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Abstract
The Gromov-Wasserstein (GW) distance has gained increasing interest in the1

machine learning community in recent years, as it allows for the comparison2

of measures in different metric spaces. To overcome the limitations imposed3

by the equal mass requirements of the classical GW problem, researchers have4

begun exploring its application in unbalanced settings. However, Unbalanced GW5

(UGW) can only be regarded as a discrepancy rather than a rigorous metric/distance6

between two metric measure spaces (mm-spaces). In this paper, we propose a7

particular case of the UGW problem, termed Partial Gromov-Wasserstein (PGW).8

We establish that PGW is a well-defined metric between mm-spaces and discuss its9

theoretical properties, including the existence of a minimizer for the PGW problem10

and the relationship between PGW and GW, among others. We then propose two11

variants of the Frank-Wolfe algorithm for solving the PGW problem and show12

that they are mathematically and computationally equivalent. Moreover, based13

on our PGW metric, we introduce the analogous concept of barycenters for mm-14

spaces. Finally, we validate the effectiveness of our PGW metric and related solvers15

in applications such as shape matching, shape retrieval, and shape interpolation,16

comparing them against existing baselines.17

1 Introduction18

The classical optimal transport (OT) problem [1] seeks to match two probability measures while19

minimizing the expected transportation cost. At the heart of classical OT theory lies the principle of20

mass conservation, which aims to optimize the transfer between two probability measures, assuming21

they have the same total mass and strictly preserving it. Statistical distances that arise from OT,22

such as Wasserstein distances, have been widely applied across various machine learning domains,23

ranging from generative modeling [2, 3] to domain adaptation [4] and representation learning [5].24

Recent advancements have extended the OT problem to address certain limitations within machine25

learning applications. These advancements include: 1) facilitating the comparison of non-negative26

measures that possess different total masses via unbalanced [6] and partial OT [7], and 2) enabling27

the comparison of probability measures across distinct metric spaces through Gromov-Wasserstein28

distances [8], with applications spanning from quantum chemistry [9] to natural language processing29

[10].30

Regarding the first aspect, many applications in machine learning involve comparing non-negative31

measures (often empirical measures) with varying total amounts of mass, e.g., domain adaptation32

[11]. Moreover, OT distances (or dissimilarity measures) are often not robust against outliers and33

noise, resulting in potentially high transportation costs for outliers. Many recent publications have34

focused on variants of the OT problem that allow for comparing non-negative measures with unequal35

mass. For instance, the optimal partial transport problem [7, 12, 13, 14], Kantorovich–Rubinstein36

norm [15, 16, 17], and the Hellinger–Kantorovich distance [18, 19]. These methods fall under the37

broad category of “unbalanced optimal transport”. In this regard, we also highlight [20, 21, 22],38

which enhance OT’s robustness in the presence of outliers.39
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Regarding the second aspect, comparing probability measures across different metric spaces is40

essential in many machine learning applications, ranging from computer graphics, where shapes and41

surfaces are compared [23, 24], to graph partitioning and matching problems [25]. Source and target42

distributions often arise from varied conditions, such as different times, contexts, or measurement43

techniques, creating substantial differences in intrinsic distances among data points. The conventional44

OT framework necessitates a meaningful distance across diverse domains, a requirement that is not45

always achievable. To circumvent this issue, the Gromov-Wasserstein (GW) distances were proposed46

in [8, 24] as an adaptation of the Gromov-Hausdorff distance, which measures the discrepancy47

between two metric spaces [26, 27, 28, 29]. The GW distance [8, 30] extends OT-based distances to48

metric measure spaces (mm-spaces) up to isometries. Its invariance across isomorphic mm-spaces49

makes the GW distance particularly valuable for applications like shape comparison and matching,50

where invariance to rigid motion transformations is crucial.51

The main computational challenge of the GW metric is the non-convexity of its formulation [8]. The52

conventional computational approach relies on the Frank-Wolfe (FW) algorithm [31, 32]. Optimal53

transport (OT) computational methods [15, 33, 34, 35, 36, 37, 38, 39, 40], such as the Sinkhorn54

algorithm, can be incorporated into FW iterations, which yields the classical GW solvers [41, 42, 43].55

Given that the GW distance is limited to the comparison of probability mm-spaces, recent works56

have introduced unbalanced and partial variations [44, 45, 46]. These variations have been applied in57

diverse contexts, including partial graph matching for social network analysis [47] and the alignment58

of brain images [48]. Although solving these unbalanced variants of the GW problem yields notions59

of discrepancies between mm-spaces, their metric properties remain unclear in the literature.60

Motivated by the emerging applications of the GW problem in unbalanced settings, this paper focuses61

on developing a metric between general (not necessarily probability) mm-spaces and providing62

efficient solvers for its computation. Our proposed metric arises from formulating a variant of the GW63

problem for unbalanced contexts, rooted in the framework provided by [44], which we named the64

Partial Gromov-Wasserstein (PGW) problem. In contrast to [44], which introduces a KL-divergence65

penalty and a Sinkhorn solver, we employ a total variation penalty, demonstrate the resulting metric66

properties, and provide novel, efficient solvers for this problem. To the best of our knowledge, this67

paper presents the first metric for non-probability mm-spaces based on the GW distance.68

Contributions. Our specific contributions in this paper are:69

• GW metric in unbalanced settings. We propose the Partial Gromov-Wasserstein (PGW)70

problem and prove that it gives rise to a metric between arbitrary mm-spaces.71

• PGW solver.Analogous to the technique presented in [12], we show that the PGW problem72

can be turned into a variant of the GW problem. Based on this relation, we propose two73

mathematically equivalent, but distinct in numerical implementation, Frank-Wolfe solvers74

for the discrete PGW problem. Inspired by the results of [32], we prove that similar to the75

Frank-Wolfe solver presented in [45], our proposed solvers for the PGW problem converge76

linearly to a stationary point.77

• Numerical experiments. We demonstrate the performance of our proposed algorithms in78

terms of computation time and efficacy on a series of tasks: shape-matching with outliers79

between 2D and 3D objects, shape retrieval between 2D shapes, and shape interpolation80

using the concept of PGW barycenters. We compare the performance of our proposed81

algorithms against existing baselines for each task.82

2 Background83

In this section, we review the basics of OT theory, one of its variants in unbalanced contexts called84

Partial OT (POT), and their connection as established in [12]. We then introduce the GW distance.85

2.1 Optimal Transport and Partial Optimal Transport86

Let Ω ⊆ Rd be, for simplicity, a compact subset of Rd, and P(Ω) be the space of probability measures87

defined on the Borel σ-algebra of Ω.88

The Optimal Transport (OT) problem for µ, ν ∈ P(Ω), with transportation cost c(x, y) : Ω×Ω→89

R+ being a lower-semi continuous function, is defined as:90

OT (µ, ν) := min
γ∈Γ(µ,ν)

γ(c), where γ(c) :=

∫
Ω2

c(x, y) dγ(x, y) (1)
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and where Γ(µ, ν) denotes the set of all joint probability measures on Ω2 := Ω× Ω with marginals91

µ, ν, i.e., γ1 := π1#γ = µ, γ2 := π2#γ = ν, where π1, π2 : Ω2 → Ω are the canonical projections92

π1(x, y) := x, π2(x, y) := y. A minimizer for (1) always exists [1, 49] and when c(x, y) = ∥x−y∥p,93

for p ≥ 1, it defines a metric on P(Ω), which is referred to as the “p-Wasserstein distance”:94

W p
p (µ, ν) := min

γ∈Γ(µ,ν)

∫
Ω2

∥x− y∥pdγ(x, y). (2)

The Partial Optimal Transport (POT) problem [6, 13, 50] extends the OT problem to the set of95

Radon measuresM+(Ω), i.e., non-negative and finite measures. For λ > 0 and µ, ν ∈M+(Ω), the96

POT problem is defined as:97

POT (µ, ν;λ) := inf
γ∈M+(Ω2)

γ(c) + λ(|µ− γ1|+ |ν − γ2|), (3)

where, in general, |σ| denotes the total variation norm of a measure σ, i.e., |σ| := σ(Ω). The
constraint γ ∈M+(Ω

2) in (3) can be further restricted to γ ∈ Γ≤(µ, ν):

Γ≤(µ, ν) := {γ ∈M+(Ω
2) : γ1 ≤ µ, γ2 ≤ ν},

denoting γ1 ≤ µ if for any Borel set B ⊆ Ω, γ1(B) ≤ µ(B) (respectively, for γ2 ≤ ν) [7]. Roughly98

speaking, the linear penalization indicates that if the classical transportation cost exceeds 2λ, it is99

better to create/destroy’ mass (see [40] for further details).100

The relationship between POT and OT. By using the techniques in [12], the POT problem can be101

transferred into an OT problem, and thus, OT solvers (e.g., network simplex) can be employed to102

solve the POT problem.103

Proposition 2.1. [12, 40] Given µ, ν ∈M+(Ω), construct the following measures on Ω̂ := Ω∪{∞̂},104

for an auxiliary point ∞̂:105

µ̂ = µ+ |ν|δ∞̂ and ν̂ = ν + |µ|δ∞̂. (4)

Consider the following OT problem106

OT(µ̂, ν̂) = min
γ̂∈Γ(µ̂,ν̂)

γ̂(ĉ), where ĉ(x, y) :=

{
c(x, y)− 2λ if x, y ∈ Ω,

0 elsewhere.
(5)

Then, there exists a bijection F : Γ≤(µ, ν)→ Γ(µ̂, ν̂) given by107

F (γ) := γ + (µ− γ1)⊗ δ∞̂ + δ∞̂ ⊗ (ν − γ2) + |γ|δ∞̂,∞̂. (6)

such that γ is optimal for the POT problem (3) if and only if F (γ) is optimal for the OT problem (5).108

It is worth noting that instead of considering the same underlying space Ω for both measures µ and ν,109

the OT and POT problems can be formulated in the scenario where µ and ν are defined on different110

metric spaces X and Y , respectively. In this setting, one needs a cost function c : X × Y → R+ to111

formulate the OT and POT problems. However, in practice it is usually difficult to define reasonable112

‘distance’ or ground cost c(·, ·) between the two spaces X and Y . In particular, the p-Wasserstein113

distance cannot be adopted if µ, ν are defined on different spaces. To relax this requirement, in the114

next section, we will review the fundamentals of the Gromov-Wasserstein problem [8].115

2.2 The Gromov-Wasserstein (GW) Problem116

A metric measure space (mm-space) consists of a set X endowed with a metric structure, that is, a117

notion of distance dX between its elements, and equipped with a Borel measure µ. As in [8, Ch.118

5], we will assume that X is compact and that supp(µ) = X . Given two probability mm-spaces119

X = (X, dX , µ), Y = (Y, dY , ν), with µ ∈ P(X) and ν ∈ P(Y ), and a non-negative lower120

semi-continuous cost function L : R2 → R+ (e.g., the Euclidean distance or the KL-loss), the121

Gromov-Wasserstein (GW) matching problem is defined as:122

GWL(X,Y) := inf
γ∈Γ(µ,ν)

γ⊗2(L(dX(·, ·), dY (·, ·))), (7)

where, for brevity, we employ the notation γ⊗2 for the product measure dγ⊗2((x, y), (x′, y′)) =123

dγ(x, y)dγ(x′, y′). If L(a, b) = |a−b|p, for 1 ≤ p <∞, we denoteGWL(·, ·) simply byGW p(·, ·).124

In this case, the expression (7) defines an equivalence relation ∼ among probability mm-spaces, i.e.,125
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X ∼ Y if and only if GW p(X,Y) = 01. A minimizer of the GW problem (7) always exists, and thus,126

we can replace inf by min. Moreover, similar to OT, the above GW problem defines a distance for127

probability mm-spaces after taking the quotient under ∼. For details, we refer to [8, Ch. 5 and 10].128

3 The Partial Gromov-Wasserstein (PGW) Problem129

The Unbalanced Gromov-Wasserstein (UGW) problem for general (compact) mm-spaces X =130

(X, dX , µ),Y = (Y, dY , ν), with µ ∈M+(X), ν ∈M+(Y ), studied in [44] is defined as:131

UGWL
λ (X,Y) := inf

γ∈M+(X×Y )
γ⊗2(L(dX , dY )) + λ(Dϕ(γ

⊗2
1 ∥ µ⊗2) +Dϕ(γ

⊗2
2 ∥ ν⊗2)), (8)

where λ > 0 is a fixed linear penalization parameter, and Dϕ is a Csiszár or ϕ-divergence. The above132

formulation extends the classical GW problem (7) into the unbalanced setting (µ and ν are no longer133

necessarily probability measures but general Radon measures).134

We underline two points: First, as discussed in [44], while the above quantity allows us to ‘compare’135

the mm-spaces X and Y, its metric property is unclear. Secondly, when Dϕ is the KL divergence, a136

Sinkhorn solver has been proposed in [44]. However, a solver for general ϕ-divergences has not yet137

been proposed.138

In this paper, we will analyze the case when Dϕ is the total variation norm. Specifically, for q ≥ 1,139

we consider the following problem, which we refer to as the Partial Gromov-Wasserstein (PGW)140

problem:141

PGWL
λ,q(X,Y) := inf

γ∈M+(X×Y )
γ⊗2(L(dqX , d

q
Y )) + λ(|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |). (9)

Remark 3.1. Given γ ∈ Γ ≤ (µ, ν), the above cost functional can be rewritten as142

γ⊗2(L(dqX , d
q
Y )) + λ(|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |) = γ⊗2 (L(dqX , d

q
Y )− 2λ) + λ

(
|µ|2 + |ν|2

)︸ ︷︷ ︸
does not depend on γ

.

Proposition 3.2. Given mm-spaces X = (X, dX , µ),Y = (Y, dY , ν), the minimization problem (9)143

can be restricted to the set Γ≤(µ, ν) = {γ ∈M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν}. That is,144

PGWL
λ,q(X,Y) = inf

γ∈Γ≤(µ,ν)
γ⊗2 (L(dqX , d

q
Y )− 2λ) + λ(|µ|2 + |ν|2). (10)

For the proof, inspired by [50], we direct the reader to Appendix B.145

We notice that a similar Partial Gromov-Wasserstein problem (and its solver) has been studied [45].146

Indeed, in [45], the λ-penalization in the optimization problem (10) is avoided, but the constraint set147

is replaced by the subset of all γ ∈ Γ≤(µ, ν) such that |γ| = ρ for a fixed ρ ∈ [0,min{|µ|, |ν|}]. We148

will call this formulation the Mass-Constrained Partial Gromov-Wasserstein (MPGW) problem. In149

Appendix L, we explore the relations between PGW and MPGW, and in Section 5 and Appendices N,150

O, P, we analyze the performance of the different solvers through different experiments.151

Proposition 3.3. If L(r1, r2) = |r1 − r2|p, for p ∈ [1,∞), we use PGW p
λ,q to denote PGWL

λ,q . In152

this case, (9) and (10) admit a minimizer.153

The proof is given in Appendix C: Its idea extends results from [8] from probability mm-spaces to154

arbitrary mm-spaces.155

Next, we state one of our main results: The PGW problem gives rise to a metric between mm-spaces.156

The rigorous statement as well as its proof is given in Appendix D.157

Proposition 3.4. Let λ > 0, 1 ≤ q, p < ∞ and L(r1, r2) = |r1 − r2|p. Then (PGW p
λ,q(·, ·))1/p158

defines a metric between mm-spaces.159

Finally, for consistency, we provide the following result when the penalization tends to infinity. Its160

proof is given in Appendix E.161

Proposition 3.5. Consider probability mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), that is, |µ| =162

|ν| = 1. Assume that L is a continuous funtion. Then limλ→∞ PGWL
λ,1(X,Y) = GWL(X,Y).163

1Moreover, given two probability mm-spaces X and Y, GW (X,Y) = 0 if and only if there exists a bijective
isometry ϕ : X → Y such that ϕ#µ = ν. In particular, the GW distance is invariant under rigid transformations
(translations and rotations) of a given probability mm-space.
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4 Computation of the Partial GW Distance164

In the discrete setting, consider mm-spaces X = (X, dX ,
∑n

i=1 p
X
i δxi), Y = (Y, dY ,

∑m
j=1 q

Y
j δyj ),165

where X = {x1, . . . , xn}, Y = {y1, . . . , ym}, the weights pXi , qYj are non-negative numbers, and166

the distances dX , dY are determined by the matrices CX ∈ Rn×n, CY ∈ Rm×m defined by167

CX
i,i′ := dqX(xi, xi′) ∀i, i′ ∈ [1 : n] and CY

j,j′ := dqY (yj , yj′) ∀j, j′ ∈ [1 : m]. (11)

Let p := [qX1 , . . . , q
X
n ]⊤ and q := [qY1 , . . . , q

Y
m]⊤ denote the weight vectors corresponding to the168

given discrete measures. We view the sets of transportation plans Γ(p, q) and Γ≤(p, q) for the GW169

and PGW problems, respectively, as the subsets of n×m matrices170

Γ(p, q) := {γ ∈ Rn×m
+ : γ1m = p, γ⊤1n = q}, if |p| =

n∑
i=1

pXi = 1 =

m∑
j=1

qYj = |q|; (12)

171

Γ≤(p, q) := {γ ∈ Rn×m
+ : γ1m ≤ p, γ⊤1n ≤ q}, (13)

for any pair of non-negative vectors p ∈ Rn
+, q ∈ Rm

+ , where 1n is the vector with all ones in Rn172

(resp. 1m), and γ1m ≤ p means that component-wise the ≤ relation holds.173

Given by a non-negative function L : Rn×n × Rm×m → R+, he transportation cost M and the174

‘partial’ transportation con M̃ are represented by the n×m× n×m tensors:175

Mi,j,i′,j′ = L(CX
i,i′ , C

Y
j,j′) and M̃ :=M − 2λ :=M − 2λ1n,m,n,m, (14)

where 1n,m,n,m is the tensor with ones in all its entries. For each n×m× n×m tensor M and each
n×m matrix γ, we define tensor-matrix multiplication M ◦ γ ∈ Rn×m by

(M ◦ γ)ij =
∑
i′,j′

(Mi,j,i′,j′)γi′,j′ .

Then, the Partial GW problem in (10) can be written as176

PGWL
λ (X,Y) = min

γ∈Γ≤(p,q)
LM̃ (γ) + λ(|p|2 + |q|2), where (15)

177

LM̃ (γ) := M̃γ⊗2 :=
∑

i,j,i′,j′

M̃i,j,i′,j′γi,jγi′,j′ =
∑
ij

(M̃ ◦ γ)ijγij =: ⟨M̃ ◦ γ, γ⟩F , (16)

and ⟨·, ·⟩F stands for the Frobenius dot product. The constant term λ(|p|2 + |q|2) will be ignored in178

the rest of this paper since it does not depend on γ.179

4.1 Frank-Wolfe for the PGW Problem – Solver 1180

In this section, we discuss the Frank-Wolfe (FW) algorithm for the PGW problem (15). A second181

variant of the FW solver is provided in the Appendix G.182

As a summary, in our proposed method, we address the discrete PGW problem (15), highlighting183

that the direction-finding subproblem in the Frank-Wolfe (FW) algorithm is a POT problem for (15).184

Specifically, (15) is treated as a discrete POT problem in our Solver 1, where we apply Proposition185

2.1 to solve a discrete OT problem.186

For each iteration k, the procedure is summarized in three steps detailed below.187

The convergence analysis, detailed in Appendix K, applies the results from [32] to our context,188

showing that the FW algorithm achieves a stationary point at a rate of O(1/
√
k) for non-convex189

objectives with a Lipschitz continuous gradient in a convex and compact domain.190

Step 1. Computation of gradient and optimal direction.191

It is straightforward to verify that the gradient of the objective function (16) in (15) is given by192

∇LM̃ (γ) = 2M̃ ◦ γ. (17)

The classical method to compute M ◦ γ is the following: First, convert M into an (n×m)× (n×m)193

matrix, denoted as v(M), and convert γ into an (n ×m) × 1 vector v(γ). Then, the computation194

of M ◦ γ is equivalent to the matrix multiplication v(M)v(γ). The computational cost and the195
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Algorithm 1: Frank-Wolfe Algorithm for PGW, ver 1

Input: µ =
∑n

i=1 p
X
i δxi

, ν =
∑m

j=1 q
Y
j δyj

, γ(1)

Output: γ(final)
Compute CX , CY

for k = 1, 2, . . . do
G(k) ← 2M̃ ◦ γ(k) // Compute gradient
γ(k)

′ ← argminγ∈Γ≤(p,q)⟨G(k), γ⟩F // Solve the POT problem.
Compute α(k) ∈ [0, 1] via (18) // Line search
γ(k+1) ← (1− α(k))γ(k) + α(k)γ(k)

′
// Update γ

if convergence, break
end for
γ(final) ← γ(k)

required storage space are O(n2m2). In certain conditions, the above computation can be reduced to196

O(n2 +m2). We refer to Appendices F and H for details.197

Next, we aim to solve the following problem:198

γ(k)
′
← arg min

γ∈Γ≤(p,q)
⟨∇LM̃ (γ(k)), γ⟩F ,

which is a discrete POT problem since it is equivalent to

min
γ∈Γ≤(p,q)

⟨2M ◦ γ(k), γ⟩F + λ|γ(k)|(|p|+ |q| − 2|γ|).

The solver can be obtained by firstly converting the POT problem into an OT problem via Proposition199

2.1 and then solving the proposed OT problem.200

Step 2: Line search method.201

In this step, at the k-th iteration, we need to determine the optimal step size:

α(k) = arg min
α∈[0,1]

{LM̃ ((1− α)γ(k) + αγ(k)
′
)}.

The optimal α(k) takes the following values (see Appendix I for details):202

Let α(k) =


0 if a ≤ 0, a+ b > 0,

1 if a ≤ 0, a+ b ≤ 0,

clip(−b
2a , [0, 1]) if a > 0,

where


δγ(k) = γ(k)

′ − γ(k),
a = ⟨M̃ ◦ δγ(k), δγ(k)⟩F
b = 2⟨M̃ ◦ γ(k), δγ(k)⟩F .

, (18)

and clip(−b
2a , [0, 1]) = min{max{− b

2a , 0}, 1}.203

Step 3: Update γ(k+1) ← (1− α(k))γ(k) + α(k)γ(k)
′
.204

4.2 Numerical Implementation Details205

The initial guess, γ(1). In the GW problem, the initial guess is simply set to γ(1) = pq⊤ if there206

is no prior knowledge. In PGW, however, as µ, ν may not necessarily be probability measures207

(i.e.,
∑

i p
X
i ,
∑

j q
Y
j ̸= 1 in general), we set γ(1) = pq⊤

max(|p|,|q|) . It is straightforward to verify that208

γ(1) ∈ Γ≤(p, q) as209

γ(1)1m =
|q|p

max(|p|, |q|)
≤ p, γ(1)⊤1n =

|p|q
max(|p|, |q|)

≤ q.

Column/Row-Reduction. According to the interpretation of the penalty weight parameter in the210

Partial OT problem (e.g. see Lemma 3.2 in [40]), during the POT solving step, for each i ∈ [1 : n]211

(or j ∈ [1 : m]), if the ith row (jth column) of M̃ ◦ γ(k) contains a non-negative entry, all the mass212

of pXi (qYj ) will be destroyed (created). Thus, we can remove the corresponding row (column) to213

improve the computational efficiency.214
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5 Experiments215

In addition to the three experiments detailed here, we also perform a wall-clock time comparison216

of our proposed PGW solvers in Appendix O and a positive-unlabeled (PU) learning experiment in217

Appendix P.218

5.1 Toy Example: Shape Matching with Outliers219

We use the moon dataset and synthetic 2D/3D spherical data in this experiment. Let {xi}ni=1, {yj}nj=1220

denote the source and target point clouds. In addition, we add ηn (where η = 20%) outliers to the221

target point cloud. See Figure 1 for visualization.222

We visualize the transportation plans given by the GW [8], MPGW [45], UGW [44], and our proposed223

PGW problems. For MPGW, UGW, and PGW, we set the mass to be 1 for each point in the source224

and target point clouds. For GW, we normalize the mass of these points so that the source and target225

have the same total mass. From Figure 1, we observe that PGW and MPGW induce a one-by-one226

relation in both cases and no outlier points are matched to the source point cloud. Meanwhile, GW227

matches all of the outliers. For UGW, as it applies the Sinkhorn algorithm, we observe mass-splitting228

transportation plans in both cases. Moreover, we observe that some mass from the outliers has been229

matched, which is not desired.230

Figure 1: The set of red points comprises the source point cloud. The union of the dark blue (outliers)
and light blue points comprises the target point cloud. For UGW, MPGW, and PGW, we set the mass
for each point to be the same. For GW, we normalize the mass for the balanced mass constraint
setting.

5.2 Shape Retrieval231

Experiment setup. We now employ the PGW distance to distinguish between 2D shapes, as done232

in [51], and use GW, MPGW, and UGW as baselines for comparison. Given a series of 2D shapes,233

we represent the shapes as mm-spaces Xi = (R2, ∥ · ∥2, µi), where µi =
∑ni

k=1 α
iδxi

k
. For the GW234

method, we normalize the mass for the balanced mass constraint setting (i.e. αi = 1
ni ), and for the235

remaining methods we let αi = α for all the shapes, where α > 0 is a fixed constant. In this manner,236

we compute the pairwise distances between the shapes.237

We then use the computed distances for nearest neighbor classification. We do this by choosing a238

representative at random from each class in the dataset and then classifying each shape according to239

its nearest representative. This is repeated over 10,000 iterations, and we generate a confusion matrix240

for each distance used. Finally, using the approach given by [51, 52], we combine each distance with241

a support vector machine (SVM), applying stratified 10-fold cross validation. In each iteration of242

cross validation, we train an SVM using exp(−σD) as the kernel, where D is the matrix of pairwise243

distances (w.r.t. one of the considered distances) restricted to 9 folds, and compute the accuracy of244

the model on the remaining fold. We report the accuracy averaged over all 10 folds for each model.245

Dataset setup. We test two datasets in this experiment, which we refer to as Dataset I and Dataset II.246

We construct Dataset I by adapting the 2D shape dataset given in [51], consisting of 20 shapes in247
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Figure 2: In each row, the first figure visualizes an example shape from each class, and the second
figure visualizes the resulting pairwise distance matrices. The first row corresponds to Dataset I and
the second corresponds to Dataset II.

each of the classes bone, goblet, star, and horseshoe. For each class, we augment the dataset with an248

additional class by selecting either a subset of points from each shape of that class (rectangle/bone,249

trapezoid/goblet, disk/star) or adding additional points to each shape of that class (annulus/horseshoe).250

Hence, the final dataset consists of 160 shapes across 8 total classes. This dataset is visualized in251

Figure 6a.252

For Dataset II, we generate 20 shapes for each of the classes rectangle, house, arrow, double arrow,253

semicircle, and circle. These shapes were generated in pairs, such that each shape of class rectangle254

is a subset of the corresponding shape of class house, and similarly for arrow/double arrow and255

semicircle/circle. This dataset is visualized in Figure 6b.256

Performance analysis. We refer to Appendix N for full numerical details, parameter settings, and257

the visualization of the resulting confusion matrices. We visualize the two considered datasets and258

the resulting pairwise distance matrices in Figure 2. For the SVM experiments, GW achieves the259

highest accuracy on Dataset I, 98.13%, while the second best method is PGW, 96.25%. For Dataset260

II, PGW achieves the highest accuracy, correctly classifying 100% of the samples. The complete set261

of accuracies for all considered distances on each dataset is reported in Table 1a.262

In addition, we report the wall-clock time required to compute all pairwise distances for each distance263

in Table 1b. We observe that GW, MPGW, and PGW have similar wall-clock times across both264

experiments (30-50 seconds for Dataset I, 80-140 seconds for Dataset II), with PGW admitting265

a slightly faster runtime in both cases. Meanwhile, UGW requires almost 1500 seconds on the266

experiment with Dataset I and over 500 seconds on the experiment with Dataset II.267

5.3 Partial Gromov-Wasserstein Barycenter and Shape Interpolation268

By [41], Gromov-Wasserstein can be applied to interpolate two shapes via the concept of Gromov-269

Wasserstein Barycenters. In this paper, we introduce Partial Gromov-Wasserstein Barycenters by270

extending the GW Barycenter to the setting of PGW as follows.271

Distance Dataset I Dataset II

GW 0.9813 0.8083
MPGW 0.0813 0.0000
UGW 0.8938 0.7833
PGW (ours) 0.9625 1.0000

(a) Mean accuracy of SVM using each dis-
tance in kernel.

Distance Dataset I Dataset II

GW 49.02s 137.12s
MPGW 49.10s 93.90s
UGW 1484.49s 519.91s
PGW (ours) 35.92s 79.27s

(b) Wall-clock time comparison.
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Figure 3: In the first column, the first and second figures are the source and target point clouds in the
first experiment (η = 5%); the third and fourth figures are the source and target point clouds in the
second experiment (η = 10%).

Consider the discrete mm-spaces X1, . . . ,XK , where Xk = (Xk, ∥ · ∥Rdk ,
∑nk

i=1 p
k
i δxk

i
), with Xk =272

{xki }
nk
i=1 ⊂ Rdk . We denote Ck = [∥xki −xki′∥2]i,i′ and pk = [pk1 , . . . , p

k
nk
]. Given positive constants273

λ1, . . . , λK > 0, the PGW Barycenter is defined by:274

min
C,γk

∑
k

ξk⟨M(C,Ck) ◦ γk, γk⟩ − 2λk|γk|2 (19)

where each γk ∈ Γ≤(p,p
k). We refer to Appendix M for the solver of (19) and details.275

Experiment setup. We apply the PGW barycenter to the following problem: Given two shapes276

X = {xi}ni=1 ⊂ Rd1 and Y = {yi}mi=1 ⊂ Rd2 , modeled as mm-spaces X = (X, ∥ · ∥Rd1 ,
∑n

i=1 δxi
)277

and Y = (Y, ∥ · ∥Rd2 ,
∑m

i=1 δyi
), we wish to find interpolations between them. In addition, we278

assume Y is corrupted by noise, i.e., Y is redefined as Y = (Ỹ , ∥ · ∥Rd2 ,
∑m

i=1 δyi
+
∑mη

i=1 δỹi
)279

with Ỹ = Y ∪ {ỹi}mi=1, where η ∈ [0, 1] is the noise level and each ỹi is randomly selected from a280

particular regionR ⊂ Rd2 .281

Dataset setup. We adapt the dataset given in [41]. See Appendix M.1 for further details on the282

dataset. In this experiment, we test η = 5%, 10%. We visualize the barycenter interpolation from283

t = 0/7 to t = 7/7, where (1 − t), t are the weight of the source X and the target Y, respectively,284

in the barycenter (19). The visualization given in Figure 3 is obtained by applying SMACOF MDS285

(multidimensional scaling) of the minimizer C.286

Performance analysis. From Figure 3, we observe that in this two scenarios, the interpolation287

derived from GW is clearly disturbed by the noise data points. For example, in rows 1, 3, columns288

t = 1/7, 2/7, 3/7, we see that the point clouds reconstructed by MDS have significantly different289

width-height ratios from those of the source and target point clouds. In contrast, PGW is significantly290

less disturbed, and the interpolation is more natural. The width-height ratio of the point clouds291

generated by the PGW barycenter is consistent with that of the source/target point clouds.292

6 Summary293

In this paper, we propose the Partial Gromov-Wasserstein (PGW) problem and introduce two Frank-294

Wolfe solvers for it. As a byproduct, we provide pertinent theoretical results, including the relation295

between PGW and GW, the metric property of PGW, and the PGW barycenter. Furthermore, we296

demonstrate the efficacy of the PGW solver in solving shape-matching, shape retrieval, and shape297

interpolation tasks. For the shape retrieval experiment, we observe that due to the metric property,298

PGW and GW have similar accuracy and outperform the other methods evaluated. In the shape299

matching and point cloud interpolation experiments, we demonstrate PGW admits a more robust300

result when the data are corrupted by outliers/noisy data.301
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A Notation and Abbreviations464

• OT: Optimal Transport.465

• POT: Partial Optimal Transport.466

• GW: Gromov-Wasserstein.467

• PGW: Partial Gromov-Wasserstein.468

• FW: Frank-Wolfe.469

• MPGW: Mass-Constrained Partial Gromov-Wasserstein.470

• ∥ · ∥: Euclidean norm.471

• X2 = X ×X .472

• M+(X): set of all positive (non-negative) Randon (finite) measures defined on X .473

• P2(X): set of all probability measures defined on X , whose second moment is finite.474

• R+: set of all non-negative real numbers.475

• Rn×m: set of all n×m matrices with real coefficients.476

• Rn×m
+ (resp. Rn

+): set of all n×mmatrices (resp., n-vectors) with non-negative coefficients.477

• Rn×m×n×m: set of all n×m× n×m tensors with real coefficients.478

• 1n, 1n×m, 1n×m×n×m: vector, matrix, and tensor of all ones.479

• 1E : characteristic function of a measurable set E480

1E(z) =

{
1 if z ∈ E,
0 otherwise.

• X,Y: metric measure spaces (mm-spaces): X = (X, dX , µ), Y = (Y, dY , ν).481

• CX : given a discrete mm-space X = (X, dX , µ), where X = {x1, . . . , xn}, the symmetric482

matrix CX ∈ Rn×n is defined as CX
i,i′ = dqX(xi, x

′
i).483

• µ⊗2: product measure µ⊗ µ.484

• T#σ: T : X → Y is a measurable function and σ is a measure on X . T#σ is the push-485

forward measure of σ, i.e., its is the measure on Y such that for all Borel set A ⊂ Y ,486

T#σ(A) = σ(T−1(A)).487

• γ, γ1, γ2: γ is a joint measure defined in a product space having γ1, γ2 as its first and second488

marginals, respectively. In the discrete setting, they are viewed as matrices and vectors, i.e.,489

γ ∈ Rn×m
+ , and γ1 = γ1m ∈ Rn

+, γ2 = γ⊤1n ∈ Rm
+ .490

• π1 : X×Y → X , canonical projection mapping, with (x, y) 7→ x. Similarly, π2 : X×Y →491

Y is canonical projection mapping, with (x, y) 7→ y.492

• π1,2 : S × X × Y → X × Y , canonical projection mapping, with (s, x, y) → (x, y).493

Similarly, π0,1 maps (s, x, y) to (s, x); π0,2 maps (s, x, y) to (s, y).494

• Γ(µ, ν), where µ ∈ P2(X), ν ∈ P2(Y ) (where X,Y may not necessarily be the same set):495

it is the set of all the couplings (transportation plans) between µ and ν, i.e., Γ(µ, ν) := {γ ∈496

P2(X × Y ) : γ1 = µ, γ2 = ν}.497

• Γ(p, q): set of all the couplings between the discrete probability measures µ =
∑n

i=1 p
X
i δxi

498

and ν =
∑m

j=1 q
Y
j δyj

with weight vectors499

p = [pX1 , . . . , p
X
n ]⊤ and q = [qY1 , . . . , q

Y
m]⊤. (20)

That is, Γ(p, q) coincides with Γ(µ, ν), but it is viewed as a subset of n × m matrices500

defined in (12).501

• p, q: real numbers 1 ≤ p, q <∞.502

• p, q: vectors of weights as in (20).503

• p = [p1, . . . , pn] ≤ p′ = [p′1, . . . , p
′
n] if pj ≤ p′j for all 1 ≤ j ≤ n.504

• |p| =
∑n

i=1 pi for p = [p1, . . . , pn].505
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• c(x, y) : X × Y → R+ denotes the cost function used for classical and partial optimal506

transport problems. lower-semi continuous function.507

• OT (µ, ν): it is the classical optimal transport (OT) problem between the probability mea-508

sures µ and ν defined in (1).509

• Wp(µ, ν): it is the p-Wasserstein distance between the probability measures µ and ν defined510

in (2), for 1 ≤ p <∞.511

• POT (µ, ν;λ): the Partial Optimal Transport (OPT) problem defined in (3).512

• |µ|: total variation norm of the positive Randon (finite) measure µ defined on a measurable513

space X , i.e., |µ| = µ(X).514

• µ ≤ σ: denotes that for all Borel set B ⊆ X we have that the measures µ, σ ∈ M+(X)515

satisfy µ(B) ≤ σ(B).516

• Γ≤(µ, ν), where µ ∈M+(X), ν ∈M+(Y ): set of all “partial transportation plans”

Γ≤(µ, ν) := {γ ∈M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν}.

• Γ≤(p, q): set of all the “partial transportation plans” between the discrete probability517

measures µ =
∑n

i=1 p
X
i δxi

and ν =
∑m

j=1 q
Y
j δyj

with weight vectors p = [pX1 , . . . , p
X
n ]518

and q = [qY1 , . . . , q
Y
m]. That is, Γ≤(p, q) coincides with Γ≤(µ, ν), but it is viewed as a519

subset of n×m matrices defined in (13).520

• λ > 0: positive real number.521

• ∞̂: auxiliary point.522

• X̂ = X ∪ {∞̂}.523

• µ̂, ν̂: given in (4).524

• p̂, q̂: given in (53).525

• γ̂: given in (6).526

• ĉ(·, ·) : X̂ × Ŷ → R+: cost as in (5).527

• L : R× R→ R: cost function for the GW problems.528

• D : R× R→ R: generic distance on R used for GW problems.529

• GWL(·, ·): GW optimization problem given in (7).530

• GW p(·, ·): GW optimization problem given in (7) when L(a, b) = |a− b|p.531

• GWL
q (·, ·): general GW optimization problem for g ≥ 1 given in (33).532

• GW p
q (·, ·): general GW optimization problem for q ≥ 1 and L(a, b) = |a − b|p given in533

(34).534

• GW p
λ,q(·, ·): generalized GW problem given in (39).535

• ĜW : GW-variant problem given in (51) for the general case, and in (55) for the discrete536

setting.537

• L̂: cost given in (16) for the GW-variant problem.538

• d : X̂ × X̂ → R+ ∪ {∞}: “generalized” metric given in (50) for X̂ .539

• X ∼ Y: equivalence relation in for mm-spaces, X ∼ Y if and only if they have the same540

total mass and GW p
q (X,Y) = 0.541

• PGWL
λ,q(·, ·): partial GW optimization problem given in (9) or, equivalently, in (10).542

• PGW p
λ,q(·, ·): partial GW optimization problem given in (10) when L(a, b) = |a− b|p.543

• PGWλ(·, ·): is is the PGW problem PGW p
λ,q(·, ·) for the case when p = 2 = q.544

• µ(ϕ): given a measure µ and a function ϕ,

µ(ϕ) :=

∫
ϕ(x)dµ(x).
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• C(γ;λ, µ, ν): the transportation cost induced by transportation plan γ ∈ Γ≤(µ, ν) in the
Partial GW problem 10,

C(γ;λ, µ, ν) := γ⊗2(L(dqX , d
q
Y )) + λ(|µ|2 + |ν|2 − 2|γ|2).

• L: functional for the optimization problem PGWλ(·, ·).545

• M , M̃ , and M̂ : see (14), and (54). Notice that, (M − 2λ)i,i′,j,j′ :=Mi,i′,j,j′ − 2λ.546

• ⟨·, ·⟩F : Frobenius inner product for matrices, i.e., ⟨A,B⟩F = trace(A⊤B) =547 ∑n,m
i,j Ai,jBi,j for all A,B ∈ Rn×m.548

• M ◦ γ: product between the tensor M and the matrix γ.549

• ∇: gradient.550

• [1 : n] = {1, . . . , n}.551

• α: step size based on the line search method.552

• γ(1): initialization of the algorithm.553

• γ(k), γ(k)
′
: previous and new transportation plans before and after step 1 in the k−th554

iteration of version 1 of our proposed FW algorithm.555

• γ̂(k), γ̂(k)
′
: previous and new transportation plans before and after step 1 in the k−th556

iteration of version 2 of our proposed FW algorithm.557

• G = 2M̃ ◦ γ, Ĝ = 2M̂ ◦ γ̂: Gradient of the objective function in version 1 and version 2,558

respectively, of our proposed FW algorithm for solving the discrete version of partial GW559

problem.560

• (δγ, a, b) and (δγ̂, a, b): given in (18) and (56) for versions 1 and 2 of the algorithm,561

respectively.562

• C1-function: continuous and with continuous derivatives.563

• MPGWρ(·, ·): Mass-Constrained Partial Gromov-Wasserstein defined in (73)564

• Γρ
≤(µ, ν): set transport plans defined in (74) for the Mass-Constrained Partial Gromov-565

Wasserstein problem.566

• ΓPU,π(p, q): defined in (87).567

B Proof of Proposition 3.2568

The idea of the proof is inspired by the proof of Proposition 1 in [50].569

The goal is to verify that570

PGWL
λ,q(X,Y)

:= inf
γ∈M+(X,Y )

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

︸ ︷︷ ︸
transport GW cost

+λ
(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)︸ ︷︷ ︸

mass penalty

= inf
γ∈Γ≤(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2 + λ

(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)
. (21)

Consider γ ∈ M+(X × Y ) such that γ1 ≤ µ does not hold. Then we can write the Lebesgue
decomposition of γ1 with respect to µ:

γ1 = fµ+ µ⊥,

where f ≥ 0 is the Radon-Nikodym derivative of γ1 with respect to µ, and µ⊥, µ are mutually singular,
that is, there exist measurable setsA,B such thatA∩B = ∅,X = A∪B and µ⊥(A) = 0, µ(B) = 0.
Without loss of generality, we can assume that the support of f lies on A, since

γ1(E) =

∫
E∩A

f(x) dµ(x) + µ⊥(E ∩B) ∀E ⊆ X measurable.
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Define A1 = {x ∈ A : f(x) > 1}, A2 = {x ∈ A : f(x) ≤ 1} (both are measurable, since f is
measurable), and define µ̄ = min{f, 1}µ. Then,

µ̄ ≤ µ and µ̄ ≤ fµ ≤ fµ+ µ⊥ = γ1.

There exists a γ̄ ∈M+(X × Y ) such that γ̄1 = µ̄, γ̄ ≤ γ, and γ̄2 ≤ γ2. Indeed, we can construct γ̄
in the following way: First, let {γx}x∈X be the set of conditional measures (disintegration) such that
for every measurable (test) function ψ : X × Y → R we have∫

ψ(x, y) dγ(x, y) =

∫
X

∫
Y

ψ(x, y) dγx(y) dγ1(x).

Then, define γ̄ as

γ̄(U) :=

∫
X

∫
Y

1U (x, y) dγ
x(y) dµ̄(x) ∀U ⊆ X × Y Borel.

Then, γ̄ verifies that γ̄1 = µ̄, and since µ̄ ≤ γ1, we also have that γ̄ ≤ γ, which implies γ̄2 ≤ γ2.571

Since |γ1| = |γ2| and |γ̄1| = |γ̄2|, then we have |γ⊗2
1 − γ̄⊗2

1 | = |γ
⊗2
2 − γ̄⊗2

2 |.572

We claim that573

|µ⊗2 − γ⊗2
1 | ≥ |µ⊗2 − γ̄⊗2

1 |+ |γ
⊗2
1 − γ̄⊗2

1 |. (22)

• Left-hand side of (22): Since {A,B} is a partition of X , we first spit the left-hand side of574

(22) as575

|µ⊗2 − γ⊗2
1 | = (µ⊗2 − γ⊗2

1 )(A×A)︸ ︷︷ ︸
(I)

+(µ⊗2 − γ⊗2
1 )(A×B) + (µ⊗2 − γ⊗2

1 )(B ×A)︸ ︷︷ ︸
(II)

+ (µ⊗2 − γ⊗2
1 )(B ×B)︸ ︷︷ ︸
(III)

.

Then we have576

(III) = (µ⊗2 − γ⊗2
1 )(B ×B) = µ⊥ ⊗ µ⊥(B ×B) = |µ⊥|2,

(II) = (µ⊗2 − γ⊗2
1 )(A×B) + (µ⊗2 − γ⊗2

1 )(B ×A) = 2|µ⊥|(µ− γ1)(A).

Since γ1 = fµ in A, then γ̄1 = γ1 in A2 and γ̄1 = µ in A1, so we have577

(µ− γ1)(A) = (µ− γ1)(A1) + (µ− γ1)(A2) = (γ1 − γ̄1)(A1) + (µ− γ̄1)(A2)

= (γ1 − γ̄1)(A) + (µ− γ̄1)(A).

Thus,578

(II) = 2|µ⊥|((γ1 − γ̄1)(A) + (µ− γ̄1)(A)),

and we also get that579

(I) = (µ⊗2 − γ⊗2
1 )(A×A)

= (µ⊗2 − γ⊗2
1 )(A1 ×A1) + (µ⊗2 − γ⊗2

1 )(A2 ×A2) + (µ⊗2 − γ⊗2
1 )(A1 ×A2)

+ (µ⊗2 − γ⊗2
1 )(A2 ×A1)

= (γ⊗2
1 − γ̄⊗2

1 )(A1 ×A1) + (µ⊗2 − γ̄⊗2
1 )(A2 ×A2)+

+ |γ̄1 ⊗ µ− γ1 ⊗ γ̄1|(A1 ×A2) + |µ⊗ γ̄1 − γ̄1 ⊗ γ1|(A2 ×A1)

= (γ⊗2
1 − γ̄⊗2

1 )(A1 ×A1) + (µ⊗2 − γ̄⊗2
1 )(A2 ×A2) + 2(γ̄1 − γ1)(A1)(µ− γ̄1)(A2)

= (γ⊗2
1 − γ̄⊗2

1 )(A×A) + (µ⊗2 − γ̄⊗2
1 )(A×A) + 2(γ̄1 − γ1)(A1)(µ− γ̄1)(A2)︸ ︷︷ ︸

≥0

.

• Right-hand side of (22): First notice that580

(γ1 − γ̄1)(B) = (γ1 − γ̄1)(B) ≤ γ1(B) = |µ⊥|,
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and since γ̄1 ≤ µ and µ(B) = 0, we have581

(µ− γ̄1)(B) = 0.

Then,582

|µ⊗2 − γ̄⊗2
1 |+ |γ

⊗2
1 − γ̄⊗2

1 | =
= (µ⊗2 − γ̄⊗2

1 )(A×A) + (γ⊗2
1 − γ̄⊗2

1 )(A×A) + (µ⊗2 − γ̄⊗2
1 )(B ×B)

+ (γ⊗2
1 − γ̄⊗2

1 )(B ×B) + (µ⊗2 − γ̄⊗2
1 )(A×B) + (γ⊗2

1 − γ̄⊗2
1 )(A×B)

+ (µ⊗2 − γ̄⊗2
1 )(B ×A) + (γ⊗2

1 − γ̄⊗2
1 )(B ×A)

≤ (µ⊗2 − γ̄⊗2
1 )(A×A) + (γ⊗2

1 − γ̄⊗2
1 )(A×A)︸ ︷︷ ︸

≤(I)

+ |µ⊥|2︸ ︷︷ ︸
=(III)

+2|µ⊥|(γ1 − γ̄1)(A)︸ ︷︷ ︸
=(II)

.

Thus, (22) holds.583

We finish the proof of the proposition by noting that584

|µ⊗2 − γ̄⊗2
1 |+ |ν⊗2 − γ̄⊗2

2 | ≤ |µ⊗2 − γ⊗2
1 | − |γ

⊗2
1 − γ̄⊗2

1 |+ |ν⊗2 − γ̄⊗2
2 |

= |µ⊗2 − γ⊗2
1 | − |γ

⊗2
2 − γ̄⊗2

2 |+ |ν⊗2 − γ̄⊗2
2 |

≤ |µ⊗2 − γ⊗2
1 |+ |ν⊗2 − γ⊗2

2 |

where the first inequality follows from (22), and the second inequality holds from the fact the total585

variation norm | · | satisfies triangular inequality. Therefore γ̄ induces a smaller transport GW cost586

than γ (since γ̄ ≤ γ), and also γ̄ decreases the mass penalty in comparison that corresponding to587

γ. Thus, γ̄ is a better GW transportation plan, which satisfies γ̄1 ≤ µ. Similarly, we can further588

construct γ̄′ based on γ̄ such that γ̄′1 ≤ µ, γ̄′2 ≤ ν. Therefore, we can restrict the minimization in (9)589

fromM+(X × Y ) to Γ≤(µ, ν). Thus, the equality (21) is satisfied.590

Proof of Remark 3.1. Given γ ∈ Γ≤(µ, ν), since γ1 ≤ µ, γ2 ≤ ν, and γ1(X) = |γ1| = |γ| =591

|γ2| = γ2(Y ), we have592

|µ⊗2 − γ⊗2
1 |+ |ν⊗2 − γ⊗2

2 | = µ⊗2(X2)− γ⊗2
1 (X2) + ν⊗2(Y 2)− γ⊗2

2 (Y 2)

= |µ|2 + |ν|2 − 2|γ|2,

and so the transportation cost in partial GW problem (10) becomes593

C(γ;λ, µ, ν)

:=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ(x, y)dγ(x′, y′) + λ

(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)

=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ(x, y)dγ(x′, y′) + λ

(
|µ|2 + |ν|2 − 2|γ|2

)
=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′)− 2λ) dγ(x, y)dγ(x′, y′) + λ

(
|µ|2 + |ν|2

)︸ ︷︷ ︸
does not depend on γ

. (23)

594

C Proof of Proposition 3.3595

In this section, we discuss the minimizer of the Partial GW problem (9). Trivially, Γ≤(µ, ν) ⊆596

M+(X × Y ) and by using Proposition 3.2 it is enough to show that a minimizer for problem (10)597

exists.598

We refer the reader to [8, Chapters 5 and 10] for similar ideas.599
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C.1 Formal Statement of Proposition 3.3600

Suppose X,Y are compact sets, then exists compact set [0, β] ⊂ R, such that

d(x, x′), d(y, y′) ∈ [0, β], ∀x, x′ ∈ X, y, y′ ∈ Y
Let A = [0, βq]. Let LA2 denote the restriction of L on A2, i.e. LA2 : A2 → R with LA2(r1, r2) =601

L(r1, r2), ∀r1, r2 ∈ A. Suppose L satisfies the following: there exists 0 < K < ∞ such that for602

every r1, r′1, r2, r
′
2 ∈ A,603

|LA2(r1, r2)− LA2(r′1, r2)| ≤ K|r1 − r′1|, |LA2(r1, r2)− LA2(r1, r
′
2)| ≤ K|r2 − r′2| (24)

(i.e., LA2 is Lipschitz on each variable). Then PGWL
λ (·, ·) admits a minimizer.604

Note, the condition (24) contains the case L(r1, r2) = |r1 − r2|p as a special case:605

Lemma C.1. If L(r1, r2) = |r1 − r2|p, for 1 ≤ p <∞, then L satisfies the condition (24).606

Proof. Assume that L is defined on an interval of the form [0,M ], for some M > 0. Consider607

r1, r
′
1, r2, r

′
2 ∈ [0,M ]. If p = 1, by triangle inequality we have608

|L(r1, r2)− L(r′1, r2)| = ||r1 − r2| − |r′1 − r2|| ≤ |r1 − r′1|
and similarly,609

|L(r1, r2)− L(r1, r′2)| ≤ |r2 − r′2|.
From [8, page 473], since for 1 ≤ p < ∞, the function t 7→ tp, for t ∈ [0,M ], is Lipschitz with610

constant bounded by pMp−1, we have611

|L(r1, r2)− L(r′1, r2)| ≤ pMp−1|r1 − r′1|.
and similarly,612

|L(r1, r2)− L(r1, r′2)| ≤ pMp−1|r2 − r′2|.
613

Lemma C.2. Given q ≥ 1, consider β > 0. Then [0, β] ∋ c 7→ cq ∈ [0, βq] is a Lipschitz function.614

Proof. Given c1, c2 ∈ [0, β], we have615

|cq1 − c
q
2| ≤ qβq−1|c1 − c2| (25)

Thus, c 7→ cq is a Lipschitz function.616

C.2 Convergence Auxiliary Result617

If a sequence {γn} converges weakly to γ, we write γn w
⇀ γ. In this setting, if γn w

⇀ γ, it does not618

imply that (γn)⊗2 w
⇀ γ⊗2. Thus, the technique used in classical OT for proving the existence of a619

minimizer for the optimal transport optimization problem as a consequence of the Stone-Weierstrass620

theorem does not apply directly in the Gromov-Wasserstein context.621

Inspired by [8], we introduce the following lemma.622

Lemma C.3. Given metric space (Z, dZ), suppose ϕ : R2 → R is a Lipschitz continuous function
with respect to (Z2, d+Z ), where

d+Z ((z1, z2), (z
′
1, z

′
2)) := dZ(z1, z

′
1) + dZ(z2, z

′
2), ∀(z1, z2), (z′1, z′2) ∈ Z2.

Given γ ∈M+(Z), and a sequence {γn}n≥1 ∈M+(Z) such that converges weakly to γ,

γn
w
⇀ γ (n→∞).

Finally, consider the mapping

Z ∋ z 7→ γ(ϕ(z, ·)) :=
∫
Z

ϕ(z, z′)dγ(z′) ∈ R.

Then we have the following results:623
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(1) γn(ϕ(z, ·))→ γ(ϕ(z, ·)) uniformly (when n→∞).624

(2) (γn)⊗2(ϕ(·, ·))→ γ⊗2(ϕ(·, ·)) (when n→∞).625

(3) IfM⊂M+(Z) is compact for the weak convergence, then infγ∈M γ⊗2(ϕ(·, ·)) admits a626

minimizer.627

Proof. The main idea of the proof is similar to [8, Lemma 10.3]: we extend it from P+(Z) to628

M+(Z).629

(1) Since γn w
⇀ γ, and Z is compact, we have |γn| → |γ|. Then, given ϵ > 0, for n sufficiently630

large we have |γn| ≤ |γ|+ ϵ.631

Let us denote by ∥ϕ∥Lip the Lipschitz constant of ϕ. For any z1, z2 ∈ Z, we have:632

|γn(ϕ(z1, ·))− γn(ϕ(z2, ·))| ≤
∫
Z

|ϕ(z1, z)− ϕ(z2, z)|γn(z)

≤ max
z∈Z
|ϕ(z1, z)− ϕ(z2, z)|(|γ|+ ϵ)

≤ (|γ|+ ϵ)∥ϕ∥Lip dZ(z1, z2) = KdZ(z1, z2),

where K = (|γ|+ ϵ)∥ϕ∥Lip is a finite positive value. Note that the above inequality also633

holds if we replace γn by γ.634

Since (Z, dZ) is compact, Z =
⋃N

i=1B(zi, ϵ/K) for some z1, . . . , zN ∈ Z, where
B(zi, ϵ/3K) = {z ∈ Z : dZ(z, zi) ≤ ϵ/3K} is the closed ball centered at zi, with
radius ϵ/K. By definition of weak convergence, when n is sufficiently large,

|γn(ϕ(zi, ·))− γ(ϕ(zi, ·))| < ϵ/3, for each i ∈ [1 : N ].

Given z ∈ Z, then z ∈ B(zi) for some zi. For sufficiently large n, we have:635

|γn(ϕ(z, ·))− γ(ϕ(z, ·))|
≤ |γn(ϕ(z, ·))− γn(ϕ(zi, ·))|+ |γn(ϕ(zi, ·))− γ(ϕ(zi, ·))|+ |γ(ϕ(zi, ·))− γ(ϕ(z, ·))|
≤ Kd(z, zi) + ϵ/3 +Kd(z, zi) = ϵ/3 + ϵ/3 + ϵ/3 = ϵ. (26)

Thus we prove the first statement.636

(2) We recall that we do not have (γn)⊗2 w
⇀ γ⊗2.637

Consider an arbitrary ϵ > 0. We have,638

0 ≤ lim sup
n→∞

|(γn)⊗2(ϕ)− (γ)⊗2(ϕ)| (27)

≤ lim sup
n→∞

|(γn ⊗ γn)(ϕ)− (γ ⊗ γn)(ϕ)|︸ ︷︷ ︸
An

+ lim sup
n→∞

|(γn ⊗ γ)(ϕ)− (γ ⊗ γ)(ϕ)|︸ ︷︷ ︸
Bn

.

For the first term, when n is sufficiently large, by statement (1), we have:639

An =

∫
(γn(ϕ(z, ·))− γ(ϕ(z, ·)) dγn(z)

≤ max
z
|γn(ϕ(z, ·))− γ(ϕ(z, ·)||γn|

≤ ϵ(|γ|+ ϵ) (28)

Thus, lim supnA = limnA = 0.640

Similarly, for the second term, when n is sufficiently large, we have641

Bn :=

∫
(γn(ϕ(z, ·))− γ(ϕ(z, ·)))dγ(z) ≤ ϵ|γ|. (29)

Thus, lim supnBn = limnBn = 0.642

Therefore, from (27), (28) and (29), we obtain643

lim sup
n→∞

|(γn)⊗2(ϕ)− (γ)⊗2(ϕ)| = lim
n→∞

|(γn)⊗2(ϕ)− (γ)⊗2(ϕ)| = 0. (30)
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(3) Let γn ∈ M be a sequence such that (γn)⊗2(ϕ) (weakly) converges to infγ∈M γ⊗2(ϕ).
SinceM is compact, there exists a sub-sequence γnk

w
⇀ γ for some γ ∈ M. Then, by

statement (2), we have:

γ⊗2(ϕ) = lim
k
(γnk)⊗2(ϕ) = inf

γ∈M
γ⊗2(ϕ),

and we complete the proof.644

645

C.3 Proof of the Formal Statement for Proposition 3.3646

The proof follows the ideas of [8, Corollary 10.1].647

Define (Z, dZ) as Z := X × Y , with dZ((x, y), (x′, y′)) := dX(x, x′) + dY (y, y
′).648

We claim that the following mapping649

(X × Y )2 = Z2 → R
((x, y), (x′, y′)) 7→ ϕ((x, y), (x′, y′)) := L(dqX(x, x′), dqY (y, y

′))− 2λ

is a Lipschitz function with respect to d+Z , where L satisfies (24). Indeed, given650

((x1, y1), (x
′
1, y

′
1)), ((x2, y2), (x

′
2, y

′
2)) ∈ Z2, we have:651

|ϕ((x1, y1), (x′1, y′1))− ϕ((x2, y2), (x′2, y′2))|
= |L(dX(x1, x

′
1), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y2, y

′
2))|

≤ |L(dX(x1, x
′
1), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y1, y

′
1))|

+ |L(dX(x2, x
′
2), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y2, y

′
2))|

≤ K|dqX(x1, x
′
1)− d

q
X(x2, x

′
2)|+K|dqY (y1, y

′
1)− d

q
Y (y2, y

′
2)|

≤ K ′|dX(x1, x
′
1)− dX(x2, x

′
2)|+K ′|dY (y1, y′1)− dY (y2, y′2)| (31)

≤ K ′(dX(x1, x
′
2) + dX(x′1, x

′
2)) +K ′(dY (y1, y2) + dY (y

′
1, y

′
2)) (32)

= K ′ [((dX(x1, x2) + dY (y1, y2)) + ((dX(x′1, x
′
2) + dY (y

′
1, y

′
2))]

= K ′ [dZ((x1, y1), (x2, y2)) + dZ((x
′
1, y

′
1), (x

′
2, y

′
2))]

= K ′d+Z (((x1, y1), (x2, y2)), ((x1, y1), (x2, y2)))

where in (31), K ′ = qβq−1K; the inequality holds by lemma C.2; The inequality (32) follows from652

the triangle inequality:653

dX(x1, x
′
1)− dX(x2, x

′
2) ≤ dX(x1, x2) + dX(x2, x

′
2) + dX(x′2, x

′
1)− dX(x2, x

′
2)

= dX(x1, x2) + dX(x′1, x
′
2),

and similarly,
dX(x2, x

′
2)− dX(x1, x

′
1) ≤ dX(x1, x2) + dX(x′1, x

′
2).

LetM = Γ≤(µ, ν). From [53, Proposition B.1], we have that Γ≤(µ, ν) is a compact set with respect654

to the weak convergence topology.655

By Lemma (C.3) part (3), we have the PGW problem, which can be written as656

inf
γ∈Γ≤(µ,ν)

γ⊗2(ϕ) + λ(|µ|2 + |ν|2)

admits a solution, i.e., a minimizer γ ∈ Γ≤(µ, ν). Therefore, we end the proof of Proposition 3.3.657

D Proof of Proposition 3.4: Metric Property of Partial GW658

Let L(r1, r2) = Dp(r1, r2) for a metric D on R, and since all the metrics in R are equivalent, for659

simplicity, consider D(r1, r2) = |r1 − r2|. (Notice that this satisfies the hypothesis of Proposition660

H.1 used in the experiments).661
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Consider the GW problem, for q ≥ 1,662

GWL
q (X,Y) := inf

γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ⊗2, (33)

or, in particular,663

GW p
q (X,Y) := inf

γ∈Γ(µ,ν)

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|p dγ⊗2. (34)

For probability mm-spaces we have the equivalence relation X ∼ Y if and only if GW p
q (X,Y) = 0.664

By [8, Chapter 5], X ∼ Y is equivalent to the following: there exists a bijective isometry mapping665

ϕ : X → Y , such that666

dX(x, x′)− dY (ϕ(x), ϕ(x′)) = 0, µ⊗2 − a.s.
ϕ#µ = ν.

Remark D.1. In the literature, the case where q = 1 is the most frequently considered problem. In667

particular, in [8] it is stated the equivalence relation X ∼ Y if and only if there exists ϕ : X → Y668

such that ϕ#µ = ν and dX(x, x′) = dY (ϕ(x), ϕ(x
′)) µ⊗2 − a.s. if and only if GW p

1 (X,Y) = 0.669

Thus, X ∼ Y is also equivalent to have ϕ : X → Y such that ϕ#µ = ν and dX(x, x′) = dY (y, y
′)670

γ⊗2 − a.s. where γ is a minimizer for GW p
1 (X,Y). So, in this situation we also have dqX(x, x′) =671

dqY (y, y
′) γ⊗2 − a.s. for any given q ≥ 1. Therefore, X ∼ Y if and only if GW p

q (X,Y) = 0.672

D.1 Formal Statement of Proposition 3.4673

We first introduce the formal statement of Proposition 3.4. To do so, we extend the equivalence relation674

∼ to all mm-spaces (not only probability mm-spaces): Given arbitrary mm-spaces X = (X, dX , µ),675

Y = (Y, dY , ν), where X,Y are compact and µ ∈ M+(X), ν ∈ M+(Y ), we write X ∼ Y if and676

only if they have the same total mass (i.e., |µ| = µ(X) = ν(Y ) = |ν|) and GW p
q (X,Y) = 0.677

Formal statement of Proposition 3.4: Given λ > 0, 1 ≤ p, q <∞, then (PGW p
λ,q(·, ·))1/p defines678

a metric among mm-spaces under taking quotient with respect to the equivalence relation ∼.679

Next, we discuss its proof.680

D.2 Non-Negativity and Symmetry Properties681

It is straightforward to verify PGW p
λ,q(X,Y) ≥ 0, and that PGW p

λ,q(X,Y) = PGW p
λ,q(Y,X). In682

what follows, we will concentrate on proving PGW p
λ,q(X,Y) = 0 if and only if X ∼ Y:683

If X ∼ Y, then |µ| = |ν|, and we have

0 ≤ PGW p
λ,q(X,Y) ≤ GW

p
q (X,Y) = 0,

where the inequality follows from the fact Γ(µ, ν) ⊆ Γ≤(µ, ν). Thus, PGW p
λ,q(X,Y) = 0.684

For the other direction, suppose that PGW p
λ,q(X,Y) = 0. We claim that |µ| = |ν| and that there exist685

an optimal plan γ for PGW p
λ,q(X,Y) such that |µ| = |γ| = |ν|. Let us prove this by contradiction.686

Assume |µ| < |ν|. For convenience, suppose |µ|2 ≤ |ν|2 − ϵ, for some ϵ > 0. Then, for each687

γ ∈ Γ≤(µ, ν), we have |γ⊗2| ≤ |µ|2 ≤ |ν|2 − ϵ, and so688

PGW p
λ,q(X,Y) ≥ λ(|µ|

2 + |ν|2 − 2|γ|2) ≥ λ(|ν2| − |γ|2) ≥ λϵ > 0.

Thus, PGW p
λ,q(X,Y) > 0, which is a contradiction. So, |µ| = |ν|. In addition, if γ ∈ Γ≤(µ, ν)689

is optimal for PGW p
λ,q(X,Y), we have |γ| = |µ| = |ν|, thus γ ∈ Γ(µ, ν). Therefore, since690

PGW p
λ,q(X,Y) = 0, and for such optimal γ we have |γ| = |µ| = |ν|, we obtain691 ∫

(X×Y )2
|dqX(x, x′)− dqY (y, y

′)|pdγ⊗2 = 0.

As a result, dqX(x, x′) = dqY (y, y
′) γ⊗2 − a.s., which implies that GW p

q (X,Y) = 0, and so X ∼ Y.692
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D.3 Triangle Inequality – Strategy: Convert the PGW Problem into a GW Problem693

Consider three arbitrary mm-spaces S = (S, dS , σ), X = (X, dX , µ), Y = (Y, dY , ν). We define694

Ŝ = (Ŝ, dŜ , σ̂), X̂ = (X̂, dX̂ , µ̂), Ŷ = (Ŷ , dŶ , ν̂) in a similar way to that of Proposition G.1 but now695

aiming to have new spaces with equal total mass:696

First, introduce auxiliary points ∞̂0, ∞̂1, ∞̂2 and set697 
Ŝ = S ∪ {∞̂0, ∞̂1, ∞̂2},
X̂ = X ∪ {∞̂0, ∞̂1, ∞̂2},
Ŷ = Y ∪ {∞̂0, ∞̂1, ∞̂2}.

Define σ̂, µ̂, ν̂ as follows:698 
σ̂ = σ + |µ|δ∞̂1 + |ν|δ∞̂2 ,

µ̂ = µ+ |σ|δ∞̂0 + |ν|δ∞̂2 ,

ν̂ = ν + |σ|δ∞̂0
+ |µ|δ∞̂1

.

(35)

Note that σ̂ is not supported on point ∞̂0, similarly, µ̂ is not supported on ∞̂1, ν̂ is not supported699

on ∞̂2. In addition, we have |µ̂| = |ν̂| = |σ̂| = |µ| + |ν| + |σ|. (For a similar idea in classical700

unbalanced optimal transport see, for example, [16].)701

Finally, define dŜ : Ŝ2 → R ∪ {∞} as follows:702

dŜ(s, s
′) =

{
dS(s, s

′) if (s, s′) ∈ S2,

∞ elsewhere.
(36)

Note, dŜ(·, ·) is not a rigorous metric in Ŝ since we allow dŜ =∞. Similarly, define dX̂ , dŶ . As a703

result, we have constructed new spaces704

Ŝ = (Ŝ, dŜ , σ̂), X̂ = (X̂, dX̂ , µ̂), Ŷ = (Ŷ , dŶ , ν̂). (37)

We define the following mapping Dλ : (R ∪ {∞})× (R ∪ {∞})→ R+:705

Dp
λ(r1, r2) =


|r1 − r2|p if r1, r2 <∞,
λ if r1 =∞, r2 <∞ or vice versa,
0 if r1 = r2 =∞.

(38)

Note that Dλ is not a rigorous metric since it may sometimes violate triangle inequality. See the706

following lemma for a detailed and precise explanation.707

Lemma D.2. Let Dλ(·, ·) denote the function defined in (38). For any r0, r1, r2 ∈ R ∪ {∞}, we708

have the following:709

• Dλ(r1, r2) ≥ 0. Dλ(r1, r2) = 0 if and only if r1 = r2, where r1 = r2 denotes that710

r1 = r2 ∈ R or r1 = r2 =∞.711

• Except the case r1, r2 ∈ R, r0 =∞, for all other cases, we have

Dλ(r1, r2) ≤ Dλ(r1, r0) +Dλ(r2, r0).

Proof of Lemma D.2. It is straightforward to verify Dλ(·, ·) ≥ 0.712

Now, consider r0, r1, r2 ∈ R ∪ {∞}. If r1 = r2 ∈ R or r1 = r2 = ∞, we have Dλ(r1, r2) = 0.713

Otherwise, Dλ(r1, r2) > 0. So, Dλ(r1, r2) = 0 if and only if r1 = r2.714

For the second item, we have the following cases:715

Case 1: r1, r2, r0 ∈ R,716

Dλ(r1, r2) = |r1 − r2|
≤ |r1 − r2|+ |r2 − r0|
= Dλ(r0, r1) +Dλ(r0, r2)

Case 2: r1, r2 ∈ R, r0 =∞. We do not need to verify the inequality in this case.717
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Case 3: r1 ∈ R, r2, r0 =∞, or r1 =∞, r2 ∈ R, r0 =∞. In this case, we have718

Dλ(r1, r2) = Dλ(r1, r0) =
√
λ,Dλ(r2, r0) = 0

and it is straightforward to verify the inequality.719

Case 4: r1, r2 =∞, r3 ∈ R. In this case, we have Dλ(r1, r2) = 0 ≤ Dλ(r0, r1) +Dλ(r0, r2).720

Case 5: r1, r2, r0 =∞. In this case, we have721

Dλ(r1, r2) = Dλ(r1, r0) = Dλ(r2, r0) = 0

and it is straightforward to verify the inequality.722

We construct the following generalized GW problem:723

GW p
λ,q(X̂, Ŷ) := inf

γ̂∈Γ(µ̂,ν̂)

∫
(X̂×Ŷ )2

Dp
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2

︸ ︷︷ ︸
Ĉ(γ̂;λ,µ̂,ν̂)

. (39)

Similarly, we define GW p
λ,q(X̂, Ŝ), and GW p

λ,q(Ŝ, Ŷ).724

The mapping (6) is modified as:725

Γ≤(σ, µ) ∋ γ01 7→ γ̂01 ∈ Γ(σ̂, µ̂),

γ̂01 := γ01 + (σ − γ011 )⊗ δ∞̂0
+ δ∞̂1

⊗ (µ− γ012 ) + |γ|δ∞̂1,∞̂0
+ |ν|δ∞̂2,∞̂2

;

Γ≤(σ, ν) ∋ γ02 7→ γ̂02 ∈ Γ(σ̂, ν̂),

γ̂02 := γ02 + (σ − γ021 )⊗ δ∞̂0
+ δ∞̂2

⊗ (ν − γ022 ) + |γ|δ∞̂2,∞̂0
+ |µ|δ∞̂1,∞̂1

;

Γ≤(µ, ν) ∋ γ12 7→ γ̂12 ∈ Γ(µ̂, ν̂),

γ̂12 := γ12 + (µ− γ121 )⊗ δ∞̂1
+ δ∞̂2

⊗ (ν − γ122 ) + |γ|δ∞̂2,∞̂1
+ |µ|δ∞̂0,∞̂0

. (40)

It is straightforward to verify the above mappings are well-defined. In addition, we can observe that,726

for each γ01 ∈ Γ≤(σ, µ), γ
02 ∈ Γ≤(σ, ν), γ

12 ∈ Γ≤(µ, ν),727

γ̂01({∞̂2} ×X) = γ̂01(S × {∞̂2}) = 0, (41)

γ̂02({∞̂1} × Y ) = γ̂02(S × {∞̂1}) = 0, (42)

γ̂12({∞̂0} × Y ) = γ̂12(X × {∞̂0}) = 0.

Proposition D.3. If γ12 ∈ Γ≤(µ, ν) is optimal in PGW problem PGW p
λ,q(X,Y), then γ̂12 defined

in (40) is optimal in generalized GW problem GW p
λ,q(X̂, Ŷ). Furthermore, Ĉ(γ̂12;λ, µ̂, ν̂) =

C(γ12;λ, µ, ν), and thus,

PGW p
λ,q(X,Y) = GW p

λ,q(X̂, Ŷ).

Proof of Proposition D.3. For each γ ∈ Γ≤(µ, ν), define γ̂ by (40).728

Note that if we merge the points ∞̂1, ∞̂2, ∞̂3 as ∞̂, i.e.

∞̂ = ∞̂1 = ∞̂2 = ∞̂3,

the value Ĉ(γ̂;λ, µ̂, ν̂) will not change. Thus, we merge these three auxiliary points.729
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We have:730

Ĉ(γ̂;λ, µ̂, ν̂) =

∫
(X̂×Ŷ )2

Dp
λ(d

q

X̂
(x, x′), dq

Ŷ
(x, x′))dγ̂⊗2

=

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|pdγ̂⊗2 +

∫
({∞̂}×Y )2

λdγ̂⊗2 +

∫
(X×{∞̂})2

λγ̂⊗2

+ 2

∫
({∞̂}×Y )×(X×Y )

λdγ̂⊗2 + 2

∫
(X×{∞̂})×(X×Y )

λdγ̂⊗2 +

∫
({∞̂}×{∞̂})2

Dp
λ(∞,∞)dγ̂⊗2

+ 2

∫
({∞̂}×Y )×(X×{∞̂})

Dp
λ(∞,∞)dγ̂⊗2 + 2

∫
({∞̂}×{∞̂})×(X×Y )

Dp
λ(∞,∞)dγ̂⊗2

+ 2

∫
({∞̂}×{Y })×{∞̂}2

Dp
λ(∞,∞)dγ̂⊗2 + 2

∫
(X×{∞̂})×{∞̂}2

Dp
λ(∞,∞)dγ̂⊗2

=

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|pdγ⊗2

+ 2λ(|ν| − |γ|)|γ|+ λ(|ν| − |γ|)2 + 2λ(|µ| − |γ|)|γ|+ λ(|µ| − |γ|)2

=

∫
(X×Y )2

|dqX(x, y′)− dqY (y, y
′)|p dγ⊗2) + λ(|ν2|+ |µ|2 − 2|γ|2) = C(γ;λ, µ, ν).

As we merged the points ∞̂1, ∞̂2, ∞̂3, by [40, Proposition B.1.], the mapping γ 7→ γ̂ defined in (40)
is a bijection. Then, if γ ∈ Γ≤(µ, ν) is optimal for the PGW problem PGW p

λ,q(X,Y) (defined in
(10)), γ̂ ∈ Γ(µ̂, ν̂) is optimal for generalized GW problem GW p

λ,q(X̂, Ŷ) (defined in (39)). Therefore,

GW p
λ,q(X̂, Ŷ) = PGW p

λ,q(X,Y).

731

Proposition D.4 (Triangle inequality for GW p
λ,q(·, ·)). Consider the generalized GW problem (39).

Then, for any p ∈ [1,∞), we have

GW p
λ,q(X̂, Ŷ) ≤ GW

p
λ,q(Ŝ, X̂) +GW p

λ,q(Ŝ, Ŷ).

Proof of Proposition D.4. We prove the case p = 2. For general p ≥ 1, it can be proved similarly.732

Choose an optimal γ12 ∈ Γ≤(µ, ν) for PGW 2
λ,q(X,Y), an optimal γ01 ∈ Γ≤(σ, µ) for733

PGW 2
λ,q(S,X), and an optimal γ02 ∈ Γ≤(σ, ν) for PGW 2

λ,q(S,Y). Construct γ̂12, γ̂01, γ̂02 by734

(40).735

By Proposition D.3, we have that γ̂12, γ̂01, γ̂02 are optimal for GW 2
λ,q(X̂, Ŷ), GW 2

λ,q(Ŝ, X̂),736

GW 2
λ,q(Ŝ, Ŷ), respectively.737

Define canonical projection mapping738

π0,1 :(Ŝ × X̂ × Ŷ )→ (Ŝ × X̂)

(s, x, y) 7→ (s, x).

Similarly, we define π0,2, π1,2.739

By gluing lemma (see Lemma 5.5 [54]), there exists γ̂ ∈M+(Ŝ × X̂ × Ŷ ), such that (π0,1)#γ̂ =740

γ̂01, (π0,2)#γ̂ = γ̂02. Thus, (π1,2)#γ̂ is a coupling between µ̂, ν̂. We have741

GW 2
λ,q(X,Y) =

∫
(X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))d(γ̂12)⊗2

≤
∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2. (43)

The inequality holds since (π1,2)#γ̂, γ̂
12 ∈ Γ(µ̂, ν̂), and γ̂12 is optimal.742
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Next, we will show that743

∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2

≤
∫
(Ŝ×X̂×Ŷ )2

(Dλ(d
q

Ŝ
(s, s′), dq

X̂
(x, x′)) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′)))2dγ̂⊗2.

Let ((s, x, y), (s′, x′, y′)) ∈ (Ŝ, X̂, Ŷ )2, and assume that744

Dλ(d
2
X̂
(x, x′), d2

Ŷ
(y, y′)) > Dλ(d

2
Ŝ
(s, s′), d2

X̂
(x, x′)) +Dλ(d

2
Ŝ
(s, s′), d2

Ŷ
(y, y′)). (44)

By Lemma D.2, (44) implies dX̂(x, x′), dŶ (y, y
′) ∈ R, dŜ(s, s

′) =∞. Thus, by definition (36), it745

also implies746

(x, x′) ∈ X2, (y, y′) ∈ Y 2, (s, s′) ∈ Ŝ2 \ S2. (45)

Define the following sets:747

Aα = Ŝ ×X × Y,
A0 = {∞̂0} ×X × Y,
A1 = {∞̂1} ×X × Y,
A2 = {∞̂2} ×X × Y.

Notice that, (44) =⇒ (45) is equivalent to748

(44) =⇒ ((s, x, y), (s, x′, y′)) ∈ A :=

2⋃
i=0

(Ai ×Aα) ∪
2⋃

i=0

(Aα ×Ai). (46)

Next, we will show γ̂⊗2(A) = 0. Indeed,749

γ̂(A0) ≤ γ̂({∞0} × X̂ × Ŷ ) = σ̂({∞0}) = 0 by definition (35) of σ̂ ,

γ̂(A1) ≤ γ̂({∞1} × X̂ × Y ) = γ̂02({∞̂1 × Y }) = 0 by (42),

γ̂(A2) ≤ γ̂({∞2} ×X × Ŷ ) = γ̂01({∞̂2 ×X}) = 0 by (41).

Thus, γ̂⊗2(A) = 0. By considering B = (Ŝ × X̂ × Y )2 \A, we obtain750

∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ⊗2

=

∫
B

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ⊗2 since γ⊗2(A) = 0

≤
∫
B

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2 by (46)

≤
∫
(Ŝ×X̂×Ŷ )2

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2. (47)

26



Following (43) and (47), we have751

GW 2
λ,q(X̂, Ŷ) ≤

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2

)1/2

≤

(∫
(Ŝ×X̂×Ŷ )2

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′)) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2

)1/2

≤

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′))dγ⊗2

)1/2

+

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))dγ⊗2

)1/2

(48)

=

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′))d(γ01)⊗2

)1/2

+

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))d(γ02)⊗2

)1/2

= GW 2
λ,q(Ŝ, X̂) +GW 2

λ,q(Ŝ, Ŷ),

where in the third inequality (48) we used the Minkowski inequality in L2((Ŝ × X̂ × Ŷ )2, γ̂⊗2).752

Now, we can complete the proof of Proposition 3.4: By the Propositions D.3, we have

PGW p
λ,q(X,Y) = GW p

λ,q(X̂, Ŷ)

and similarly for PGW p
λ,q and (S,X), PGW p

λ,q(S,Y). By the Proposition D.4, GW p
λ,q(·, ·) satisfies753

the triangle inequality, thus we complete the proof:754

PGW p
λ,q(X,Y) = GW p

λ,q(X̂, Ŷ)

≤ GW p
λ,q(Ŝ, X̂) +GW p

λ,q(Ŝ, Ŷ)
= PGW p

λ,q(S,X) + PGW p
λ,q(S,Y).

E Proof of Proposition 3.5: PGW converges to GW as λ→∞.755

In the main text, we set λ ∈ R. In this section, we discuss the limit case that when λ→∞.756

Lemma E.1. Suppose |µ| ≤ |ν|, for each γ ∈ Γ≤(µ, ν), there exists γ′ ∈ Γ≤(µ, ν) such that γ ≤ γ′757

and (π1)#γ
′ = µ.758

Proof. Let γ ∈ Γ≤(µ, ν).759

If |γ| = |µ|, then we have (π1)#γ = µ.760

If |γ| < |µ|, let µr = µ− (π1)#γ, ν
r = ν− (π2)#γ. We have that µr, νr are non-negative measures,761

with |µr| = |µ| − |γ| > 0. If we define762

γ′ := γ +
1

|ν| − |γ|
µr ⊗ νr,

we obtain γ ≤ γ′. In addition, we have:763

(π1)#γ
′ = (π1)#γ + µr |νr|

|ν| − |γ|
= (π1)#γ + µr = µ,

(π2)#γ
′ = (π2)#γ + νr

|µr|
|ν| − |γ|

≤ (π2)#γ + νr
|νr|
|ν| − |γ|

= ν.

Thus, γ′ ∈ Γ≤(µ, ν) and (π1)#γ
′ = µ.764
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Lemma E.2. Given general mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), where µ, ν are supported765

on bounded sets (in general, it is assumed that X and Y are compact, and that supp(µ) = X ,766

supp(ν) = Y ), consider the problem the problem PGWL
λ,q(X,Y) with L(r1, r2) a continuous767

functions. If λ is sufficiently large, for all optimal γ ∈ Γ≤(µ, ν) we have |γ| = min(|µ|, |ν|).768

Proof. We prove it for q = 1, for a general q ≥ 1, it can be proved similarly.769

Without loss of generality, suppose |µ| ≤ |ν|.770

Since µ, ν are supported on bounded sets, there existsA = [0,M ] such that dX(x, x′), dY (y, y
′) ∈ A771

for all x, x′ ∈ supp(µ), y, y′ ∈ supp(ν).772

Thus, the restriction of L on A2, denoted as LA2 , is continuous on A2, and thus it is bounded. So,
consider

m := max
r1,r2∈A

(L(r1, r2)) ≥ L(dX(x, x′), dY (y, y
′)), ∀x, x′ ∈ supp(µ), y, y′ ∈ supp(ν).

Suppose 2λ ≥ m+ 1, and assume that there exists a optimal γ ∈ Γ≤(µ, ν) such that |γ| < |µ|. By773

Lemma E.1, there exists γ′ such that γ ≤ γ′, (π1)#γ′ = µ. Thus, we have774

C(γ′;λ, µ, ν)− C(γ;λ, µ, ν) =
∫
(X×Y )

L(dX(x, x′), dY (y, y
′))− 2λ d((γ′)⊗2 − (γ)⊗2)

≤
∫
(X×Y )

m− 2λ d((γ′)⊗2 − (γ)⊗2)

= −(|γ′|2 − |γ|2) = −(|µ|2 − |γ|2) < 0,

which is contradiction since γ is optimal, and so we have completed the proof.775

Lemma E.3. Consider probability mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), that is, with776

|µ| = |ν| = 1. Then, for each λ > 0, we have777

PGWL
λ,q(X,Y) ≤ GWL

q (X,Y).

Proof. In this setting, we have Γ(µ, ν) ⊂ Γ≤(µ, ν), and thus778

PGWL
λ,q(X,Y)

= inf
Γ∈Γ≤(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2 + λ(|µ|2 + |ν|2 − 2|γ|2)

≤ inf
γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) + λ(|µ|2 + |ν|2 − 2|γ|2)dγ⊗2

= inf
γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

= GWL
q (X,Y).

779

Based on the above properties, we can now prove Proposition 3.5:780

Proposition E.4 (Generalization of Proposition 3.5). Consider general probability mm-spaces
X = (X, dX , µ), Y = (Y, dY , ν), that is, with |µ| = |ν| = 1, where X,Y are bounded. Assume that
L is continuous. Then

lim
λ→∞

PGWL
λ,q(X,Y) = GWL

q (X,Y).

Proof. When λ is sufficiently large, by Lemma E.2, for each optimal γλ ∈ Γ≤(µ, ν) of the minimiza-781

tion problem PGWL
λ,q(X,Y), we have |γλ| = min(|µ|, |ν|) = 1. That is, γλ ∈ Γ(µ, ν). Plugging782

28



γλ into C(γλ;λ, µ, ν), we obtain:783

PGWL
λ,q(X,Y) =

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

λ + λ(12 + 12 − 2 · 12)

=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

λ ≥ GW (X,Y).

By Lemma E.3, we also have PGWL
λ,q(X,Y) ≤ GWL

q (X,Y) and we complete the proof.784

F Tensor Product Computation785

Lemma F.1. Given a tensor M ∈ Rn×m×n×n and γ, γ′ ∈ Rn×m, the tensor product operator786

M ◦ γ satisfies the following:787

(i) The mapping γ 7→M ◦ γ is linear with respect to γ.788

(ii) If M is symmetric, in particular, Mi,j,i′,j′ =Mi′,j′,i,j ,∀i, i′ ∈ [1 : n], j, j′ ∈ [1 : m], then

⟨M ◦ γ, γ′⟩F = ⟨M ◦ γ′, γ⟩F .

Proof.789

(i) For the first part, consider γ, γ′ ∈ Rn×m and k ∈ R. For each i, j ∈ [1 : n]× [1 : m], we790

have we have791

(M ◦ (γ + γ′))ij =
∑
i′,j′

Mi,j,i′,j′(γ + γ′)i′j′

=
∑
i′,j′

Mi,j,i′,j′γi′j′ +
∑
i′,j′

Mi,j,i′,j′γ
′
i′j′

= (M ◦ γ)ij + (M ◦ γ)i′j′ ,

(M ◦ (kγ))ij =
∑
i′,j′

Mi,j,i′,j′(kγ)ij

= k
∑
i′,j′

Mi,j,i′,j′γij

= k(M ◦ γ)ij .
Thus, M ◦ (γ + γ′) =M ◦ γ +M ◦ γ′ and M ◦ (kγ) = kM ◦ γ. Therefore, γ 7→M ◦ γ is792

linear.793

(ii) For the second part, we have794

⟨M ◦ γ, γ′⟩F =
∑
iji′j′

Mi,j,i′,j′,γijγ
′
i′j′

=
∑

i,j,i′,j′

Mi′,j′,i,jγi′,j′γi,j (49)

= ⟨Mγ′, γ⟩
where (49) follows from the fact that M is symmetric.795

796

G Another Algorithm for Computing PGW Distance – Solver 2797

Our Algorithm 2 for solving the proposed PGW problem is based on a theoretical result that relates798

GW and PGW. The details of our computational method, as well as the proof of Proposition G.1 stated799

below, are provided in Appendix G.1. Based on such proposition, we extend the PGW problem to a800

discrete GW-variant problem (55), leading to a solution for the original PGW problem by truncating801

the GW-variant solution.802
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Proposition G.1. Let X = (X, dX , µ) be a mm-space. Consider an auxiliary point ∞̂ and let803

X̂ = (X̂, dX̂ , µ̂), where X̂ = X ∪ {∞̂}, µ̂ is constructed by (4), and considering∞ as an auxiliary804

point to R such that x ≤ ∞ for every x ∈ R, we extend dX into dX̂ : X̂2 → R ∪ {∞} and define805

Lλ : R ∪ {∞} → R as follows:806

dX̂(x, x′) =

{
dX(x, x′) if x, x′ ∈ X
∞ otherwise

, Lλ(r1, r2) :=

{
L(r1, r2)− 2λ if r1, r2 ∈ R
0 elsewhere

. (50)

Consider the following GW-variant2 problem:807

ĜW
Lλ

(X̂, Ŷ) = inf
γ̂∈Γ(µ̂,ν̂)

γ̂⊗2(Lλ(d
q

X̂
, dq

Ŷ
)) (51)

Then, when considering the bijection γ 7→ γ̂ defined in (6) we have that γ is optimal for PGW808

problem (10) if and only if γ̂ is optimal for the GW-variant problem (51).809

Proof. The mapping F defined by (6) well-defined bijection, as shown in[40, 12].810

Given γ ∈ Γ≤(µ, ν), we have γ̂ = F (γ) ∈ Γ(µ̂, ν̂). Let Ĉ(γ̂;µ, ν) denote the transportation cost in811

the GW-variant problem (51), that is,812

Ĉ(γ̂;µ, ν) :=

∫
(X̂×Ŷ )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂(x, y)dγ̂(x′, y′)

Then, we have813

C(γ;λ, µ, ν)

=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′))− 2λ) dγ⊗2 + λ(|µ|+ |ν|)︸ ︷︷ ︸

does not depend on γ

=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′))− 2λ) dγ̂⊗2 + λ(|µ|+ |ν|) (since γ̂|X×Y = γ)

=

∫
(X×Y )2

(L(dq
X̂
(x, x′), dq

Ŷ
(y, y′))− 2λ) dγ̂⊗2 + λ(|µ|+ |ν|) (as dX̂ |X×X = dX , dŶ |Y×Y = dY )

=

∫
(X×Y )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2 + λ(|µ|+ |ν|) (since L̂|R×R(·, ·) = (L(·, ·)− 2λ))

=

∫
(X̂×Ŷ )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2 + λ(|µ|+ |ν|)︸ ︷︷ ︸

does not depend on γ̂

. (since L̂ assigns 0 to ∞̂)

Combining this with the fact that F : γ 7→ γ̂ is a bijection, we have that γ is optimal for (10) if814

and only if γ̂ is optimal for (51). Under the assumptions of Proposition 3.3, there exists an optimal815

γ ∈ Γ≤(µ, ν) for the PGW problem exists, and so we have:816

arg min
γ̂∈Γ(µ̂,ν̂)

Ĉ(γ̂;µ, ν) = arg min
γ∈Γ≤(µ,ν)

C(γ;λ, µ, ν). (52)

817

Remark G.2. Both algorithms (Algorithm 1, and 2) are mathematically and computationally818

equivalent, owing to the equivalence between the POT problem in Solver 1 and the OT problem in819

Solver 2.820

G.1 Frank-Wolfe for the PGW Problem – Solver 2821

Similarly to the discrete PGW problem (15), consider the discrete version of (4):822

p̂ = [p; |q|] ∈ Rn+1, q̂ = [q; |p|] ∈ Rm+1, (53)

2ĜW
Lλ

(X̂, Ŷ) is not a rigorous GW problem since dX̂ = ∞ is possible, thus it is not a metric. Also, X, Y
are not necessarily probability mm-spaces
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Algorithm 2: Frank-Wolfe Algorithm for partial GW, ver 2

Input: µ =
∑n

i=1 p
X
i δxi

, ν =
∑m

j=1 q
Y
j δyj

, γ(1)

Output: γ(final)
Compute CX , CY , p̂, q̂, γ̂(1)

for k = 1, 2, . . . do
Ĝ(k) ← 2M̂ ◦ γ̂(k) // Compute gradient
γ̂(k)

′ ← argminγ̂∈Γ(p̂,q̂)⟨Ĝ(k), γ̂⟩F // Solve the OT problem
Compute α(k) ∈ [0, 1] via (56), (18) // Line search
γ̂(k+1) ← (1− α(k))γ̂(k)

′
+ αγ̂(k)// Update γ̂

if convergence, break
end for
γ(final) ← γ̂(k)[1 : n, 1 : m]

and, in a similar fashion, we define M̂ ∈ R(n+1)×(m+1)×(n+1)×(m+1) as823

M̂i,j,i′,j′ =

{
M̃i,j,i′,j′ if i, i′ ∈ [1 : n], j, j′ ∈ [1 : m],

0 elsewhere.
(54)

Then, the GW-variant problem (51) can be written as824

ĜW (X̂, Ŷ) = min
γ̂∈Γ(p̂,q̂)

LM̂ (γ̂). (55)

Based on Proposition G.1 (which relates PGWL
λ (·, ·) with ĜW (·, ·)), we propose two versions of825

the Frank-Wolfe algorithm [31] that can solve the PGW problem (15). Apart from Algorithm 1 in826

[45], which solves a different formulation of partial GW, and Algorithm 1 in [44], which applies the827

Sinkhorn algorithm to solve an entropic regularized version of (8), to the best of our knowledge, a828

precise computational method for the discrete PGW problem (15) has not been studied.829

Here, we discuss another version of the FW Algorithm for solving the PGW problem (15). The main830

idea relies on solving first the GW-variant problem (51), and, at the end of the iterations, by using831

Proposition G.1, convert the solution of the GW-variant problem to a solution for the original partial832

GW problem (15).833

First, construct p̂, q̂, M̂ as described in Proposition G.1. Then, for each iteration k, perform the834

following three steps.835

Step 1: Computation of gradient and optimal direction. Solve the OT problem:836

γ̂(k)
′
← arg min

γ̂∈Γ(p̂,q̂)
⟨LM̂ (γ̂(k)), γ̂⟩F .

The gradient LM̂ (γ(k)) can be computed in a similar way as described in Lemma H.2. We refer to837

Section H for details.838

Step 2: Line search method. Find optimal step size α(k):

α(k) = arg min
α∈[0,1]

{LM̂ ((1− α)γ̂(k) + αγ̂(k)
′
)}.

Similar to Solver 1, let839 
δγ̂(k) = γ̂(k)

′ − γ̂(k),
a = ⟨M̂ ◦ δγ̂(k), δγ̂(k)⟩F ,
b = 2⟨M̂ ◦ δγ̂(k), γ̂(k)⟩F .

(56)

Then the optimal α(k) is given by formula (18). See Appendix J for a detailed discussion.840

Step 3. Update γ̂(k+1) ← (1− α(k))γ̂(k) + α(k)γ̂(k)
′
.841
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H Gradient Computation in Algorithms 1 and 2842

In this section, we discuss the computation of Gradient ∇LM̃ (γ) in Algorithm 1 and ∇LM̂ (γ̂) in843

Algorithm 2.844

Proposition H.1 (Proposition 1 [41]). If the cost function can be written as845

L(r1, r2) = f1(r1) + f2(r2)− h1(r1)h2(r2) (57)

then846

M ◦ γ = u(CX , CY , γ)− h1(CX)γh2(C
Y )⊤, (58)

where u(CX , CY , γ) := f1(C
X)γ11

⊤
m + 1nγ

⊤
2 f2(C

Y ).847

Additionally, the following lemma builds the connection between M̃ ◦ γ and M ◦ γ.848

Lemma H.2. For any γ ∈ Rn×m, we have:849

M̃ ◦ γ =M ◦ γ − 2λ|γ|1n,m. (59)

Proof. For any γ ∈ Rn×m, we have850

M̃ ◦ γ = (M1n,n,m,m − 2λ) ◦ γ
= (M − 2λ1n,n,m,m) ◦ γ
=M ◦ γ − 2λ1n,m,n,m ◦ γ
=M ◦ γ − 2(⟨1n,m, γ⟩F )1n,m
=M ◦ γ − 2λ|γ|1n,m

where the second equality follows from Lemma F.1.851

Next, in the setting of Algorithm 2, for any γ̂ ∈ R(n+1)×(m+1), we have852

∇LM̂ (γ̂) = 2M̂ ◦ γ̂ (60)

and M̂ ◦ γ̂ can be computed by the following lemma.853

Lemma H.3. For each γ̂ ∈ R(n+1)×(m+1), we have M̂ ◦ γ̂ ∈ R(n+1)×(m+1) with the following:854

(M̂ ◦ γ̂)ij =
{
(M̃ ◦ γ̂[1 : n, 1 : m])ij if i ∈ [1 : n], j ∈ [1 : m]

0 elsewhere
. (61)

Proof. Recall the definition of M̂ is given by (54), choose i ∈ [1 : n], j ∈ [1 : m], we have855

(M̂ ◦ γ̂)ij =
n∑

i′=1

m∑
j′=1

M̂i,j,i′,j′ γ̂i′,j′ +

m∑
j′=1

M̂i,j,n+1,j γ̂n+1,j′ +

n∑
i′=1

M̂i,j,i′,m+1γ̂i,m+1

+ M̂i,j,n+1,m+1γ̂n+1,m+1

=

n∑
i′=1

m∑
j′=1

M̂i,j,i′,j′ γ̂i′,j′ + 0 + 0 + 0 =

n∑
i′=1

m∑
j′=1

M̃i,j,i′,j′ γ̂i′,j′

= (M̃ ◦ (γ̂[1 : n, 1 : m]))ij

If i = n+ 1, we have856

(M̂ ◦ γ̂)n+1,j =

n+1∑
i′=1

m+1∑
j′=1

M̂n+1,j,i′,j′ γ̂i′,j′ = 0

Similarly, (M̂ ◦ γ̂)i,m+1 = 0. Thus, we complete the proof.857

32



I Line Search in Algorithm 1858

In this section, we discuss the derivation of the line search algorithm.859

We observe that in the partial GW setting, for each γ ∈ Γ≤(µ, ν), the marginals of γ are not fixed.860

Thus, we can not directly apply the classical algorithm (e.g. [43]).861

In iteration k, let γ(k), γ(k)
′

be the previous and new transportation plans from step 1 of the algorithm.862

For convenience, we denote them as γ, γ′, respectively.863

The goal is to solve the following problem:864

min
α∈[0,1]

L(M̃, (1− α)γ + αγ′) (62)

where L(M̃, γ) = ⟨M̃ ◦ γ, γ⟩F . By denoting δγ = γ′ − γ, we have

L(M̃, (1− α)γ + αγ′) = L(M̃, γ + αδγ).

Then,865

⟨M̃ ◦ (γ + αδγ), (γ + αδγ)⟩F

= ⟨M̃ ◦ γ, γ⟩F + α
(
⟨M̃ ◦ γ, δγ⟩F + ⟨M̃ ◦ δγ, γ⟩F

)
+ α2⟨M̃ ◦ δγ, δγ⟩F

Let866

a =⟨M̃ ◦ δγ, δγ⟩F ,
b =⟨M̃ ◦ γ, δγ⟩F + ⟨M̃ ◦ δγ, γ⟩F = 2⟨M̃ ◦ γ, δγ⟩F , (63)

c =⟨M̃ ◦ γ, γ⟩F ,
where the second identity in (63) follows from Lemma F.1 and the fact that M̃ = M1n,n,m,m −867

2λ1n,m,n,m is symmetric.868

Therefore, the above problem (62) becomes
min

α∈[0,1]
aα2 + bα+ c.

The solution is the following:869

α∗ =


1 if a ≤ 0, a+ b ≤ 0,

0 if a ≤ 0, a+ b > 0,

clip(−b
2a , [0, 1]) if a > 0,

(64)

where

clip(
−b
2a
, [0, 1]) = min

{
1,max{0, −b

2a
}
}

=


−b
2a if −b

2a ∈ [0, 1],

0 if −b
2a < 0,

1 if −b
2a > 1.

We can further discuss the difference in computation of a and b in PGW setting and the classical GW870

setting. If the assumption in Proposition H.1 holds, by (58) and (59), we have871

a = ⟨M̃ ◦ δγ, δγ⟩F
= ⟨(M ◦ δγ − 2λ|δγ|In,m), δγ⟩F
= ⟨M ◦ δγ, δγ⟩F − 2λ|δγ|2 (65)

=
〈
u(CX , CY , δγ)− h1(CX)δγh2(C

Y )⊤, δγ
〉
F
− 2λ|δγ|2,

b = 2⟨M̃ ◦ γ, δγ⟩F
= 2⟨M ◦ γ − 2λ|γ|In,m, δγ⟩
= 2(⟨M ◦ γ, δγ⟩F − 2λ|δγ||γ|) (66)

Note that in the classical GW setting [43], the term u(CX , CY , δγ) = 0n×m and |δγ| = 0. Therefore,872

in such line search algorithm (Algorithm 2 in [43]), the terms u(CX , CY , δγ), 2λ|δγ|1n×m are not873

required. In addition, in equation (66), M ◦ γ, 2λ|γ| have been computed in the gradient computation874

step, thus these two terms can be directly applied in this step.875
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J Line Search in Algorithm 2876

Similar to the previous section, in iteration k, let γ̂(k), γ̂(k)
′

denote the previous transportation plan877

and the updated transportation plan. For convenience, we denote them as γ̂, γ̂′, respectively.878

Let δγ̂ = γ̂ − γ̂′.879

The goal is to find the following optimal α:880

α = arg min
α∈[0,1]

L(M̂, (1− α)γ̂, αγ̂′) = arg min
α∈[0,1]

L(M̂, αδγ̂ + γ̂), (67)

where M̂ ∈ R(n+1)×(m+1)×(n+1)×(m+1), with M̂ [1 : n, 1 : m, 1 : n, 1 : m] = M̃ = M −881

2λ1n×m×n×m.882

Similar to the previous section, let883

a = ⟨M̂ ◦ δγ̂, δγ̂⟩F ,
b = ⟨M̂ ◦ δγ̂, γ̂⟩F + ⟨M̂ ◦ γ̂, δγ̂⟩F = 2⟨M̂ ◦ δγ̂, γ̂⟩F , (68)

c = ⟨M̂ ◦ γ̂, γ̂⟩F ,

where (68) holds since M̂ is symmetric. Then, the optimal α is given by (64).884

It remains to discuss the computation. By Lemma F.1, we set γ = γ̂[1 : n, 1 : m], δγ = δγ̂[1 : n, 1 :885

m]. Then,886

a = ⟨(M̂ ◦ δγ̂)[1 : n, 1 : m], δγ⟩F = ⟨(M̃ ◦ δγ, δγ⟩F ,
b = ⟨(M̂ ◦ δγ̂)[1 : n, 1 : m], γ⟩F = ⟨(M̃ ◦ δγ, γ⟩F .

Thus, we can apply (65), (66) to compute a, b in this setting by plugging in γ = γ̂[1 : n, 1 : m] and887

δγ = δγ̂[1 : n, 1 : m].888

K Convergence889

As in [45] we will use the results from [32] on the convergence of the Frank-Wolfe algorithm for890

non-convex objective functions.891

Consider the minimization problems892

min
γ∈Γ≤(p,q)

LM̃ (γ) and min
γ̂∈Γ(p̂,q̂)

LM̂ (γ̂) (69)

that corresponds to the discrete partial GW problem, and the discrete GW-variant problem (used in893

version 2), respectively. The objective functions γ 7→ LM̂ (γ) = M̃γ⊗2 (where M̃ =M − 2λ1n,m894

for a fixed matrix M ∈ Rn×m and λ > 0), and γ̂ 7→ LM̂ (γ̂) = M̂γ̂⊗2 (where M̂ is given by895

(54)) are non-convex in general (for λ > 0, the matrices M̃ and M̂ symmetric but not positive896

semi-definite), but the constraint sets Γ≤(p, q) and Γ(p̂, q̂) are convex and compact on Rn×m (see897

Proposition B.2 [53]) and on R(n+1)×(m+1), respectively.898

From now on we will concentrate on the first minimization problem in (69) and the convergence899

analysis for the second one will be analogous.900

Consider the Frank-Wolfe gap of LM̃ at the approximation γ(k) of the optimal plan γ:901

gk = min
γ∈Γ≤(p,q)

⟨∇LM̃ (γ(k)), γ(k) − γ⟩F . (70)

It provided a good criterion to measure the distance to a stationary point at iteration k. Indeed, a plan902

γ(k) is a stationary transportation plan for the corresponding constrained optimization problem in903

(69) if and only if gk = 0. Moreover, gk is always non-negative (gk ≥ 0).904

From Theorem 1 in [32], after K iterations we have the following upper bound for the minimal905

Frank-Wolf gap:906

g̃K := min
1≤k≤K

gk ≤
max{2L1, DL}√

K
, (71)
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where
L1 := LM̃ (γ(1))− min

γ∈Γ≤(p,q)
LM̃ (γ)

is the initial global suboptimal bound for the initialization γ(1) of the algorithm, and DL := Lip ·907

(diam(Γ≤(p, q)))
2, where Lip is the Lipschitz constant of ∇LM̃ and diam(Γ≤(p, q)) is the ∥ · ∥F908

diameter of Γ≤(p, q) in Rn×m.909

The important thing to notice is that the constant max{2L1, DL} does not depend on the iteration910

step k. Thus, according to Theorem 1 in [32], the rate on g̃K is O(1/
√
K). That is, the algorithm911

takes at most O(1/ε2) iterations to find an approximate stationary point with a gap smaller than ε.912

Finally, we adapt Lemma 1 in Appendix B.2 in [45] to our case characterizing the convergence913

guarantee, precisely, determining such a constant max{2L1, DL} in (71). Essentially, we will914

estimate upper bounds for the Lipschitz constant Lip and for the diameter diam(Γ≤(p, q)).915

• Let us start by considering the diameter of the couplings of Γ≤(p, q) with respect to the916

Frobenious norm ∥ · ∥F . By definition,917

diam(Γ≤(p, q)) := sup
γ,γ′∈Γ≤(p,q)

∥γ − γ′∥F .

For any γ ∈ Γ≤(p, q), since γ1 ≤ p and γ2 ≤ q, we obtain that, in particular, |γ1| ≤ |p|
and |γ2| ≤ |q|. Thus, since |γ1| = |γ| = |γ2| (recall that γ1 = π1#γ and γ2 = π2#γ) we
have

|γ| ≤ min{|p|, |q|} =:
√
s ∀γ ∈ Γ≤(p, q).

Thus, given γ, γ′ ∈ Γ≤(p, q), we obtain918

∥γ − γ′∥2F ≤ 2∥γ∥2F + 2∥γ′∥2F = 2
∑
i,j

(γi,j)
2 + 2

∑
i,j

(γ′i,j)
2

≤ 2

∑
i,j

|γi,j |

2

+ 2

∑
i,j

|γ′i,j |

2

= 2|γ|2 + 2|γ′|2 ≤ 4s

(essentially, we used that ∥ · ∥F is the 2-norm for matrices viewed as vectors, that | · | is the919

1-norm for matrices viewed as vectors, and the fact that ∥ · ∥2 ≤ ∥ · ∥1). As a result,920

diam(Γ≤(p, q)) ≤ 2
√
s, (72)

where s only depends on p and q that are fixed weight vectors in Rn
+ and Rm

+ , respectively.921

• Now, let us analyze the Lipschitz constant of∇LM̂ with respect to ∥ · ∥F . For any γ, γ′ ∈922

Γ≤(p, q) we have,923

∥∇LM̃ (γ)−∇LM̃ (γ′)∥2F
= ∥M̃ ◦ γ − M̃ ◦ γ′∥2F
= ∥[M − 2λ] ◦ (γ − γ′)∥2F
= ⟨[M − 2λ] ◦ (γ − γ′), [M − 2λ] ◦ (γ − γ′)⟩F

=
∑
i,j

(
[(M − 2λ) ◦ (γ − γ′)]i,j

)2

=
∑
i,j

∑
i′,j′

(Mi,j,i′,j′ − 2λ)(γi′,j′ − γ′i′,j′)

2

≤
(

max
i,j,i′,j′

{Mi,j,i′,j′ − 2λ}
)2

n,m∑
i,j

n,m∑
i′,j′

(γi′,j′ − γ′i′,j′)

2


= (max(M)− 2λ)
2

n,m∑
i,j

∥γ − γ′∥2F


≤ nm (max(M)− 2λ)

2 ∥γ − γ′∥2F .
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Hence, the Lipschitz constant of the gradient of LM̃ is by924

Lip ≤
√
nm

∣∣∣∣ max
i,j,i′,j′

{Mi,j,i′,j′} − 2λ

∣∣∣∣ .
In the particular case where L(r1, r2) = |r1 − r2|2 we have Mi,j,i′,j′ = |CX

i,i′ − CY
j,j′ |2 (as in (14))925

where CX , CY are given n× n and m×m non-negative symmetric matrices defined in (11), that926

depend on the given discrete mm-spaces X and Y. Here, we obtain927

max
i,j,i′,j′

{Mi,j,i′,j′} = max
i,j,i′,j′

{|CX
i,i′ − CY

j,j′ |2} ≤
(
(max

i,i′
{CX

i,i′})2 + (max
j,j′
{CY

j,j′})2
)

and so the Lipschitz constant verifies928

Lip ≤
√
nm

∣∣((max(CX)2 +max(CY )2)− 2λ
∣∣

Combining all together, we obtain that after K iterations, the minimal Frank-Wolf gap verifies929

g̃K = min
1≤k≤K

gk ≤
max{2L1, 4s

√
nm |maxi,j,i′,j′{Mi,j,i′,j′} − 2λ|}√

K

≤ 2
max{L1, 2s

√
nm

∣∣(max(CX)2 +max(CY )2)− 2λ
∣∣}

√
K

(if M is as in (14))

where L1 dependents on the initialization of the algorithm.930

Finally, we mention that there is a dependence in the constant max{2L1, DL} on the number of931

points (n and m) of our discrete spaces X = {x1, . . . xn} and Y = {y1, . . . , ym} which was not932

pointed out in [45].933

L Related Work: Mass-Constrained Partial Gromov-Wasserstein934

Partial Gromov-Wasserstein is first introduced in [45]. To distinguish the PGW problem in [45] and935

the PGW problem in this paper, we call the former one the Mass-Constrained Gromov-Wasserstein936

problem (MPGW):937

MPGWρ(X,Y) := inf
γ∈Γρ

≤(µ,ν)
γ⊗2(L(dqX , d

q
Y )), (73)

where ρ ∈ [0,min{|µ|, |ν|}], and938

Γρ
≤(µ, ν) := {γ ∈M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν, |γ| = ρ}. (74)

Unlike the relation between Partial OT and OT, it is not rigorous to say that the PGW and the MPGW939

problems are equivalent, since the objective function940

γ 7→
∫
(X×Y )2

L(d2X(x, x′), d2Y (y, y
′))dγ⊗2 (75)

is not a convex function even if (r1, r2) 7→ L(r1, r2) is convex [37]: (If the problems were convex,941

MPGW, as the ‘Lagrangian formulation’ of PGW—adding the constraint of PGW in the functional942

à la Lagrange Multipliers— would be equivalent to PGW. However, since these problems are not943

convex, we cannot claim that they are equivalent in principle.)944

We can still investigate their relation by the following lemma, based on which we design the wall-clock945

time experiment in Section O.946

Proposition L.1. Suppose γ ∈ Γ≤(µ, ν) is optimal for PGWλ(X,Y). Let ρ = |γ|, we have γ is947

also optimal in MPGWρ(X,Y).948

Proof. Pick γ′ ∈ Γρ
≤(µ, ν) ⊂ Γ≤(µ, ν), since γ is optimal in PGWλ(µ, ν), we have949

0 ≤ C(γ;λ, µ, ν)− C(γ′;λ, µ, ν)

=

∫
(X×Y )2

L(d2X(x, x′), d2Y (y, y
′))d(γ⊗2 − γ′⊗2)

Thus, γ is optimal in Γρ
≤(µ, ν) for MPGWρ(X,Y) and we complete the proof.950
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At first glance, the formulations of the MPGW (73) and the PGW (10) problems could be thought to951

be equivalent since tuning the hyper-parameter λ for controlling the total mass in the PGW problem952

is quite similar in spirit to the approach in [45] (MPGW) which instead constrains the total mass of γ953

by the hyper-parameter ρ. However, since classical GW and its variants (e.g. UPGW, PGW, MPGW)954

are not convex problems, mathematically this equivalence relation is not verified.955

We first notice that the "Lagrangian form" of the MPGW problem (73) is our PGW formulation956

(10) by considering 2λ be the "Lagrange variable" of constraint −|γ|2 + ρ2 ≤ 0. However, as said957

before, the equivalence is not direct as the cost functional (75) is not convex. In fact, he MPGW958

problem does not give rise to a metric, while our PGW formulation gives rise to a metric as shown in959

Proposition 3.4. We will show this through the following example. In fact, we will see that by using960

the MPGW formulation we cannot distinguish different mm-spaces, while with our PGW we can961

discriminate different mm-spaces.962

Example: Consider the following three mm-spaces

X1 = (R3, ∥ · ∥,
1000∑
i=1

αδxi), X2 = (R3, ∥ · ∥,
800∑
i=1

αδxi), X3 = (R3, ∥ · ∥,
400∑
i=1

αδxi),

where α > 0 is the mass of each point. For numerical stability reasons, we set α = 1/1000. On the963

one hand, if we compute MPGW, the mass is fixed to be a value ρ ∈ [0, 0.4], since the total mass in964

X3 is 0.4. For our experiment, we set ρ = 0.4, and we observe:965

MPGWρ(X1,X2; ρ = 0.4) =MPGWρ(X2,X3; ρ = 0.4) =MPGWρ(X1,X3; ρ = 0.4) = 0

On the other hand, if we compute our PGW, considering any λ > 0, (in particular, we set λ = 10),966

we obtain967

PGWλ(X1,X2;λ = 10) = 3.6

PGWλ(X2,X3;λ = 10) = 4.8

PGWλ(X1,X3;λ = 10) = 8.4

In particular, one can verify the triangular inequality.968

As a conclusion, in this example, MPGW can not describe the dissimilarity of any two datasets taken969

from {X1,X2,X3}. They are three distinct datasets, but MPGW returns zero for each pair. On the970

contrary, our PGW can measure dissimilarity.971

In addition, the discrepancy provided by our PGW formulation is consistent with the follow-972

ing intuitive observation: One expects the dissimilarity between X1 and X3 to be larger than973

the difference X1 and X2, and than the difference between X1 and X2. This is because we974

are considering discrete measures, with the same mass at each point concentrated on the sets975

{x1, . . . , x400} ⊂ {x1, . . . , x400, . . . , x800} ⊂ {x1, . . . , x400, . . . , x800, . . . , x1000} for the datasets976

X3,X2,X1, respectively.977

M Partial Gromov-Wasserstein Barycenter978

We first introduce the classical Gromov-Wasserstein problem [41]: Consider finite discrete probability979

measures µ1, . . . , µK , where µk =
∑nk

i=1 p
k
i δxk

i
and each xki ∈ Rdk for some dk ∈ N. Let980

Ck = [∥xki −xki′∥2]i,i′∈[1:nk] and pk = [pk1 , . . . , p
k
nk
]⊤. Given p ∈ Rn

+ with |p| = 1 for some n ∈ N981

and ξ1, . . . , ξK ≥ 0 with
∑K

k=1 ξk = 1, the GW barycenter problem is defined by:982

min
C,γk

K∑
k=1

ξk⟨L(C,Ck) ◦ γk, γk⟩, (76)

where the minimization is over all matrices C ∈ Rn×n, γk ∈ Γ(p,pk),∀k ∈ [1 : K].983

Similarly, we can extend the above definition into PGW setting. In particular, we relax the assumptions984

|p| = 1 and |pk| = 1 for each k ∈ [1 : K]. Given λ1, . . . , λK > 0, the PGW barycenter is the follow985

problem:986

min
C,γk

∑
k

ξk⟨M(C,Ck) ◦ γk, γk⟩ − 2λk|γk|2 (77)
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where each γk ∈ Γ≤(p,p
k).987

The problem (77) can be solved iterative by two steps:988

Minimization with respect to C: For each k, we solve the PGW problem

min
γk∈Γ≤(p,pk)

⟨M(C,Ck) ◦ γk, γk⟩ − 2λk|γk|2

via solver 1 or 2.989

Minimization with respect to {γk}k:990

min
C

∑
k

ξk⟨M(C,Ck) ◦ γk, γk⟩ (78)

Note, we can ignore the −2λk|γk|2 terms as γk is fixed in this case.991

It has closed form solution due to the following lemma and proposition:992

Lemma M.1. Given matrices A ∈ Rn,m, B ∈ Rm,l, C ∈ Rn,l, let

L = ⟨AB,C⟩,

then dL
dA = CB⊤.993

Proof. For any i ∈ [1 : n], j ∈ [1 : m], we have994

dL
dAij

:=
∑
i′,j′

d

dAij
Ci′,j′(AB)i′,j′

=
∑
i′,j′

Ci′,j′
d(
∑

k Ai′,kBk,j′)

dAij

=
∑
j′

Ci,j′Bk,j′ = (CB⊤)ij .

995

Proposition M.2. If L satisfies (57), and f ′1/h
′
1 is invertible, then (78) can be solved by996

C =

(
f ′1
h′1

)−1(∑
k ξkγ

kh2(C
k)(γk)

⊤∑
k ξkγ

k
1 (γ

k
1 )

⊤

)
, (79)

where
A

B
=

[
Aij

Bij

]
ij

,with convention
0

0
= 0.

Special case: if |p| ≤ |pk|,∀k, when λ is sufficiently large, (79) and [41, Proposition 3] coincide.997

Proof. From Proposition H.1, the objective in (78) becomes998

L =
∑
k

ξk⟨f1(C)γ111⊤nk
+ 1n(γ

k
2 )

⊤f2(C
k)− h1(C)γkh2(Ck)⊤, γk⟩

=
∑
k

ξk⟨f1(C)γ111⊤nk
, γk⟩+

∑
k

ξk⟨1n(γk2 )⊤f2(Ck), γk⟩︸ ︷︷ ︸
constant

−
∑
k

ξk⟨h1(C)γkh2(Ck)⊤, γk⟩
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We set dL
dC = 0. From Lemma M.1, we have:999

0 =
dL
dC

=
∑
k

ξkf
′
1(C)⊙ γk1nk

(γk1 )
⊤ −

∑
k

ξkh
′
1(C)⊙ γkh2(Ck)(γk)⊤

= f ′1(C)⊙
∑
k

ξkγ
k1nk

(γk1 )
⊤ − h′1(C)⊙

∑
k

ξkγ
kh2(C

k)(γk)⊤

= f ′1(C)⊙
∑
k

ξkγ
k
1 (γ

k
1 )

⊤

︸ ︷︷ ︸
B

−h′1(C)⊙
∑
k

ξkγ
kh2(C

k)(γk)⊤︸ ︷︷ ︸
A

. (80)

We claim A
B is well-defined, i.e., if Bij = 0, then Aij = 0.1000

For each i, j ∈ [1 : n], if Bij = 0, we have two cases:1001

Case 1: ∀k ∈ [1 : K], we have γk1 [i] = 0.1002

Thus, γk[i, :] = 0⊤nk
. So A[i, :] = (γkh2(C

k)(γk)⊤)[i, :] = 0⊤nk
.1003

Case 2: ∀k ∈ [1 : K], we have γk1 [j] = 0.1004

It implies (γk)⊥[:, j] = 0n, thus A[:, j] = (γkh2(C
k))(γk)⊤[:, j] = 0nk

. Therefore, Aij = 0.1005

Thus A
B is well-defined.1006

In addition, in these two cases, if we change the value Ck
ij , L will not change.1007

From (80), we have:1008 (
f ′1
h′1

(C)

)
ij

=

(∑
k ξkγ

kh2(C
k)(γk)⊤

)
ij(∑

k ξkγ
k
1 (γ

k
1 )

⊤
)
ij

if Bij > 0. In addition, if Bij = 0, there is no constraint for Cij .1009

Combining it with the fact that if Bi,j = 0, then Ci,j has no effect on L. Thus,1010

we have the following is a solution:

C =

(
f ′1
h′1

)−1(∑
k ξkγ

kh2(C
k)(γk)⊤∑

k ξkγ
k
1 (γ

k
1 )

⊤

)
.

In particular case: |p| ≤ |pk|,∀k, suppose λ > max{c2 : c ∈
⋃

k C
k ∪ C}, by lemma E.1, we have1011

for each k, |γk| = min(|p|, |p|k) = |p|, that is γk1 = p.1012

Thus,1013 ∑
k

ξkγ
k
1 (γ

1
1)

⊤ =
∑
k

ξkγ
k
1 (γ

k
1 )

⊤ =
∑
k

ξkpp
⊤ = pp⊤

Thus, C =
(

f ′
1

h′
1

)−1 (∑
k ξkγ

kh2(C
k)(γk)⊤

pp⊤

)
.1014

Remark M.3. In l2 loss case, i.e. L(r1, r2) = |r1 − r2|2, (79) becomes1015

C =

∑
k ξkγ

kCk(γk)⊤∑
k ξkγ

k
1 (γ

k
1 )

⊤ . (81)

Since in this case, we can set

f1(x) = x2, f2(y) = y2, h1(x) = 2x, h2(y) = y.

Thus f ′
1

h′
1
(x) = 2x

2 = x and
(

f ′
1

h′
1

)−1

(x) = x. Therefore, (79) becomes (81).1016
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Algorithm 3: Partial Gromov-Wasserstein Barycenter

Input: {Ck,pk, λk}Kk=1,p
Output: C
Initialize C.
for i = 1, 2, . . . do

compute γk ← argminγ∈Γ≤(p,pk)⟨L(C,Ck)− 2λk, γ⟩,∀k ∈ [1 : K].
Update C by (79).
if convergence, break

end for

Algorithm 4: Mass-Constrained Partial Gromov-Wasserstein Barycenter

Input: {Ck,pk, λk}Kk=1,p
Output: C
Initialize C.
for i = 1, 2, . . . do

compute γk ← argminγ∈Γ
ρk
≤ (p,pk)⟨L(C,Ck), γ⟩,∀k ∈ [1 : K].

Update C by (79).
if convergence, break

end for

Similarly, we can also extend the above PGW Barycenter into the MPGW setting:

min
C,γk

K∑
k=1

ξk⟨L(C,Ck) ◦ γk, γk⟩,

where, for each k ∈ [1 : K], ρk ∈ [0,min(|p|, |pk|)], and the optimization is over C ∈ Rn and1017

γk ∈ Γρk

≤ (p,pk) for k ∈ [1 : K].1018

It can be solved by the following algorithm 4.1019

Figure 4: We visualize the dataset in point cloud interpolation. The first row is the original images in
Link. The second row is the point clouds obtained by the k-mean method, where k = 1024.
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Figure 5: We test interpolation tasks in 3 scenarios: source data is clean, target data is selected from
three cases as described in section dataset and data processing. In each scenario, we test η =
5%, 10% respectively. In the first column, we present the source and target point cloud visualization
in each task. In columns 2-9, we present GW, PGW barycenter for t = 0/7, 1/7, . . . , 7/7.
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M.1 Details of Point Cloud Interpolation Experiment1020

Dataset and data processing. We apply the dataset in [41] with download link. The original data are1021

images, which we convert into a point cloud using the k-mean algorithm, where k = 1024 (see the1022

second row of Figure 4).1023

Suppose D ⊂ R2 is a region that contains these point clouds. LetR ⊂ R2 denote another region. In1024

R, we randomly select and add nη noise points to these point clouds. In particular, we consider noise1025

corruption in the following three cases:1026

Case 1: R is a rectangle region which is disjoint to D. See the third row in Figure 4.1027

Case 2: R = R1 ∪R2, whereR1,R2 are rectangles which are disjoint to D. See the fourth row in1028

Figure 4.1029

Case 3: R contains D. See the fifth row in Figure 4.1030

GW Barycenter and PGW Barycenter methods. We select t1, . . . , tK with 0 = t1 < t2 < . . . <1031

tK = 1. For each t ∈ {t1, . . . , tK}, we compute the GW Barycenter1032

arg min
C,γ1,γ2

(1− t)⟨L(C,C1) ◦ γ1, γ1⟩+ t⟨L(C,C2) ◦ γ2, γ2⟩, (82)

where γ1 ∈ Γ(p,p1), γ2 ∈ Γ(p,p2). Apply Smacof-MDS to the minimizer C, the resulting1033

embedding, denoted as Xt ∈ Rn×2 (where n = 1024) is the GW-based interpolation.1034

Replacing the GW Barycenter with the PGW Barycenter1035

arg min
C,γ1,γ2

(1− t)(⟨L(C,C1) ◦ γ1, γ1⟩+ λ1|γ1|2) + t(⟨L(C,C2) ◦ γ2, γ2⟩+ λ2|γ2|), (83)

where λ1, λ2 > 0, γ1 ∈ Γ≤(p,p
1), γ2 ∈ Γ≤(p,p

2). Then we obtain PGW-based interpolation.1036

Problem setup. We select one point cloud from the clean dataset denoted as X = {xi}ni=1 (source1037

point cloud), n = 1024.1038

Next, we select one noise-corrupted point cloud, as described in Case 1, Case 2, and Case 3,1039

respectively. In these three scenarios, we test η = 0.5% and η = 10% where η is the noise level.1040

Therefore, we test 3 ∗ 2 = 6 different interpolation tasks for these two methods. The size of the target1041

point cloud is then m = n+ nη. See Figure 5 for details.1042

Numerical details. In the GW-barycenter method, because of the balanced mass setting, we set

p1 =
1

n
1n,p

2 =
1

m
1m,p =

1

n
1n.

In PGW-barycenter, we set

p1 =
1

n
1n,p

2 =
1

n
1m,p =

1

n
1n.

In addition, we set λ1, λ2 such that 2λ1, 2λ2 ≥ max(max(C1)
2,max(C2)

2). We compute GW/PGW1043

barycenter for t = 0/7, 1/7, . . . , 7/7.1044

In both GW and PGW barycenter algorithms, we set the largest number of iterations to be 100. The1045

threshold for convergence is set to be 1e-5.1046

Performance analysis. Each interpolation task is essentially unbalanced: the source point cloud1047

contains clean data, while the target point cloud contains clean and noise points. We observe that in1048

the first two scenarios, the interpolation derived from GW is clearly disturbed by the noise data points.1049

For example, in rows 1, 3, 5, 7, columns t = 1/7, 2/7, 3/7, we see that the point clouds reconstructed1050

by MDS have significantly different width-height ratios from those of the source and target point1051

clouds.1052

In contrast, PGW is significantly less disturbed, and the interpolation is more natural. The width-1053

height ratio of the point clouds generated by the PGW barycenter is consistent with that of the1054

source/target point clouds.1055

In the third scenario, the noise data is uniformly selected from a large region that contains the domain1056

of all clean point clouds. In this case, we observe that the GW and PGW barycenters perform similarly.1057

42

https://github.com/gpeyre/2016-ICML-gromov-wasserstein


However, at t = 1/7, 2/7, 4/7, GW-barycenters present more noise points than PGW-barycenters in1058

the same truncated region.1059

Limitations and future work. The main issue of the above GW/PGW techniques arises from the1060

MDS method:1061

Given minimizer C ∈ Rn×n of GW/PGW barycenter problem (82) (or (83)), MDS studies the1062

following problem:1063

min
X∈Rn×d

n∑
i,i′=1

∣∣∣C1/2
i,i′ − ∥Xi −Xi′∥

∣∣∣2 (84)

Let O(n) denote the set of all n× n orthonormal matrices. Suppose X∗ is a minimizer, then RX∗ is1064

also a minimizer for the above problem for all R ∈ O(n).1065

In practice, this means manually setting suitable rotation and flipping matrices for each method at1066

each step, especially for the GW method.1067

However, we understand that this issue stems from the inherent properties of the GW/PGW method.1068

GW can be seen as a tool that describes the similarity between two graphs, which are rotation-invariant1069

and flipping-invariant. Therefore, the GW/PGW barycenter essentially describes the interpolation1070

between two graphs rather than two point clouds.1071

M.2 Details of Point Cloud Matching1072

Dataset setup. In the Moon dataset (see link), we apply n = 200 and set Gaussian variance to be 0.2.1073

The outliers are sampled from region [[−2,−1.5]× [−3.5,−3]].1074

In the second experiment, the circle data is uniformly sampled from 2D circle

S1 = {s ∈ R2 : ∥s∥2 = 1}

and spherical data is uniformly sampled from 3D sphere

S2 = {s+ [0, 0, 4] ∈ R2 : ∥s∥2 = 1},
where the shift [0, 0, 4] is applied for visualization.1075

We set sample size n = 200 for both 2D and 3D samples.1076

In both experiment, the number of outliers is ηn = 0.2n = 40.1077

Numerical details. In GW, we normalize the two point clouds as

X = (X, dX ,

n∑
i=1

1

n
δxi

),Y = (Y, dY ,

n+nη∑
j=1

1

n+ nη
δyj

).

In PGW, MPGW, UGW, we define the point clouds as1078

X = (X, dX ,

n∑
i=1

1

n
δxi),Y = (Y, dY ,

n+nη∑
j=1

1

n
δyj ).

In PGW, we choose λ such that λ ≥ max(max((CX)2),max((CY )2)), in particular, λ = 10.0.1079

In MPGW, we set ρ = 1.0.1080

In UGW, we set ρ1 = ρ2 = 10.0, ϵ = 0.05.1081

N Details of Shape Retrieval Experiment1082

Dataset details. We test two datasets in this experiment, which we refer to as Dataset I and Dataset1083

II. We visualize Dataset I in Figure 6a and Dataset II in Figure 6b. The complete datasets can be1084

accessed from the supplementary materials.1085
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Figure 6: Visualization of a representative shape from each class of the two datasets.

Numerical details. We represent the shapes in each dataset as mm-spaces Xi =1086 (
R2, ∥ · ∥2, µi =

∑ni

k=1 α
iδxi

k

)
. We use αi = 1

ni to compute the GW distances for the balanced1087

mass constraint setting. For the remaining distances, we set α = 1
N , where N is the median number1088

of points across all shapes in the dataset. For the SVM experiments, we use exp(−σD) as the kernel1089

for the SVM model, and we set σ = 10 for all distances. Moreover, we normalize the matrix D to1090

facilitate a fair comparison of each distance used, since the considered distance may have different1091

scales. We note that the resulting kernel matrix is not necessarily positive semidefinite.1092

In computing the pairwise distances, for the PGW method, we set λ such that λ ≤ λmax =1093

maxi (|Ci|2). In particular, we compute λmax for each dataset and use λ = 1
5λmax for each1094

experiment. For UGW, we use ε = 10−1 and ρ1 = ρ2 = 1 for both experiments. Finally, for MPGW,1095

we set the mass-constrained term to be ρ = min(|µi|, |µj |) when computing the similarity between1096

shape Xi and Xj .1097

Performance analysis. The pairwise distance matrices are visualized for each dataset in Figure 7, and1098

the confusion matrices computed with each dataset are given in Figure 8. Finally, the classification1099

accuracy with the SVM experiments is reported in Table 1a. The results indicate that the PGW1100

distance is able to consistently obtain high performance across both datasets.1101

In addition, from Figure 7, we observe that PGW qualitatively admits a more reasonable similarity1102

measure compared to other methods. For example, in Dataset I, class “bone” and “rectangle” should1103

have relatively smaller distance than “bone” and “annulus”. Ideally, a reasonable distance should1104

satisfy the following:1105

0 < d(bone, rectangle) < d(bone, anulus).

However, we do not observe this relation in GW and UGW3, and for the MPGW method,1106

MPGW (bone, rectangle) ≈ 0, which is also undesirable. For PGW, however, we do observe1107

this relation. Additionally, we report the wall-clock time comparison in Table 1b.1108

3For UGW, this is due to the Sinkhorn regularization term.
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Figure 7: Pairwise distance matrices computed for each dataset.
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Figure 8: Confusion matrices computed from nearest neighbor classification experiments.
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O Wall-Clock Time Comparison for Partial GW Solvers1109

In this section, we present the wall-clock time comparison between our method Algorithms 1, 2,1110

the Frank-Wolf algorithm proposed in [45], and its Sinkhorn version [41, 45]. Note that these two1111

baselines solve a mass constraint version of the PGW problem, which we refer to as the “MPGW”1112

problem. The proposed PGW formulation in this paper can be regarded as a “Lagrangian formulation”1113

of MPGW4 formulation to the PGW problem defined in (10). In this paper, we call these two baselines1114

as “MPGW algorithm” and “Sinkhorn PGW algorithm”.1115

Numerical details. The data is generated as follows: let µ = Unif([0, 2]2) and ν =1116

Unif([0, 2]3), we select i.i.d. samples {xi ∼ µ}ni=1, {yj ∼ ν}mj=1, where n is selected from1117

[10, 50, 100, 150, ..., 10000] and m = n + 100, p = 1n/m, q = 1m/m. For each n, we set1118

λ = 0.2, 1.0, 10.0. The mass constraint parameter for the algorithm in [45], and Sinkhorn is com-1119

puted by the mass of the transportation plan obtained by Algorithm 1 or 2. The runtime results are1120

shown in Figure 9.1121

Regarding the acceleration technique, for the POT problem in step 1, our algorithms and the MPGW1122

algorithm apply the linear programming solver provided by Python OT package [55], which is written1123

in C++. The Sinkhorn algorithm from Python OT does not have an acceleration technique. Thus, we1124

only test its wall-clock time for n ≤ 2000. The data type is 64-bit float number.1125

From Figure 9, we can observe the Algorithms 1, 2 and MPGW algorithm have a similar order of1126

time complexity. However, using the column/row-reduction technique for the POT computation1127

discussed in previous sections, and the fact the convergence behaviors of Algorithms 1 and 2 are1128

similar to the MPGW algorithm, we observe that the proposed algorithms 1, 2 admits a slightly faster1129

speed than MPGW solver.1130
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Figure 9: We test the wall-clock time of our Algorithm 1 and Algorithm 2, the MPGW solver
(Algorithm 1 in [45]) , and the Sinkhorn algorithm [41]. We denote these methods as v1, v2, m, s
respectively. The linear programming solver applied in the first three methods is from POT [55],
which is written in C++. The maximum number of iterations for all the methods is set to be 1000.
The maximum iteration for OT/OPT solvers is set to be 300n. The maximum Sinkhorn iteration is
set to be 1000. The convergence tolerance for the Frank-Wolfe algorithm and the Sinkhorn algorithm
are set to be 1e− 5. To achieve their best performance, the number of dummy points is set to be 1 for
MPGW and PGW.

4Due to the non-convexity of GW, we do not have a strong duality in some of the GW representations. Thus,
the Lagrangian form is not a rigorous description.
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P Positive Unlabeled Learning Problem1131

P.1 Problem setup.1132

Positive unlabeled (PU) learning [56, 57, 58] is a semi-supervised binary classification problem for1133

which the training set only contains positive samples. In particular, suppose there exists a fixed1134

unknown overall distribution over triples (x, o, l), where x is data, l ∈ {0, 1} is the label of x,1135

o ∈ {0, 1} where o = 1, o = 0 denote that l is observed or not, respectively. In the PU task, the1136

assumption is that only positive samples’ labels can be observed, i.e., Prob(o = 1|x, l = 0) = 0.1137

Consider training labeled data Xpu = {(xpui , l)}ni=1 ⊂ {x : o = 1} and testing data Xun =1138

{xunj }mj=1 ⊂ {x : o = 0}, where xipXi ∈ Rd1 , xuj ∈ Rd2 . In the classical PU learning setting,1139

d2 = d1. However, in [44] this assumption is relaxed. The goal is to leverageXp to design a classifier1140

l̂ : xu → {0, 1} to predict l(xu) for all xu ∈ Xu.51141

Following [57, 45, 44], in this experiment, we assume that the “select completely at random” (SCAR)1142

assumption holds: Prob(o = 1|x, l = 1) = Prob(o = 1|l = 1). In addition, we use π = Prob(l =1143

1) ∈ [0, 1] to denote the ratio of positive samples in testing set6. Following the PU learning setting in1144

[58, 59, 45, 44], we assume π is known. In all the PU learning experiments, we fix π = 0.2.1145

P.2 Our method.1146

Similar to [45] our method is designed as follows: We set p ∈ Rn, q ∈ Rm as pXi = π
n , i ∈ [1 :1147

n]; qYj = 1
m , j ∈ [1 : m]. Let Xp = (Xp, ∥ · ∥d1

,
∑n

i=1 p
X
i δxi

),Xu = (Xu, ∥ · ∥d2
,
∑n

j=1 q
Y
j δyj

).1148

We solve the partial GW problem PGWλ(Xp,Xu) and suppose γ is a solution. Let γ2 = γ⊤1n. The1149

classifier l̂ is defined by the indicator function1150

l̂γ(x
u) = 1{xu: γ2(xu)≥quantile}, (85)

where quantile is the quantile value of γ2 according to 1− π.1151

Regarding the initial guess γ(1), [45] proposed a POT-based approach when X and Y are sampled1152

from the same domain, i.e., d1 = d2, which we refer to as “POT initialization.”1153

When X,Y are sampled from different spaces, that is, d1 ̸= d2, the above technique (86) is not1154

well-defined. Inspired by [8, 44], we propose the following “first lower bound-partial OT” (FLB-POT)1155

initialization:1156

γ(1) = arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,2(x)− sY,2(y)|2dγ(x, y) + λ(|p− γ1|+ |q− γ2|),

where sX,2(x) =
∫
X
|x− x′|2dµ(x) and sY,2 is defined similarly. The above formula is analog to1157

Eq. (7) in [44], which is designed for the unbalanced GW setting. To distinguish them, in this paper1158

we call the Eq. (7) in [44] as “FLB-UOT initilization”.1159

P.3 Dataset.1160

The datasets include MNIST, EMNIST, and the following three domains of Caltech Office: Amazon1161

(A), Webcam (W), and DSLR (D) [60]. For each domain, we select the SURF features [60] and1162

DECAF features [61]. For MNIST and EMNIST, we train an auto-encoder, respectively, and the1163

embedding space dimension is 4 and 6, respectively. See Figure 10 for the TSNE visualization of1164

these datasets.1165

P.4 Initial methods.1166

In this experiment, we employ three distinct initial methods: “POT”, “FLB-UOT”, “FLB-POT”.1167

5In the classical setting, the goal is to learn a classifier for all x. In this experiment, we follow the setting in
[44].

6In the classical setting, the prior distribution π is the ratio of positive samples of the original dataset. For
convenience, we ignore the difference between this ratio in the original dataset and the test dataset.
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(a) MNIST (b) EMNIST

(c) Surf(A) (d) Decaf(A)
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Figure 10: TSNE visulization for datasets MNIST,EMNIST,Caltech Office.
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“POT initialization” is firstly introduced in [45].When X1, X2 are in the same dimensional space,1168

i.e. d1 = d2. The initial guess, γ(1) is given by the following partial OT variant problem:1169

γ(1) = arg min
γ∈ΓPU,π(p,q)

⟨L(X,Y ), γ⟩F , (86)

where L(X,Y ) ∈ Rn×m, (L(X,Y ))ij = ∥xi − yj∥2 and1170

ΓPU,π(p, q) := {γ ∈ Rn×m
+ : (γ⊤1n)j ∈ {qYj , 0},∀j; γ1m ≤ p, |γ| = π}. (87)

The above problem can be solved by a Lasso (L1 norm) regularized OT solver.1171

When d1 ̸= d2, the above technique can not be applied since the problem (86) (in particular L(X,Y ))1172

is not well-defined.1173

The second method “FLB-UOT” is induced in [44]:1174

γ(1) = arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,2(x)− sY,2(y)|2dγ(x, y) + λ(DKL(γ1,p) +DKL(γ2, q)), (88)

where sX,2(x) =
∫
X
|x − x′|2dµ(x) and sY,2 is defined similarly. The problem (88) is called1175

Hellinger Kantorovich, which is a classical unbalanced optimal transport problem. It can be solved1176

by the Sinkhorn solver [38].1177

Analog to the above method, we propose the third method, called “FLB-POT” (first lower bound-1178

partial optimal transport)1179

γ(1) = arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,2(x)− sY,2(y)|2dγ(x, y) + λ(|p− γ1|+ |q− γ2|). (89)

The above problem is a partial OT problem and can be solved by classical linear programming [12].1180

P.5 Numerical details and performance.1181

Accuracy Comparison. In Table 2 and 4, we present the accuracy results for the MPGW, UGW, and1182

the proposed PGW methods when using three different initialization methods: POT, FLB-UOT, and1183

FLB-POT.1184

Following [45], in the MPGW and PGW methods, we incorporate the prior knowledge π into the1185

definition of p and q. Thus it is sufficient to set mass = π for MPGW and choose a sufficiently1186

large value for λ in the PGW method. This configuration ensures that the mass matched in the target1187

domain Y is exactly equal to π. However, in the UGW method [44], the setting is p = 1
n1n and1188

q = 1
m1m. Therefore, in each experiment, we test different parameters (ρ, ρ2, ϵ) and select the ones1189

that result in transported mass close to π.1190

Overall, all methods show improved performance in MNIST and EMNIST datasets. One possible1191

reason for this could be the better separability of the embeddings in MNIST and EMNIST, as1192

DATASET INIT METHOD INIT ACCURACY MPGW UGW PGW (OURS)

M→ M POT 100% 100% 95% 100%
M→ M FLB-U 75% 96% 95% 96%
M→ M FLB-P 75% 99% 95% 99%
M→ EM FLB-U 78% 94% 95% 94%
M→ EM FLB-P 78% 94% 95% 94%
EM→ M FLB-U 75% 97% 96% 97%
EM→ M FLB-P 75% 97% 96% 97%
EM→ EM POT 100% 100% 95% 100%
EM→ EM FLB-U 78% 94% 95% 94%
EM→ EM FLB-P 78% 95% 95% 95%

Table 2: Accuracy comparison of the MPGW, UGW, and the proposed PGW method on PU learning.
Here, ‘M’ denotes MNIST, and ‘EM’ denotes EMNIST.
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illustrated in Figure 10. Additionally, since MPGW and PGW incorporate information from r into1193

their formulations, they exhibit slightly better accuracy in many experiments.1194

Numerical details. In this experiment, to prevent unexpected convergence to local minima in the1195

Frank-Wolf algorithms, we manually set α = 1 during the line search step for both MPGW and PGW1196

methods.1197

For the convergence criteria, we set the tolerance term for Frank-Wolfe convergence and the main1198

loop in the UGW algorithm to be 1e− 5. Additionally, the tolerance for Sinkhorn convergence in1199

UGW was set to 1e− 6. The maximum number of iterations for the POT solver in PGW and MPGW1200

was set to 500n. In addition, for MPGW, we set mass = 0.2 and for PGW method, based on lemma1201

E.2, we set λ to be constant such that 2λ ≥ (max(|CX |)2 +max(|CY |)2).1202

Regarding data types, we used 64-bit floating-point numbers for MPGW and PGW, and 32-bit1203

floating-point numbers for UGW.1204

For the MNIST and EMNIST datasets, we set n = 1000 and m = 5000. In the Surf(A) and Decaf(A)1205

datasets, each class contained an average of 100 samples. To ensure the SCAR assumption, we set1206

n = 1/2 ∗ 100 = 50 and m = 250. Similarly, for the Surf(D) and Decaf(D) datasets, we set n = 151207

and m = 75. Finally, for Surf(W) and Decaf(W), we used n = 20 and m = 100.1208

Wall-clock time In Table 3, we provide a comparison of wall-clock times for the MNIST and1209

EMNIST datasets.1210

SOURCE TARGET INIT METHOD INIT TIME MPGW UGW PGW (OURS)

M(1000) M(5000) POT 0.5 7.2 152.0 7.4
M(1000) M(5000) FLB-U 0.02 30.5 152.6 27.8
M(1000) M(5000) FLB-P 0.5 27.8 144.9 26.9

EM(1000) EM(5000) POT 0.5 7.3 157.3 7.5
EM(1000) EM(5000) FLB-U 0.02 30.0 181.8 29.9
EM(1000) EM(5000) FLB-P 0.5 22.2 155.1 22.3
M(1000) EM(5000) FLB-U 0.02 34.0 157.9 34.4
M(1000) EM(5000) FLB-P 0.5 34.9 155.5 35.0

EM(1000) M(5000) FLB-U 0.02 24.3 139.3 22.2
EM(1000) M(5000) FLB-P 0.5 32.0 162.7 29.9
M(2000) M(10000) POT 1.7 31.1 1384.8 32.1
M(2000) M(10000) FLB-U 0.1 209.0 1525.8 192.5
M(2000) M(10000) FLB-P 1.7 208.0 1418.4 192.1
M(2000) EM(10000) FLB-U 0.1 165.1 1606.1 164.2
M(2000) EM(10000) FLB-P 1.7 224.1 1420.7 223.7

EM(2000) M(10000) FLB-U 0.1 149.1 1426.5 138.1
EM(2000) M(10000) FLB-P 1.7 113.9 1407.6 103.9
EM(2000) EM(10000) POT 1.6 32.4 1445.9 33.4
EM(2000) EM(10000) FLB-U 0.1 233.0 1586.3 233.9
EM(2000) EM(10000) FLB-P 1.8 142.1 1620.6 142.1

Table 3: In this table, we present the wall-clock time for the MPGW, UGW, and the proposed PGW
method, as well as three different initialization methods (POT, FLB-UOT, FLB-POT). In the “Source”
(or “Target”) columm, M (or EM) denotes the MNIST (or EMNIST) dataset, the value 1000 (or 5000)
denotes the sample size of X (or Y ). The units of all reported wall-clock times is seconds.
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DATASET INIT METHOD INIT ACCURACY MPGW UGW PGW (OURS)

SURF(A)→ SURF(A) POT 81.2% 74.7% 66.5% 74.7%
SURF(A)→ SURF(A) FLB-U 64.9% 65.7% 66.5% 65.7%
SURF(A)→ SURF(A) FLB-P 63.3% 66.5% 66.5% 66.5%
DECAF(A)→ DECAF(A) POT 95.1% 95.1% 60.8% 95.1%
DECAF(A)→ DECAF(A) FLB-U 78.0% 67.4% 83.7% 67.4%
DECAF(A)→ DECAF(A) FLB-P 78.0% 74.7% 88.6% 74.7%
SURF(D)→ SURF(D) POT 100% 100% 89.3% 100%
SURF(D)→ SURF(D) FLB-U 62.7% 73.3% 84.0% 73.3%
SURF(D)→ SURF(D) FLB-P 60.0% 60.0% 78.7% 60.0%
DECAF(D)→ DECAF(D) POT 100% 100% 100% 100%
DECAF(D)→ DECAF(D) FLB-U 76.0% 68.0% 70.7% 68.0%
DECAF(D)→ DECAF(D) FLB-P 73.3% 73.3% 86.7% 73.3%
SURF(W)→ SURF(W) POT 100.0% 100.0% 81.3% 100.0%
SURF(W)→ SURF(W) FLB-U 76.0% 70.7% 81.3% 70.7%
SURF(W)→ SURF(W) FLB-P 73.3% 68.0% 78.7% 68.0%
DECAF(W)→ DECAF(W) POT 100% 100% 100% 100%
DECAF(W)→ DECAF(W) FLB-U 73.3% 68.0% 62.7% 68.0%
DECAF(W)→ DECAF(W) FLB-P 70.7% 70.7% 73.3% 70.7%

SURF(A)→ DECAF(A) FLB-U 73.9% 83.7% 91.8% 83.7%
SURF(A)→ DECAF(A) FLB-P 73.9% 83.7% 87.8% 83.7%
DECAF(A)→ SURF(A) FLB-U 67.3% 67.3% 69.0% 67.3%
DECAF(A)→ SURF(A) FLB-P 67.3% 68.2% 71.4% 68.2%
SURF(D)→ DECAF(D) FLB-U 76.0% 76.0% 65.3% 76.0%
SURF(D)→ DECAF(D) FLB-P 76.0% 76.0% 65.3% 76.0%
DECAF(D)→ SURF(D) FLB-U 73.3% 62.7% 73.3% 62.7%
DECAF(D)→ SURF(D) FLB-P 73.3% 73.3% 73.3% 73.3%
SURF(W)→ DECAF(W) FLB-U 70.7% 70.7% 76.0% 70.7%
SURF(W)→ DECAF(W) FLB-P 70.7% 70.7% 76.0% 70.7%
DECAF(W)→ SURF(W) FLB-U 68.0% 68.0% 65.3% 68.0%
DECAF(W)→ SURF(W) FLB-P 68.0% 68.0% 70.7% 68.0%

Table 4: In this table, we present the accuracy comparison of the MPGW, UGW, and the proposed
PGW method. We report the initialization method and its accuracy, followed by the accuracy of each
of the methods MPGW, UGW, and PGW. The prior distribution π = p(l = 1) is set to be 0.2 in all
experiments. To guarantee the SCAR assumption, for Surf(A) and Decaf(A), we set n = 50, which is
the half of the total number of data in one single class. m is set to be 250. Similarly, we set suitable
n,m for Surf(D), Decaf(D), Surf(W), Decaf(W).
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DATASET INIT METHOD INIT TIME MPGW UGW PGW (OURS)

SURF(A)→ SURF(A) POT 1.4E-3 1.9E-2 3.8 2.0E-2
SURF(A)→ SURF(A) FLB-U 2.2E-3 1.8E-2 3.6 1.9E-2
SURF(A)→ SURF(A) FLB-P 1.7E-3 1.8E-2 3.8 1.5E-2
DECAF(A)→ DECAF(A) POT 1.7E-3 1.9E-2 7.3 1.9E-2
DECAF(A)→ DECAF(A) FLB-U 9.6E-3 1.8E-2 6.8 1.5E-2
DECAF(A)→ DECAF(A) FLB-P 2.0E-3 1.8E-2 6.7 1.6E-2
SURF(D)→ SURF(D) POT 2.9E-4 5.8E-4 3.1 3.8E-4
SURF(D)→ SURF(D) FLB-U 1.4E-3 3.0E-3 5.4 2.2E-3
SURF(D)→ SURF(D) FLB-P 3.1E-4 2.9E-3 5.4 2.1E-3
DECAF(D)→ DECAF(D) POT 3.1E-4 6.0E-4 3.3 3.6E-4
DECAF(D)→ DECAF(D) FLB-U 1.4E-3 2.9E-3 5.8 2.1E-3
DECAF(D)→ DECAF(D) FLB-P 3.4E-4 2.8E-3 5.3 2.0E-3
SURF(W)→ SURF(W) POT 3.0E-4 6.0E-4 5.2 3.6E-4
SURF(W)→ SURF(W) FLB-U 1.3E-3 2.9E-3 5.1 2.1E-3
SURF(W)→ SURF(W) FLB-P 3.3E-4 2.9E-3 5.1 2.1E-3
DECAF(W)→ DECAF(W) POT 3.3E-4 6.2E-4 3.3 3.4E-4
DECAF(W)→ DECAF(W) FLB-U 1.2E-3 2.9E-3 5.8 2.1E-3
DECAF(W)→ DECAF(W) FLB-P 3.3E-4 2.8E-3 5.4 2.0E-3

SURF(A)→ DECAF(A) FLB-U 1.1E-1 2.8E-2 6.7 2.6E-2
SURF(A)→ DECAF(A) FLB-P 1.9E-3 2.2E-2 0.2 2.1E-2
DECAF(A)→ SURF(A) FLB-U 0.1 5E-2 6.7 4E-2
DECAF(A)→ SURF(A) FLB-P 2E-3 1.8 6.8 1.5
SURF(D)→ DECAF(D) FLB-U 1.8E-3 5.3E-3 6.0 2.3E-3
SURF(D)→ DECAF(D) FLB-P 3.5E-4 3.9E-4 5.9 3.8E-4
DECAF(D)→ SURF(D) FLB-U 1.8E-3 0.296 5.6 0.165
DECAF(D)→ SURF(D) FLB-P 3.3E-4 0.218 5.6 0.170
SURF(W)→ DECAF(W) FLB-U 1.8E-3 5.3E-3 5.0 2.3E-3
SURF(W)→ DECAF(W) FLB-P 3.4E-4 4.1E-4 5.0 3.9E-4
DECAF(W)→ SURF(W) FLB-U 1.8E-3 5.1E-3 5.8 2.1E-3
DECAF(W)→ SURF(W) FLB-P 3.4E-4 2.9E-3 5.6 2.2E-3

Table 5: In this table, we present the wall-clock time comparison of the MPGW, UGW, and the
proposed PGW method. We report the initialization method and its wall-clock time, followed by the
wall-clock time of each of the methods MPGW, UGW, and PGW. The units of all reported wall-clock
times is seconds. The prior distribution π = p(l = 1) is set to be 0.2 in all experiments. To guarantee
the SCAR assumption, for Surf(A) and Decaf(A), we set n = 50, which is the half of the total number
of data in one single class. m is set to be 250. Similarly, we set suitable n,m for Surf(D), Decaf(D),
Surf(W), Decaf(W).
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Q Limitations1211

Compatibility Between Linear Search and Frank-Wolf Solver1212

In practice, we have found that in some experiments, the linear search algorithm (see Sections I, J)1213

may cause the Frank Wolfe algorithms (1, 2) to stop running earlier than expected. This may hurt the1214

performance observed in the PU learning experiments (see Appendix P). As such, we disable line1215

search in these experiments.1216

However, in other experiments, for example PGW barycenter (Appendix M.1), we do not find a1217

significant effect of the linear search algorithm on the results.1218

MDS in Point Cloud Interpolation Experiment1219

In the point cloud interpolation experiment (see Appendix M), for the classical GW barycenter method1220

[41] or our PGW barycenter method, the last step is the same: applying MDS on the barycenter1221

minimizer C to construct interpolation point cloud Xt. However, such construction is not unique.1222

As a consequence, for each constructed Xt, we need to manually set up the rotation and flipping1223

matrices.1224

This problem follows from the fact that the GW and PGW formulations cannot distinguish the data1225

from its rotated (and flipped) version. We refer to Section M.1 for details.1226

R Compute Resources1227

All experiments presented in this paper are conducted on a computational machine with an AMD1228

EPYC 7713 64-Core Processor, 8 × 32GB DIMM DDR4, 3200 MHz, and a NVIDIA RTX A60001229

GPU.1230

S Impact Statement1231

The work presented in this paper aims to advance the field of machine learning, particularly the1232

supplementary theoretical developments and explorations of computational optimal transport. There1233

are many potential societal consequences of our work, none of which we feel must be specifically1234

highlighted here.1235
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NeurIPS Paper Checklist1236

1. Claims1237

Question: Do the main claims made in the abstract and introduction accurately reflect the1238

paper’s contributions and scope?1239

Answer: [Yes]1240

Justification: In the Abstract, we briefly introduce our main contributions, and in the1241

Introduction (Section 1) we explain our main contributions in detail. These contributions1242

are reflected by the theoretical and experimental results provided in the remainder of the1243

main text and appendices.1244

Guidelines:1245

• The answer NA means that the abstract and introduction do not include the claims1246

made in the paper.1247

• The abstract and/or introduction should clearly state the claims made, including the1248

contributions made in the paper and important assumptions and limitations. A No or1249

NA answer to this question will not be perceived well by the reviewers.1250

• The claims made should match theoretical and experimental results, and reflect how1251

much the results can be expected to generalize to other settings.1252

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1253

are not attained by the paper.1254

2. Limitations1255

Question: Does the paper discuss the limitations of the work performed by the authors?1256

Answer: [Yes]1257

Justification: We explain the limitations in Appendix Q.1258

Guidelines:1259

• The answer NA means that the paper has no limitation while the answer No means that1260

the paper has limitations, but those are not discussed in the paper.1261

• The authors are encouraged to create a separate "Limitations" section in their paper.1262

• The paper should point out any strong assumptions and how robust the results are to1263

violations of these assumptions (e.g., independence assumptions, noiseless settings,1264

model well-specification, asymptotic approximations only holding locally). The authors1265

should reflect on how these assumptions might be violated in practice and what the1266

implications would be.1267

• The authors should reflect on the scope of the claims made, e.g., if the approach was1268

only tested on a few datasets or with a few runs. In general, empirical results often1269

depend on implicit assumptions, which should be articulated.1270

• The authors should reflect on the factors that influence the performance of the approach.1271

For example, a facial recognition algorithm may perform poorly when image resolution1272

is low or images are taken in low lighting. Or a speech-to-text system might not be1273

used reliably to provide closed captions for online lectures because it fails to handle1274

technical jargon.1275

• The authors should discuss the computational efficiency of the proposed algorithms1276

and how they scale with dataset size.1277

• If applicable, the authors should discuss possible limitations of their approach to1278

address problems of privacy and fairness.1279

• While the authors might fear that complete honesty about limitations might be used by1280

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1281

limitations that aren’t acknowledged in the paper. The authors should use their best1282

judgment and recognize that individual actions in favor of transparency play an impor-1283

tant role in developing norms that preserve the integrity of the community. Reviewers1284

will be specifically instructed to not penalize honesty concerning limitations.1285

3. Theory Assumptions and Proofs1286

Question: For each theoretical result, does the paper provide the full set of assumptions and1287

a complete (and correct) proof?1288
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Answer: [Yes]1289

Justification: In each theorem, we clearly specify the details of conditions and assumptions1290

along with complete proof.1291

Guidelines:1292

• The answer NA means that the paper does not include theoretical results.1293

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1294

referenced.1295

• All assumptions should be clearly stated or referenced in the statement of any theorems.1296

• The proofs can either appear in the main paper or the supplemental material, but if1297

they appear in the supplemental material, the authors are encouraged to provide a short1298

proof sketch to provide intuition.1299

• Inversely, any informal proof provided in the core of the paper should be complemented1300

by formal proofs provided in appendix or supplemental material.1301

• Theorems and Lemmas that the proof relies upon should be properly referenced.1302

4. Experimental Result Reproducibility1303

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1304

perimental results of the paper to the extent that it affects the main claims and/or conclusions1305

of the paper (regardless of whether the code and data are provided or not)?1306

Answer: [Yes]1307

Justifications: In Sections M.1,M.2,N, subsection “numerical details”, we explain the1308

detailed parameter settings for each method in order to reproduce our results.1309

Guidelines:1310

• The answer NA means that the paper does not include experiments.1311

• If the paper includes experiments, a No answer to this question will not be perceived1312

well by the reviewers: Making the paper reproducible is important, regardless of1313

whether the code and data are provided or not.1314

• If the contribution is a dataset and/or model, the authors should describe the steps taken1315

to make their results reproducible or verifiable.1316

• Depending on the contribution, reproducibility can be accomplished in various ways.1317

For example, if the contribution is a novel architecture, describing the architecture fully1318

might suffice, or if the contribution is a specific model and empirical evaluation, it may1319

be necessary to either make it possible for others to replicate the model with the same1320

dataset, or provide access to the model. In general. releasing code and data is often1321

one good way to accomplish this, but reproducibility can also be provided via detailed1322

instructions for how to replicate the results, access to a hosted model (e.g., in the case1323

of a large language model), releasing of a model checkpoint, or other means that are1324

appropriate to the research performed.1325

• While NeurIPS does not require releasing code, the conference does require all submis-1326

sions to provide some reasonable avenue for reproducibility, which may depend on the1327

nature of the contribution. For example1328

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1329

to reproduce that algorithm.1330

(b) If the contribution is primarily a new model architecture, the paper should describe1331

the architecture clearly and fully.1332

(c) If the contribution is a new model (e.g., a large language model), then there should1333

either be a way to access this model for reproducing the results or a way to reproduce1334

the model (e.g., with an open-source dataset or instructions for how to construct1335

the dataset).1336

(d) We recognize that reproducibility may be tricky in some cases, in which case1337

authors are welcome to describe the particular way they provide for reproducibility.1338

In the case of closed-source models, it may be that access to the model is limited in1339

some way (e.g., to registered users), but it should be possible for other researchers1340

to have some path to reproducing or verifying the results.1341

5. Open access to data and code1342
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Question: Does the paper provide open access to the data and code, with sufficient instruc-1343

tions to faithfully reproduce the main experimental results, as described in supplemental1344

material?1345

Answer: [Yes]1346

Justification: We provide the data and code as supplementary material.1347

Guidelines:1348

• The answer NA means that paper does not include experiments requiring code.1349

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1350

public/guides/CodeSubmissionPolicy) for more details.1351

• While we encourage the release of code and data, we understand that this might not be1352

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1353

including code, unless this is central to the contribution (e.g., for a new open-source1354

benchmark).1355

• The instructions should contain the exact command and environment needed to run to1356

reproduce the results. See the NeurIPS code and data submission guidelines (https:1357

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1358

• The authors should provide instructions on data access and preparation, including how1359

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1360

• The authors should provide scripts to reproduce all experimental results for the new1361

proposed method and baselines. If only a subset of experiments are reproducible, they1362

should state which ones are omitted from the script and why.1363

• At submission time, to preserve anonymity, the authors should release anonymized1364

versions (if applicable).1365

• Providing as much information as possible in supplemental material (appended to the1366

paper) is recommended, but including URLs to data and code is permitted.1367

6. Experimental Setting/Details1368

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1369

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1370

results?1371

Answer: [Yes]1372

Justification: We refer to the subsections “experiment setup” in Sections 5, M.1, M.2, N, P.1373

Guidelines:1374

• The answer NA means that the paper does not include experiments.1375

• The experimental setting should be presented in the core of the paper to a level of detail1376

that is necessary to appreciate the results and make sense of them.1377

• The full details can be provided either with the code, in appendix, or as supplemental1378

material.1379

7. Experiment Statistical Significance1380

Question: Does the paper report error bars suitably and correctly defined or other appropriate1381

information about the statistical significance of the experiments?1382

Answer: [Yes]1383

Justification: We calculate accuracy in experiments N, P, which are the only statistics1384

reported in this paper. These values are classification accuracies for each tested dataset.1385

Thus, error bar/variance are not involved in this work.1386

Guidelines:1387

• The answer NA means that the paper does not include experiments.1388

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1389

dence intervals, or statistical significance tests, at least for the experiments that support1390

the main claims of the paper.1391

• The factors of variability that the error bars are capturing should be clearly stated (for1392

example, train/test split, initialization, random drawing of some parameter, or overall1393

run with given experimental conditions).1394
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• The method for calculating the error bars should be explained (closed form formula,1395

call to a library function, bootstrap, etc.)1396

• The assumptions made should be given (e.g., Normally distributed errors).1397

• It should be clear whether the error bar is the standard deviation or the standard error1398

of the mean.1399

• It is OK to report 1-sigma error bars, but one should state it. The authors should1400

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1401

of Normality of errors is not verified.1402

• For asymmetric distributions, the authors should be careful not to show in tables or1403

figures symmetric error bars that would yield results that are out of range (e.g. negative1404

error rates).1405

• If error bars are reported in tables or plots, The authors should explain in the text how1406

they were calculated and reference the corresponding figures or tables in the text.1407

8. Experiments Compute Resources1408

Question: For each experiment, does the paper provide sufficient information on the com-1409

puter resources (type of compute workers, memory, time of execution) needed to reproduce1410

the experiments?1411

Answer: [Yes]1412

Justification: See Appendix R.1413

Guidelines:1414

• The answer NA means that the paper does not include experiments.1415

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1416

or cloud provider, including relevant memory and storage.1417

• The paper should provide the amount of compute required for each of the individual1418

experimental runs as well as estimate the total compute.1419

• The paper should disclose whether the full research project required more compute1420

than the experiments reported in the paper (e.g., preliminary or failed experiments that1421

didn’t make it into the paper).1422

9. Code Of Ethics1423

Question: Does the research conducted in the paper conform, in every respect, with the1424

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1425

Answer: [Yes]1426

Justification: The authors have reviewed the NeurIPS Code of Ethics and all the imported1427

code has been properly cited.1428

Guidelines:1429

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1430

• If the authors answer No, they should explain the special circumstances that require a1431

deviation from the Code of Ethics.1432

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1433

eration due to laws or regulations in their jurisdiction).1434

10. Broader Impacts1435

Question: Does the paper discuss both potential positive societal impacts and negative1436

societal impacts of the work performed?1437

Answer: [Yes]1438

Justification: See Appendix S.1439

Guidelines:1440

• The answer NA means that there is no societal impact of the work performed.1441

• If the authors answer NA or No, they should explain why their work has no societal1442

impact or why the paper does not address societal impact.1443
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• Examples of negative societal impacts include potential malicious or unintended uses1444

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1445

(e.g., deployment of technologies that could make decisions that unfairly impact specific1446

groups), privacy considerations, and security considerations.1447

• The conference expects that many papers will be foundational research and not tied1448

to particular applications, let alone deployments. However, if there is a direct path to1449

any negative applications, the authors should point it out. For example, it is legitimate1450

to point out that an improvement in the quality of generative models could be used to1451

generate deepfakes for disinformation. On the other hand, it is not needed to point out1452

that a generic algorithm for optimizing neural networks could enable people to train1453

models that generate Deepfakes faster.1454

• The authors should consider possible harms that could arise when the technology is1455

being used as intended and functioning correctly, harms that could arise when the1456

technology is being used as intended but gives incorrect results, and harms following1457

from (intentional or unintentional) misuse of the technology.1458

• If there are negative societal impacts, the authors could also discuss possible mitigation1459

strategies (e.g., gated release of models, providing defenses in addition to attacks,1460

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1461

feedback over time, improving the efficiency and accessibility of ML).1462

11. Safeguards1463

Question: Does the paper describe safeguards that have been put in place for responsible1464

release of data or models that have a high risk for misuse (e.g., pretrained language models,1465

image generators, or scraped datasets)?1466

Answer: [NA]1467

Justification: This paper does not pose such risks.1468

Guidelines:1469

• The answer NA means that the paper poses no such risks.1470

• Released models that have a high risk for misuse or dual-use should be released with1471

necessary safeguards to allow for controlled use of the model, for example by requiring1472

that users adhere to usage guidelines or restrictions to access the model or implementing1473

safety filters.1474

• Datasets that have been scraped from the Internet could pose safety risks. The authors1475

should describe how they avoided releasing unsafe images.1476

• We recognize that providing effective safeguards is challenging, and many papers do1477

not require this, but we encourage authors to take this into account and make a best1478

faith effort.1479

12. Licenses for existing assets1480

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1481

the paper, properly credited and are the license and terms of use explicitly mentioned and1482

properly respected?1483

Answer: [Yes]1484

Justification: In Sections M.1, M.2, N, P, subsection “dataset”, we provide the citations of1485

all datasets from other literature. We also cite all code adapted from other sources.1486

Guidelines:1487

• The answer NA means that the paper does not use existing assets.1488

• The authors should cite the original paper that produced the code package or dataset.1489

• The authors should state which version of the asset is used and, if possible, include a1490

URL.1491

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1492

• For scraped data from a particular source (e.g., website), the copyright and terms of1493

service of that source should be provided.1494
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• If assets are released, the license, copyright information, and terms of use in the1495

package should be provided. For popular datasets, paperswithcode.com/datasets1496

has curated licenses for some datasets. Their licensing guide can help determine the1497

license of a dataset.1498

• For existing datasets that are re-packaged, both the original license and the license of1499

the derived asset (if it has changed) should be provided.1500

• If this information is not available online, the authors are encouraged to reach out to1501

the asset’s creators.1502

13. New Assets1503

Question: Are new assets introduced in the paper well documented and is the documentation1504

provided alongside the assets?1505

Answer: [NA]1506

Justification: This paper does not release new assets.1507

Guidelines:1508

• The answer NA means that the paper does not release new assets.1509

• Researchers should communicate the details of the dataset/code/model as part of their1510

submissions via structured templates. This includes details about training, license,1511

limitations, etc.1512

• The paper should discuss whether and how consent was obtained from people whose1513

asset is used.1514

• At submission time, remember to anonymize your assets (if applicable). You can either1515

create an anonymized URL or include an anonymized zip file.1516

14. Crowdsourcing and Research with Human Subjects1517

Question: For crowdsourcing experiments and research with human subjects, does the paper1518

include the full text of instructions given to participants and screenshots, if applicable, as1519

well as details about compensation (if any)?1520

Answer: [NA]1521

Justification: This paper does not involve crowdsourcing nor research with human subjects.1522

Guidelines:1523

• The answer NA means that the paper does not involve crowdsourcing nor research with1524

human subjects.1525

• Including this information in the supplemental material is fine, but if the main contribu-1526

tion of the paper involves human subjects, then as much detail as possible should be1527

included in the main paper.1528

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1529

or other labor should be paid at least the minimum wage in the country of the data1530

collector.1531

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1532

Subjects1533

Question: Does the paper describe potential risks incurred by study participants, whether1534

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1535

approvals (or an equivalent approval/review based on the requirements of your country or1536

institution) were obtained?1537

Answer: [NA]1538

Justification: This paper does not involve crowdsourcing nor research with human subjects.1539

Guidelines:1540

• The answer NA means that the paper does not involve crowdsourcing nor research with1541

human subjects.1542

• Depending on the country in which research is conducted, IRB approval (or equivalent)1543

may be required for any human subjects research. If you obtained IRB approval, you1544

should clearly state this in the paper.1545
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• We recognize that the procedures for this may vary significantly between institutions1546

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1547

guidelines for their institution.1548

• For initial submissions, do not include any information that would break anonymity (if1549

applicable), such as the institution conducting the review.1550
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