
Under review as a conference paper at ICLR 2024

GRADSKIP: COMMUNICATION-ACCELERATED
LOCAL GRADIENT METHODS WITH
BETTER COMPUTATIONAL COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

We study a class of distributed optimization algorithms that aim to alleviate high
communication costs by allowing clients to perform multiple local gradient-type
training steps prior to communication. While methods of this type have been studied
for about a decade, the empirically observed acceleration properties of local training
have eluded all attempts at theoretical understanding. In a recent breakthrough,
Mishchenko et al. (2022) proved that local training, when properly executed,
leads to provable communication acceleration, and this holds in the strongly convex
regime without relying on any data similarity assumptions. However, their ProxSkip
method requires all clients to take the same number of local training steps in
each communication round. Inspired by a common sense intuition, we start our
investigation by conjecturing that clients with “less important” data should be
able to get away with fewer local training steps without this impacting the overall
communication complexity of the method. It turns out that this intuition is correct:
we managed to redesign the original ProxSkip method to achieve this. In particular,
we prove that our modified method, for which we coined the name GradSkip,
converges linearly under the same assumptions and has the same accelerated
communication complexity, while the number of local gradient steps can be reduced
relative to a local condition number. We further generalize our method by extending
the randomness of probabilistic alternations to arbitrary unbiased compression
operators and by considering a generic proximable regularizer. This generalization,
which we call GradSkip+, recovers several related methods in the literature as
special cases. Finally, we present an empirical study on carefully designed toy
problems that confirm our theoretical claims.

1 INTRODUCTION

Federated Learning (FL) is an emerging distributed machine learning paradigm where diverse data
holders or clients (e.g., smart watches, mobile devices, laptops, hospitals) collectively aim to train a
single machine learning model without revealing local data to each other or the orchestrating central
server (McMahan et al., 2017; Kairouz et al, 2019; Wang, 2021). Training such models amounts to
solving federated optimization problems of the form

minx∈Rd

{
f(x) := 1

n

∑n
i=1 fi(x)

}
, (1)

where d is the (typically large) number of parameters of the model x ∈ Rd we aim to train, and n is
the (potentially large) total number of devices in the federated environment. We denote by fi(x) the
loss or risk associated with the data Di stored on client i ∈ [n] := {1, 2, . . . , n}. Formally, our goal
is to minimize the overall loss/risk denoted by f(x).

Due to their efficiency, gradient-type methods with its numerous extensions (Duchi et al., 2011;
Zeiler, 2012; Ghadimi and Lan, 2013; Kingma and Ba, 2015; Schmidt et al., 2017; Qian et al., 2019;
Gorbunov et al., 2020a) is by far the most dominant method for solving (1) in practice.

The simplest implementation of gradient descent for federated setup requires all workers i ∈ [n] in
each time step t ≥ 0 to (i) compute local gradient ∇fi(xt) at the current model xt, (ii) update the
current global model xt using locally computed gradient ∇fi(xt) via (2) with some step size γ > 0,

1



Under review as a conference paper at ICLR 2024

(iii) average the updated local models x̂i,t+1 via (3) to get the new global model xt+1.

x̂i,t+1 = xt − γ∇fi(xt), (2)

xt+1 = 1
n

∑n
i=1 x̂i,t+1. (3)

Challenges that characterize FL as a separate distributed training setup, dictating adjustments to the
training algorithm, include high communication costs, heterogeneous data distribution, and system
heterogeneity across clients. Next, we discuss these challenges and potential algorithmic solutions.

1.1. Communication Costs. In federated optimization, communication costs often become a primary
bottleneck due to slow and unreliable wireless links between clients and the central server (McMahan
et al., 2017). Eliminating the communication step (3) entirely would cause clients to train solely on
local data, leading to a poor model because of the limited local data.

A simple trick to reduce communication costs is to perform the costly synchronization step (3)
infrequently, allowing multiple local gradient steps (2) in each communication round (Mangasarian,
1995). This trick appears in the celebrated FedAvg algorithm of McMahan et al. (2016; 2017) and
its further variations (Haddadpour and Mahdavi, 2019; Li et al., 2019a; Khaled et al., 2019a;b;
Karimireddy et al., 2020; Horváth et al., 2022) under the name of local gradient methods. However,
until very recently, theoretical guarantees on the convergence rates of local gradient methods were
worse than the rate of classical gradient descent, which synchronizes after every gradient step.

In a recent line of works (Mishchenko et al., 2022; Malinovsky et al., 2022; Condat and Richtárik,
2022; Sadiev et al., 2022), initiated by Mishchenko et al. (2022), a novel local gradient method,
called ProxSkip, was proposed which performs a random number of local gradient steps before
each communication (alternation between local training and synchronization is probabilistic) and
guarantees strong communication acceleration properties. First, they reformulate the problem (1)
into an equivalent regularized consensus problem of the form

min
x1,...,xn∈Rd

{
1
n

∑n
i=1 fi(xi) + ψ(x1, . . . , xn)

}
, ψ(x1, . . . , xn) :=

{
0 if x1=···=xn

+∞ otherwise , (4)

where communication between the clients and averaging local models x1, . . . , xn is encoded as taking
the proximal step with respect to ψ, i.e., proxψ([x1 . . . xn]

⊤) = [x̄ . . . x̄]⊤, where x̄ := 1
n

∑n
i=1 xi.

With this reformulation, ProxSkip method of Mishchenko et al. (2022) performs the proximal
(equivalently averaging) step with small probability p = 1/

√
κ, where κ is the condition number of

the problem. Then the key result of the method for smooth and strongly convex setup is O(κ log 1/ϵ)
iteration complexity with O (

√
κ log 1/ϵ) communication rounds to achieve ϵ > 0 accuracy. Follow-up

works extend the method to variance-reduced gradient methods (Malinovsky et al., 2022), randomized
application of proximal operator (Condat and Richtárik, 2022), and accelerated primal-dual algorithms
(Sadiev et al., 2022). Our work was inspired by the development of this new generation of local
gradient methods, also known as Local Training (LT) methods, which we detail shortly.

An orthogonal approach utilizes communication compression strategies on the transferred information.
Informally, instead of communicating full precision models infrequently, we might communicate
a compressed version of the local model in each iteration via an application of lossy compression
operators. Such strategies include sparsification (Alistarh et al., 2018; Mishchenko et al., 2020;
Wang et al., 2018), quantization (Alistarh et al., 2017; Sun et al., 2019; Wang et al., 2022), sketching
(Hanzely et al., 2018; Safaryan et al., 2021) and low-rank approximation (Vogels et al., 2019).

Our work contributes to the first approach to handling high communication costs that is less understood
in theory and, at the same time, immensely popular in the practice of FL.

1.2. Statistical Heterogeneity. Because of the decentralized nature of the training data, distributions
of local datasets can vary from client to client. This heterogeneity in data distributions poses an
additional challenge since allowing multiple local steps would make the local models deviate from
each other, an issue widely known as client drift. On the other hand, if training datasets are identical
across the clients (commonly referred to as a homogeneous setup), then the mentioned drifting
issue disappears, and the training can be done without any communication whatsoever. Now, if
we interpolate between these two extremes, then under some data similarity conditions (which are
typically expressed as gradient similarity conditions), multiple local gradient steps should be useful.
In fact, initial theoretical guarantees of local gradient methods utilize such assumptions (Haddadpour
and Mahdavi, 2019; Yu et al., 2019; Li et al., 2019b; 2020).

2



Under review as a conference paper at ICLR 2024

In the fully heterogeneous setup, client drift reduction techniques were designed and analyzed to
mitigate the adverse effect of local model deviations (Karimireddy et al., 2020; Gorbunov et al.,
2021). A very close analogy is variance reduction techniques called error feedback mechanisms for
the compression noise added to lessen the number of bits required to transfer (Condat et al., 2022).

1.3. System Heterogeneity. Lastly, system heterogeneity refers to the diversity of clients in terms of
their computation capabilities or the amount of resources they are willing to use during the training.
In a typical FL setup, all participating clients must perform the same amount of local gradient steps
before each communication. Consequently, a highly heterogeneous cluster of devices results in
significant and unexpected delays due to slow clients or stragglers.

One approach addressing system heterogeneity or dealing with slow clients is client selection
strategies (Luo et al., 2021; Reisizadeh et al., 2020; Wang and Joshi, 2019). Basically, client sampling
can be organized in such a way that slow clients do not delay global synchronization, and clients with
similar computational capabilities are sampled in each communication round.

Unlike the above strategy, we suggest clients take local steps based on their resources. We consider
the full participation setup where each client decides how much local computation to perform
before communication. Informally, slow clients do less local work than fast clients, and during the
synchronization of locally trained models, the slowdown caused by the stragglers will be minimized.

2 SUMMARY OF CONTRIBUTIONS

We now briefly summarize the key contributions of our work.

2.1. GradSkip: efficient gradient skipping algorithm. We design a new local gradient-type method
for distributed optimization with communication and computation constraints. The proposed GradSkip
(see Algorithm 1) is an extension of the recently developed ProxSkip method (Mishchenko et al., 2022),
which was the first method showing communication acceleration property of performing multiple local
steps without any data similarity assumptions. GradSkip inherits the same accelerated communication
complexity from ProxSkip while further improving computational complexity, allowing clients to
terminate their local gradient computations independently from each other.

The key technical novelty of the proposed algorithm is the construction of auxiliary shifts ĥi,t
to handle gradient skipping for each client i ∈ [n]. GradSkip also maintains shifts hi,t initially
introduced in ProxSkip to handle communication skipping across the clients. We prove that GradSkip
converges linearly in strongly convex and smooth setup, has the same O(

√
κmax log 1/ϵ) accelerated

communication complexity as ProxSkip, and requires clients to compute (in expectation) at most
min(κi,

√
κmax) local gradients in each communication round (see Theorem 3.6), where κi is the

condition number for client i ∈ [n] and κmax = maxi κi. Thus, for GradSkip, clients with well-
conditioned problems κi <

√
κmax perform much less local work to achieve the same convergence

rate of ProxSkip, which assumes
√
κmax local steps on average for all clients.

2.2. GradSkip+: general GradSkip method. Next, we generalize the construction and the analysis of
GradSkip by extending it in two directions: handling optimization problems with arbitrary proximable
regularizer and incorporating general randomization procedures using unbiased compression operators
with custom variance bounds. With such enhancements, we propose our second method, GradSkip+
(see Algorithm 2), which recovers several methods in the literature as a special case, including the
standard proximal gradient descent (ProxGD), ProxSkip (Mishchenko et al., 2022), RandProx-FB
(Condat and Richtárik, 2022) and GradSkip.

2.3. VR-GradSkip+: reducing the variance of stochastic gradient skipping. Finally, we propose
and analyze variance-reduced extension (see Algorithm 3 in the Appendix) in the case when mini-
batch stochastic gradients are implemented instead of full-batch gradients for local computations.
Our VR-GradSkip+ method can be viewed as a successful combination of ProxSkip-VR method of
Malinovsky et al. (2022) and GradSkip providing computational efficiency through processing smaller
batch of samples and probabilistically skipping stochastic gradient computations. We deferred the
presentation of the part of our contribution in the appendix due to space limitations.
Remark 2.1 (Local Training (LT) vs Accelerated Gradient Descent (AGD)). Nesterov’s AGD method
Nesterov (2004) matches the communication complexity of our GradSkip algorithm. Its distributed
implementation takes one local step per round, suggesting LT methods might lag behind AGD. In

3



Under review as a conference paper at ICLR 2024

Algorithm 1 GradSkip
1: Input: stepsize γ > 0, synchronization probability p, probabilities qi > 0 controlling local steps,

initial local iterates x1,0 = · · · = xn,0 ∈ Rd, initial shifts h1,0, . . . , hn,0 ∈ Rd, total number of
iterations T ≥ 1

2: for t = 0, 1, . . . , T − 1 do
3: server: Flip a coin θt ∈ {0, 1} with Prob(θt = 1) = p ⋄ Decide when to skip

communication
4: for all devices i ∈ [n] in parallel do
5: Flip a coin ηi,t ∈ {0, 1} with Prob(ηi,t = 1) = qi ⋄ Decide when to skip gradient steps

(see Lemma 3.1)
6: ĥi,t+1 = ηi,thi,t + (1− ηi,t)∇fi(xi,t) ⋄ Update the local auxiliary shifts ĥi,t
7: x̂i,t+1 = xi,t − γ(∇fi(xi,t)− ĥi,t+1) ⋄ Update the local auxiliary iterate x̂i,t

via shifted gradient step
8: if θt = 1 then
9: xi,t+1 = 1

n

∑n
j=1

(
x̂j,t+1 − γ

p ĥj,t+1

)
⋄ Average shifted iterates, but only very rarely!

10: else
11: xi,t+1 = x̂i,t+1 ⋄ Skip communication!
12: end if
13: hi,t+1 = ĥi,t+1 +

p
γ (xi,t+1 − x̂i,t+1) ⋄ Update the local shifts hi,t

14: end for
15: end for

contrast, almost all methods in production are based on local training, as evidenced by FL frameworks
like He et al. (2020); Ro et al. (2021); Beutel et al. (2022).

The preference for LT over AGD among practitioners stems from LT’s advantages, especially in gen-
eralization and communication complexity. Both areas are closely tied with local training, becoming
prominent in current research. LT’s ability to enhance generalization remains under exploration in FL.
Current studies link this improvement to personalization, meta-learning Hanzely and Richtárik (2021);
Hanzely et al. (2020), and representation learning Collins et al. (2022). Practically, LT effectively
tackles nonconvex challenges, while AGD faces difficulty approximating stationary points of smooth
nonconvex functions. Additionally, AGD is more sensitive to the knowledge of the condition number
than LT methods, which are versatile and work across a wide range of numbers of local steps.

In statistically heterogeneous cases, AGD often underperforms. Our experiments prove this by
showing that when device condition numbers vary, AGD converges slower than GradSkip. Though
our work does not primarily aim to directly compare AGD and LT, such a comparative study, to our
knowledge, remains a gap in current research and could offer valuable insights.

3 GRADSKIP

In this section, we present our first algorithm, GradSkip, and discuss its benefits in detail. Later, we
will generalize it, unifying several other methods as special cases. Recall that our target is to address
three challenges in FL mentioned in the introductory part, which are (i) reduction in communication
cost via infrequent synchronization of local models, (ii) statistical or data heterogeneity, and (iii)
reduction in computational cost via limiting local gradient calls based on the local subproblem.

3.1. Algorithm structure. For the sake of presentation, we describe the progress of the algorithm
using two variables xi,t, x̂i,t for the local models and two variables hi,t, ĥi,t for the local gradient
shifts. Essentially, we want to maintain two variables for the local models since clients get synchro-
nized infrequently. The shifts hi,t are designed to reduce the client drift caused by the statistical
heterogeneity. Finally, we introduce auxiliary shifts ĥi,t to take care of the different number of local
steps. The GradSkip method is formally presented in Algorithm 1.

As an initialization step, we choose probability p > 0 to control communication rounds, probabilities
qi > 0 for each client i ∈ [n] to control local gradient steps and initial control variates (or shifts)
hi,0 ∈ Rd to control the client drift. Besides, we fix the stepsize γ > 0 and assume that all clients

4



Under review as a conference paper at ICLR 2024

commence with the same local model, namely x1,0 = · · · = xn,0 ∈ Rd. Then, each iteration of the
method comprises two stages, the local stage and the communication stage, operating probabilistically.
Specifically, the probabilistic nature of these stages is the following. The local stage requires
computation only with some predefined probability; otherwise, the stage is void. Similarly, the
communication stage requires synchronization between all clients only with probability p; otherwise,
the stage is void. In the local stage (lines 5–7), all clients i ∈ [n] in parallel update their local
variables (x̂i,t+1, ĥi,t+1) using values (xi,t, hi,t) from previous iterate either by computing the local
gradient ∇fi(xi,t) or by just copying the previous values. Afterward, in the communication stage
(lines 8–13), all clients in parallel update their local variables (xi,t+1, hi,t+1) from (x̂i,t+1, ĥi,t+1)
by either averaging across the clients or copying previous values.

3.2. Reduced local computation. Clearly, communication costs are reduced as the averaging step
occurs only when θt = 1 with probability p of our choice. However, it is not directly apparent how
the computational costs are reduced during the local stage. Indeed, both options ηi,t = 1 and ηi,t = 0
involve the expression ∇fi(xi,t) as if local gradients need to be evaluated in every iteration. As we
show in the following lemma, this is not the case.
Lemma 3.1 (Fake local steps). Suppose that Algorithm 1 does not communicate for τ ≥ 1 consecutive
iterates, i.e., θt = θt+1 = · · · = θt+τ−1 = 0 for some fixed t ≥ 0. Besides, let for some client
i ∈ [n] we have ηi,t = 0. Then, regardless of the coin tosses {ηi,t+j}τj=1, client i does fake local
steps without any gradient computation in τ iterates. Formally, for all j = 1, 2, . . . , τ + 1, we have

x̂i,t+j = xi,t+j = xi,t, ĥi,t+j = hi,t+j = hi,t = ∇fi(xi,t). (5)

Let us reformulate the above lemma. During the local stage of GradSkip, when clients do not
communicate with the server, ith client terminates its local gradient steps once the local coin tosses
ηi,t = 0. Thus, smaller probability qi implies sooner coin toss ηi,t = 0 in expectation, hence, less
amount of local computation for client i. Therefore, we can relax the computational requirements of
clients by adjusting these probabilities qi and controlling the amount of local gradient computations.

Next, let us find out how the expected number of local gradient steps depends on probabilities p and
qi. Let Θ and Hi be random variables representing the number of coin tosses (Bernoulli trials) until
the first occurrence of θt = 1 and ηi,t = 0 respectively. Equivalently, Θ ∼ Geo(p) is a geometric
random variable with parameter p, and Hi ∼ Geo(1 − qi) are geometric random variables with
parameter 1 − qi for i ∈ [n]. Notice that, within one communication round, ith client performs
min(Θ, Hi) number of local gradient computations, which is again a geometric random variable with
parameter 1− (1− (1− qi))(1− p) = 1− qi(1− p). Therefore, as formalized in the next lemma,
the expected number of local gradient steps is E [min(Θ, Hi)] = 1/(1−qi(1−p)).
Lemma 3.2 (Expected number of local steps). The expected number of local gradient computations
in each communication round of GradSkip is 1/(1−qi(1−p)) for all clients i ∈ [n].

Notice that, in the special case of qi = 1 for all i ∈ [n], GradSkip recovers Scaffnew method of
Mishchenko et al. (2022). However, as we will show, we can choose probabilities qi smaller, reducing
computational complexity and obtaining the same convergence rate as Scaffnew.
Remark 3.3 (System Heterogeneity). From this discussion, we conclude that GradSkip can also
address system or device heterogeneity. In particular, probabilities {qi}ni=1 can be assigned to clients
in accordance with their local computational resources; slow clients with scarce compute power
should get small qi, while faster clients with rich resources should get bigger qi ≤ 1.

3.3. Convergence theory. Now that we explained the structure and computational benefits of the
algorithm let us proceed to the theoretical guarantees. We consider the same strongly convex and
smooth setup as considered by Mishchenko et al. (2022) for the distributed case.
Assumption 3.4. All functions fi(x) are strongly convex with parameter µ > 0 and have Lipschitz
continuous gradients with Lipschitz constants Li > 0, i.e., for all i ∈ [n] and any x, y ∈ Rd we have
µ
2 ∥x− y∥2 ≤ Dfi(x, y) ≤ Li

2 ∥x− y∥2, where Dfi(x, y) := fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ is the
Bregman divergence associated with fi at points x, y ∈ Rd.

We present a Lyapunov-type analysis to prove the convergence, which is a very common approach
for iterative algorithms. Consider the Lyapunov function

Ψt :=
∑n
i=1 ∥xi,t − x⋆∥2 + γ2

p2

∑n
i=1 ∥hi,t − hi,⋆∥2, (6)

5



Under review as a conference paper at ICLR 2024

where γ > 0 is the stepsize, x⋆ is the (necessary) unique minimizer of f(x) and hi,∗ = ∇fi(x∗) is
the optimal gradient shift. As we show next, Ψt decreases at a linear rate.

Theorem 3.5. Let Assumption 3.4 hold. If the stepsize satisfies γ ≤ mini

{
1
Li

p2

1−qi(1−p2)

}
and

probabilities are chosen so that 0 < p, qi ≤ 1, then the iterates of GradSkip (Algorithm 1) satisfy

E [Ψt] ≤ (1− ρ)tΨ0, with ρ := min{γµ, 1− qmax(1− p2)} > 0. (7)

The first and immediate observation from the above result is that, with a proper stepsize choice,
GradSkip converges linearly for any choice of probabilities p and qi from (0, 1]. Furthermore, by
choosing all probabilities qi = 1 we get the same rate of Scaffnew with ρ = min{γµ, p2} (see
Theorem 3.6 in (Mishchenko et al., 2022)). If we further choose the largest admissible stepsize γ =
1/Lmax and the optimal synchronization probability p = 1/√κmax, we get O(κmax log 1/ϵ) iteration
complexity, O(

√
κmax log 1/ϵ) accelerated communication complexity with 1/p =

√
κmax expected

number of local steps in each communication round. Here, we used notation κmax = maxi κi where
κi = Li/µ is the condition number for client i ∈ [n].

Finally, exploiting smaller probabilities qi, we can optimize computational complexity subject to
the same communication complexity as Scaffnew. To do that, note that the largest possible stepsize
that Theorem 3.5 allows is γ = 1/Lmax as mini{ 1

Li

p2

1−qi(1−p2)} ≤ mini
1
Li

≤ 1
Lmax

. Hence, taking
into account ρ ≤ γµ, the best iteration complexity from the rate (7) is O(κmax log 1/ϵ), which can be
obtained by choosing the probabilities appropriately as formalized in the following result.
Theorem 3.6 (Optimal parameter choices). Let Assumption 3.4 hold and choose probabilities
qi = 1−1/κi

1−1/κmax
≤ 1 and p = 1/√κmax. Then, with the largest admissible stepsize γ = 1/Lmax,

GradSkip enjoys the following properties:

(i) O (κmax log 1/ε) iteration complexity,

(ii) O
(√
κmax log 1/ε

)
communication complexity,

(iii) for each client i ∈ [n], the expected number of local gradient computations per communica-
tion round is

1
1−qi(1−p) =

κi(1+
√
κmax)

κi+
√
κmax

≤ min(κi,
√
κmax). (8)

This result clearly quantifies the benefits of using smaller probabilities qi. In particular, if the
condition number κi of client i is smaller than

√
κmax, then within each communication round, it

does only κi number of local gradient steps. However, for a client having the maximal condition
number (namely, clients argmaxi{κi}), the number of local gradient steps is

√
κmax, which is the

same for Scaffnew. From this, we conclude that, in terms of computational complexity, GradSkip is
always better and can be O(n) times better than Scaffnew (Mishchenko et al., 2022).

4 GRADSKIP+

Here, we aim to present a deeper understanding of GradSkip by extending it in two directions and
designing our generic GradSkip+ method.

The first direction is the optimization problem’s formulation. As we discussed earlier, distributed
optimization (1) with consensus constraints can be transformed into a regularized optimization
problem (4) in the lifted space. Following Mishchenko et al. (2022), we consider the (lifted) problem1

min
x∈Rd

f(x) + ψ(x), (9)

where f(x) is strongly convex and smooth loss, while ψ(x) is closed, proper and convex regularizer
(e.g., see (4)). The requirement we impose on the regularizer is that the proximal operator of ψ is a
single-valued function that can be computed.

The second extension in GradSkip+ is the generalization of the randomization procedure of proba-
bilistic alternations in GradSkip by allowing arbitrary unbiased compression operators with certain
bounds on the variance. Let us formally define the class of compressors we will be working with.

1To be precise, the lifted problem is in Rnd as we stack all local variables x1, . . . , xn ∈ Rd into one.

6



Under review as a conference paper at ICLR 2024

Algorithm 2 GradSkip+

1: Parameters: stepsize γ > 0, compressors Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω).
2: Input: initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1.
3: for t = 0, 1, . . . , T − 1 do
4: ĥt+1 = ∇f(xt)− (I+Ω)−1CΩ (∇f(xt)− ht) ⋄ Update the shift ĥt

via shifted compression
5: x̂t+1 = xt − γ(∇f(xt)− ĥt+1) ⋄ Update the iterate x̂t via shifted gradient step
6: ĝt =

1
γ(1+ω)Cω

(
x̂t+1 − proxγ(1+ω)ψ

(
x̂t+1 − γ(1 + ω)ĥt+1

))
⋄ Estimate the proximal

gradient
7: xt+1 = x̂t+1 − γĝt ⋄ Update the main iterate xt
8: ht+1 = ĥt+1 +

1
γ(1+ω) (xt+1 − x̂t+1) ⋄ Update the main shift ht

9: end for

Definition 4.1 (Unbiased Compressors). For any positive semidefinite matrix Ω ⪰ 0, denote by
Bd(Ω) the class of (possibly randomized) unbiased compression operators C : Rd → Rd such that
for all x ∈ Rd we have

E [C(x)] = x, E
[
∥(I+Ω)−1C(x)∥2

]
≤ ∥x∥2(I+Ω)−1 .

The class Bd(Ω) is a generalization of commonly used class Bd(ω) of unbiased compressors with
variance bound E

[
∥C(x)∥2

]
≤ (1 + ω)∥x∥2 for some scalar ω ≥ 0. Indeed, when the matrix

Ω = ωI, then Bd(ωI) coincides with Bd(ω). Furthermore, the following inclusion holds:

Lemma 4.2. Bd(Ω) ⊆ Bd((1+λmax(Ω))2/(1+λmin(Ω)) − 1).

The purpose of this new variance bound with matrix parameter Ω is to introduce non-uniformity
on the compression level across different directions. For example, in the reformulation (4), each
client controls 1/n portion of the directions and the level of compression. For example, consider
compression operator C : Rd → Rd defined as

C(x)j =
{

xj/pj , with probability pj ,
0, with probability 1−pj , (10)

for all coordinates j ∈ [d] and for any x ∈ Rd, where pj ∈ (0, 1] are given probabilities. Then, it is
easy to check that C ∈ Bd(Ω) with diagonal matrix Ω = Diag(1/pj − 1) having diagonal entries
1/pj − 1 ≥ 0.

With finer control over the compression operator, we can make use of the granular smoothness
information of the loss function f via so-called smoothness matrices (Qu and Richtárik, 2016b;a).

Definition 4.3 (Matrix Smoothness). A differentiable function f : Rd → R is called L-smooth with
some symmetric and positive definite matrix L ≻ 0 if

Df (x, y) ≤ 1
2∥x− y∥2L, ∀x, y ∈ Rd. (11)

The standard L-smoothness condition with scalar L > 0 is obtained as a special case of (11) for
matrices of the form L = LI, where I is the identity matrix. The notion of matrix smoothness
provides more information about the function than mere scalar smoothness. In particular, if f is
L-smooth, then it is also λmax(L)-smooth due to the relation L ⪯ λmax(L)I. Smoothness matrices
have been used in the literature of randomized coordinate descent (Richtárik and Takáč, 2016; Hanzely
and Richtárik, 2019b;a) and distributed optimization (Safaryan et al., 2021; Wang et al., 2022).

4.1. Algorithm description. Similar to GradSkip, we maintain two variables xt, x̂t for the model,
and two variables ht, ĥt for the gradient shifts in GradSkip+. Initial values x0 ∈ Rd and h0 ∈ Rd
can be chosen arbitrarily. In each iteration, GradSkip+ first updates the auxiliary shift ĥt+1 using the
previous shift ht and gradient ∇f(xt) (line 4). This shift ĥt+1 is then used to update the auxiliary
iterate xt via shifted gradient step (line 5). Then we estimate the proximal gradient ĝt (line 6) in
order to update the main iterate xt+1 (line 7). Lastly, we complete the iteration by updating the main

7



Under review as a conference paper at ICLR 2024

100 102 103 104 105 106

ki

p
∙max

n=20, ∙max =102

k=1

0 25 50 75 100 125 150 175 200
Communication rounds

10-15

10-13

10-11

10-9

10-7

10-5

10-3

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 105

2£ 105

3£ 105

4£ 105

5£ 105

6£ 105

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 2.576
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

101 102

∙i

2

4

6

8

10

Av
er

ag
e 

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

100 101 103 104 105 106

ki

p
∙max

n=20, ∙max =104

k=1

0 500 1000 1500 2000 2500 3000
Communication rounds

10-14

10-11

10-8

10-5

10-2

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 106

2£ 106

3£ 106

4£ 106

5£ 106

6£ 106

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 10.23
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104

∙i

0

20

40

60

80

100

Av
er

ag
e 

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

100 101 102 104 105 106

ki

p
∙max

n=20, ∙max =106

k=1

0 1000 2000 3000 4000 5000 6000 7000 8000
Communication rounds

10-8

10-6

10-4

10-2
f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 107

2£ 107

3£ 107

4£ 107

5£ 107

6£ 107

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 18.17
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104 105 106

∙i

0

200

400

600

800

1000

Av
er

ag
e 

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

Figure 1: The first column displays the condition numbers for devices. The second column presents
convergence per communication round. The third column contrasts theoretical and practical gradient
computation counts. The final column reveals the average gradient computations for devices with
condition number κi. Notably, in GradSkip, the device with κi = κmax performs gradient computa-
tions at a rate comparable to all devices in ProxSkip.

shift ht (line 8). See Algorithm 2 for the formal steps. In the Appendix D.3, we show that GradSkip+
recovers ProxGD, ProxSkip and RandProx-FB (Condat and Richtárik, 2022) as a special case.

4.2. Convergence theory. We now present the convergence theory for GradSkip+, for which we
replace the scalar smoothness Assumption 3.4 by matrix smoothness.

Assumption 4.4 (Convexity and smoothness). We assume that the loss function f is µ-strongly
convex with positive µ > 0 and L-smooth with positive definite matrix L ≻ 0.

Similar to (6), we analyze GradSkip+ using the Lyapunov function Ψt := ∥xt − x⋆∥2 + γ2(1 +
ω)2∥ht − h⋆∥2, where h∗ = ∇f(x∗). The next theorem shows the general linear convergence result.

Theorem 4.5. Let Assumption 4.4 hold, Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω) be the compression operators,
and Ω̃ := I+ ω(ω + 2)Ω(I+Ω)−1. Then, if the stepsize γ ≤ λ−1

max(LΩ̃), the iterates of GradSkip+
(Algorithm 2) satisfy

E [Ψt] ≤ (1−min {γµ, δ})tΨ0, (12)

where δ = 1− 1
1+λmin(Ω)

(
1− 1

(1+ω)2

)
∈ [0, 1].

First, if we choose CΩ to be the identity compression (i.e., Ω = 0), then GradSkip+ reduces to
RandProx-FB and we recover asymptotically the same rate with linear factor (1−min{γµ, 1/(1+ω)2})
(see Theorem 3 of Condat and Richtárik (2022)). If we further choose Cω to be the Bernoulli
compression with parameter p ∈ (0, 1], then ω = 1/p− 1 and we get the rate of ProxSkip.

In order to recover the rate (7) of GradSkip, consider the lifted space Rnd with reformulation (4)
and objective function f(x) = 1

n

∑n
i=1 fi(xi), where xi ∈ Rd and x = (x1, . . . , xn) ∈ Rnd. From

µ-strong convexity of each loss function fi, we conclude that f is also µ-strongly convex. Regarding
the smoothness condition, we have LiI ∈ Rd×d smoothness matrices (e.g., scalar Li-smoothness)
for each fi, which implies that the overall loss function f has L = Diag(L1I, . . . , LnI) ∈ Rnd×nd
as a smoothness matrix. Furthermore, choosing Bernoulli compression operators Cω = Cndp and
CΩ = Cdq1×· · ·×Cdqn in the lifted space Rnd, we get ω = 1/p−1 and Ω = Diag(1/qi−1). It remains to
plug all these expressions into Theorem 4.5 and recover Theorem 3.6. Indeed, λmin(Ω) = 1/qmax − 1
and, hence, δ = 1 − qmax

(
1− p2

)
. Lastly, Theorem 4.5 recovers the same stepsize bound as

λ−1
max(LΩ̃) = mini (Li (1 + (1− qi) (1/p2 − 1)))

−1
= mini

{
1
Li

p2

1−qi(1−p2)

}
.

8



Under review as a conference paper at ICLR 2024

100 101 106

ki

p
∙max

n=15, ∙max =106

k=1

0 1000 2000 3000 4000 5000 6000 7000 8000
Communication rounds

10-7

10-5

10-3

10-1

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 107

2£ 107

3£ 107

4£ 107

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 14.17
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104 105 106

∙i

0

200

400

600

800

1000

Av
er

ag
e 

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

100 101 106

ki

p
∙max

n=30, ∙max =106

k=1

0 1000 2000 3000 4000 5000 6000 7000 8000
Communication rounds

10-9

10-7

10-5

10-3

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

2£ 107

4£ 107

6£ 107

8£ 107

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 25.91
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104 105 106

∙i

0

200

400

600

800

1000

Av
er

ag
e 

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

100 101 106

ki

p
∙max

n=45, ∙max =106

k=1

0 1000 2000 3000 4000 5000 6000 7000 8000
Communication rounds

10-8

10-6

10-4

10-2
f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

2:5£ 107

5£ 107

7:5£ 107

1£ 108

1:2£ 108

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 37.00
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104 105 106

∙i

0

200

400

600

800

1000

Av
er

ag
e 

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

Figure 2: The columns in this figure represent the same as those in Figure 1.

5 EXPERIMENTS

To test the performance of GradSkip and illustrate theoretical results, we use the classical logistic
regression problem. The loss function for this model has the following form:

f(x) = 1
n

n∑
i=1

1
mi

mi∑
j=1

log
(
1 + exp

(
−bija⊤ijx

))
+ λ

2 ∥x∥
2,

where n is the number of clients, mi is the number of data points per worker, aij ∈ Rd and
bij ∈ −1,+1 are the data samples, and λ is the regularization parameter.

We conducted experiments on artificially generated data and on the “australian” dataset from
LibSVM library (Chang and Lin, 2011) (see Appendix E). All algorithms are implemented in Python
using RAY (Moritz et al., 2018) for parallelization. We run all algorithms using their theoretically
optimal hyper-parameters (stepsize, probabilities). We compare GradSkip with ProxSkip and AGD,
as both have SOTA accelerated communication complexity. However, since AGD doesn’t outperform
GradSkip in communication complexity, and given the importance of communication complexity in
the FL setup, we don’t delve into their computational complexities. While ProxSkip-VR has a better
computational complexity, the difference in computational complexity between VR-GradSkip+ and
ProxSkip-VR is similar to that between GradSkip and ProxSkip, so we also skip comparing them.

The expected number of local gradient computations per communication round for GradSkip is at
most

∑n
i=1 min(κi,

√
κmax) (see (8)). In contrast, for ProxSkip, we have n

√
κmax. Therefore, the

gradient computation ratio of ProxSkip over GradSkip depends on the number of devices having
κi ≥

√
κmax condition number. If there are k ≤ n such devices, then the gradient computation ratio

of ProxSkip over GradSkip converges to n/k ≥ 1 when κmax → ∞.

In our experiments, only one device has an ill-conditioned local problem (k = 1). To showcase
this convergence, we generate data to control the smoothness constants and set the regularization
parameter λ = 10−1 = µ. We run GradSkip and ProxSkip algorithms for 3000 communication
rounds. Figure 1 features n = 20 devices. One device is given a large Li = Lmax, while the others
have Li ∼ Uniform(0.1, 1). The second column illustrates comparable convergence for GradSkip and
ProxSkip. As we increment Lmax row by row, the ratio appears to converge to n = 20. Conversely,
AGD’s convergence declines with increasing data heterogeneity, and it only beats GradSkip in the first
case by a negligible amount of communication rounds. Figure 2 demonstrates that by increasing the
client count (n), this ratio can grow significantly. One device is assigned a large Li = Lmax = 105,
with the remaining devices set to Li ∼ Uniform(0.1, 1). As we progress row by row, n increases.

9


	Introduction
	Summary of Contributions
	GradSkip
	GradSkip+
	Experiments

