parameter-efficient probabilistic ensemble method for
self-attention networks.

• LoRA-Ensemble can be readily combined with most pre-trained transformer networks, ir-
respective of their specific architecture and application domain: it simply replaces the linear
projection layers in the attention module with LoRA layers.

• We apply LoRA-Ensemble to different classification tasks, including conventional image
labeling, skin lesions classification in dermatoscopic images, fine-grained image classifi-
cation, sound classification, out-of-distribution (OOD) detection, and language modeling;
and demonstrate significant gains in accuracy and uncertainty modeling.

• We demonstrate LoRA-Ensemble outperforms traditional Explicit Ensembles by fostering
greater diversity among members, both in their learned functions and in weight space.

• We conduct extensive empirical analyses of how LoRA rank, initialization scheme, model
scale, and parameter-sharing strategies impact performance, and we adapt LoRA-Ensemble
for convolutional neural networks (CNNs) to demonstrate its broad applicability.

2 LORA-ENSEMBLE

The Low-Rank Adaptation (LoRA) technique makes it possible to use a pre-trained model and fine-
tune it without having to retrain all its parameters. This is particularly beneficial for modern neural
networks with large parameter spaces. The underlying principle is to freeze the pre-trained model
weights W0 ∈ Rk×d and instead constrain the updates to a low-rank decomposition. This can be
expressed mathematically as:

W = W0 +∆W = W0 +B ·A . (1)

Here B ∈ Rk×r and A ∈ Rr×d are two trainable low-rank matrices, where r ≪ min(d, k). W and
∆W are then multiplied with the same input x, which yields the following modified forward pass:

h = W0 · x+∆W · x = W0 · x+B ·A · x . (2)

LoRA applies its low-rank adaptation scheme exclusively to the weight matrices of the self-attention
modules in a transformer, while leaving the interleaved MLP layers untouched. Concretely, the
adapted weights are Wq , Wk, and Wv , which project the input into query, key, and value represen-
tations, along with Wo, which merges the outputs of the attention heads. As in Hu et al. (2021), the
projection matrices are treated as single units, disregarding their typical partitioning into multiple
attention heads. In Appendix G, we provide additional ablations on the placement of LoRA layers
within the transformer, as well as on ensemble design choices, illustrating how these factors impact
predictive performance, calibration, and efficiency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: A schema of a LoRA-Ensemble. The computation structure of the multi-head self-
attention module (right), and LoRA-Ensemble module (bottom left). X denotes the actual input,
and x represents the intermediate input representation.

Although not designed with uncertainty calibration in mind, the LoRA concept fulfills all the re-
quirements of an implicit deep ensemble: By modifying the weights of the highly nonlinear self-
attention mechanism one is able to generate a diverse collection of networks with the same architec-
ture and objective. By learning an additive, low-rank update ∆W = B·A rather than directly tuning
the weight matrices, the expansion into a model ensemble adds only a small number of parameters
and is efficient. In detail, we start from a single, pre-trained model with frozen parameters W0 and
expand it with a set of trainable low-rank matrices ∆Wi, ∀i = 1 . . . N . At each transformer block,
there now is a different forward pass per ensemble member i, as illustrated in Fig. 1:

hi = W0 · x+∆Wi · x = W0 · x+Bi ·Ai · x , (3)
leading to N different predictions Tθi(X) for a given input X . From those individual predictions,
we compute the ensemble mean and variance in the standard manner:

E[Y |X] ≈ 1

N

N∑
i=1

Tθi(X) , Var[Y |X] ≈ 1

N

N∑
i=1

(
Tθi(X)− E[Y |X]

)2
. (4)

Refer to Appendices L, M, and N, respectively, for implementation, training, and initialization de-
tails. We publicly release the PyTorch implementation of LoRA-Ensemble, along with pre-trained
weights, on GitHub.

3 EXPERIMENTS

In the following section, we evaluate the proposed LoRA-Ensemble on several datasets with regard
to its predictive accuracy, uncertainty calibration, and memory usage. For each experiment we also
show 1 · σ error bars, estimated from five independent runs with different random initializations.

As a first sandbox experiment, we perform image classification for the popular, widely used CIFAR-
100 benchmark Krizhevsky (2009) (see Appendix A for CIFAR-10 experiments). The dataset con-
sists of 100 object classes, each with 600 samples, for a total size of 60 000 images. From that set,
10 000 images are designated as test data, with all classes equally distributed between the training
and testing portions.

The HAM10000 dataset was proposed for the Human Against Machine with 10 000 training images
study Tschandl et al. (2018). It consists of 10 015 dermatoscopic images of pigmented skin le-
sions, collected from different populations. The dataset was initially assembled to compare machine
learning methods against medical professionals on the task of classifying common pigmented skin
lesions. Compared to CIFAR-100, this is arguably a more relevant test bed for our method: in the
medical domain, uncertainty calibration is critical, due to the potentially far-reaching consequences
of incorrect diagnoses and treatment planning.

For both datasets, LoRA-Ensemble is evaluated against a range of baselines. As a sanity check, we
include a single Vision Transformer (ViT) model as well as a ViT model augmented with LoRA in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the attention modules. These models lack dedicated mechanisms for uncertainty calibration, instead
relying on class-conditional likelihoods to quantify uncertainty. We further compare against an Ex-
plicit Ensemble and several common implicit approaches: (i) Monte Carlo Dropout (MC Dropout)
as implemented in Li et al. (2023), (ii) Batch-Ensemble Wen et al. (2020), and (iii) Snapshot Ensem-
ble Huang et al. (2017), with implementation details provided in Appendix I and U. For challenges
related to other implicit methods, we refer to Appendix V. In addition, we compare with L2 (Kim
et al., 2021) and LRFormer (Ye et al., 2023), two recent methods for uncertainty modeling in ViTs,
in our HAM10000 experiments, as well as with the recently proposed Bayesian-LoRA (Yang et al.,
2024), which improves uncertainty calibration in fine-tuned LLMs, in our SST-2 experiments. The
LoRA rank was empirically set to 8 for CIFAR-100 and 4 for HAM10000.

To demonstrate that LoRA-Ensemble scales to large, fine-grained, real-world datasets, we apply it to
iNaturalist 2017 Van Horn et al. (2018), comprising 675 170 images across 5 089 species, an order
of magnitude larger than CIFAR-100. Severe class imbalance, high intra-class variability, and subtle
inter-class differences make uncertainty quantification especially challenging, due to the difficulty to
avoid overconfident errors among similar species, and to flag uncertain predictions for rare species.
The LoRA rank was set to 64 for this experiment. Refer to Appendix C for detailed sensitivity
analysis of the LoRA rank, together with a practical guide for hyperparameter selection.

As a further benchmark from a different application domain, we process the ESC-50 environmental
sounds dataset Piczak (2015). It consists of 2 000 sound samples, each five seconds long, that rep-
resent 50 different semantic classes with 40 samples each. To prepare the raw input waveforms for
analysis, they are converted into 2-dimensional time/frequency spectrograms, see Gong et al. (2021).
These spectrograms form the input for Audio Spectrogram Transformer, a state-of-the-art trans-
former model for sound classification. We also extend our evaluation to natural language processing
with the SST-2 sentiment classification dataset, using BERT base uncased Socher et al. (2013);
Devlin et al. (2019). Results for both datasets are provided in Appendix A.2 and Appendix A.7.

We evaluated each method’s predictive performance using classification accuracy and F1 score, and
its calibration quality through Expected Calibration Error (ECE), Negative Log-Likelihood (NLL),
and Brier score. The ECE measures how far predicted confidences deviate from observed error
rates, i.e., perfect calibration occurs when the estimated uncertainties match the actual likelihood of
a mis-classification. The definitions of all metrics are given in Appendix X.

For the out-of-distribution (OOD) experiment, we trained models on CIFAR-100 and evaluated them
using in-distribution samples from CIFAR-100 and OOD samples from CIFAR-10 or SVHN Netzer
et al. (2011), following standard practice Hendrycks & Gimpel (2016). Performance was measured
using AUROC and AUPRC.

Compute Cost. LoRA-Ensemble is markedly lighter than Explicit Ensembles, requiring far fewer
parameters and memory (about 14x cheaper for 16 members), while also training about 2x faster and
delivering over 3x faster inference (Tab. 9; Appendix A.9). Timings are based on our PyTorch vmap
implementation, which introduces a one-time overhead and is not fully optimized (see Appendix L).

CIFAR-100. Quantitative results are summarized in Tab. 1. Reliability diagrams, along with
plots depicting classification accuracy and ECE as a function of ensemble size, are provided in
Appendix A.3.

LoRA-Ensemble consistently reaches higher accuracy than MC Dropout and Snapshot Ensemble,
with a notable edge of approximately 5 percentage points. Despite its conceptual similarity to the
LoRA-Ensemble, the Batch-Ensemble is the weakest performer among all methods when applied to
transformers. Appendix I examines this finding in detail and outlines key distinctions between the
two approaches. Surprisingly, LoRA-Ensemble also consistently surpasses the Explicit Ensemble
by about 2 percentage points, apparently a consequence of the fact that already a single ViT model,
and thus every ensemble member, benefits from the addition of LoRA.

The LoRA-Ensemble also achieves better-calibrated predictive uncertainties than all implicit ensem-
bling methods and the Explicit Ensemble. Interestingly, although a single LoRA network is already
very well calibrated, forming an ensemble slightly degrades its calibration, an effect not observed
for the NLL or Brier score (Tab. 1). The reliability diagram in Fig. 5 in the appendix somewhat
elucidates this unexpected behavior: LoRA-Ensemble is under-confident on CIFAR-100, i.e., its

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Model performance on the CIFAR-100 dataset for the compared methods. Ensembles have
16 members. Best score for each metric in bold, second-best underlined.

Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)
Single Network 76.6± 0.3 76.6± 0.3 0.145± 0.004 1.181± 0.019 0.370± 0.004
Single Net w/ LoRA 79.6± 0.2 79.4± 0.2 0.014 ± 0.003 0.671± 0.005 0.286± 0.003
MC Dropout 77.1± 0.5 77.2± 0.4 0.055± 0.002 1.138± 0.014 0.336± 0.005
Snapshot Ensemble 77.0± 0.1 77.2± 0.2 0.123± 0.002 4.416± 0.046 1.614± 0.007
Batch-Ensemble 68.8± 0.1 68.5± 0.1 0.102± 0.002 1.093± 0.002 0.437± 0.001
Explicit Ensemble 79.8± 0.1 79.8± 0.2 0.100± 0.001 0.745± 0.003 0.284± 0.002

LoRA-Ensemble 82.5 ± 0.1 82.5 ± 0.1 0.035± 0.001 0.587 ± 0.001 0.253 ± 0.000

predictions are more accurate than its confidence suggests. As noted by Rahaman & Thiery (2020),
ensembling under-confident models can worsen calibration since accuracy grows faster than confi-
dence. While under-confidence may be preferable in safety-critical settings, where over-estimating
uncertainty is safer than being over-confident, we show in Appendix K that simple post-hoc Tem-
perature Scaling effectively corrects this and yields near-perfect calibration.

Table 2: Model performance on the HAM10000 dataset for the compared methods. Ensembles have
16 members. Best score for each metric in bold, second-best underlined

.
Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)
Single Network 84.1± 0.3 71.4± 0.7 0.139± 0.004 1.138± 0.040 0.291± 0.009
Single Net w/ LoRA 83.2± 0.7 70.7± 1.3 0.085± 0.004 0.569± 0.027 0.256± 0.011
LRFormer 74.3± 1.9 52.1± 3.2 0.053± 0.022 0.737± 0.014 0.354± 0.011
L2 74.1± 1.8 50.7± 3.9 0.065± 0.024 0.766± 0.036 0.360± 0.021
MC Dropout 83.7± 0.4 71.0± 0.9 0.099± 0.007 0.631± 0.023 0.270± 0.009
Snapshot Ensemble 84.9± 0.3 73.7± 0.9 0.058± 0.004 0.431± 0.007 0.217± 0.004
Batch-Ensemble 76.8± 1.6 58.4± 2.8 0.064± 0.021 0.651± 0.003 0.332± 0.002
Explicit Ensemble 85.8± 0.2 74.6± 0.4 0.105± 0.002 0.536± 0.007 0.218± 0.002

LoRA-Ensemble 88.0 ± 0.2 78.3 ± 0.6 0.037 ± 0.002 0.342 ± 0.003 0.175 ± 0.002

HAM10000 Lesion Classification. In many medical applications, well-calibrated models are es-
sential. As a test case, we use the classification of pigmented skin lesions and again compare the
same group of models in terms of accuracy and calibration. The results are summarized in Tab. 2.
Similar to the CIFAR-100 evaluation, LoRA-Ensemble outperforms all other methods by a clear
margin, with respect to both classification accuracy and calibration.

The experiments also further support the above discussion of confidence vs. ensemble size (Sec. 3).
For HAM10000, LoRA-Ensemble is slightly over-confident (just like the Explicit Ensemble) and,
indeed, its calibration error decreases with ensemble size in this case, see Appendix A.4.

We conducted further experiments on HAM10000 using different backbone architectures (DeiT)
with varying numbers of parameters. See Tab. 10 in Appendix B. LoRA-Ensemble generalizes
smoothly across different backbones, and as the number of parameters in the backbone increases, its
advantage over the Explicit Ensemble becomes more pronounced, in both accuracy and calibration.
For generalization to the CNN architecture, see Appendix H.

Large-Scale Fine-Grained Image Classification with iNaturalist. On iNaturalist 2017
(INat2017), our LoRA-Ensemble almost matches the Explicit Ensemble in accuracy, while sub-
stantially improving the calibration, using only a fraction of the parameters and compute. This
demonstrates that the method scales well and enables reliable uncertainty estimation for large, fine-
grained, imbalanced datasets. Refer to Appendix F for additional results.

Out-of-Distribution Detection & Dataset Shift Robustness. To evaluate LoRA-Ensemble for
OOD detection, a crucial aspect of handling uncertainty in deep learning models Hendrycks & Gim-
pel (2016), we run an experiment in which models were trained on CIFAR-100 (in-distribution) and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Performance on the INat2017 dataset for all compared methods using three different random
seeds. Ensembles have 4 members. Best score for each metric in bold, second-best underlined.

Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)

Single Network 42.6± 0.2 37.8± 0.2 0.293± 0.002 1.054± 0.001 0.207± 0.001
Single Net w/ LoRA 47.7± 0.1 43.1± 0.1 0.096± 0.001 0.662± 0.001 0.166± 0.000
MC Dropout 47.5± 0.1 40.3± 0.1 0.206± 0.002 0.895± 0.002 0.172± 0.000
Explicit Ensemble 49.6 ± 0.2 44.6 ± 0.3 0.199± 0.002 0.716± 0.002 0.165± 0.000

LoRA-Ensemble 49.3± 0.1 44.1± 0.2 0.045 ± 0.001 0.610 ± 0.000 0.160 ± 0.000

Table 4: Model performance on the OOD task. CIFAR-100 is used as the in-distribution dataset and
CIFAR-10 and SVHN as the out-of-distribution dataset. Ensembles for all methods consist of 16
members. Results for Split-Ensemble are taken from Chen et al. (2024). The best score for each
metric is highlighted in bold, with the second-best score underlined.

OOD Dataset CIFAR-10 SVHN
Method AUROC (↑) AUPRC (↑) AUROC (↑) AUPRC (↑)
Split-Ensemble Chen et al. (2024) 79.2 81.7 81.2 69.9

Single Network 75.6± 0.3 77.6± 0.6 76.4± 1.8 67.1± 2.3
Single Network with LoRA 80.1± 0.5 82.4± 0.6 85.9± 0.9 75.4± 1.7
MC Dropout 75.1± 0.5 73.7± 0.9 52.3± 12.4 29.9± 7.1
Explicit Ensemble 78.9± 0.2 80.8± 0.2 74.8± 1.3 63.9± 1.5

LoRA-Ensemble 82.1 ± 0.1 84.1 ± 0.1 89.9 ± 0.6 80.9 ± 1.0

tested on samples from both CIFAR-100 and CIFAR-10 or SVHN (out-of-distribution). Following
Sim et al. (2023) and Chen et al. (2024), we use the maximum softmax probability as the confidence
score. Table 4 highlights that LoRA-Ensemble achieves superior performance compared to all other
methods across both settings and metrics, surpassing even the recently proposed Split-Ensemble
approach Chen et al. (2024) that was specifically designed for OOD tasks. Furthermore, consis-
tent with our earlier observations, even a single LoRA model outperforms the Explicit Ensemble,
highlighting its robustness in OOD scenarios. To further assess robustness under distribution shifts,
we also experimented with the CIFAR-10/100-C benchmarks across various severity levels. As de-
tailed in Appendix A.8, LoRA-Ensemble consistently achieves superior accuracy and calibration
compared to all baselines, maintaining reliable uncertainty estimates even under severe corruptions.

4 ENHANCED DIVERSITY IN LORA-ENSEMBLE

To better understand the behavior of LoRA-Ensemble, we explore the diversity of its members and
compare it to the Explicit Ensemble. The experiments are run on HAM10000 with 16 ensemble
members. Diversity is crucial for effective ensembles, as highly correlated members offer little
added value Zhang (2012). If an ensemble contains diverse parameter configurations that equally
explain observations, then it will more comprehensively capture the epistemic uncertainty Kendall
& Gal (2017). For empirical evidence, refer to Appendix E.

Following Fort et al. (2019b), we first assess function space diversity through the predictions of
individual ensemble members. In Fig. 2, we first compute the disagreement rate on the test set,
defined as 1

N

∑N
n=1 I[Tθi(Xn) ̸= Tθj (Xn)], where Tθi(Xn) represents the class label predicted by

ensemble member i for input Xn, and I is the indicator function. Next, we construct a probability
distribution for each ensemble member by aggregating their softmax outputs across all test samples,
then compute pairwise Jensen-Shannon divergences (JSD). Finally, we use t-SNE Van der Maaten
& Hinton (2008) to visualize their spread in function space (aggregated softmaxes). The analysis
reveals that LoRA-Ensemble exhibits significantly higher diversity among ensemble members com-
pared to an Explicit Ensemble. I.e., LoRA-Ensemble appears to capture a wider range of modes in
function space.

We further inspect the weight spaces of LoRA-Ensemble and Explicit Ensemble with spectral anal-
ysis, focusing on the projection matrices within the attention blocks of the ViT (Base-32) model

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Explicit LoRA Explicit LoRA

(a) pairwise disagreement rate (b) Jensen-Shannon divergence (c) t-SNE

Figure 2: Function space analysis of LoRA-Ensemble vs. Explicit Ensemble.

pre-trained on ImageNet. We show the analysis for value projection matrices, given their strong
association with learned representations; details for query and key projection matrices can be found
in Appendix D. We employ Singular Value Decomposition (SVD) to identify the most significant
transformations encoded in the weights, following the logic that larger singular values correspond
to the most impactful components. As proposed by Shuttleworth et al. (2024), we analyze the sim-
ilarity between the initial (pre-trained) weights and the final trained weights of ensemble members.
LoRA-Ensemble and Explicit Ensemble lead to very different parameter updates. LoRA-Ensemble
introduces new high-ranking singular vectors that are near-orthogonal to those in the initial weights,
referred to as ”intruder dimensions” Shuttleworth et al. (2024). In contrast, Explicit Ensemble mem-
bers tend to adhere closely to the spectral structure of the initial weights (see Fig. 13 in Appendix).

The random initialization of matrices A and B in the LoRA module leads to an intriguing phe-
nomenon: the intruder dimensions of different LoRA-Ensemble members are near-orthogonal, as
shown by the cosine similarities between the highest-ranking singular vectors of different members
in Fig. 3 (for details see Appendix D). The figure shows similarity values averaged over layers and
pairs of members, for rank 4. Notably, the highest-ranked singular vectors of distinct members ex-
hibit almost no similarity; in contrast to the Explicit Ensemble, where they are highly correlated. The
weight-space cosine similarity provides further evidence of enhanced diversity. LoRA-Ensemble
members exhibit greatly increased diversity in weight space. To visualize training trajectories, we
apply t-SNE to plot the evolution of the model weights during training. LoRA-Ensemble members
span a larger part of the loss landscape, indicating diverse learning dynamics. In contrast, Explicit
Ensemble members remain closer to the initial weights, reflecting reduced diversity. Overall, these
results suggest LoRA-Ensemble better explores the weight space, and thus the epistemic uncertainty.

Explicit LoRA Explicit LoRA

(a) cos-similarity of high-ranking singular vectors (b) weight-space cosine similarity (c) training trajectories

Figure 3: Weight space analysis of LoRA-Ensemble vs. Explicit Ensemble.

5 DISCUSSION

Effectiveness of LoRA-Ensemble. Across diverse tasks, our experiments consistently show that
LoRA-Ensemble matches or surpasses the predictive performance of the state-of-the-art Explicit En-
semble while offering superior calibration. Adding LoRA to a single model without any ensembling
improves calibration in most experiments beyond that of a 16-member Explicit Ensemble. This ef-
fect may be linked to the well-documented over-parameterization of modern neural networks, which
often achieve higher predictive accuracy at the cost of poorer calibration (e.g., Guo et al., 2017). By
incorporating LoRA while treating all pre-trained weights as constants, we significantly reduce the
trainable parameter space, potentially favoring better calibration. However, limiting trainable pa-
rameters alone does not ensure better accuracy or calibration, e.g., many forms of regularization or
selective training may fall short. We believe that the effectiveness of LoRA-Ensemble stems from
its unique learning dynamics, which we explore in Sec. 4 and Appendix D. Its members converge

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

to diverse solutions that span a broader area of the loss landscape, enabling better exploration of
the weight space and more effective estimates of epistemic uncertainty. Increasing the number of
members in the LoRA-Ensemble enhances predictive power, potentially improving accuracy while
maintaining good calibration due to the limited number of trainable weights. However, if the train-
able weights are not limited, e.g. when increasing the LoRA rank too far, calibration can worsen,
as shown in Fig.11a, Tab.7. This effect aligns with the findings of Shuttleworth et al. (2024), which
indicate that excessively increasing the rank of LoRA may cause it to lose its unique learning dy-
namics. Furthermore, jointly training the backbone and optimizing all parameters simultaneously
degrades performance, see Appendix F for details. Conversely, enhancing predictive power by in-
creasing the pre-trained weights (while keeping trainable weights constant) further improves the ef-
fectiveness of the LoRA-Ensemble, see Appendix B. Lastly, the LoRA-Ensemble remains effective
even when pre-training is not available; see Appendix J for the experiment where it was pre-trained
and fine-tuned on the same target dataset.

Comparison to Bayesian LoRA. On the language modeling task (SST-2 sentiment classification),
LoRA-Ensemble consistently outperforms Bayes-LoRA Yang et al. (2024) across accuracy, F1,
NLL, and Brier score, with Bayes-LoRA only achieving a marginally lower ECE. Refer to Tab. 8
and Appendix A.7. This result is consistent with previous works, showing that Laplace-based meth-
ods improve calibration at the expense of predictive accuracy Deng et al. (2022) or often fall short
compared to ensembles Daxberger et al. (2021); Eschenhagen et al. (2021). Notably, in our experi-
ments, LoRA-Ensemble is more than 10x faster at inference, demonstrating that it combines strong
accuracy, reliable calibration, and efficiency. In contrast, the Laplace-based Bayesian method trades
accuracy for improved uncertainty estimates while remaining less efficient. Refer to Appendix W
for more details and discussion.

Limitations & Future Work. Despite its memory-efficient design and reduced per-member training
and inference overhead, our ensembling approach maintains computational complexity similar to
that of conventional ensembles, since each batch still requires separate forward passes for every
member. As discussed by Rahaman & Thiery (2020), our work also suggests that in a high-parameter
regime, deep ensembles may not exhibit the same behavior as they do in a low-parameter regime,
where they typically improve calibration properties. This type of phase shift in the bias-variance
trade-off, the so-called Double Descent Phenomenon, has previously been observed for large neural
networks Nakkiran et al. (2021). It would be valuable to conduct an in-depth analysis of how deep
ensembles behave in high-parameter regimes.

6 RELATED WORK

Estimation of Epistemic Uncertainty. A lot of work has gone into estimating the epistemic un-
certainty in Artificial Neural Network (ANN). As the analytical computation of the posterior in such
models is generally intractable, methods for approximate Bayesian inference have been proposed.
Such methods rely on imposing an appropriate prior on the weights and using the likelihood of the
training data to get an approximate posterior of the weight space.

The main techniques are, on the one hand, Variational Inference Graves (2011); Ranganath et al.
(2014), which Blundell et al. (2015) have specialized to neural networks as Bayes by Backprop. And
on the other hand variants of Markov Chain Monte Carlo (MCMC) Neal (1996); Chen et al. (2014),
including Stochastic Gradient Langevin Dynamics (SGLD) Welling et al. (2011). These, however,
are often not able to accurately capture high-dimensional and highly non-convex loss landscapes,
like the ones usually encountered in deep learning Gustafsson et al. (2019). More recently, Bayesian
LoRA methods have been explored, with Yang et al. (2024) using a Laplace approximation for
improved calibration and Wang et al. (2024) jointly learning mean and covariance during fine-tuning.

Ensembles and Implicit Ensembling. Lakshminarayanan et al. (2017) have proposed a method
known as deep ensembles. It uses a set of neural networks with identical architecture that are in-
dependently and randomly initialized, and (as usual) trained with variants of Stochastic Gradient
Descent (SGD). While the latter introduces further stochasticity, Fort et al. (2019a) have shown that
the initialization of the weights is more important to explore the admissible weight space. Ensem-
ble members will generally converge to different modes of the loss function, such that they can be
considered Monte Carlo samples of the posterior distribution Wilson & Izmailov (2020); Izmailov

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

et al. (2021). While ensembles, in general, yield the best results in terms of accuracy and uncertainty
calibration, a straightforward implementation suffers from high memory and compute requirements,
since multiple instances of the full neural network must be trained and stored. This can become
prohibitive for modern neural networks with many millions, or even billions, of parameters.

Consequently, researchers have attempted to find ways of mimicking the principle of deep ensembles
without creating several full copies of the base model. Gal & Ghahramani (2015) have proposed
Monte Carlo Dropout, where the posterior is approximated by sampling different dropout patterns
at inference time. While this is less expensive in terms of memory, performance is often worse.
Masksembles Durasov et al. (2020) are a variant that attempts to select suitable dropout masks in
order to obtain better uncertainty estimates. Snapshot Ensembles Huang et al. (2017) use cyclic
learning rates to steer the learning process such that it passes through multiple local minima, which
are then stored as ensemble members. This reduces the training effort but does not address memory
requirements or inference time.

Particularly relevant for our work are attempts that employ a shared backbone and modify only se-
lected layers. Havasi et al. (2020) follow that strategy, in their case only the first and last layer
of a neural network are replicated and trained independently to emulate an ensemble. Packed-
Ensemble Laurent et al. (2023) leverage grouped convolutions to train lightweight ensembles within
a single shared backbone. Batch-Ensemble Wen et al. (2020) is similar to LoRA-Ensemble in that
it also uses low-rank matrices to change the model parameters. More specifically, shared weight
matrices are modulated by element-wise multiplication with different rank-1 matrices to achieve the
behavior of a deep ensemble while adding only a small number of parameters. Wenzel et al. (2020)
take this concept further by also ensembling over different hyper-parameter settings. Turkoglu et al.
(2022) freeze all weights of the base model and instead vary the feature-wise linear modulation
(FiLM, Li et al., 2018b; Takeda et al., 2021). A related concept was recently introduced for LLMs:
the Mixtral of Experts model Jiang et al. (2024) averages over a sparse mixture of experts to effi-
ciently generate text.

Low-Rank Adaptation in Transformer Networks. Low-Rank Adaptation was originally con-
ceived as a parameter-efficient way of fine-tuning Large Language Models (LLMs) Hu et al. (2021).
It is based on the observation that, while modern neural networks have huge parameter spaces, the
solutions they converge to have much lower intrinsic dimension Li et al. (2018b); Aghajanyan et al.
(2020). LoRA exploits this and Hu et al. (2021) show that even when fine-tuning only low-rank
update matrix B ·A (sometimes with rank as low as one or two), the resulting models are competi-
tive with much more expensive fine-tuning schemes. The method quickly became popular and has
since also been extended with weight-decomposition Liu et al. (2024). The Low-Rank Adaptation
(LoRA) idea has been applied in various fields, notably for denoising diffusion models Luo et al.
(2023); Golnari (2023). As we have shown, the LoRA adaptation mechanism naturally lends itself
to parameter-efficient ensembling, which we investigate in the context of uncertainty calibration,
with a primary focus on vision transformers but not limited to them. A similar idea has concurrently
been explored for fine-tuning LLMs Wang et al. (2023), yielding promising results in both predictive
performance and uncertainty estimation.

7 CONCLUSION

We have presented LoRA-Ensemble, a novel, parameter-efficient method for probabilistic learning
that is tailored to the transformer architecture (and potentially other architectures that make use of the
attention mechanism). LoRA-Ensemble uses a simple, but efficient trick to turn a single base model
into an implicit ensemble: the weights of the base model are kept frozen, but are modulated with the
Low-Rank Adaptation mechanism. By training multiple, stochastically varying instances of the low-
rank matrices that define the modulation, one obtains a diverse set of ensemble members that share
the majority of their weights and introduce only minimal overhead through the coefficients of their
individual low-rank matrices. Our extensive experiments demonstrate that the proposed approach
excels in both predictive performance and uncertainty calibration. Not only does it surpass other
state-of-the-art implicit ensembling methods, but it also outperforms Explicit Ensembles on many
tasks. This challenges the prevailing notion in the literature that Explicit Ensembles represent the
upper bound for efficient ensembling methods (Wen et al., 2020).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the effec-
tiveness of language model fine-tuning. In Annual Meeting of the Association for Computational
Linguistics & International Joint Conference on Natural Language Processing, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. In International Conference on Machine Learning, 2015.

Glenn W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review,
78, 1950.

Anthony Chen, Huanrui Yang, Yulu Gan, Denis A Gudovskiy, Zhen Dong, Haofan Wang, Tomoyuki
Okuno, Yohei Nakata, Kurt Keutzer, and Shanghang Zhang. Split-Ensemble: Efficient OOD-
aware ensemble via task and model splitting. In International Conference on Machine Learning,
2024.

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient hamiltonian Monte Carlo. In
International Conference on Machine Learning, 2014.

Gaurav Chhablani. bert-base-cased-finetuned-sst2. https://huggingface.co/
gchhablani/bert-base-cased-finetuned-sst2, 2023. Fine-tuned BERT model
on GLUE SST-2 dataset.

Ben Conrad. Fine-tuning vision transformers, 2023. URL https://github.com/bwconrad/
vit-finetune. Accessed: 2024-05-20.

Yin Cui, Menglin Jia, Tsung Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In IEEE Conference on Computer Vision and Pattern Recognition,
2019.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and ROC curves. In
International Conference on Machine Learning, 2006.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in neural information
processing systems, 34:20089–20103, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
2009.

Zhijie Deng, Feng Zhou, and Jun Zhu. Accelerated linearized laplace approximation for bayesian
deep learning. Advances in Neural Information Processing Systems, 35:2695–2708, 2022.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Structural Safety,
31(2), 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the Associ-
ation for Computational Linguistics, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16×16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2020.

Nikita Durasov, Timur Bagautdinov, Pierre Baque, and Pascal Fua. Masksembles for uncertainty
estimation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2020.

Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures of
laplace approximations for improved post-hoc uncertainty in deep learning. arXiv preprint
arXiv:2111.03577, 2021.

10

https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2
https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2
https://github.com/bwconrad/vit-finetune
https://github.com/bwconrad/vit-finetune

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vlad Fomenko, Han Yu, Jongho Lee, Stanley Hsieh, and Weizhu Chen. A note on lora. arXiv
preprint arXiv:2404.05086, 2024.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep Ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019a.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019b.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, 2015.

Jort F. Gemmeke, Daniel P.W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio Set: An ontology and human-labeled dataset
for audio events. In IEEE International Conference on Acoustics, Speech and Signal Processing,
2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, 2010.

Pareesa Ameneh Golnari. LoRA-enhanced distillation on guided diffusion models. arXiv preprint
arXiv:2312.06899, 2023.

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. arXiv preprint
arXiv:2104.01778, 2021.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, 2017.

Fredrik K. Gustafsson, Martin Danelljan, and Thomas B. Schon. Evaluating scalable bayesian
deep learning methods for robust computer vision. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2019.

James A. Hanley and Barbara J. McNeil. The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143(1), 1982.

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Laksh-
minarayanan, Andrew M. Dai, and Dustin Tran. Training independent subnetworks for robust
prediction. In International Conference on Learning Representations, 2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2021.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot Ensembles: Train 1, get m for free. In International Conference on Learning Represen-
tations, 2017.

Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Wilson. What are
bayesian neural network posteriors really like? In Proceedings of Machine Learning Research,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? Advances in Neural Information Processing Systems, 30, 2017.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
arXiv preprint arXiv:2006.04710, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell Deepmind. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, 2017.

Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei
Bursuc, and Gianni Franchi. Packed-ensembles for efficient uncertainty estimation. In Interna-
tional Conference on Learning Representations, 2023.

Bonan Li, Yinhan Hu, Xuecheng Nie, Congying Han, Xiangjian Jiang, Tiande Guo, and Luoqi
Liu. Dropkey for vision transformer. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In International Conference on Learning Representations, 2018a.

Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. Adaptive batch normalization
for practical domain adaptation. Pattern Recognition, 80, 2018b.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. arXiv
preprint arxiv:2402.09353, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo
Huang, Jian Li, and Hang Zhao. LCM-LoRA: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556, 2023.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12), 2021.

Radford M. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics. Springer
New York, 1996.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NeurIPS Workshop on
Deep Learning and Unsupervised Feature Learning, 2011.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model's uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing Systems,
2019.

Karol J. Piczak. ESC: Dataset for environmental sound classification. In ACM Multimedia Confer-
ence, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rahul Rahaman and Alexandre H. Thiery. Uncertainty quantification and deep ensembles. In Ad-
vances in Neural Information Processing Systems, 2020.

Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference. In Interna-
tional Conference on Artificial Intelligence and Statistics, 2014.

Reece Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. LoRA vs full fine-
tuning: An illusion of equivalence. arXiv preprint arXiv:2410.21228, 2024.

Minho Sim, Jongwhoa Lee, and Ho-Jin Choi. Attention masking for improved near out-of-
distribution image detection. In IEEE International Conference on Big Data and Smart Com-
puting, 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Conference on Empirical Methods in Natural Language Processing, 2013.

Mana Takeda, Gibran Benitez, and Keiji Yanai. Training of multiple and mixed tasks with a single
network using feature modulation. In International Conference on Pattern Recognition, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
Proceedings of Machine Learning Research, 2020.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 5, 2018.

Mehmet Ozgur Turkoglu, Alexander Becker, Hüseyin Anil Gündüz, Mina Rezaei, Bernd Bischl, Ro-
drigo Caye Daudt, Stefano D’Aronco, Jan Dirk Wegner, and Konrad Schindler. FiLM-Ensemble:
Probabilistic deep learning via feature-wise linear modulation. In Advances in Neural Information
Processing Systems, 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(11), 2008.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The iNaturalist species classification and detection dataset. In
IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
BlackboxNLP@EMNLP, 2018.

Xi Wang, Laurence Aitchison, and Maja Rudolph. LoRA ensembles for large language model fine-
tuning. arXiv preprint arXiv:2310.00035, 2023.

Yibin Wang, Haizhou Shi, Ligong Han, Dimitris Metaxas, and Hao Wang. Blob: Bayesian low-
rank adaptation by backpropagation for large language models. Advances in Neural Information
Processing Systems, 37:67758–67794, 2024.

Max Welling, D Bren, and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In International Conference on Machine Learning, 2011.

Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: An alternative approach to efficient
ensemble and lifelong learning. In International Conference on Learning Representations, 2020.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for
robustness and uncertainty quantification. In Advances in Neural Information Processing Systems,
2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective
of generalization. In Advances in Neural Information Processing Systems, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020.

Adam X. Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. In International Conference on Learning Representations, 2024.

Wenqian Ye, Yunsheng Ma, Xu Cao, and Kun Tang. Mitigating transformer overconfidence via Lip-
schitz regularization. In Proceedings of the Conference on Uncertainty in Artificial Intelligence,
2023.

C Zhang. Ensemble machine learning: methods and applications. Springer Science & Business
Media, 2012.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

A Additional Experiments and Results 17

A.1 CIFAR-10 . 17

A.2 ESC-50 Environmental Sound Classification . 17

A.3 CIFAR-100 . 17

A.4 HAM10000 Lesion Classification . 18

A.5 Comparison with a Single, High-rank LoRA Network 19

A.6 INaturalist 2017 Large-Scale Fine-Grained Image Classification 19

A.7 SST-2 Language Modeling for Sentiment Classification 20

A.8 Robustness to Distribution Shifts: CIFAR-10-C and CIFAR-100-C 21

A.9 Computational Cost . 21

B LoRA-Ensemble’s Generalization to Varying Model Sizes 23

C Hyperparameter Selection and Sensitivity Analysis: LoRA Rank 23

D Weight Space Analysis: LoRA-Ensemble versus Explicit Ensemble 25

E Correlation Analysis Between Ensemble Diversity and Predictive Performance 26

F Joint Training of Backbone and LoRA-Ensemble Layers on iNaturalist 28

G Placement of LoRA-Ensemble Modules and Selection of Trainable Weights 28

H LoRA-Ensemble for CNNs 29

I Batch-Ensemble 30

I.1 Implementation . 30

I.2 Why LoRA-Ensemble Outperforms Batch-Ensemble 30

J LoRA-Ensemble Fine-Tuned on the Same Dataset as the Backbone Model 31

K Post-Hoc Temperature Scaling for Model Calibration 32

L Implementation of LoRA-Ensmeble 32

M Training Details of LoRA-Ensemble 34

N Initialization of LoRA-Ensemble Parameters 34

O Initialization of Explicit Ensemble Parameters 35

O.1 Results . 36

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

P AST Implementation 37

Q Validation of AST Implementation 38

R Hyper-parameter Tuning for AST Experiment 38

S Computational Cost for AST Models 38

T Hyperparameter Tuning for MC Dropout 39

U Snapshot Ensemble Implementation Details 39

V Implicit Ensemble Baseline Challenge 40

W Bayesian LoRA 40

X Definitions of Evaluation Metrics 41

X.1 Accuracy . 41

X.2 Expected Calibration Error . 41

X.3 Macro F1-score . 42

X.4 Negative Log-Likelihood (NLL) . 42

X.5 Brier score . 42

X.6 Area Under the Receiver Operating Characteristic Curve (AUROC) 42

X.7 Area Under the Precision-Recall Curve (AUPRC) 43

Y Statement on the Use of Generative AI and Declaration of Originality 43

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS AND RESULTS

This section presents comprehensive experimental results for the newly introduced CIFAR-10
dataset, Environmental Sound Classification on ESC-50. It also includes additional results for the
CIFAR-100 and HAM10000 datasets and expanded baseline comparisons for CIFAR-100.

A.1 CIFAR-10

The results for the CIFAR-10 dataset, as shown in Tab. 5, indicate that LoRA-Ensemble outperforms
all other methods. Close behind is a single network enhanced with LoRA. This mirrors the results
found in the main paper for CIFAR-100, with the exception of the calibration for a single model.
It is important to note that although all methods achieve high accuracy and the differences between
them are minimal, calibration is nearly perfect for most approaches. This suggests that the CIFAR-
10 dataset is relatively easy for modern transformer models, and the results should not be over-
interpreted. Nevertheless, the consistent performance across different random seeds suggests that
the ranking is likely significant. Given the balanced nature of the CIFAR-10 dataset, the accuracy
and F1-score are almost identical.

Table 5: Performance on the CIFAR-10 dataset for all compared methods. Ensembles have 16
members. Best score for each metric in bold, second-best underlined.

Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)

Single Network 92.8± 0.1 92.8± 0.1 0.051± 0.001 0.333± 0.003 0.120± 0.002
Single Net w/ LoRA 94.5± 0.0 94.5± 0.0 0.009± 0.001 0.163± 0.002 0.082± 0.001
MC Dropout 92.9± 0.2 92.9± 0.2 0.023± 0.002 0.260± 0.005 0.110± 0.003
Snapshot Ensemble 93.1± 0.1 93.1± 0.1 0.037± 0.002 1.062± 0.021 0.510± 0.008
Batch-Ensemble 88.5± 0.1 88.5± 0.1 0.048± 0.001 0.347± 0.001 0.172± 0.000
Explicit Ensemble 94.1± 0.1 94.1± 0.1 0.031± 0.001 0.181± 0.002 0.087± 0.001

LoRA-Ensemble 95.9 ± 0.1 95.9 ± 0.1 0.003 ± 0.001 0.128 ± 0.001 0.064 ± 0.000

A.2 ESC-50 ENVIRONMENTAL SOUND CLASSIFICATION

Like for the ViT model, we train an Audio Spectrogram Transformer version of LoRA-Ensemble by
modifying the attention layers with different sets of LoRA weights. That ensemble is then compared
to a single instance of AST with and without LoRA, to an Explicit Ensemble of AST-models, and
to an MC Dropout variant of AST, similar to Li et al. (2023). For ESC-50 a LoRA rank of 16
worked best, presumably due to the larger domain gap between (image-based) pre-training and the
actual audio classification task. The experimental evaluation in Gong et al. (2021) employs the
same performance metrics as before, but a slightly different evaluation protocol. Model training
(and evaluation) is done in a 5-fold cross-validation setting, where the epoch with the best average
accuracy across all five folds is chosen as the final model. The performance metrics given below are
calculated by taking the predictions of all five folds at the chosen epoch and evaluating accuracy and
calibration metrics jointly. While the accuracy calculated this way is equivalent to the average of
all five folds, others are not, so this method results in a more realistic calculation of the calibration
metrics.

The results are summarized in Tab. 6. On this dataset LoRA-Ensemble does not significantly out-
perform the Explicit Ensemble, but still matches its performance with much lower computational
demands, see Appendix S. Accuracy is insignificantly lower, whereas calibration is slightly better
in terms of ECE. We note that, remarkably, the weights used in the transformer modules and for
creating patch embeddings were pre-trained on images rather than audio streams.

A.3 CIFAR-100

Increasing the ensemble size of LoRA-Ensemble on CIFAR-100 improves classification accuracy
but reduces calibration, as illustrated in Fig. 4. The reliability diagram in Fig. 5 highlights this be-
havior: networks with LoRA on CIFAR-100 are generally under-confident, with accuracy exceeding

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Model performance on the ESC-50 dataset for the compared methods. Ensembles have 8
members due to memory limitations. Best score for each metric in bold, second-best underlined.

Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)
Single Network 89.6± 0.7 89.5± 0.7 0.039± 0.004 0.410± 0.020 0.164± 0.009
Single Net w/ LoRA 88.0± 0.3 87.8± 0.3 0.043± 0.004 0.461± 0.019 0.186± 0.005
MC Dropout 89.4± 0.3 89.3± 0.4 0.087± 0.005 0.553± 0.012 0.176± 0.005
Explicit Ensemble 91.3 ± 0.2 91.2 ± 0.3 0.027± 0.004 0.322 ± 0.004 0.133 ± 0.001

LoRA-Ensemble 91.1± 0.2 90.8± 0.2 0.021 ± 0.003 0.328± 0.004 0.138± 0.001

predicted confidence. As observed by Rahaman & Thiery (2020), ensembling under-confident mod-
els can exacerbate this discrepancy, leading to poorer calibration metrics.

2 4 6 8 10 12 14 16
Number of Members

75

76

77

78

79

80

81

82

Ac
cu

ra
cy

Accuracy

LoRA-Ensemble
Explicit Ensemble
MC Dropout
Snapshot Ensemble

2 4 6 8 10 12 14 16
Number of Members

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error
LoRA-Ensemble
Explicit Ensemble
MC Dropout
Snapshot Ensemble

Figure 4: Accuracy and Expected Calibration Error on CIFAR-100, with different ensemble sizes.

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
am

pl
es

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reliability Diagram
Avg. Confidence 89.7%
Avg. Accuracy 80.0%
Accuracy
Gap
% of samples in bin

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
am

pl
es

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reliability Diagram
Avg. Confidence 79.1%
Avg. Accuracy 82.6%
Accuracy
Gap
% of samples in bin

Figure 5: Reliability diagrams for Explicit Ensemble (left) and LoRA-Ensemble (right) with 16
members, on CIFAR-100.

A.4 HAM10000 LESION CLASSIFICATION

Classification accuracy and ECE for HAM10000 dataset are both graphed against ensemble size
in Fig. 6. Again, LoRA-Ensemble outperforms all baselines for larger ensembles. In Fig. 7 the
reliability diagrams for LoRA-Ensemble and an Explicit Ensemble with 16 members each on the
HAM10000 dataset are shown. Here, the models are overconfident, further supporting our reasoning
regarding the surprising behaviour of calibration with growing ensemble size in the case of CIFAR-
100.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12 14 16
Number of Members

82

83

84

85

86

87

88

Ac
cu

ra
cy

Accuracy

LoRA-Ensemble
Explicit Ensemble
MC Dropout
Snapshot Ensemble

2 4 6 8 10 12 14 16
Number of Members

0.04

0.06

0.08

0.10

0.12

0.14

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error
LoRA-Ensemble
Explicit Ensemble
MC Dropout
Snapshot Ensemble

Figure 6: Accuracy and Expected Calibration Error on HAM10000, with different ensemble sizes.

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
am

pl
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reliability Diagram
Avg. Confidence 96.2%
Avg. Accuracy 85.9%
Accuracy
Gap
% of samples in bin

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
am

pl
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reliability Diagram
Avg. Confidence 91.5%
Avg. Accuracy 88.1%
Accuracy
Gap
% of samples in bin

Figure 7: Reliability diagrams for Explicit Ensemble (left) and LoRA-Ensemble (right) with 16
members, on HAM10000.

A.5 COMPARISON WITH A SINGLE, HIGH-RANK LORA NETWORK

We compare the proposed LoRA-Ensemble method with an additional baseline: a single high-rank
LoRA model configured to have the same total number of trainable LoRA parameters as the LoRA-
Ensemble. This evaluation is conducted on the CIFAR-100 classification task to examine the relative
effectiveness of ensembling versus increasing parameter capacity within a single model.

Notably, as shown in Tab. 7, the high-rank LoRA model underperforms compared to the low-rank
LoRA model. This result indicates that the performance gains of the LoRA-Ensemble are not solely
due to an increased number of trainable parameters but are instead attributable to the ensembling
approach.

A.6 INATURALIST 2017 LARGE-SCALE FINE-GRAINED IMAGE CLASSIFICATION

In Fig. 8, reliability diagrams for the iNat2017 dataset are shown, once for LoRA-Ensemble and
once for an Explicit Ensemble, both with 4 members. One can clearly see the over-confidence of

Table 7: Model performance on the CIFAR-100 dataset for the compared methods. Ensembles have
16 members. Best score for each metric in bold, second-best underlined.

Method Rank Trainable params. Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)

Single Net w/ LoRA 8 666’724 79.6 ± 0.2 79.4 ± 0.2 0.014 ± 0.003 0.671 ± 0.005 0.286 ± 0.003
Single Net w/ LoRA 128 9’514’084 77.0 ± 0.1 77.0 ± 0.1 0.080 ± 0.001 0.867 ± 0.007 0.332 ± 0.002

LoRA-Ensemble 8 10’667’584 82.5 ± 0.1 82.5 ± 0.1 0.035 ± 0.001 0.587 ± 0.001 0.253 ± 0.000

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the Explicit model, and the much improved uncertainty calibration of LoRA-Ensemble at almost the
same accuracy (49.6% vs. 49.3%, c.f. Tab. 3).

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
am

pl
es

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

Reliability Diagram
Avg. Confidence 69.3%
Avg. Accuracy 48.7%
Accuracy
Gap
% of samples in bin

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
am

pl
es

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reliability Diagram
Avg. Confidence 53.9%
Avg. Accuracy 49.1%
Accuracy
Gap
% of samples in bin

Figure 8: Reliability diagrams for Explicit Ensemble (left) and LoRA-Ensemble (right) with 4 mem-
bers, on INat2017.

A.7 SST-2 LANGUAGE MODELING FOR SENTIMENT CLASSIFICATION

To further illustrate the generality of our method, we extend the evaluation to also include language
processing (NLP). Indeed, we find that LoRA-Ensemble also handles this very different modality
and estimates well-calibrated uncertainties for language data.

We chose the Stanford Sentiment Treebank 2 (SST-2) dataset Socher et al. (2013) for the experiment,
a widely used binary sentiment classification benchmark, and part of the GLUE benchmark suite
Wang et al. (2018). The model we use is the uncased BERT base model, which we fine-tune for
SST-2.

Tab. 8 presents the performance on the SST-2 validation set. Among the methods, the LoRA-
Ensemble shows strong overall performance: it achieves superior calibration in terms of negative
log-likelihood (NLL), second-best ECE after Bayes-LoRA (with only a negligible difference), and
outperforms all baselines including the Explicit Ensemble. The Explicit Ensemble holds only a
marginal advantage of 0.5 percentage points in accuracy. In contrast, Monte Carlo Dropout im-
proves calibration compared to single models but suffers from a substantial loss in accuracy, a pat-
tern consistent with our other experiments and aligned with findings reported in the literature Li
et al. (2023). A single LoRA-augmented model shows better calibration than a single model, but
lags in accuracy. Bayes-LoRA achieves competitive uncertainty calibration, obtaining the best ECE,
but its NLL, Brier score, and accuracy are worse than those of both the Explicit Ensemble and the
LoRA-Ensemble, and its accuracy is even lower than a single model, reflecting a trade-off where
improved calibration comes at the expense of predictive performance. Refer to Appendix W for
more details and discussion about Bayes-LoRA.

Table 8: Performance on the SST-2 validation dataset, evaluated using five different random seeds
per model. Ensembles have 8 members. Best score for each metric in bold, second-best underlined.

Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)

Single Network 92.5± 0.2 92.5± 0.2 0.064± 0.003 0.345± 0.012 0.136± 0.003
Single Net w/ LoRA 91.6± 0.5 91.6± 0.5 0.059± 0.005 0.292± 0.016 0.148± 0.008
MC Dropout 84.9± 1.2 84.9± 1.3 0.061± 0.004 0.364± 0.020 0.223± 0.015
Bayes-LoRA 90.7± 0.3 90.7± 0.3 0.036 ± 0.003 0.247± 0.005 0.139± 0.003
Explicit Ensemble 93.2 ± 0.2 93.2 ± 0.2 0.047± 0.002 0.234± 0.004 0.112 ± 0.003

LoRA-Ensemble 92.7± 0.2 92.7± 0.2 0.038± 0.003 0.208 ± 0.007 0.114± 0.002

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.8 ROBUSTNESS TO DISTRIBUTION SHIFTS: CIFAR-10-C AND CIFAR-100-C

Despite primarily evaluating the LoRA-Ensemble on in-distribution tasks, we also assess its robust-
ness to out-of-distribution (OOD) inputs. A critical challenge arises when a model encounters data
at test time that differs from the training distribution. If the model then produces poorly calibrated
uncertainty estimates, this can lead to unsafe or unreliable predictions (Hendrycks & Dietterich,
2019).

To examine this, we evaluate our method on the CIFAR-10-C and CIFAR-100-C benchmark
datasets. These datasets apply 19 distinct corruption types at five severity levels to the original
CIFAR-10 and CIFAR-100 test sets (Hendrycks & Dietterich, 2019), introducing controlled distri-
bution shifts, similar to prior work (Ovadia et al., 2019). For this evaluation, we use pretrained
models trained on the clean datasets with minimal data augmentation (only rotations), and assess
both predictive performance and calibration.

Fig. 9 and 10 present the results. It is evident that the LoRA-Ensemble outperforms the other meth-
ods, maintaining relatively low ECE scores even under high levels of distribution shift.

Test 1 2 3 4 5
Shift Intensity

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

Accuracy

Single Network
Single Net w/ LoRA
MC Dropout
Explicit Ensemble
LoRA Ensemble

(a)

Test 1 2 3 4 5
Shift Intensity

0.00

0.05

0.10

0.15

0.20

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error
Single Network
Single Net w/ LoRA
MC Dropout
Explicit Ensemble
LoRA Ensemble

(b)

Test 1 2 3 4 5
Shift Intensity

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ne
ga

tiv
e

Lo
g

Lik
el

ih
oo

d

NLL
Single Network
Single Net w/ LoRA
MC Dropout
Explicit Ensemble
LoRA Ensemble

(c)

Test 1 2 3 4 5
Shift Intensity

0.1

0.2

0.3

0.4

0.5

Br
ie

r S
co

re

Brier Score
Single Network
Single Net w/ LoRA
MC Dropout
Explicit Ensemble
LoRA Ensemble

(d)

Figure 9: LoRA-Ensemble evaluated under varying levels of distribution shift on the CIFAR-10-C
dataset. Each ensemble consists of 16 members. ”Test” refers to the original CIFAR-10 test set,
while the corrupted sets include test images subjected to 19 different augmentations at multiple
severity levels, introducing distribution shifts.

A.9 COMPUTATIONAL COST

In addition to evaluating classification performance and calibration, we assess the computational
cost in terms of parameters, training time and inference time. The required resources are presented
in Tab. 9.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Test 1 2 3 4 5
Shift Intensity

45

50

55

60

65

70

75

80
Ac

cu
ra

cy
 (%

)

Accuracy
Single Network
Single Net w/ LoRA
MC Dropout
Explicit Ensemble
LoRA Ensemble

(a)

Test 1 2 3 4 5
Shift Intensity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error
Single Network
Single Net w/ LoRA
MC Dropout
Explicit Ensemble
LoRA Ensemble

(b)

Test 1 2 3 4 5
Shift Intensity

0.5

1.0

1.5

2.0

2.5

3.0

Ne
ga

tiv
e

Lo
g

Lik
el

ih
oo

d

NLL
Single Network
Single Net w/ LoRA
MC Dropout
Explicit Ensemble
LoRA Ensemble

(c)

Test 1 2 3 4 5
Shift Intensity

0.3

0.4

0.5

0.6

0.7

0.8

Br
ie

r S
co

re

Brier Score
Single Network
Single Net w/ LoRA
MC Dropout
Explicit Ensemble
LoRA Ensemble

(d)

Figure 10: LoRA-Ensemble evaluated under varying levels of distribution shift on the CIFAR-100-
C dataset. Each ensemble consists of 16 members. ”Test” refers to the original CIFAR-100 test
set, while the corrupted sets include test images subjected to 19 different augmentations at multiple
severity levels, introducing distribution shifts.

Table 9: Parameter counts and computation times for an Explicit Ensemble of 16 ViT models and
the corresponding LoRA-Ensemble. Training time is the average duration for one epoch on CIFAR-
100, with batch size 32. Inference time is the average duration of a forward pass, with batch size
1.

Method Parameter overhead Training time [s] Inference time [ms]
Explicit Ensemble 16× 87M 16× 139 16× 4.6
LoRA-Ensemble 1.12× 87M 1108 22.7

The total number of parameters is reported for an ensemble of 16 members, and matrices A and
B with rank 8 when using LoRA. Choosing a different rank will slightly alter the parameter count.
In many cases a lower rank may suffice, cf. Hu et al. (2021). All times were measured on a single
NVIDIA Tesla A100-80GB GPU. Training time is given as the average wall clock time per training
epoch on CIFAR-100, with 16 ensemble members. Inference time is computed as the average time
for a single forward pass for a CIFAR-100 example, with batch size 1. The forward pass for the
Explicit Ensemble processes the members sequentially1, see also Appendix L. Hence, we calculate
the average time needed for one member and multiply it by 16. It is evident that the proposed method
uses significantly fewer parameters and less memory. LoRA-Ensemble also trains faster, and speeds
up inference more than 3 times.

1Speed comparisons only make sense with the same resources. With sufficiently many GPUs any ensemble
method can be parallelized by instantiating explicit copies of different members on separate GPUs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We point out that, with our current implementation, the runtime comparisons are still indicative. It
turns out that PyTorch’s vectorized map (vmap) has a large one-time overhead that is only amortized
when using large ensembles, while small ensembles are slowed down. Practical ensemble sizes will
benefit when implemented in a framework that supports just-in-time compilation, like JAX.

B LORA-ENSEMBLE’S GENERALIZATION TO VARYING MODEL SIZES

Building upon our existing experiments with the HAM10000 dataset, we extended our analysis
to include different backbone architectures with varying numbers of parameters. Specifically, we
utilized various DeiT models pre-trained with distillation, as described by Touvron et al. (2020).
The results are presented in Table 10. Notably, the DeiT Base-32 model is the same as the ViT
Base-32 model.

In the small parameter regime (Tiny-16, Small-16), the addition of a single LoRA module did not
consistently enhance calibration compared to using a single model. This observation contrasts with
our findings in most other experiments. However, in the larger parameter regime (ViT Base-32),
incorporating even a single LoRA module significantly improved calibration. Increasing the num-
ber of ensembles in the LoRA-Ensemble not only boosted accuracy but also enhanced calibration,
enabling it to match the performance of an Explicit Ensemble in both parameter regimes.

Last but not least, as the number of parameters in the backbone architecture increased, the superi-
ority of the LoRA-Ensemble over the Explicit Ensemble in terms of both accuracy and calibration
became more pronounced. This trend indicates that as backbone size grows, the advantages of
LoRA-Ensemble become increasingly dominant.

Overall, the results demonstrate that the LoRA-Ensemble not only transfers successfully to a dif-
ferent backbone architecture (DeiT versus ViT) but also remains effective across varying parameter
regimes.

Table 10: Performance metrics on the HAM10000 dataset for different Vision Transformer archi-
tectures. Ensembles have 16 members. The top two results for each metric are highlighted: bold for
the best, underlined for the second best.

Arch. Method # Params. Accuracy (↑) F1 (↑) ECE (↓) NLL(↓) Brier (↓)

D
ei

T
Ti

ny
-1

6 Single Net

5
M

89.0± 0.3 79.0± 0.4 0.096± 0.003 0.909± 0.037 0.202± 0.005
Single Net w/ LoRA 84.5± 0.8 71.6± 1.5 0.074± 0.003 0.542± 0.017 0.237± 0.009
Explicit Ensemble 90.4 ± 0.3 81.4 ± 0.4 0.069± 0.004 0.340± 0.006 0.142 ± 0.002
LoRA-Ensemble 88.9± 0.4 80.6± 0.2 0.025 ± 0.003 0.325 ± 0.004 0.164± 0.002

D
ei

T
Sm

al
l-

16 Single Net

22
M

89.6± 0.4 79.0± 0.5 0.093± 0.003 0.876± 0.032 0.191± 0.007
Single Net w/ LoRA 86.3± 0.5 76.8± 1.0 0.100± 0.007 0.731± 0.053 0.234± 0.010
Explicit Ensemble 91.5 ± 0.1 82.4± 0.2 0.061± 0.002 0.318± 0.003 0.130 ± 0.001
LoRA-Ensemble 90.4± 0.1 82.8 ± 0.4 0.047 ± 0.002 0.292 ± 0.002 0.144± 0.001

D
ei

T
B

as
e-

32

Single Net

86
M

84.1± 0.3 71.4± 0.7 0.139± 0.004 1.138± 0.040 0.291± 0.009
Single Net w/ LoRA 83.2± 0.7 70.7± 1.3 0.085± 0.004 0.569± 0.027 0.256± 0.011
Explicit Ensemble 85.8± 0.2 74.6± 0.4 0.105± 0.002 0.536± 0.007 0.218± 0.002
LoRA-Ensemble 88.0 ± 0.2 78.3 ± 0.6 0.037 ± 0.002 0.342 ± 0.003 0.175 ± 0.002

C HYPERPARAMETER SELECTION AND SENSITIVITY ANALYSIS: LORA
RANK

The main hyper-parameter introduced by adding LoRA is the rank of the low-rank decomposition
(i.e., the common dimension of the matrices A and B). Varying that rank modulates the complexity
of the model for the learning task. We have empirically studied the relationship between rank,
accuracy, and Expected Calibration Error. Here we show results for HAM10000 and CIFAR-100
dataset.

On HAM10000 we observe a clear trade-off between accuracy and calibration, Fig. 11a. With in-
creasing rank the classification accuracy increases while the calibration deteriorates, in other words,
one can to some degree balance predictive accuracy against uncertainty calibration by choosing the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1 2 4 8 16
LoRA Rank

83

84

85

86

87

88

89

Ac
cu

ra
cy

Accuracy

1 members
2 members
4 members
8 members
16 members

1 2 4 8 16
LoRA Rank

0.02

0.04

0.06

0.08

0.10

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error

1 members
2 members
4 members
8 members
16 members

(a) HAM10000.

12 4 8 16 32
LoRA Rank

78

79

80

81

82

83

Ac
cu

ra
cy

Accuracy

1 members
2 members
4 members
8 members
16 members

12 4 8 16 32
LoRA Rank

0.01

0.02

0.03

0.04

0.05

0.06
Ex

pe
ct

ed
 C

al
ib

ra
tio

n
Er

ro
r

Expected Calibration Error
1 members
2 members
4 members
8 members
16 members

(b) CIFAR-100

Figure 11: Impact of LoRA rank on accuracy and ECE.

rank. Our focus in this work is on model calibration. We therefore generally choose the rank to
favor calibration, even at the cost of slightly lower classification accuracy.

For the CIFAR-100 dataset, our evaluation of LoRA-Ensemble shows both increased accuracy and
improved calibration with increasing rank within the studied range. These findings are illustrated in
Fig. 11b.

This observation aligns with the findings of Rahaman & Thiery (2020), as LoRA-Ensemble con-
tinues to exhibit under-confidence even at higher ranks. Increasing model complexity enhances
confidence, thereby improving calibration. However, at rank 32, the calibration of a single network
augmented with LoRA begins to deteriorate, suggesting that a critical boundary has been reached.
Beyond this point, the parameter space becomes insufficiently constrained, leading to effects similar
to those observed by Guo et al. (2017).

At higher ranks, accuracy plateaus while memory demand increases linearly with O(d) and O(k)
for A ∈ Rr×d and B ∈ Rk×r respectively, where d and k are the dimensions of the pre-trained
weight matrix W0 ∈ Rk×d. Consequently, we selected rank 8 for our CIFAR-100 experiments.

Overall, the rank serves as the primary control of LoRA’s expressive capacity. While larger values
tend to improve performance on more complex datasets (e.g., rank 64 for INaturalist), excessively
large choices (e.g., ≥ 256) suppress the distinctive dimension-learning behavior of LoRA-Ensemble,
resulting not only in diminishing returns but in some cases an actual decline in accuracy. In practice,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

we find that a small sweep over {4, 8, 16, 32, 64} on a held-out set is typically sufficient to identify
a near-optimal rank.

D WEIGHT SPACE ANALYSIS: LORA-ENSEMBLE VERSUS EXPLICIT
ENSEMBLE

Explicit LoRA Explicit LoRA

(a) cos-similarity of high-ranking singular vectors (b) weight-space cosine similarity (c) training trajectories

Figure 12: Weight space analysis of LoRA-Ensemble vs. Explicit Ensemble: The first row repre-
sents key matrices, while the second row represents query matrices.

This section expands on Sec. 4, which examines the diversity of ensemble members in function and
weight space for LoRA-Ensemble and Explicit Ensemble, showing that LoRA-Ensemble exhibits
greater diversity in both spaces. While Sec. 4 focuses on value projection matrices due to their role
in learned representations, this section examines query and key projection matrices, too. In Fig. 12,
we observe that LoRA-Ensemble achieves greater diversity in query and key projection matrices,
similar to the diversity observed in value projection matrices (Fig. 3).

Using Singular Value Decomposition (SVD), a weight matrix W ∈ Rm×n is decomposed as:

W = UΣV ⊤,

where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices representing rotational components,
and Σ ∈ Rm×n is a diagonal matrix of singular values capturing the scaling effect. Singular vectors
linked to larger singular values highlight key transformations encoded by W .

In Fig. 13, we analyze the differences in weight updates between ensemble methods by computing
the Singular Value Decomposition (SVD) of pre-trained and trained weights for ensemble mem-
bers. Singular vectors corresponding to the top singular values (16 are shown) are extracted and
compared using cosine similarity to evaluate changes in the weight structure. These similarities
are averaged across layers and ensemble members. The results highlight distinct parameter update
patterns between LoRA-Ensemble and Explicit Ensemble. LoRA-Ensemble introduces new high-
ranking singular vectors, referred to as ”intruder dimensions” Shuttleworth et al. (2024), which are
nearly orthogonal to the singular vectors of the pre-trained weights. The number of intruder di-
mensions depends on the LoRA rank. This effect is particularly pronounced in the value projection
matrices, which aligns with their strong association with learned representations. In contrast, Ex-
plicit Ensemble members tend to preserve a structure closely aligned with the spectral properties
of the pre-trained weights. This alignment is especially evident in the key and query projection
matrices, which exhibit a strong resemblance to the original spectral structure.

We further analyze the B · A matrices learned by different ensemble members. Due to their ran-
dom initialization, these matrices explore diverse directions in weight space. In Fig. 14, we plot
the largest eigenvalues of these matrices (with only four non-zero eigenvalues as the LoRA rank is
set to 4) and the similarity between the corresponding eigenvectors across ensemble members. The
similarities are averaged over layers and member pairs. The results show that while the eigenval-
ues across members follow a similar trend, the eigenvectors are largely uncorrelated. This indicates

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Explicit LoRA Singular Values

VA
L

U
E

K
E

Y
Q

U
E

RY

Figure 13: Cosine similarity of top singular vectors (and associated singular values) between initial
pre-trained and final trained weights, averaged over layers and ensemble members.

that ensemble members explore different regions of weight space while maintaining similar over-
all transformations. The shared eigenvalue trends suggest consistent semantic contributions across
members, while the dissimilar eigenvectors highlight the diversity in their learned representations.

We plot the t-SNE visualizations for different layers in Fig. 15, capturing the evolution of weights
during training. The visualizations include the initial pretrained weights, and for each ensemble
member, we plot weights from epoch 5 to epoch 65 at 5-epoch intervals. The plots reveal that
LoRA-Ensemble members exhibit broader convergence across the loss landscape in various layers,
signifying diverse learning dynamics. Conversely, Explicit Ensemble members tend to remain closer
to their initial weights, indicating reduced diversity throughout the training process.

E CORRELATION ANALYSIS BETWEEN ENSEMBLE DIVERSITY AND
PREDICTIVE PERFORMANCE

Prior work has shown that diversity across modes in weight space correlates with improved uncer-
tainty estimates (Fort et al., 2019b; Izmailov et al., 2021). To investigate this phenomenon in the
context of LoRA, we trained eight-member ensembles on the HAM10000 dataset using varying
LoRA initialization gains.

We treat the LoRA initialization gain as a simple diversity knob: larger gains induce greater spread
among the low-rank adapters. To quantify ensemble diversity, we compute the average pairwise cor-
relation between the LoRA V projection matrices of different ensemble members, averaged across

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

VALUE KEY QUERY

Figure 14: Cosine similarity of top singular vectors from B · A low-rank matrices (rank set to 4)
between LoRA-Ensemble members, averaged over layers and all member pairs (first row), along
with corresponding average singular values for different members (second row).

Figure 15: Training trajectories of ensemble members of LoRA-Ensemble and Explicit Ensemble.

all layers. The diversity score is then defined as

Diversity score = 1− average correlation.

This metric captures how dissimilar the ensemble members are in terms of their learned parameters,
with higher scores indicating less correlated (i.e., more diverse) adapters.

Tab. 11 summarizes the results. Both performance and calibration improve as diversity increases,
up to a point. Beyond a certain threshold, additional diversity provides diminishing returns and
eventually plateaus. Moreover, as shown in Fig. 14, excessively large gains degrade performance.
From a Bayesian perspective, moderate gains behave like a well-chosen prior variance, encouraging
the ensemble to explore distinct posterior modes. Excessively large gains, however, make the initial
weights too diffuse, which can cause activation saturation, unstable gradients, suboptimal conver-
gence, and ultimately higher variance and miscalibration. A sweep of gain values reveals a U-shaped

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

calibration curve: uncertainty estimates improve with increasing diversity until diversity becomes
excessive, at which point performance and calibration degrade.

Gain Diversity Score Accuracy NLL
1 0.006 0.854 0.405
2 0.017 0.856 0.393
4 0.048 0.860 0.374
8 0.117 0.877 0.354

12 0.184 0.881 0.345
20 0.304 0.882 0.345
40 0.511 0.882 0.344

Table 11: Effect of LoRA initialization gain on ensemble diversity, accuracy, and calibration (mea-
sured by NLL) on HAM10000.

F JOINT TRAINING OF BACKBONE AND LORA-ENSEMBLE LAYERS ON
INATURALIST

LoRA-Ensemble keeps the backbone weights frozen and trains only the low-rank matrices. To assess
the impact of relaxing this constraint, we evaluated the method in a setting where the full backbone
is also trainable. Results on the INat2017 dataset, see Tab. 12, show a substantial drop in both
accuracy and calibration when the entire network is trained, although performance still surpasses
that of a single model.

We hypothesize that enabling backbone training washes out the low-rank adjustments introduced by
LoRA. With a frozen backbone, each model’s unique low-rank matrices create intruder dimensions
that yield diverse feature spaces. See Appendix D for more details. Once the backbone is train-
able, those adjustments merge into the dominant spectral modes, causing all ensemble members to
collapse into the same parameter region and behave like a single network. Similar behavior was
observed for the Batch-Ensemble method, as discussed in Appendix I.

Table 12: Performance on the INat2017 dataset. ’full’ indicates that the entire network, including
the pre-trained backbone, is trainable. Ensembles consist of 4 members. Best score for each metric
in bold, second-best underlined.

Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)

Single Network 42.6 37.8 0.293 1.054 0.207

Single Net w/ LoRA 47.7 43.1 0.096 0.662 0.166
Single Net w/ LoRA (full) 42.8 38.0 0.271 0.958 0.201

LoRA-Ensemble 49.3 44.1 0.045 0.610 0.160
LoRA-Ensemble (full) 44.0 39.4 0.249 0.886 0.193

G PLACEMENT OF LORA-ENSEMBLE MODULES AND SELECTION OF
TRAINABLE WEIGHTS

Typically, LoRA is applied only to the weights in the multi-head attention module (i.e., the query,
key, value, and output projections), as demonstrated in the original LoRA paper Hu et al. (2021). We
acknowledge that, due to the modular nature of transformer architectures, LoRA layers can also be
inserted into the feedforward MLP blocks. While this alternative placement has been shown in prior
work to improve performance on certain datasets, it may also lead to reduced robustness and lower
overall performance Fomenko et al. (2024). Moreover, the projection matrices in the MLP blocks
typically have significantly higher dimensionality, often four times larger than those in the attention
layers. As a result, this placement introduces a substantial number of additional parameters, which

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

can increase memory consumption. This effect is especially pronounced when ensemble members
are executed in parallel using vectorized mapping rather than sequential execution.

Table 13 presents the results on the HAM10000 dataset. Notably, adding LoRA-Ensemble layers
to the MLP blocks leads to improved accuracy, but at the cost of poorer calibration performance.
Additionally, when the embedding layers of the Vision Transformer (ViT) are also trained alongside
the low-rank matrices for the purpose of patch feature extraction, we observe a marked drop in
classification accuracy. This performance degradation can be attributed to the substantial number
of additional parameters introduced in the early stages of the model, which are by design an order
of magnitude larger than in the subsequent LoRA layers, potentially leading to suboptimal training
dynamics.

Finally, we observe that assigning a separate classification head to each LoRA-Ensemble member
yields further performance gains. However, we also note that this design choice can be omitted in
favor of improved parameter efficiency, depending on the application constraints.

Table 13: Ablation Study. Investigates the placement of LoRA-Ensemble layers and additional
trainable components on the HAM10000 dataset. Ensembles consist of 8 members. Best score for
each metric in bold, second-best underlined.

LoRA-Ensemble Config. Extra Trainable Layers Trainable Params. Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)

Multi-head attention Cls. head 2’364’679 87.5 77.7 0.041 0.365 0.187
Multi-head attention Cls. head + tokenizer 4’724’743 84.6 73.8 0.025 0.422 0.217
Multi-head attention + MLP Cls. head 5’313’799 90.1 80.9 0.077 0.383 0.157
Multi-head attention + MLP Cls. head + tokenizer 7’673’863 87.4 77.1 0.083 0.438 0.192
Multi-head attention Full backbone 90’114’055 85.2 73.3 0.126 1.000 0.264

Multi-head attention Ensemble cls. head 2’402’360 88.0 78.0 0.036 0.347 0.179

H LORA-ENSEMBLE FOR CNNS

We extend LoRA Ensemble to convolutional neural networks (CNN) by applying it to a ResNet-18
backbone with an ensemble of four members. We mainly follow the original Batch-Ensemble Wen
et al. (2020) implementation. For detailed experimental settings, see Turkoglu et al. (2022). Table 14
reports the CIFAR-100 results. LoRA-Ensemble achieves the second-best performance among im-
plicit ensembling methods, behind only FiLM-Ensemble, but it does not match its efficacy on trans-
former architectures. As discussed in the main text and in the Appendix V, this gap stems from the
fundamentally different computational structures of transformers compared with MLPs and CNNs,
which makes direct adaptation of techniques between these domains challenging.

Table 14: Performance on the CIFAR-100 dataset for CNN architecture. Ensembles have 4 members
and Resnet-18 is used as a backbone. For implicit ensemble methods, the best score for each metric
in bold, second-best underlined.

Method Accuracy (↑) ECE (↓)

Single Network 78.0± 0.4 0.046± 0.001
Deep Ensemble 81.6± 0.3 0.041± 0.002

MC-Dropout 75.5± 0.6 0.064± 0.003
MIMO 48.0± 2.6 0.083± 0.017
Masksemble 72.5± 0.5 0.075± 0.004
FiLM-Ensemble 79.4 ± 0.2 0.038 ± 0.000
Batch-Ensemble 77.7± 0.1 0.052± 0.002
LoRA-Ensemble 78.4± 0.2 0.048± 0.001

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I BATCH-ENSEMBLE

I.1 IMPLEMENTATION

Probably the closest method to LoRA-Ensemble is Batch-Ensemble introduced in Wen et al. (2020).
Batch-Ensemble was originally developed for MLPs, but we extend it to self-attention networks as
an implicit ensemble baseline. The methodology draws inspiration from our development of LoRA-
Ensemble, as the two implementations share many similarities. The primary difference lies in the
parametrization of ensemble members. For each projection matrix (query, key, value, and output),
we define one shared full-rank trainable matrix initialized with the pre-trained weights of the base
network, along with two additional trainable vectors, r and s, which are specific to each ensemble
member. The projection matrix for ensemble member i is defined as:

Wi = Wshared ◦ risTi , (5)

where Wshared is the shared trainable matrix, and ◦ denotes element-wise multiplication. Within each
transformer block, a unique forward pass is computed for each ensemble member i:

hi = Wix, (6)

resulting in N different predictions Tθi(X) for a given input X . The final ensemble prediction is
obtained by averaging the individual predictions:

E[Y |X] =
1

N

N∑
i=1

Tθi(X). (7)

The forward pass for the Batch-Ensemble layer with shared weights is implemented as shown in
Listing 1.

Listing 1: Pytorch forward pass for Batch-Ensemble layer
1 def forward(self, x):
2 """
3 Forward pass for the Batch-Ensemble layer
4 """
5 # Step 1: Compute the ensemble member-specific weights
6 r = self.r.weight # Shape: [1, dim]
7 s = self.s.weight # Shape: [out_dim, 1]
8 W_rs = s @ r # Shape: [out_dim, dim]
9

10 # Step 2: Combine with the shared weight
11 W_combined = self.shared_w * W_rs # Element-wise multiplication
12

13 # Step 3: Compute the output for a specific ensemble member
14 out = x @ W_combined.T # x must have shape [batch_size, dim]
15

16 return out

The r and s vectors are initialized from a Gaussian distribution centered around 1, specifically
r, s ∼ N (1, σ2), where σ2 controls the variance. We empirically set σ2 = 0.02. This initialization
ensures that at the beginning of the training, the combined projection matrix for each ensemble
member remains close to the pre-trained weights of the shared matrix, preventing disruption of
learned pre-trained weights. The implementation and training details followed the LoRA-Ensmeble
approach; for details, refer to L and M.

I.2 WHY LORA-ENSEMBLE OUTPERFORMS BATCH-ENSEMBLE

Both LoRA-Ensemble and Batch-Ensemble leverage shared weights with member-specific low-rank
modifications to enable efficient ensembling. The key difference lies in their parameterization:
LoRA-Ensemble uses additive low-rank updates, while Batch-Ensemble applies element-wise mul-
tiplicative scaling. Despite the conceptual similarity between the two methods, Batch-Ensemble
performs significantly worse than LoRA-Ensemble in both accuracy and calibration, as demon-
strated in Tab. 1 and Tab. .2 This performance gap persists even when applied to non–self-attention

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

architectures such as convolutional neural networks, which were the original target application of
Batch-Ensemble, as shown in Tab. 14.

To clarify this difference, we examine the gradients of the member-specific parameters. For LoRA-
Ensemble, the layer output is:

hi = Wshared · x+BiAix,

with gradients:
∂L
∂Bi

= δ ·Ai · x, (8)

∂L
∂Ai

= δ ·Bi · x, (9)

where δ = ∂L
∂hi

.

For Batch-Ensemble, the output is:

hi = (Wshared ⊙ ris
T
i)x,

with gradients:
∂L
∂si

= δ · (Wshared ⊙ ri) · x, (10)

∂L
∂ri

= δ · (Wshared ⊙ sTi) · x. (11)

In Batch-Ensemble, the gradient updates for ri and si are directly scaled by the shared weights
Wshared, which can constrain the learning dynamics and reduce the independence of ensemble mem-
bers. This scaling introduces sensitivity to the magnitude and sparsity of Wshared, potentially limiting
the diversity of the ensemble.

We define Batch-Ensemble++ by modifying the original Batch-Ensemble algorithm, replacing the
point-wise multiplication operation with an addition operation as follows:

Wi = Wshared + ris
T
i . (12)

In this case, the r and s vectors are also initialized from a Gaussian distribution but centered around
0.

We compare the performance of Batch-Ensemble++, the original Batch-Ensemble, and LoRA-
Ensemble in Tab. 15. Batch-Ensemble++ significantly outperforms the original Batch-Ensemble in
both accuracy and uncertainty calibration. However, its performance does not reach that of LoRA-
Ensemble.

We attribute this performance gap to the following key differences between the methods:

• Limited Expressiveness: Batch-Ensemble restricts its ensemble-specific parameters to
rank-1 matrices, inherently limiting the expressive power of individual ensemble members.

• Coupled Learning Dynamics: In Batch-Ensemble, the shared pre-trained matrix Wshared
is not kept frozen. This design choice can disrupt the learned pre-trained weights and may
restrict the ability of the ensemble-specific parameters r and s to learn a sufficiently diverse
set of features. A similar effect was observed in LoRA-Ensemble when the backbone was
also updated during training; see the Appendix F for details.

• Initialization Variations: Differences in parameter initialization may also contribute to
the performance gap.

J LORA-ENSEMBLE FINE-TUNED ON THE SAME DATASET AS THE
BACKBONE MODEL

While our study explicitly focused on transfer learning setups, we also explored how LoRA-
Ensemble can be applied when the backbone is trained on the same dataset. To this end, we initial-
ized the LoRA ensemble with weights from a single network trained for 65 epochs on HAM10000,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 15: Model performance on the CIFAR-10 dataset for the compared methods. Ensembles have
4 members. Best score for each metric in bold, second-best underlined.

Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)
Single Network 92.8 92.8 0.051 0.333 0.120

Batch-Ensemble 88.5 88.5 0.046 0.345 0.171
Batch-Ensemble++ 91.7 91.7 0.033 0.260 0.128

LoRA-Ensemble 95.6 95.6 0.003 0.133 0.067

and subsequently fine-tuned it for one epoch without learning rate warmup. Fig. 16 presents the
results of fine-tuning a LoRA-Ensemble with rank 2 for a single epoch. It is evident that even in
this scenario, the LoRA-Ensemble improves both performance and calibration with minimal com-
putational overhead. We also highlight that alternative methods, such as explicit ensembling, are not
directly applicable in this context.

Table 16: LoRA-Ensemble performance when it is fine-tuned on a pre-trained dataset. The
HAM10000 dataset is used, and the ensemble consists of 8 members. The backbone is identical
to that of the Single Network, which is fine-tuned for one epoch. Best score for each metric in bold.

Method Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)
Single Network 84.1± 0.3 71.4± 0.7 0.139± 0.004 1.138± 0.040 0.291± 0.009
Single Net w/ LoRA 83.2± 0.7 70.7± 1.3 0.085± 0.004 0.569± 0.027 0.256± 0.011

LoRA-Ensemble (finetuned for 1 epoch) 84.8 72.2 0.059 0.514 0.238

K POST-HOC TEMPERATURE SCALING FOR MODEL CALIBRATION

Temperature scaling is a simple yet effective post-hoc calibration method used to improve the con-
fidence of probabilistic models Guo et al. (2017). It rescales the logits of a trained model by a scalar
parameter T > 0 (the temperature). Given logits z, the calibrated probabilities p̂i for class i are
computed as:

p̂i =
exp(zi/T)∑
j exp(zj/T)

. (13)

Here, T = 1 corresponds to no scaling, and T > 1 reduces overconfidence by softening the logits.

To assess the impact of temperature scaling on calibration, we conducted experiments on CIFAR-
100 with varying temperature values, as shown in Tab. 17. For each method, the model parameters
were fixed, and the effect of different temperatures on calibration was evaluated. We observe that
calibration can be improved across all methods, with the exception of the single network with LoRA,
which does not require temperature scaling.

As discussed in Section 3, LoRA-Ensemble is under-confident on CIFAR-100, as evidenced by the
optimal temperature being less than 1 for this method.

L IMPLEMENTATION OF LORA-ENSMEBLE

In practice, our LoRA-Ensemble is implemented by replacing the respective linear layers (Wq , Wk,
Wv , and Wo) in the pre-trained model architecture with custom LoRA modules.

As a backbone for experiments with image datasets, we employ a Vision Transformer (ViT) model
Dosovitskiy et al. (2020). The chosen architecture is the base variant with patch size 32 × 32 as
defined in Dosovitskiy et al. (2020). We load the weights from torchvision, which were trained
on ImageNet-1k Deng et al. (2009), using a variant of the training recipe from Touvron et al. (2020),
for details refer to their documentation.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 17: Model performance on the CIFAR-100 dataset with different temperature. Best score for
each metric and method in bold, second-best underlined.

Method Temp. Accuracy (↑) F1 (↑) ECE (↓) NLL (↓) Brier (↓)
Single Network 1.4 76.8 76.7 0.091 0.969 0.344
Single Network 1.6 0.061 0.928 0.334
Single Network 1.8 0.034 0.920 0.329
Single Network 2.0 0.029 0.939 0.329
Single Network 2.2 0.078 0.982 0.335

Single Net w/ LoRA 0.4 79.2 79.1 0.130 1.020 0.332
Single Net w/ LoRA 0.6 0.088 0.772 0.308
Single Net w/ LoRA 0.8 0.042 0.688 0.294
Single Net w/ LoRA 1.0 0.013 0.680 0.290
Single Net w/ LoRA 1.2 0.073 0.722 0.298

MC Dropout 0.4 76.6 76.6 0.203 1.554 0.372
MC Dropout 0.6 0.174 1.223 0.361
MC Dropout 0.8 0.111 1.114 0.344
MC Dropout 1.0 0.057 1.163 0.342
MC Dropout 1.2 0.175 1.333 0.393

Explicit Ensemble 1.0 79.8 79.9 0.100 0.744 0.285
Explicit Ensemble 1.2 0.072 0.719 0.282
Explicit Ensemble 1.4 0.041 0.718 0.281
Explicit Ensemble 1.6 0.019 0.737 0.284
Explicit Ensemble 1.8 0.046 0.777 0.290

LoRA-Ensemble 0.4 82.4 82.4 0.103 0.628 0.252
LoRA-Ensemble 0.6 0.063 0.565 0.247
LoRA-Ensemble 0.8 0.018 0.557 0.247
LoRA-Ensemble 1.0 0.034 0.587 0.253
LoRA-Ensemble 1.2 0.095 0.650 0.269

The forward pass through the backbone is parallelized by replicating the input along the batch di-
mension. In each LoRA module, the data is split into separate inputs per member and passed to the
respective member with the help of a vectorized map, which allows a parallelized forward pass even
through the LoRA modules. The outputs are then again stacked along the batch dimension. In this
way, one makes efficient use of the parallelization on GPU, while at the same time avoiding load-
ing the pre-trained backbone into memory multiple times. As a backbone for audio experiments,
we use the Audio Spectrogram Transformer (AST) backbone Gong et al. (2021). That architecture
was inspired by ViT (more specifically the data-efficient version of ViT akin to DeiT Touvron et al.
(2020)) but is designed specifically for audio spectrograms. Following Gong et al. (2021), we ini-
tialize the audio model weights by transferring and appropriately interpolating them from ImageNet
pre-training. See Appendix P and Q for details. As the AST version of LoRA-Ensemble would run
into memory limits, we introduce chunking. While the forward pass through the backbone is still
parallelized, the LoRA modules are called sequentially.2

Finally, the pre-trained model does not have the correct output dimension for our prediction tasks
(i.e., it was trained for a different number of classes). Therefore we entirely discard its last layer and
add a new one with the correct dimensions, which we train from scratch. Obviously, the weights
of that last layer are different for every ensemble member. We parallelize it in the same way as the
LoRA module described above.

2For the Explicit Ensemble the vectorization could not be used on GPU, due to a technical issue with the
ViT implementation in PyTorch.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

M TRAINING DETAILS OF LORA-ENSEMBLE

The CIFAR-10/100, HAM10000, and iNaturalist 2017 dataset experiments are based on the ViT-
Base-32 architecture Dosovitskiy et al. (2020). This model has 12 layers and uses 768-dimensional
patch embeddings, and the multi-head attention modules have 12 heads. All Vision Transformer
models for image classification are trained using the AdamW optimizer Loshchilov & Hutter (2017),
except for INat2017, which is trained with SGD using a momentum of 0.9. The base learning rate
is initially set to 0.0001 with a batch size of 32 for all experiments, except for INat2017, where a
learning rate of 0.1 is used with a batch size of 128. Training employs a learning rate warm-up
of 500 steps for all experiments, except for INat2017, which uses 2500 warm-up steps. During
the warm-up phase, the learning rate increases linearly from 0 to the base value, after which it
follows a cosine decay schedule for the remaining steps. For INat2017, an exponential learning rate
decay with a factor of 0.94 is applied every 4 epochs. During the experiments, the gradients were
calculated and then clipped not to exceed a maximum norm of 1. In the case of HAM10000, we used
a weighted cross-entropy loss that considered the estimated effective number of samples, which was
determined using a beta parameter of 0.9991 Cui et al. (2019). Uniform class weights were used for
all other datasets. The maximum number of training epochs varies depending on the dataset. For
CIFAR-10/100, the model is trained for 16 epochs (just over 25,000 steps), while for HAM10000
and INat2017, it is trained for 65 and 64 epochs, respectively. Overall, the hyperparameters used in
this work were loosely based on Conrad (2023). The models were trained using pre-trained weights
from torchvision 0.17.1 on an NVIDIA Tesla A100 graphics card. Moreover, the LoRA
models are configured with a rank of 8 for CIFAR-10/100, 4 for HAM10000, and 64 for INat2017.
For Monte Carlo Dropout the dropout rate was empirically set to be 0.2. Refer to Appendix T for
details.

The settings used for the ESC-50 dataset training are similar to those used in Gong et al. (2021).
However, we used a batch size of 1 instead of 48 to enable training on a single GPU. The base
learning rate is set to 0.00001 for the Explicit Ensemble as well as MC Dropout experiments and
0.00005 for LoRA-Ensemble. These learning rates are lower than the ones used in Gong et al.
(2021), which is due to the smaller batch size. Refer to the Appendix R for more details. The LoRA
models were implemented with a rank of 16. The dropout rate for MC dropout was kept at 0.2.

For language experiments on the SST-2 dataset Socher et al. (2013) we used the BERT base uncased
model Devlin et al. (2019), loaded via the HuggingFace Transformers library Wolf et al. (2020).
Training utilizes the AdamW optimizer Loshchilov & Hutter (2017) with β1 = 0.9 and β2 =
0.999, a linearly decaying learning rate over three epochs, and a batch size of 16. These settings
were informed by prior work that used BERT on SST2 Chhablani (2023). We conduct a separate
hyperparameter tuning for each method and select the learning rate from the candidate set {2 ×
10−6, 7 × 10−6, 9 × 10−6, 2 × 10−5, 3 × 10−5, 5 × 10−5, 7 × 10−5} that yields the highest
accuracy. For MC Dropout, we used a dropout rate of 0.2. For all LoRA-based models we set the
rank to 64 and use Xavier uniform initialization Glorot & Bengio (2010) for the LoRA layers, with
a gain of 10.

As Fort et al. (2019a) have shown, varying initializations of the weights are most important to
getting diverse ensemble members. For this reason, various initialization methods and corresponding
parameters were tried, with a Xavier uniform initialization Glorot & Bengio (2010) with gain 10,
giving the best combination of accuracy and calibration. For INat2017, a gain value of 1 is used. For
more information, refer to Appendix N. This setting is kept for models across all datasets, including
the one with an AST backbone.

For the same reason, we investigated whether adding noise to the pre-trained parameters of an Ex-
plicit Ensemble increases its performance through a higher diversity of members. However, the
results did not show any additional benefits beyond what the randomly initialized last layer already
provided, hence we did not use that option. For more details, refer to Appendix O.

N INITIALIZATION OF LORA-ENSEMBLE PARAMETERS

Randomness in initialization is a key driver of diversity among ensemble members Fort et al.
(2019a). Therefore, finding the right balance between diversity and overly disrupting parameters
is crucial. Hu et al. (2021) propose using a random Gaussian initialization for A while setting B to

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

zero. This approach results in ∆W = BA being zero at the start of training. In our experiments,
we adopt this pattern by always initializing B to zero while varying the parameters and methods
for initializing A. Following the method outlined by Hu et al. (2021), our initial experiments con-
centrated on the Gaussian initialization of A, with a mean µ = 0 and varying standard deviations.
Additionally, we tested the Xavier uniform initialization Glorot & Bengio (2010) using different
values for the gain. All tests were conducted on the CIFAR-100 dataset and subsequently applied to
other experiments. We compared results in terms of accuracy and Expected Calibration Error.

Table 18: Accuracy and Expected Calibration Error for different initialization methods and varying
distribution parameters for LoRA-Ensemble.

Init. Type Std. / Gain Accuracy (↑) ECE (↓)

Gaussian

0.02 81.2 0.041
0.05 81.4 0.037
0.1 81.7 0.035
0.2 82.1 0.034
0.5 82.6 0.036
1 82.5 0.039
2 81.7 0.046

Xavier Uniform

1 81.5 0.039
5 82.2 0.034
10 82.4 0.034
15 82.6 0.037
20 82.4 0.038
30 82.2 0.043

In Tab. 18, the results are quantitatively presented. It is immediately evident that both techniques
and all tested parameters perform similarly. While more specialized models may surpass our results
in terms of accuracy, our primary focus is on calibration, with the goal of maintaining compara-
ble predictive performance. Visual inspection of the results in Fig. 16 confirms the high similarity
among all results. Choosing a small calibration error while maintaining high accuracy as a decision
criterion, both Gaussian initialization with a standard deviation of 0.5 and Xavier uniform initializa-
tion with a gain of 10 or 15 are viable candidates. Since a gain of 10 combines high accuracy with
the lowest Expected Calibration Error, we select Xavier uniform initialization with a gain of 10 for
our experiments.

O INITIALIZATION OF EXPLICIT ENSEMBLE PARAMETERS

A pre-trained Vision Transformer model is the backbone for our computer vision experiments. Cor-
respondingly, the parameters of all members in an Explicit Ensemble are initialized to the same val-
ues across members. Initialization is a primary driver of diversity in ensemble members Fort et al.
(2019a). Hence, it is crucial to study the effect of noise in the parameter initialization on the cali-
bration of the resulting ensemble. In the case of pre-trained model weights not having been trained
on a dataset with the same number of classes, the last layer of all models is replaced completely.
This means that regardless of the ensemble technique used, the weights of the last layer, which is
responsible for classification, will vary across members. This variation in the weights of the classifi-
cation layer is expected to contribute significantly to the diversity of the members. Nonetheless, we
studied the impact of adding noise to the parameters of an Explicit Ensemble. This was done using
the following formula:

Wnew = W + α · dW , (14)
where dW ∼ N (0, σW). Here α is a scale factor to control the amount of noise and σW is the
standard deviation of the parameters within a weight matrix. This was applied to all weight matrices
separately.

It is expected that the initial layers of a neural network will learn basic features, while the later layers
will include dataset-specific properties. Therefore, it is assumed that adding noise to the later layers
would increase diversity while maintaining pre-training. However, adding noise to the earlier layers

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0.02 0.05 0.1 0.2 0.5 1 2
Standard deviation

78

79

80

81

82

Ac
cu

ra
cy

Accuracy

1 members
2 members
4 members
8 members
16 members

0.02 0.05 0.1 0.2 0.5 1 2
Standard deviation

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error

1 members
2 members
4 members
8 members
16 members

(a) Gaussian initialization with varying standard deviation.

1 5 10 15 20 30
Gain

78

79

80

81

82

Ac
cu

ra
cy

Accuracy

1 members
2 members
4 members
8 members
16 members

1 5 10 15 20 30
Gain

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Ex

pe
ct

ed
 C

al
ib

ra
tio

n
Er

ro
r

Expected Calibration Error

1 members
2 members
4 members
8 members
16 members

(b) Xavier uniform initialization with varying gain

Figure 16: Accuracy and Expected Calibration Error for different initialization methods and varying
distribution parameters across different ensemble sizes for LoRA-Ensemble.

might disrupt pre-training more significantly, especially with smaller datasets, as these parameters
may not converge to meaningful values again. To address this, an experiment was set up where noise
was added only to the last encoder layers of the model, increasing the number of affected encoder
layers gradually. Additionally, several different noise scales α were tried, ranging from 1 to 0.0001.
In the presented experiment, the last classification layer is initialized using PyTorch’s default method
for linear layers. At the time of writing it is as follows:

Winit = Unif

(
−
√
5 ·

√
3

fan in
,
√
5 ·

√
3

fan in

)
(15)

Binit = Unif

(
−
√

1

fan in
,

√
1

fan in

)
. (16)

Here W specifies the weight matrix and B is the bias. Experiments are conducted on the CIFAR-100
dataset.

O.1 RESULTS

The most important metrics for this section are accuracy and Expected Calibration Error. The results
for adding noise to the last layer up to the last five layers are summarized in Fig. 17. Fig. 17a depicts
the results for a single model, while Fig. 17b shows the results for an ensemble of 16 members.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

It is evident that none of the experiments surpass the baseline of not using any additional noise
beyond the random initialization of the last classification layer. After the last five layers, the results
become uninteresting, as they do not vary significantly from those shown in the plots. Therefore, the
presentation is truncated at five layers. Based on the presented results, no additional noise is injected
into the Explicit Ensemble, and only the last layer initialization is varied.

10 3 10 2 10 1 100

Noise level

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Accuracy

Noise in last layer only
Noise in last 2 layers
Noise in last 3 layers
Noise in last 4 layers
Noise in last 5 layers
Baseline (no noise)

10 3 10 2 10 1 100

Noise level

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error
Noise in last layer only
Noise in last 2 layers
Noise in last 3 layers
Noise in last 4 layers
Noise in last 5 layers
Baseline (no noise)

(a) Single model

10 3 10 2 10 1 100

Noise level

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Ac
cu

ra
cy

Accuracy

Noise in last layer only
Noise in last 2 layers
Noise in last 3 layers
Noise in last 4 layers
Noise in last 5 layers
Baseline (no noise)

10 3 10 2 10 1 100

Noise level

0.08

0.10

0.12

0.14

0.16

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error
Noise in last layer only
Noise in last 2 layers
Noise in last 3 layers
Noise in last 4 layers
Noise in last 5 layers
Baseline (no noise)

(b) 16 ensemble members

Figure 17: Accuracy and Expected Calibration Error for different noise levels across varying num-
bers of layers for the Explicit Ensemble. The baseline with no noise is indicated by a dashed black
line.

P AST IMPLEMENTATION

A different backbone is used for the experiment on the audio dataset. Specifically, we use the
Audio Spectrogram Transformer (AST) following the implementation of Gong et al. (2021), with
slight modifications to fit our general architecture. Appendix Q demonstrates the equivalence of
our implementation. In their experiments, Gong et al. (2021) used two different types of pre-trained
weights: one pre-trained on a large image dataset and the other on an audio dataset. For our research,
we transfer the weights of a vision transformer model known as DeiT Touvron et al. (2020), which
has been pre-trained on the ImageNet dataset Deng et al. (2009), to the original AST architecture
by Gong et al. (2021). The model has 12 layers, uses 768-dimensional patch embeddings, and the
multi-head attention modules have 12 heads. This task is considered more challenging than using
models pre-trained on audio datasets.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Q VALIDATION OF AST IMPLEMENTATION

The Audio Spectrogram Transformer (AST) model provided by Gong et al. (2021) was copied with-
out any changes. However, the training and evaluation pipeline was adapted to fit our architecture.
Correspondingly, it was essential to validate the equivalence of our implementation by training a
single AST on the ESC-50 dataset. The results of our model should closely match those provided in
Gong et al. (2021).

They offer two sets of pre-trained weights: one where the weights of a Vision Transformer pre-
trained on ImageNet Deng et al. (2009) are transferred to AST, and another where the AST was
pre-trained on AudioSet Gemmeke et al. (2017). To verify our implementation, we ran it using the
settings provided by Gong et al. (2021) and compared the results, which are summarized in Tab. 19.
The results for both pre-training modes fall within the uncertainty range provided by Gong et al.
(2021). This suggests that our pipeline yields comparable outcomes, validating our implementation
for continued use.

Table 19: Comparison of the results obtained for the AST as given in Gong et al. (2021) and those
obtained by our implementation. AST-S refers to the AST pre-trained on ImageNet, and AST-P
refers to the AudioSet pre-training. Both results fall within the uncertainty range provided by Gong
et al. (2021).

Model Accuracy (Gong et al., 2021) Accuracy (our implementation)
AST-S 88.7± 0.7 88.0
AST-P 95.6± 0.4 95.8

R HYPER-PARAMETER TUNING FOR AST EXPERIMENT

The original training settings of the AST-S model in Gong et al. (2021) utilize a batch size of 48.
However, due to the memory constraint of single GPU training on an NVIDIA Tesla A100 with 80
GB memory, replicating a batch size of 48 as in the original publication was infeasible for training
an Explicit AST-S Ensemble with 8 members. Consequently, we perform minimal hyper-parameter
tuning by employing a batch size of 1 for both the explicit AST-S and the LoRA AST-S model,
exploring various learning rates. Apart from batch size and learning rate adjustments, all other
settings remain consistent with Gong et al. (2021).

The hyper-parameter tuning results for the explicit model using a batch size of 1, as shown in Tab. 20,
demonstrate performance similar to the original implementation with a batch size of 48, allowing
for a fair comparison with our method Gong et al. (2021). Additionally, Tab. 21 showcases the
outcomes of tuning the learning rate for our LoRA AST-S model.

Table 20: Single model 5-Fold cross-validation results of AST-S on ESC-50 sound dataset with
different learning rates and batch size 1. The model settings selected based on accuracy for the
experiments are highlighted.

Model Learning rate Accuracy (↑) ECE (↓)
AST-S 0.00001 88.2 0.0553
AST-S 0.00005 81.7 0.0933

S COMPUTATIONAL COST FOR AST MODELS

Similarly to the way we did for the Vision Transformer models, we estimate the required resources
for AST models. The resource needs are presented in Tab. 22. The number of parameters is reported
for an ensemble of 8 members, with the A and B matrices in models using LoRA having a rank of
16. Training and inference times were measured on a single NVIDIA Tesla A100-80GB GPU, with
a batch size of 1. Training time is given as the average wall clock time per training epoch while

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 21: Single model 5-Fold cross-validation results for our LoRA AST-S implementation on
ESC-50 sound dataset with different learning rates and batch size 1. The model settings selected
based on accuracy for the experiments are highlighted.

Model Learning rate Accuracy (↑) ECE (↓)
LoRA AST-S 0.00001 85.6 0.0447
LoRA AST-S 0.00005 87.9 0.0487
LoRA AST-S 0.0001 84.7 0.0501
LoRA AST-S 0.0005 24.1 0.0291
LoRA AST-S 0.001 11.8 0.0295

Table 22: Parameter counts and computation times for an Explicit Ensemble of 8 AST models and
the corresponding LoRA-Ensemble. Training time is the average duration for one epoch on ESC-50,
with batch size 1. Inference time is the average duration of a forward pass, with batch size 1.

Method Parameter overhead Training time [s] Inference time [ms]
Explicit Ensemble 8× 87M 517 8× 7.3
LoRA-Ensemble 1.08× 87M 348 73.9

training on ESC-50, with 8 ensemble members. Inference time is reported as the average time for a
single forward pass of an ESC-50 sample with a batch size of 1.

As mentioned in Appendix L, the Explicit Ensemble processes the members sequentially, while
LoRA-Ensemble is parallelized. However, fully parallelizing the training of AST models causes
memory issues, so chunking was introduced. Thus, in LoRA-Ensemble models, the pass through
the backbone runs in parallel, while LoRA modules are called sequentially. This also explains the
significantly higher inference time compared to the results in Sec. A.9. Additionally, the one-time
delay incurred by PyTorch’s vmap function causes LoRA-Ensemble to be slightly slower at inference
time.

T HYPERPARAMETER TUNING FOR MC DROPOUT

We conducted an analysis to determine the impact of dropout probability on the accuracy and cal-
ibration of the ViT with Monte Carlo dropout. Fig. 18 displays the accuracy and ECE scores for
various dropout probabilities. The experiment is carried out on the HAM10000 dataset with 16
members. Our findings show that a dropout probability of 0.2 offers a good balance between accu-
racy and calibration.

U SNAPSHOT ENSEMBLE IMPLEMENTATION DETAILS

Snapshot Ensemble Huang et al. (2017), in its pure form, consists of training a single model with
cycling learning and taking snapshots every few epochs. This can make it hard, however, for the
model to converge to anything meaningful within the low number of epochs available for training
per snapshot. Therefore, Snapshot Ensemble was modified slightly, by first letting training run for
a number of epochs, without any cycling of the learning rate. After this burn-in period the learning
rate is at 0 and a first snapshot is taken. The remaining number of epochs is split evenly. If the
remaining number of epochs is not divisible by the desired number of ensemble members, the burn-
in period is extended until it is. For the HAM10000 dataset training is left at 65 epochs, with 20
burn-in epochs. For CIFAR-10 and CIFAR-100 using only 16 epochs would only leave 1 epoch per
cycle for bigger models. Therefore, training is extended to 30 epochs with a burn-in period of 15
epochs.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4 0.5
Dropout Probability

82.0

82.5

83.0

83.5

84.0

Ac
cu

ra
cy

Accuracy
MC Dropout

0.1 0.2 0.3 0.4 0.5
Dropout Probability

0.092

0.096

0.100

0.104

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Expected Calibration Error
MC Dropout

Figure 18: Accuracy and Expected Calibration Error for different dropout probabilities methods for
MC Dropout on HAM10000 dataset.

V IMPLICIT ENSEMBLE BASELINE CHALLENGE

Many implicit ensemble methods, such as those proposed in Wen et al. (2020); Turkoglu et al.
(2022); Durasov et al. (2020); Havasi et al. (2020), are architecture-specific and predominantly
designed for MLPs or CNNs. As a result, adapting these techniques to transformer architectures
presents significant challenges, since transformers’ computation structure is quite different than
MLPs and CNNs.

In particular, we attempted to implement FiLM-Ensemble Turkoglu et al. (2022) on a self-attention
network, given the promising results reported by its authors. However, the authors themselves noted
that applying FiLM-Ensemble to transformers is not straightforward, mainly because transform-
ers rely on LayerNorm, whereas FiLM-Ensemble was developed with BatchNorm in mind. Our
experiments confirmed that directly using BatchNorm in transformers led to notable performance
degradation. We explored several approaches to adapt LayerNorm, but the most effective results
were achieved by fixing all affine parameters for each ensemble member. This allowed for slight
initial variations to introduce randomness and diversity, while keeping the variation among mem-
bers minimal. The results, summarized in Tab. 23, show that increasing the ensemble size slightly
improved accuracy, though the Expected Calibration Error (ECE) fluctuated without consistent im-
provement. In fact, when using larger ensemble sizes, such as 8 or 16, both accuracy and calibration
worsened across all settings we tested.

Table 23: Performance of FiLM-Ensemble for Vision Transformer (ViT) on CIFAR-10. Increas-
ing the ensemble size slightly improves accuracy, but ECE fluctuates without showing consistent
improvement.

ensemble members Accuracy (↑) ECE (↓)
1 90.54 0.0286
2 91.18 0.0269
4 91.23 0.0289

W BAYESIAN LORA

Bayes-LoRA Yang et al. (2024) introduces a Bayesian approach on the LoRA adapter parameters
by fitting a Gaussian posterior around the maximum a posteriori (MAP) estimate of the fine-tuned
model. In practice, this means we first obtain a standard LoRA fine-tuned network and then apply a
Laplace approximation over its adapter weights. To make this tractable at scale, Bayes-LoRA relies
on a Kronecker-factored approximation of the Hessian, which allows efficient estimation of the

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

posterior covariance. The result is a Bayesian model that can capture uncertainty while remaining
computationally efficient compared to traditional Bayesian neural networks.

We evaluate Bayes-LoRA on the SST-2 sentiment classification task using a BERT base un-
cased Socher et al. (2013); Devlin et al. (2019) backbone. The method is applied in a post-hoc
fashion after fine-tuning. The original implementation of Yang et al. (2024) used3. For MAP train-
ing, we follow the standard LoRA setup with a learning rate of 5× 10−5, training for 3 epochs with
batch size 16. The LoRA rank is set to 64, identical to the LoRA-Ensemble. The prior variance
is chosen as 10−3, since larger values tend to degrade performance. To balance computational ef-
ficiency and uncertainty estimation, the number of posterior samples (i.e., ensemble members) is
fixed at 512. For the Kronecker-factored approximation, we use nkfac = 10.

In terms of results, Bayes-LoRA falls short of LoRA-Ensemble and Explicit Ensemble methods in
predictive performance, measured by accuracy and F1. This observation is in line with previous
findings in the literature, such as Daxberger et al. (2021). We attribute this limitation to the reliance
on a local Gaussian approximation around a single MAP solution, in contrast to the diversity gained
through sufficiently independent ensemble members. However, the main strength of Bayes-LoRA
lies in its ability to capture predictive uncertainty effectively, reaching a level comparable to both
LoRA-Ensemble and Explicit Ensemble. Detailed results can be found in Tab. 8 in Appendix A.7.

From an efficiency perspective, Bayes-LoRA requires significantly more computation at inference:
evaluating a single test example takes roughly 250 ms (512 posterior samples are used), compared
to 22.7 ms (Tab. 9) for LoRA-Ensemble (16 members are used). This overhead makes Bayes-
LoRA impractical for real-time applications but potentially valuable in settings where predictive
uncertainty is crucial and strict latency constraints are less relevant.

X DEFINITIONS OF EVALUATION METRICS

We primarily evaluate our models on accuracy and Expected Calibration Error (ECE, Guo et al.,
2017). In addition to accuracy and Expected Calibration Error, we have calculated several other
scores that have been used in the context of probabilistic deep learning. In the following section, we
present the formulations used in our implementations.

X.1 ACCURACY

The accuracy is implemented instance-wise as follows:

Acc =
1

N

N∑
i=1

|ŷi ∩ yi|
|ŷi ∪ yi|

(17)

Here yi denotes the true label of the sample i, ŷi is the predicted label of the sample i, and N means
the total number of samples.

X.2 EXPECTED CALIBRATION ERROR

The Expected Calibration Error is a widely used metric for measuring the calibration of neural net-
works. We use the definition given in Guo et al. (2017). ECE is defined as the expected difference
between accuracy and confidence across several bins. We first need to define accuracy and confi-
dence per bin Bm as follows:

Acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), (18)

Conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i. (19)

3https://github.com/MaximeRobeyns/bayesian_lora

41

https://github.com/MaximeRobeyns/bayesian_lora

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Again, yi and ŷi denote the true and predicted labels of sample i respectively, and p̂i is the predicted
confidence of sample i. With this the Expected Calibration Error is given as:

ECE =

M∑
m=1

|Bm|
n

|Acc(Bm)− Conf(Bm)| (20)

X.3 MACRO F1-SCORE

F1 =
1

C

C∑
j=1

2pjrj
pj + rj

, (21)

where rj represents the Recall of class j, defined as rj = TP
TP+FN , and pj represents the Precision

of class j, defined as pj = TP
TP+FP , and C refers to the number of classes, Here, TP , FP , and FN

denote True Positives, False Positives, and False Negatives respectively.

X.4 NEGATIVE LOG-LIKELIHOOD (NLL)

NLL = − 1

N

N∑
i=1

C∑
j=1

(yi,j log p̂i,j) = − 1

N

N∑
i=1

log p̂i, (22)

where N denotes the number of datapoints, C the number of classes, yi,j is 1 if the true label of
point i is j and 0 otherwise and p̂i,j is the predicted probability of sample i belonging to class j.

X.5 BRIER SCORE

For Brier score we take the definition by Brier (1950), which is as follows:

BS =
1

N

N∑
i=1

C∑
j=1

(p̂i,j − yi,j)
2, (23)

where N denotes the number of datapoints, C the number of classes, yi,j is 1 if the true label of
point i is j and zero otherwise and p̂i,j is the predicted probability of sample i belonging to class j.

X.6 AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE (AUROC)

The AUROC score evaluates the performance of a binary classifier by measuring its ability to dis-
tinguish between positive and negative classes, as introduced by Hanley & McNeil (1982). In our
out-of-distribution (OOD) detection experiments, the positive class corresponds to an in-distribution
sample, while the negative class corresponds to an out-of-distribution sample.

The AUROC is computed as the area under the ROC curve, which plots the true positive rate (TPR)
against the false positive rate (FPR) across various decision thresholds. The TPR and FPR are
defined as follows:

TPR =
TP

TP + FN
, (24)

FPR =
FP

FP + TN
, (25)

where TP, FP, FN, and TN represent the true positives, false positives, false negatives, and true
negatives, respectively.

The AUROC score is given by the following integral:

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

AUROC =

∫ 1

0

TPR(FPR), dFPR. (26)

A higher AUROC score indicates better classification performance, with a score of 1 representing a
perfect classifier, and a score of 0.5 indicating performance equivalent to random chance.

X.7 AREA UNDER THE PRECISION-RECALL CURVE (AUPRC)

The Area Under the Precision-Recall Curve (AUPRC) assesses the performance of a binary classifier
by measuring its ability to accurately identify positive instances, as described by Davis & Goadrich
(2006). In our out-of-distribution (OOD) detection experiments, the positive class corresponds to
in-distribution samples, while the negative class corresponds to out-of-distribution samples.

The AUPRC is calculated as the area under the Precision-Recall (PR) curve, which plots precision
against recall at various decision thresholds. Precision and recall are defined as follows:

Precision =
TP

TP + FP
, (27)

Recall =
TP

TP + FN
, (28)

where TP, FP, and FN represent true positives, false positives, and false negatives, respectively.

The AUPRC score is the integral of precision with respect to recall, expressed as:

AUPRC =

∫ 1

0

Precision(Recall) dRecall. (29)

A higher AUPRC score indicates better classifier performance in recognizing positive instances, with
a score near 1 representing a good classifier, characterized by both high recall and high precision.
This metric is especially valuable for evaluating classifiers on imbalanced datasets.

Y STATEMENT ON THE USE OF GENERATIVE AI AND DECLARATION OF
ORIGINALITY

In the preparation of this thesis, generative AI (ChatGPT version 4o) was utilized for language
corrections, including grammar and style improvements. The use of AI was limited to improv-
ing readability; it was not used to generate original content, conduct research, or contribute to the
intellectual development of the work.

43

	Introduction
	LoRA-Ensemble
	Experiments
	Enhanced Diversity in LoRA-Ensemble
	Discussion
	Related Work
	Conclusion
	Appendix
	Additional Experiments and Results
	CIFAR-10
	ESC-50 Environmental Sound Classification
	CIFAR-100
	HAM10000 Lesion Classification
	Comparison with a Single, High-rank LoRA Network
	INaturalist 2017 Large-Scale Fine-Grained Image Classification
	SST-2 Language Modeling for Sentiment Classification
	Robustness to Distribution Shifts: CIFAR-10-C and CIFAR-100-C
	Computational Cost

	LoRA-Ensemble's Generalization to Varying Model Sizes
	Hyperparameter Selection and Sensitivity Analysis: LoRA Rank
	Weight Space Analysis: LoRA-Ensemble versus Explicit Ensemble
	Correlation Analysis Between Ensemble Diversity and Predictive Performance
	Joint Training of Backbone and LoRA-Ensemble Layers on iNaturalist
	Placement of LoRA-Ensemble Modules and Selection of Trainable Weights
	LoRA-Ensemble for CNNs
	Batch-Ensemble
	Implementation
	Why LoRA-Ensemble Outperforms Batch-Ensemble

	LoRA-Ensemble Fine-Tuned on the Same Dataset as the Backbone Model
	Post-Hoc Temperature Scaling for Model Calibration
	Implementation of LoRA-Ensmeble
	Training Details of LoRA-Ensemble
	Initialization of LoRA-Ensemble Parameters
	Initialization of Explicit Ensemble Parameters
	Results

	AST Implementation
	Validation of AST Implementation
	Hyper-parameter Tuning for AST Experiment
	Computational Cost for AST Models
	Hyperparameter Tuning for MC Dropout
	Snapshot Ensemble Implementation Details
	Implicit Ensemble Baseline Challenge
	Bayesian LoRA
	Definitions of Evaluation Metrics
	Accuracy
	Expected Calibration Error
	Macro F1-score
	Negative Log-Likelihood (NLL)
	Brier score
	Area Under the Receiver Operating Characteristic Curve (AUROC)
	Area Under the Precision-Recall Curve (AUPRC)

	Statement on the Use of Generative AI and Declaration of Originality

