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Abstract

Tensor multiplication with learned weight matrices is the fundamental building
block in deep learning models. These matrices can often be sparsified, decomposed,
quantized, or subjected to random parameter sharing without losing accuracy, sug-
gesting the possibility of more efficient transforms. Although many variants of
weight matrices exist, unstructured ones are incompatible with modern hardware,
slowing inference and training. On the other hand, structured variants often limit
expressivity or fail to deliver the promised latency benefits. We present Sketch
Structured Transform(SS1), an expressive and GPU-friendly operator that acceler-
ates inference. SS1 leverages parameter sharing in a random yet structured manner
to reduce computation while retraining the rich expressive nature of parameter
sharing. We confirm empirically that SS1 offers better quality-efficiency tradeoffs
than competing variants. Interestingly SS1 can be combined with Quantization to
achieve gains unattainable by either method alone, a finding we justify via theo-
retical analysis. The analysis may be of independent interest. Moreover, existing
pre-trained models can be projected onto SS1 and finetuned for efficient deploy-
ment. Surprisingly, these projected models can perform reasonably well even
without finetuning. Our experiments highlight various applications of the SS1: (a)
Training GPT2 and DLRM models from scratch for faster inference. (b) Finetuning
projected BERT models for 1.31× faster inference while maintaining GLUE scores.
(c) Proof of concept with Llama-3-8b, showing 1.11× faster wall clock inference
using projected SS1 layers without finetuning. Our code is open-source.3

1 Introduction
Tensor-matrix multiplication is one of the fundamental operations in deep learning models across
various domains. Linear transformation are especially crucial in transformer architectures, which form
the backbone of foundational models responsible for the advanced capabilities of Large Language
Models (LLMs). A significant portion of the computational load in LLMs comes from linear layers.
For example, with a batch size of 4 at full sequence length, the MLP workload of even the smallest
Llama-3-8B model [1] involves (32768 × 4096 × 4096) operations in attention and (32768 × 4096
× 14336) in the MLP. Larger models have even larger workloads. Given these demands, finding
efficient and expressive alternatives to standard linear layers is a crucial research direction.

Deep learning models often have significant redundancies that can be removed using various tech-
niques. Popular approaches include Sparsification [2, 3, 4, 5, 6], Quantization [2, 7], Randomized
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Parameter Sharing (RPS) [8, 9, 10], and Low-rank decomposition [11, 3]. Unstructured sparsity,
while expressive, is inefficient on modern hardware. Structured sparsity [12, 13, 14] and low-rank are
efficient but often compromise quality. Recently, it was shown in [15] that sparsity is theoretically
weaker than RPS methods regarding the quality of learned models under compression. However,
traditional RPS methods only focus on reducing the parameter memory footprint and do not affect
FLOPs or latency. This paper proposes Sketch Structured Transform (SS1), an RPS scheme that
reduces FLOPs while maintaining quality and improving wall-clock inference for machine learning
models.

Randomized parameter sharing (RPS) reduces the model’s memory footprint by randomly tying
parameters across the model. While these methods offer a superior memory-quality tradeoff, they
do not alter the computational graph, resulting in similar FLOPs and latency. Addressing this issue
– reducing computation and latency while retaining the memory-quality tradeoff – has been a key
challenge with RPS methods. In this paper, we propose a random yet structured parameter-sharing
method that maintains superior quality, reduces the number of FLOPs, and improves the wall-clock
latency of linear layers which are compute bound in most workloads.

The key idea in SS1 is to tie parameters inside a single neuron weight. This weight-tying can be
equivalently implemented as the input being reduced in dimension first and then multiplied with the
compressed weight vector which reduces FLOPs and memory movement in a neuron computation.
We show how to devise this tying in a GPU-friendly manner using what we call K− and N−
coalescing. Additionally, SS1 can be integrated with existing RPS methods to obtain independent
control of parameter memory and computation during training and inference. While SS1 layers can
be used to build a model itself, we can also obtain SS1 models from pre-trained models. This is
especially important since many useful models are pre-trained once, and weights are open-sourced
for public usage. For this purpose, we provide a projection function to project full matrices onto SS1
matrices, which can transfer knowledge from pre-trained models. Moreover, we demonstrate that
SS1 can be effectively combined with post-training quantization to harness the advantages of both
approaches. Additionally, we present theoretical insights explaining why the integration of SS1 and
quantization leads to performance improvements that neither method can achieve independently.

We evaluate SS1 layers on a broad set of settings and use cases. A summary of our findings is below.

• SS1 has better quality-efficiency tradeoff than competing methods like Monarch[16] (state-of-the-
art structured sparsity) and LowRank[2] across various domains. With SS1, we can build better
models at lower parameter counts while delivering superior inference latency. For example, we
achieve up to a 1.30× improvement in GPT2 [17] model inference throughput.

• Pretrained models can be projected onto SS1 and further finetuned to deploy fast models. We show
that we can maintain the GLUE[18] score of BERT[19] while speeding up inference by 1.31×.

• SS1 projected models can be used even without finetuning with reasonable accuracies. We show
proof-of-concept benefits in the Llama-3-8B model[1] with 1.11× faster inference.

• Quantization[2] is a highly effective technique for improving efficiency that can be combined with
SS1. Not only do we see this empirically, but we can also see it in theory.

• SS1 also impacts CPU ML workloads significantly. For instance, we reduce the MLP workload of
DLRM[20] MLPerf Model, which contributes over 70% inference latency, by approximately 2×
using SS1 layers without compromising model quality.

2 Related Work and Background
Unstructured Sparsity: The redundancy in the deep learning model can be removed by sparsifying
the model using iterative procedure [2, 3, 4]. Another related line of work is that of Lottery ticket
hypothesis [5, 6, 21], which tries to find a sparse model at the start of training. Apart from expensive
procedures to find these subnetworks, the unstructured sparsity still needs to deliver on the promise
of latency improvements for inference.

Structured Sparsity: Linear transformations that are efficient and expressive has been an active line
of research for over a decade. The general direction here is to create a combination of sparse, diagonal,
permutation, and sub-linear transformations such as FFT, DCT, and Hadamard [14, 22, 13, 23, 24].
Some of them also used fixed random sparse/diagonal matrices. Structured matrices proposed in this
line of research for transformation of size K ×K have O(K) parameters and O(Klog(K)) FLOPs.
The actual speed-up obtained on modern hardware using these methods is limited. More importantly,
the expressivity of these matrices is severely restricted due to very few learnable parameters. A
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recent line of work exploits butterfly matrices [25, 16] and their variations, such as Monarch to obtain
expressive transformations. These matrices also fit the general recipe of structured matrices specified
above. However, a critical distinction in Monarch matrices is the presence of many more parameters.
Specifically, the pure monarch matrices are supposed to contain O(K

√
K) parameters and FLOPs

when using
√
K blocks or factors (more blocks imply fewer parameters). However, practically, the

matrices that have enough representative power in deep learning context generally use two or four
blocks [16], i.e. O(K2) parameters and FLOPs. Nevertheless, Monarch shows great latency benefits
for training with scheduled different-sized monarch decomposition. However, to our knowledge, the
inference benefits for these matrices are limited. Our paper compares SS1 against Monarch since it is
the SOTA representative for this class of matrices.

Quantization: Post training quantization [2] is currently one of the most successful tools for
improving large models’ efficiency. The basic idea is to reduce the precision of the weights and
activations to reduce the memory footprint of the model and also exploit integer arithmetic [7] for
better compute throughput. The literature on quantization is vast, and more details can be found in the
survey [26]. In this paper, we show that we can combine SS1 with quantization techniques to further
improve latency. We also explore the theory of combining quantization with SS1 approximation in
section 4, which can be of independent interest.

Randomized Parameter Sharing: Randomized parameter sharing was first introduced in [8] as a
general model compression tool. RPS is primarily used to reduce the parameter memory footprint
of models. The parameter memory is separated from the model’s actual computational graph. Each
model’s weight is mapped to the parameter memory using a random hash function. The value of the
weight is then the value from the parameter accessed via hash functions. Essentially, if two weights
are mapped to the same value in parameter memory, they are tied together and share a single learnable
parameter.

The randomness of weight tying that leads to theoretical guarantees concerning projection quality
was also the reason behind the extremely slow systemic performance of the proposal. The systemic
performance was fixed using block-based hash mappings showing practical applications in various
domains [10, 9, 27]. Surprisingly, the projection quality improves with block-based projections[10]
leading to a strictly superior RPS system. RPS quality was further enhanced using global parameter
sharing (parameter sharing across modules) which is superior to module-specific parameter sharing
[9]. This, however, leads to additional challenges regarding the stability of training the model. These
challenges were resolved in [15]. This work also proved a missing link in the theoretical analysis
of RPS methods – it showed that the quality of dimensionality reduction (alt. projection quality)
directly correlates with the quality of models learned under projection for linear models. Further,
it was shown that random dense projections (which underlie RPS) are superior to random sparse
projections (which underlie Pruning) which justifies why RPS methods convincingly outperform
pruning methods, especially at high compressions in [15]. Interestingly, most of the RPS literature is
strictly focused on reducing the memory footprint and does not affect the computational workload. In
this work, we further improve the utility of RPS techniques by deploying them to reduce computation.

2.1 Background on Randomized Parameter Sharing required for SS1
Tying of parameters using hash functions (h, g): Under RPS, there is a single parameter memory
M, |M| = m, and each weight inside the model is mapped to one of the parameters in the memory
using hash functions. Let the flattened weight vector of the entire model be θ, |θ| = n. A weight, say
θ[i], is uniquely identified using a set of integers (module number, location inside the module, etc.),
say id(i) ∈ Nk for some k, and then the value of the weight is

θ[i] = g(id(i))M[h(id(i))] h : Nk → [m], g : Nk → {±1}
where [m] = {0, 1, ...,m−1}.

Sketch representation of recovery: We can write the entire recovery of the vector θ as a linear
projection from M using a sketch matrix S ∈ Rn×m which is defined as

∀i ∈ [n], S[i, h(id(i))] = g(id(i)), ∀j ̸= h(id(i)), S[i, j] = 0 (1)
Then the weight θ and the parameter memory M is related by, θ = SM
Dimensionality reduction problem: Traditionally, random projections are used as a dimensionality
reduction technique for data points. The projection is considered better if it can maintain the
structure of the dataset (inter-point distances or equivalently inner products between points). The
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Figure 1: Illustration of weight tying in SS1. Same colored weights imply that they are tied to the
same parameter in memory

standard theoretical setup is as follows. Consider two arbitrary vectors x, y ∈ Rn, Consider a
projection function PROJ (or compression technique in general), then x̂, ŷ are projected vectors,
x̂ = PROJ(x), ŷ = PROJ(y). Then, the quality of the projection is measured by

MSE(⟨x̂, ŷ⟩) = E
(
||⟨x, y⟩ − ⟨x̂, ŷ⟩||22

)
(2)

where the expectation is over the randomization scheme of the projection. This problem is of interest
to evaluate RPS-based learning since the quality of the learned model under projection f(SM)
correlates with the quality of data projection S⊤ for the standard dimensionality reduction problem
with x̂ = S⊤x and ŷ = S⊤y [15].

3 Sketch Structured Transform(SS1)
The SS1 layer falls into the category of RPS methods. We will use small case letters for scalars,
boldface small cases for vectors, and boldface capitals for matrices. We use numpy notation of
indexing. For instance z[(range(n) + 5)%n][i : j] first rotates the vector z by 5 places and then
selects a subarray from i to j.

3.1 Parameter sharing in SS1
In standard RPS, where the weights are mapped into a single memory M, with a high probability,
weights corresponding to a single neuron are not tied together. While this seems advantageous for
expressivity, it is also the reason why RPS methods cannot reduce computation since we need to
perform O(K) multiplications for a single neuron. In SS1, we perform restricted parameter sharing
where parameters are tied inside a single neuron only. Consider a linear transform y⊤ = x⊤W
where x ∈ RK , y ∈ RN and W : RK×N matrix.

Single Neuron RPS: Let us consider a single neuron y = x⊤w. Under SS1, the weights w ∈ RK

come from compressed parameter vector z ∈ RK//c where c is the compression factor. We use // to
denote integer division. For simplicity, we assume throughout the section that c is an integer and c|K.
Each neuron has its own z. Weights w are recovered from z using standard RPS. i.e.,

w[i] = g(i)z[h(i)] (3)
Equivalently, w can be represented as

w = Sz (4)
where S : K ×K//c is sparse matrix according to Equation 1. When parameters are shared in this
manner, the computation can be reduced.

y = x⊤w = x⊤ (Sz) =
(
x⊤S

)
z (5)

Thus computing y needs only K//c multiplications since x⊤S, a sketch of input x, can be im-
plemented using only additions and subtractions. As is, this randomized mapping will not be
cache-efficient and thus is not GPU-friendly. We show how to make it GPU-friendly using K and
N−coalescing in the subsequent parts of this section.

K−coalescing: The single-neuron computation shown above is not GPU-friendly for arbitrary
choice of RPS mapping hash function h. We now explain the hash function h used in SS1.
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The parameter tying is illustrated in Figure 1. We first divide the weight vector w into chunks or
groups of size BK, a hyper-parameter. The chunk-id and offset inside the chunk of weight can be
written as,

C(i) = i//BK O(i) = i%BK (6)

Then c ( recall that c is the integral compression factor ) chunks are grouped together into 1D
supergroups. The 1D super group ID of the weight can be written as,

G1(i) = C(i)//c (7)
We want to restrict the hash function in SS1 to ensure the following,

1. Each chunk of size BK is contiguously located in z and do not share weights.
2. chunks that belong to the same 1D supergroup share weights among each other.

We use the following mapping h′ : [K] → [K//c] to satisfy both conditions. Let h : N×N → N
be a universal hash function. Then,

h′(i) = G1(i)BK + (h(G1(i), C(i)) +O(i))%BK (8)
Note that many hash functions which follow the two conditions exist. However, we will stick with
this hash function since this is the function we implement. With this hash function, the jth chunk of
ith 1D super group in w can be written as,

w[(ic+ j)BK : (ic+ j + 1)BK] = z[iBK : (i+ 1)BK][(R(0 : BK) + h(i, j))%BK] (9)
where R(0 : n) = (0, 1, ..., n − 1) is the range function. In matrix form using Equation 1, let
Si,j : BK ×BK be the matrix representation of above hash function restricted to jth chunk of ith 1D
supergroup. Then,

w[(ic+ j)BK : (ic+ j + 1)BK] = Si,jz[iBK : (i+ 1)BK] (10)
Then, we can write the single neuron computation as,

y = x⊤w =

(K//BK//c)−1∑
i=0

c−1∑
j=0

x⊤[(ic+ j)BK : (ic+ j + 1)BK]Si,j

 z[iBK : (i+1)BK] (11)

We can implement the above computation as follows: Bring in one chunk of z; then bring in c chunks
belonging to the 1D super group of x one at a time and aggregate them into a single chunk of size
BK using sketch matrices S; perform the dot product on the chunk of z and aggregated chunk of x
and move on to the next chunk of z and 1D supergroup of x. Note that we can perform this operation
in a block manner and using exactly one read of z and x due to the nature of the hash function.

N−coalescing: Now let us move our discussion from single neuron computation in SS1 to computing
all the neurons, i.e. the entire matrix multiplication. In this case we have the complete weight matrix
W : K ×N which is derived from a compressed matrix Z : K//c×N . Apart from K- coalescing
specific to each neuron, to fully utilize the GPU capabilities, we further restrict parameter sharing
along the N dimension. The weight mapping is illustrated in Figure 1. We divide the weights along
the N dimension in column blocks of size BN. Each neuron that belongs to the same block will have
the same set of hash functions. This allows us to do a block-based computation as,

y[: BN] = x⊤W[:, : BN] =

(K//BK//c)−1∑
i=0

c−1∑
j=0

x⊤[(ic+ j)BK : (ic+ j + 1)BK]Si,j

Z[iBK : (i+ 1)BK, : BN]
(12)

Note that each neuron has its own parameter space in Z. The complete algorithm is presented in
Algorithm 1. It considers batched multiplication and uses BM hyper-parameter, which is standard
in matrix multiplication. Also, it uses a slightly different notation for ease of expression. However,
it maintains the principles introduced in this section. The kernel implementation and optimization
details are deferred to Appendix E for lack of space.

3.2 SS1 projection from the pre-trained model
A pre-trained model can be projected into SS1 and fine-tuned for downstream tasks. The complete
model projection boils down to projecting each full matrix in a linear layer, say W : K ×N into
parameter tied SS1 matrix Z : (K//c)×N . Recall that SS1 has parameter sharing independent in
each neuron. Thus, we just have to find the projection for each neuron’s weight. Consider the neuron
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Algorithm 1 SS1(Z, X)

Require: X ∈ RM×K : data matrix, c ∈ N: integral compression factor, Z ∈ R(K//c)×N : weight
matrix, BM,BK,BN: coalescing parameters, h : N3 → {0, . . . , BK − 1}, g : N3 → {±1}

Require: cBK|K
Ensure: Y ∈ RM×N = SS1(X,Z)

1: Tx=TILE(BM,BK), Ty=TILE(BM,BN) ▷ Allocate 2D tiles. Tx will store the intermediate
input sketch and Ty will store intermediate result

2: for i ∈ [⌈M/BM⌉] do
3: for j ∈ [⌈N/BN⌉]} do
4: Ty[:, :]=0 ▷ reset output tile
5: for k ∈ [⌈K/c⌉]} do
6: Tx[:, :]=0 ▷ reset input tile
7: for l ∈ [c] do ▷ Iterate over c blocks to create input sketch
8: a=X[iBM : (i+1)BM, (kc+l)BK:(kc+l+1)BK] ▷ Bring in one chunk of input
9: a= g(j, k, l)a[:, (R(0 : BK)+h(j, k, l))%BK] ▷ Rotate input by a random offset

10: Tx+ = a ▷ Aggregate the sketch
11: end for
12: Ty=Ty+MM(x,Z[kBK:(k+1)BK, jBN:(j+1)BN]) ▷ Fetch block of Z, perform

MM with sketched input and aggregate in tile Ty

13: end for
14: Y[iBM:(i+1)BM, jBN:(j+1)BN]=Ty

15: end for
16: end for

y = x⊤w and corresponding compressed with z and recovery sketch matrix S. Given w, we want to
find z that minimizes

z∗ = argminz||w − Sz||2 (13)

The solution is that of linear regression, z∗ = (S⊤S)−1S⊤w. Note that (S⊤S) is a diagonal
matrix with non-zero diagonal elements. Once we solve for the value of z for each neuron in each
weight matrix, we have our overall projection onto SS1. The algorithm for projection can also be
implemented in a blocked manner and is given in Algo 2 in Appendix G

3.3 SS1 combined with standard RPS.

SS1, which reduces the computation of the linear layers, can be combined with RPS methods, which
reduce the parameter memory to create a holistic efficiency system – one that lets you control both
memory and computation independently. The only change to Algo 1 is in where we read the weight
tile. In the current algorithm, we maintain Z : K//c × N , the compressed weight matrix, in a
row-major format. Under RPS, we can locate the tile Z[kBK : (k + 1)BK, jBN : (j + 1)BN] in the
RPS memory, say M, using another hash function, say h′, at M[h′(k, j)%|M| − BKBN].

4 Theoretical aspects of SS1

Figure 2: Upper bound on variance
Quantization + SS1 can beat the individual methods: In this
section, we analyze a combination of quantization and SS1 (i.e.,
projection) in the standard dimensionality reduction setup. We
consider stochastic integer quantization for our analysis. Con-
sider two vectors x,y ∈ Rn. We aim to reduce the memory by
a factor of c. In case of quantization, assuming initial precision
as F , c = b/F if we are using b-bit quantization. Similarly, for
projection, c = m/n if projecting the data to Rm. In case of
projection the compressed vector can be represented:

x̂p[i] =

n∑
j=1

(g(j)1(h(j)=i)x[i]) (14)

Let the component values be restricted to (−D/2, D/2) for
some D. The compressed vector in case of stochastic quanti-
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zation can be written as,

x̂q[i] = ⌊x[i]⌋q + 1 where 1 =

{
1 with prob p =

(x[i]−⌊x[i]⌋q)
D/2b

0 with prob (1− p)
(15)

The range D is divided into 2b buckets and ⌊.⌋q rounds the value down in the buckets. The variance
of the inner product between ⟨x̂, ŷ⟩ for projection, quantization, and combination that first performs
b-bit quantization followed by projection is given below,

Theorem 1 Consider two arbitrary vectors x,y ∈ Rn such that ||x|| ≤ 1, ||y|| ≤ 1 in F precision.
For some fixed value k in [1, 2],

Q(c) =
2

22cF
+

n

24cF
P (c) =

k

cn
(16)

The variance of quantization (V (⟨x̂, ŷ⟩q)), projection (V (⟨x̂, ŷ⟩p)) with compression c, can be tightly
bounded by

V (⟨x̂, ŷ⟩q) ≤ Q(c) V (⟨x̂, ŷ⟩p) ≤ P (c) (17)

The variance of combination with compression c = cpcq with quantization with compression cq
followed by projection with cp is bounded by

V (⟨x̂, ŷ⟩pq) ≤ Q(cq)

(
1 +

1

cp

)
+ P (cp) (18)

The best way to understand this theorem is to plot the variance as a function of compression as shown
in the Figure 2. In the plot, we use cq = 0.3, n = 128 and k = 1.5 for illustration. As we can see
with the combination, the variance is better than individual methods in certain regions. The reason
is that both methods do quite well in the low compression regime, and explode steeply at very high
compression. Thus, when we combine the two methods, we can remain in relatively low error zones
for both methods while obtaining greater overall compression.

Analyzing parameters of SS1: This section discusses the new aspects of SS1 and how it affects
the quality of SS1. Specifically, we discuss the effect of parameters BK and BN. From a latency
viewpoint, it is natural that these parameters should be autotuned to optimize for latency, which is
standard for matrix multiplication. However, since these parameters affect the weight tying, it is
important to investigate their effect on the quality of models. We consider the standard dimensionality
reduction setup to evaluate the changes in mapping performed by SS1. We find that BK is a pure
latency parameter with no impact on learning quality. We present this as the following result.

Theorem 2 Consider two vectors x,y ∈ Rn in higher dimensional space. Also, let h and g be the
SS1 hash functions used to project these vectors to x̂, ŷ ∈ Rm (m < n). Let BK be the K-coalescing
factor of h. Then, under compression c = n/m and assuming cBK|m|n, the inner product estimation
is unbiased and has variance,

V (⟨x̂, ŷ⟩) = 1

BK

n∑
i,j=1

n∑
j=1,j ̸=i

I(i, j)
(
x2
i y

2
j + xiyixjyj

)
(19)

where I(i, j) is a Kronecker delta function indicating if i and j belong to the different groups in the
super group of size cBK. Under permutation p of elements of x and y before projection,

Ep (V (⟨x̂, ŷ⟩ − ⟨x,y⟩)) = (c− 1)

(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

(
x2
i y

2
j + xiyixjyj

)
(20)

In the above theorem, we find that the quality of projection is unaffected by the parameter BK. This
can be understood by considering a specific element in x. The number of other elements with which
it can interact under projection depends only on the compression factor c = n/m and not on BK. We
know from [15], that the quality of projection is directly related to the quality of learned linear models
under compression. Thus, BK does not have any impact on learning quality as well. We analyse the
effect of BN as well. But the analysis is deferred to the appendix (see section F.2) for lack of space.
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Table 1: This table presents the quality and latency of NLP and vision experiments. Overall across
both the domains, SS1 gives best quality models under similar parameters and better quality per unit
compute. In terms of inference latency, we see upto 1.3× increase in throughput. Exact experimental
details are present in Appendix I.

Model #params PPL
(GPT2-S)

loss
(GPT2-S)

Model Latency
(GPT2-S)

Model Latency
(GPT2-M)

Model Latency
(GPT2-L)

b=16 b=32 b=16 b=32 b=8 b=16

Original Model 124M 20.43 3.004 80.4 160 181 oom 190 376
SS1-2x 96M 19.458 2.957 78.5 154.9 172.4 342.7 169.9 334.2
SS1-4x 81M 19.998 2.991 75.1 148.6 163.3 330 157.6 310.4
SS1-8x 74M 20.68 3.025 74.3 145.6 153 309.3 147.9 291

Monarch (nb=2) 103M 19.606 2.964 90 178.2 201.8 401.6 194.8 386.5
Monarch (nb=4) 85M 20.611 3.022 88.2 174.2 186.9 371 178 363.7
Monarch (nb=8) 76M 22.839 3.119 85.5 169.4 181.1 359.4 173.6 342.8

Lowrank∼2x 96 19.756 2.979 99 195.2 231.5 456.3 150 295.3
Lowrank∼4x 81M 20.152 2.993 84.8 165.6 159.1 314.2 137 266.6
Lowrank∼8x 74M 21.211 3.05 72.2 141.4 147.3 290.7 131 259

(a) GPT models on wikitext-103 (standard deviation : around 0.2PPL measured for baseline model)

Model #params Accuracy
(C100)

Accuracy
(C10)

Model Latency
(MM-S)

Model Latency
(MM-M)

Model Latency
(MM-L)

b=512 b=1K b=512 b=1K b=512 b=1K

Original Model 1.1M 0.6751 0.9083 7.9 15.4 38.1 75.4 122.5 246.1
SS1-2x 613K 0.6692 0.8918 8.3 14.7 36.2 71.7 114.3 227.3
SS1-4x 347K 0.6463 0.8695 8.2 14.7 33.6 66.7 100.4 199.2
SS1-8x 282K 0.6068 0.8554 8.2 14.5 33.2 65.5 95.0 188.1

Monarch (nb=2) 750K 0.6738 0.8729 12.5 20.8 47.7 94.4 135.9 272.9
Monarch (nb=4) 422K 0.6261 0.8491 12.9 21.3 46.2 91.7 119.9 239.9
Monarch (nb=8) 259K 0.5731 0.8282 14.2 23.4 46.0 91.4 115.3 229.8

Lowrank∼2x 750K 0.6628 0.8907 9.7 18.4 38.6 78.1 114.6 231.7
Lowrank∼4x 422K 0.6299 0.8639 9.5 18.1 35.9 72.0 100.6 204.2
Lowrank∼8x 259K 0.5353 0.8034 9.4 17.9 35.6 71.3 94.9 191.1

(b) MLPMixer models on CIFAR datasets (Stdev: 0.001 (2x), 0.002 (4x), 0.02 (8x))

Table 2: PPL(loss) for [Left]: Applying quantization on some saved checkpoints of original and SS1
models. The effect of quantization on SS1 is similar to that on full model. [Right]: SS1 models can
outperform standard models. The std-deviation is around 0.2PPL for these experiments.

Quantization + SS1 SS1 vs. Small

Model #param Before
Quantization

After
Quantization Model #param Quality

GPT-S 124M 21.228
(3.013)

21.25
(3.014)

GPT2-S
(Small-4x) 81M 19.71

(2.977)
GPT-S

(SS1-4x) 81M 20.497
(2.986)

20.53
(2.988)

GPT2-S
(Small-6x) 76M 22.14

(3.087)
GPT-S

(SS1-8x) 74M 21.228
(3.023)

21.26
(3.025)

GPT-S
(Small-4x-SS1-2x) 74M 20.50

(3.01)

5 Experiments
5.1 Accuracy vs. Latency evaluation of SS1
We first evaluate the expressiveness and latency of our SS1 against popular baselines of Monarch,
SOTA structured sparsity-based transformation, and LowRank transformation. We benchmark
various shapes for the "nn.Linear", Monarch, LowRank, and SS1 kernels to evaluate the standalone
kernel latency. We use the official Monarch implementation by the authors4 with number of blocks
(nb) as the compression controlling factor. The results are deferred to the appendix due to space
constraints. We also measure end-to-end model latency improvement for various sizes of GPT2 and
MLPMixer (MM) [28] models. We show the latency of three sizes of models (small: S, medium:M,

4https://github.com/HazyResearch/fly/blob/master/src/models/layers/monarch_linear.py

8



Table 3: [Left:]BERT pretrained model projected onto SS1 and finetuned on GLUE benchmark. Due
to the descripancy, we report both online and our local results of full model. The SS1 model is 1.31×
faster for higher batch sizes. Details are available in I.2 [Right:] Proof of concept of applications in
Llama-3-8B. We obtain 1.11× speed up in latency by compressing selective layers, without any form
of retraining or finetuning. Details of the experiment are in I.3

SS1 projection followed by finetuning SS1 projection without finetuning

BERT-LARGE BERT-BASE LLAMA-3-8B
#par GLUE score #par GLUE score #par MMLU WINO

baseline
(reported) 335M 80.4 109M 78.6

baseline
(our run) 335M 82.2 109M 82.16 baseline

(our run) 8B 65.05
(± 0.0038)

76.1
(± 0.011)

SS1 181M 79.6
( ± 0.203) 66M 79.9

( ± 0.066) SS1 6B 61.26
(± 0.0039

69.93
(± 0.012)

Table 4: The time spent by 100GB sized DLRM MLperf benchmark model in various components.
Specifically 70% latency is spent in Top MLP. We can reduce MLP workload by factor of 2× by
training SS1 layers without compromising quality of the model. (Statistical significance: multiple
runs gives 0.8032)

Bottom
MLP Interaction Embedding

Lookup
Top

MLP
Top MLP
params Quality

DLRM-MLPerf 6.63% 12.3% 9.7% 71.3% 1.7M 0.8032
DLRM-MLPerf × SS1-2x — needs CPU kernel implementation —- 0.9M 0.8032

and large:L)for both architectures. Exact details are provided in appendix I) Additionally, we perform
quality experiments in end-to-end training using these matrices for two domains: (a) NLP: GPT2-S
model on wikitext-103 dataset [29] using test perplexity (PPL) and loss as the metric (b) Vision:
MLPMixer on CIFAR (C10, C100)[30] and Tiny-Imagenet datasets [31] using accuracy as the metric.
The results are presented in Table 1. The details of these experiments can be found in the Appendix I.
We make the following observations.

• In our kernel latency evaluation, SS1 consistently outperforms Monarch and LowRank under similar
parameter budgets (Table 4 in appendix). Monarch is generally worse than full multiplication
except in larger shapes. LowRank is competitive with SS1 for higher compression.

• The kernel-level latency benefits also translate to end-to-end model latency (Table 1 and Table 1b).
This can be seen across both Transformer and MLPMixer architectures, two of the SOTA architec-
tures for deep learning. Although, at times, LowRankLinear gives better performance at higher
compression, the quality of the model obtained is inferior to SS1. With larger models, we see an
increase of around 1.3× in end-to-end throughput with SS1. It also enables us to run larger batches.

• In terms of quality, SS1 consistently outperforms Monarch and LowRank across NLP and Vision
domains on GPT and MLPMixer architectures under similar parameter budgets.

• Overall, we see that SS1 allows better quality per unit compute than its structured competitors.

Building expressive and faster models: Should we build and train models with SS1 layers instead of
standard linear layers? Although answering this question requires a broader evaluation, we cautiously
believe that the answer might be yes. We can indeed obtain better quality models by using SS1 layers
instead of "nn.Linear" layer. This is demonstrated in Table 2. The quality of the SS1 model with 74M
parameters is better than that of standard models with similar or more parameters.

5.2 SS1 + Quantization

Quantization is an important efficiency technique to improve inference time memory and latency.
Although SS1 already reduces the memory footprint and improves inference latency, it can be
combined with quantization to obtain further inference benefits. One might wonder if combining two
approximations (SS1 and quantization) can lead to worse-quality models. We show that SS1 can be
combined with quantization without significantly impacting quality (also supported by theory) In
fact, the effect of quantization on SS1 is similar to the full standard model. The quality details before
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Table 5: PPL(latency) for GPT-2(124M) model trained with different compressions SS1 and ROAST
PPL(Latency)

2x 4x 8x
SS1 19.45(154) 19.99(148) 20.68(145)

ROAST 19.87(238) 20.20(237) 20.94(222)

and after quantization are in Table 2. To measure the latency benefits, we would have to implement
quantized SS1 kernels, which is out of the scope of this paper.

5.3 Dense-to-structured finetuning of pre-trained models for efficiency

We show that pre-trained models can be projected onto SS1-structured space and finetuned for
downstream tasks. We demonstrate this by projecting selected linear transformations in BERT to SS1
and training the resulting model on the GLUE Benchmark. We obtain a 1.31× faster model which
gives a similar GLUE score in downstream tasks. More details are mentioned in I. The results are
summarized in Table 3

We find that we can improve inference of Llama-3-8B model for downstream tasks if we project
carefully selected layers onto SS1. The selection is done on a calibration dataset that corresponds to
the task at hand. We show that, even without finetuning, we can reduce the computation involved in
the model while maintaining reasonable accuracy. Results can potentially improve if we finetune
post-projection as we see in BERT. The results are summarized in Table 3.

5.4 Improving CPU workloads e.g. DLRM MLPerf Benchmark

While this paper focuses on providing GPU kernel for SS1, the algorithm can also be utilized to
improve the inference performance of CPU deployments. Specifically, recommendation workloads
of models such as the Deep learning recommendation model (DLRM) are often run on CPUs due
to humungous embedding tables. We consider the DLRM MLPerf Benchmark, which has 100GB
embedding tables and 10MB MLP layers. Nevertheless, on CPUs, the latency bottleneck is that
of matrix multiplications. Specifically, 71.3% of the time is spent in the top MLP component (see
Table 4). We show that we can train from scratch a SS1 version of DLRM, which has half the
parameters in MLP and maintains the quality of the full model. While CPU-kernel implementation
of SS1 is out of the scope of this paper, we expect that benefits shown on GPUs will also translate to
CPUs, and thus, with SS1, we can improve the throughput of DLRM MLPerf Benchmark on CPUs
without compromising the quality of the model.

5.5 Comparison with standard RPS method

We also compare SS1 with standard RPS method. Since SS1 focuses on compressing linear layers, we
compare it with ROAST-MM compression with each matrix having its individual separate memory.
The results are presented in Table 5. As expected, RPS methods do not improve the latency.

Limitations: Our work is mainly limited on two aspects. On the theoretical side, our analysis of
parameters and the combination of quantization with SS1 is conducted mainly over linear models,
which is a reasonable starting point. However, these results may not necessarily extend to deep
learning models, and we plan to explore this in future research. Additionally, regarding our SS1
proposal, the efficiency gains are marginal beyond an 8× compression of parameters. In future work,
we aim to develop efficient structures where the efficiency gains are more closely aligned with the
degree of parameter reduction.

6 Conclusion
In this paper, we introduce an efficient structured linear transformation termed SS1. We demonstrate
that SS1 outperforms state-of-the-art structured baselines in terms of quality per unit of computation.
Additionally, we show that SS1 provides immediate benefits across diverse applications, including
language understanding, generative AI, and recommendations. Furthermore, we illustrate how SS1
can be combined with the popular quantization approach to achieve further improvements. We also
theoretically explain the underlying reasons that may be of independent interest.
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A Additional Details for checklist

1. Resource Details:
• MLPMixer experiments: Each run takes 2 hours on a single RTX Quadro 8000 machine
• GPT2-Small experiments: Each run takes around 13 hours on four 32-GB V100 GPUs
• BERT experiments: QQP, the largest dataset for finetuning with BERT-Large, takes

around 7-8 hours on RTX-8000 Quadro.
• Llama experiments: on MMLU takes 1 hour on 1 40GB A100

2. License details:
• MLPMixer Experiments uses: CIFAR-10 , CIFAR-100 datasets [30] (license: could

not find) with MLPMixer GitHub https://github.com/omihub777/MLP-Mixer-CIFAR
(MIT License)

• GPT2 Experiments uses: Wikitext-103 dataset [29] (Creative Commons Attribution-
ShareAlike License (CC BY-SA 4.0) License) the code is obtained from fly GitHub
repo: https://github.com/HazyResearch/fly presented in [16] (Apache-2.0 license), the
quantization experiments on GPT2 uses the quantization method employed in [32] with
GitHub repo: https://github.com/mit-han-lab/smoothquant (MIT License) Codes are
generally obtained from the HuggingFace Transformers library[33] including GPT2 to-
kenzier the repo is at https://github.com/huggingface/transformers with Apache-2.0 Li-
cense. The backend of experiments is Pytorch[34] at https://github.com/pytorch/pytorch

• Llama3 [1] pre-trained weights and code are obtained from https://github.com/meta-
llama/llama3 (META LLAMA 3 COMMUNITY LICENSE AGREEMENT)

• The kernels are implemented with Triton [35] with GitHub repo:
https://github.com/triton-lang/triton (MIT License)

• Massive Multitask Language Understanding Dataset - MIT License. Obtained via
HuggingFace Dataset library.

• Winogrande Dataset - Apache 2.0 License. Obtained via HuggingFace Dataset library.
• The Microsoft Research Paraphrase Corpus - License unknown. Obtained via Hugging-

Face Dataset library.
• The Multi-Genre Natural Language Inference Corpus - MIT License. Obtained via

HuggingFace Dataset library.
• The Quora Question Pairs2 dataset - Licensed by Quora.

https://www.quora.com/about/tos. Obtained via HuggingFace Dataset library.
• The Corpus of Linguistic Acceptability - Obtained via HuggingFace Dataset library.
• The Recognizing Textual Entailment (RTE) datasets - Unknown license. Obtained via

HuggingFace Dataset library.
• The Stanford Sentiment Treebank - CC0: Public Domain license. Obtained via Hug-

gingFace Dataset library.
• The Semantic Textual Similarity Benchmark - Unknown license. Obtained via Hug-

gingFace Dataset library.
• The Winograd Schema Challenge - Unknown license. Obtained via HuggingFace

Dataset library.
• Question-answering NLI dataset - CC BY-SA 4.0 license. Obtained via HuggingFace

Dataset library.

B Predicted Common Questions (PCQ)

1. Q: How do you choose datasets?
We begin with what Monarch evaluated w.r.t deep learning – train GPT and finetune BERT.
Additionally, we wanted to do a quality tradeoff analysis on wider data. So, we chose the
vision datasets that LTH uses. Apart from that, we choose the DLRM MLPerf benchmark as
a representative of recommendation models.

2. Q: Do you see any training latency benefits?
The computation in the backward pass is not reduced in SS1. So, in general, the backward
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pass costs the same as the full model. In this sense, SS1 is geared towards inference benefits.
We might see some improvements due to the lower overall memory footprint and metadata
that the optimizer stores. But beyond that, we do not expect to see training latency benefits.
Under the assumption that inference is more costly than training, this seems to be an okay
thing.

3. Q: Why have you not measured latency with Quantization?
To measure latency with Quantization, we would have to write a quantized SSL kernel. For
this paper, we want to restrict our code development to a single kernel. Thus, we only show
the quality preservation with SS1 + Quantization. Having said that, we expect the gains
from Quantization to be present in SS1 + Quantization.

4. Q: Does this mean standard linear layers should always be replaced by the SS1 ?
We would like to believe there is an "additional" representative value in SS1 layers that can
push the boundary of quality per unit compute. However, we want to be cautious while
making this claim, and we will be rigorously evaluating SS1 in the future.

5. Q: Why not block-sparse as a baseline?
Most of our experiments were done in FP16. Also, our kernels are optimized for FP16.
Pytorch block sparse does not have a stable implementation when it comes to FP16. We see
segmentation faults. Thus, we skip Block sparse as a baseline. Additionally, with recent
work on sparsity vs. RPS, we believe that RPS should beat Block sparsity in quality per unit
parameters.

6. Q: Monarch performance seems lower than what was reported in the original paper.
We were surprised as well. We expected Monarch to do better. However, the paper also
spoke only about the training times. In our paper, we measure inference times. Additionally,
we confirmed with the authors that we were benchmarking the correct code.

7. Q: Why was expressivity of SS1 not analyzed the way it has been done for other
methods such as Monarch? While the analysis of Monarch is interesting and a valuable
piece of knowledge, it is debatable if the expressivity analysis is representative of deep
learning requirements. Indeed, we show that SS1 beats Monarch in quality vs. parameters (
and compute), emphasizing that deep learning may not align with the notion of common
transformations.

8. Q: Will the results on GPT translate to bigger models such as Llama? It is hard to say.
But we believe that whenever the model is at capacity with the information it can learn,
having these layers in a slightly bigger model ( so it has a similar computation as a smaller
model) can help boost the quality.

9. Q: Where is the code? Visit our landing page: https://github.com/apd10/Sketch-Structured-
Linear for all the details.

10. Q: What care needs to be taken for dense-to-structured finetuning? Different layers have
different sensitivity to compression, especially when we want to preserve the accuracy of the
pre-trained model. Thus, we have to identify layers that cannot withstand the approximation.
This can be done using some calibration data.

11. Q: Isn’t this just feature hashing? No. Feature hashing (followed by linear transformation)
is a low-rank operation, with the first matrix being the fixed sketch matrix. Also, feature
hashing is not GPU-aware and has bad latency performance. SS1 applies feature hashing
but for each neuron separately. The independence makes SS1 full rank with high probability.
Also, due to the coalescing factors, we make SS1 GPU aware and efficient.

C How does learning rate tuning affect the quality?

In our experiments, we always use the hyperparameters that are optimal for the original model.
However, these hyperparameters are not optimal for different methods. We perform learning rate
tuning for Monarch, a competitive baseline, and find that, while the perplexity improves for all
methods with finetuning, the findings remain unchanged. The results are shown in 6
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Table 6: Learning tuning on Monarch.
Method Learning Rate Loss PPL
Monarch-8x 6e-4 3.119 22.83

9e-4 3.135 23.23
2e-3 3.107 20.65
8e-3 NA NA

SS1-8x 2e-3 2.99 20.13
LowRank-8x 2e-3 3.161 23.67

Figure 3: Latency vs. Perplexity Plot for GPT-S

D Different representation of latency quality results

The plot of latency vs. quality for GPT-2 is presented in figure 3.

E Latency vs. Parameters and Kernel Details

We have implemented three kernels for SS1, including forward, backward-weight-gradient, and
backward-input-gradient. Our implementations can be used on GPUs with or without tensor cores
and support multiple precisions, such as float16 and float32 (TF32).

We implemented permutation by adjusting the addresses to load instead of permuting the data in
shared memory. If permuting is done in shared memory, we have to permute the data again to adjust
the value distribution to fit the tensor core operands, thus wasting instructions on shared memory
accesses and time in synchronizing threads within a CTA (Cooperative Thread Array).

In the forward kernel, we launch ⌈M/BM⌉ × ⌈N/BN⌉ CTAs. Each CTA, while accumulating along
the K dimension, permutes the input block (i.e., X) with each data load. In the backward-input-
gradient kernel, each CTA permutes the weight block while accumulating along the N dimension. In
the backward-weight-gradient kernel, each CTA only permutes the result before storing it in DRAM
using atomicAdd.

We have introduced the following optimizations to improve the performance of SS1 kernels:

1. Vectorized Memory Load. Rather than permuting individual elements, we permute larger
chunks of V EC elements along the K dimension to maximize the GPU’s memory band-
width efficiency. The size of V EC can be selected from 1, 2, 4, or 8.

2. Pipelining. Utilizing asynchronous memory load instructions supported by the GPU archi-
tecture, we preload Nstages blocks prior to the main accumulation loop to overlap compute
and memory transactions.

3. Autotuning. To optimize performance across different tensor shapes, we implemented an
autotuner to select the ideal BM, BN, BK, and Nstages. We also prune configurations that
exceed the GPU’s shared memory capacity before compilation and benchmarking.
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4. Fusion. We have fused bias computation directly into the forward kernel to reduce kernel
launch and memory access overhead.

SS1’s forward kernel reduces the number of load instructions and computational overhead compared
to full matrix multiplications. However, the backward kernels of SS1 maintain the same level of load
instructions and computational demand as those of full matrix multiplications, leading to similar
performance outcomes.

Figure 4: Latency(ms) vs. Parameters for an instance of workload in GPT2

F Theoretical Results

F.1 Claim: BK is a pure latency parameter

We will evaluate this under the standard dimensionality reduction setup (which we now know is
related to learned model quality). Consider two vectors x and y in Rn space. Also, consider the
smaller dimension m to which these vectors are being projected using hash functions defined in
section 3 with K-coalescing factor BK. Let the final mapping be h. The inner product can be written
as,

⟨x̂, ŷ⟩ =
m∑
i=1

 n∑
j=1

g(j)1(h(j) = i)xj

 n∑
j=1

g(j)1(h(j) = i)yj

 (21)

Assume that BK|m|n for simplicity. Then, the inner product can be written as,

⟨x̂, ŷ⟩ = ⟨x,y⟩+
n∑

i ̸=j

g(i)g(j)1(h(i)=h(j))xiyj (22)

The estimator is unbiased since E(g(i)) = 0. The variance is,

V (⟨x̂, ŷ⟩) = E
(
(⟨x̂, ŷ⟩ − ⟨x,y⟩)2

)
= E

 n∑
i ̸=j

g(i)g(j)1(h(i)=h(j))xiyj

2

(23)

V (⟨x̂, ŷ⟩) = (24)

E

 n∑
i1 ̸=j1,i2 ̸=j2

g(i1)g(j1)g(i2)g(j2)1(h(i1)=h(j1))1(h(i2)=h(j2))xi1yj1xi2yj2

 (25)
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Nonzero terms appear if either of the two cases holds:

• (i1 = i2 and j1 = j2)

• (i1 = j2 and i2 = j1)

V (⟨x̂, ŷ⟩ − ⟨x, y⟩) = E

 n∑
i ̸=j=1

1(h(i)=h(j))x2
i y

2
j

+ E

 n∑
i̸=j=1

1(h(i)=h(j))xiyixjyj


(26)

=

 n∑
i ̸=j=1

P(h(i)=h(j))x2
i y

2
j

+

 n∑
i ̸=j=1

P(h(i)=h(j))xiyixjyj

 (27)

=

n∑
i=1

n∑
j=1,j ̸=i

P(h(i)=h(j))
(
x2
i y

2
j + xiyixjyj

)
(28)

Note that

P(h(i)=h(j)) =

{
1

BK
i,j belong to different groups inside same 1D super group

0 otherwise

Let I(i, j) be the delta function that i, j belong to different groups inside same 1D supergroup

V (⟨x̂, ŷ⟩ − ⟨x,y⟩) = 1

BK

n∑
i=1

n∑
j=1,j ̸=i

I(i, j)
(
x2
i y

2
j + xiyixjyj

)
(29)

Under a permutation p of the initial input x and y, the following is the probability since every element
can interact with all the elements from other groups inside the same supergroup.

Pp(I(i, j)) =
(c− 1)BK

n− 1

Thus, under permutation,

Ep (V (⟨x̂, ŷ⟩ − ⟨x,y⟩)) = (c− 1)BK

(n− 1)BK

n∑
i=1

n∑
j=1,j ̸=i

(
x2
i y

2
j + xiyixjyj

)
(30)

Ep (V (⟨x̂, ŷ⟩ − ⟨x,y⟩)) = c− 1

(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

(
x2
i y

2
j + xiyixjyj

)
(31)

Thus, BK is a pure latency parameter and should be chosen for optimizing shared memory usage.

F.2 How does BN affect the quality?

To investigate the effect of BN, let us consider how neurons in the same 2D super group and different
2D super groups affect each other. We present the result in the following theorem,

Theorem 3 Consider two neurons y1, y2 ∈ R output from a linear transformation under SS1. Let
h1, h2, g1, g2 be the hash functions used for the neurons. Let the weights for these two neurons be
p, q ∈ Rm. Let the input be x ∈ Rn. Then, under the assumption that each signal in x ∼ D is
independent, the Covariance between the values of neurons can be written as,

CovD(y1, y2) =

m∑
i1=1

m∑
i1=1

n∑
j=1

pi1qi2g1(j)g2(j)1(h1(j)=i1)1(h2(j)=i2)σ
2
xj

(32)

Eh1,g1,h2,g2(CovD(y1, y2)) =

{
m
n ||σx||2⟨p, q⟩ if h1 = h2, g1 = g2
0 if g1 ̸= g2

(33)
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The above theorem points out that if two neurons belong to the same group, i.e., they share the
hash functions, then the neuron outputs have unintended correlations and, thus, mutual information.
So the larger value of BN implies more neurons having interdependency and, consequently, lesser
expressivity. Fortunately, in our experiments, we find that larger values of BN also work well, and we
optimize it for latency.

details: Intuitively, sharing the mapping functions across neurons will restrict the representative
power of neurons since they will sketch the same parts of the input vector x with the same hash
functions. We verify this intuition here. Consider the following two neurons under SS1 with weight
vectors p, q

y1 =

m∑
i=1

pi

 n∑
j=1

g1(j)1(h1(j)=i)xj


y2 =

m∑
i=1

qi

 n∑
j=1

g2(j)1(h2(j)=i)xj



Consider the mutual information between y1 and y2. Since we are dealing with linear computations,
we measure the Covariance of the two neurons,

CovD(y1, y2) = Cov

 m∑
i=1

pi

 n∑
j=1

g1(j)1(h1(j)=i)xj

 ,

m∑
i=1

qi

 n∑
j=1

g2(j)1(h2(j)=i)xj


(34)

CovD(y1, y2) =

m∑
i1=1

n∑
j1=1

m∑
i1=1

n∑
j1=1

Cov (pi1 (g1(j1)1(h1(j1)=i1)xj1) , qi2 (g2(j2)1(h2(j2)=i2)xj2))

(35)

CovD(y1, y2) =

m∑
i1=1

n∑
j1=1

m∑
i1=1

n∑
j1=1

Cov (pi1 (g1(j1)1(h1(j1)=i1)xj1) , qi2 (g2(j2)1(h2(j2)=i2)xj2))

(36)

CovD(y1, y2) =

m∑
i1=1

n∑
j1=1

m∑
i1=1

n∑
j1=1

pi1qi2g1(j1)g2(j2)1(h1(j1)=i1)1(h2(j2)=i2)Cov(xj1 , xj2)

(37)

Assuming independent signals in x

CovD(y1, y2) =

m∑
i1=1

m∑
i1=1

n∑
j=1

pi1qi2g1(j)g2(j)1(h1(j)=i1)1(h2(j)=i2)σ
2
j (38)

Case 1: y1 and y2 belong to the same 2D super group

Eh,g(CovD(y1, y2) =

 m∑
i1=1

m∑
i1=1

n∑
j=1

pi1qi2g(j)
21(h(j)=i1)1(h(j)=i2)σ

2
j

 (39)

Eh,g(CovD(y1, y2) =

 m∑
i1=1

m∑
i2=1

n∑
j=1

pi1qi2E(1(h(j)=i1)1(h(j)=i2))σ
2
j

 (40)
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Only non-zero terms when i1 = i2 since h(j) can only have one value

Eh,g(CovD(y1, y2) =

 m∑
i=1

n∑
j=1

piqiE(1(h(j)=i))σ2
j

 (41)

Eh,g(CovD(y1, y2)) =
m

n
||σ||2⟨p, q⟩ (42)

Case 2: y1 and y2 belong to the different 2D super group
Eh,g(CovD(y1, y2)) = 0 (43)

Thus, if two neurons are in the same 2D group, the structure imposes the two neurons to be correlated
and thus reduces the expressive power of the model.

F.3 Quantization + SS1: How combining them results in a better method for compression.

Analysing quantization under standard dimensionality reduction Consider two vectors x, y
with values from the range [−D/2, D/2]. Under stochastic Quantization for b bits, we will have

x̂ = x+∆ (44)
where ∆[i] = (⌈x⌉ − x)1(i) + (⌊x⌋ − x)(1− 1(i)) where

1(i) =

{
1 with prob p = (x−⌊x⌋)

D/2b

0 with prob (1− p)
(45)

the inner product
⟨x̂, ŷ⟩ = ⟨x,y⟩+ ⟨x,∆y⟩+ ⟨∆x, y⟩+ ⟨∆x,∆y⟩ (46)

The estimator is unbiased.

⟨x̂, ŷ⟩ − ⟨x,y⟩ =
n∑

j=1

(xj∆y[j] + yj∆x[j] + ∆x[j]∆y[j]) (47)

V (⟨x̂, ŷ⟩) =
n∑

j=1

V (xj∆y[j] + yj∆x[j] + ∆x[j]∆y[j]) (48)

V (⟨x̂, ŷ⟩) =
n∑

j=1

Cov(xj∆y[j] + yj∆x[j] +∆x[j]∆y[j], xj∆y[j] + yj∆x[j] +∆x[j]∆y[j]) (49)

V (⟨x̂, ŷ⟩) =
n∑

j=1

V (xj∆y[j]) + V (yj∆x[j]) + V (∆x[j]∆y[j]) (50)

+Cov(xj∆y[j],∆x[j]∆y[j]) + Cov(yj∆x[j],∆x[j]∆y[j]) (51)
Convince yourself that covariance terms are 0.

V (⟨x̂, ŷ⟩) =
n∑

j=1

V (xj∆y[j]) + V (yj∆x[j]) + V (∆x[j]∆y[j]) (52)

V (⟨x̂, ŷ⟩) =
n∑

j=1

x2
jσ

2
yj + y2jσ

2
xj + σ2

yjσ
2
xj (53)

σ2
xj = V ((⌈x⌉ − x)1(i) + (⌊x⌋ − x)(1− 1(i))) (54)

σ2
xj =

(
D

2b

)2

V (1(j)) =

(
D

2b

)2
(x− ⌈x⌉)
D/2b

(
D/2b − (x− ⌈x⌉)

)
D/2b

(55)

σ2
xj = (x− ⌊x⌋)

(
D/2b − (x− ⌊x⌋)

)
= w2pxj(1− pxj) ≤

w2

4
(56)
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Note that the inequality is tight and occurs when all the values of x are exactly at the midpoint of the
bin.

where w = D/2b

Vq(⟨x̂, ŷ⟩) =
n∑

j=1

x2
jσ

2
yj + y2jσ

2
xj + σ2

yjσ
2
xj ≤t

w2

4

(
||x||2 + ||y||2

)
+ n

w4

16
(57)

It follows that this inequality is also tight.

The equation for projection is

Vp(⟨x̂, ŷ⟩) =
1

m

∑
i ̸=j

(x2
i y

2
j + xiyixjyj) (58)

Vp(⟨x̂, ŷ⟩) =
1

m

(
||x||2||y||2 + ⟨x, y⟩2 − 2||x ◦ y||2

)
(59)

if ||x|| ≤ 1, ||y|| ≤ 1

Vq(⟨x̂, ŷ⟩) ≤
w2

2
+

nw4

16
≤ 2

22b
+

n

24b
= Q(b) (60)

Vp(⟨x̂, ŷ⟩) ≤t
k

m
= P (m) ≤ 2

m
(61)

we use ≤t to show that it is tight. The tight upper bound can be represented using some 1 ≤ k ≤ 2
Under same budget m = nb

F where F = 32 or F = 16. for whatever precision width we are using
for the original vectors.

Vp(⟨x̂, ŷ⟩) ≤
kF

nb
(62)

F.3.1 Combined

Let us consider x and y with norm 1. Let us consider the procedure where we first apply projections
to get x̂1 and ŷ1, and then Quantization is applied to obtain x̂2 and ŷ2. Let us assume that the bit
width for Quantization is b and the projection is into m.

Let’s apply Quantization and then projection. The resulting estimator can be written as

⟨x̂, ŷ⟩ = ⟨x+∆x, y +∆y⟩+
n∑

i ̸=j

g(i)g(j)1(h(i) == h(j))(xi +∆x[i])(yj +∆y[j]) (63)

The estimator is unbiased. Now let us look at the variance w.r.t all stochastic elements.

⟨x̂, ŷ⟩ = ⟨x, y⟩+⟨x,∆y⟩+⟨∆x, y⟩+⟨∆x,∆y⟩+
n∑

i ̸=j

g(i)g(j)1(h(i) == h(j))(xi+∆x[i])(yj+∆y[j])

(64)

⟨x̂, ŷ⟩−⟨x, y⟩ = ⟨x,∆y⟩+⟨∆x, y⟩+⟨∆x,∆y⟩+
n∑

i ̸=j

g(i)g(j)1(h(i) == h(j))(xi+∆x[i])(yj+∆y[j])

(65)

Note that each of the term on the right side has covariance 0 with each other since E(AB) =
E(A)E(B) = 0, so Cov(A,B) = 0 Hence,
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V (⟨x̂, ŷ⟩) = V (⟨x,∆y⟩+⟨∆x, y⟩+⟨∆x,∆y⟩)+V (

n∑
i ̸=j

g(i)g(j)1(h(i) == h(j))(xi+∆x[i])(yj+∆y[j]))

(66)

V (⟨x̂, ŷ⟩) = Vq(x, y)+ (67)

Eq

 1

m

∑
i ̸=j

((xi +∆x[i])
2(yj +∆y[i])

2 + (xi +∆x[i])(yi +∆y[i])(xj +∆x[j])(yj +∆y[j]))


(68)

V (⟨x̂, ŷ⟩) = Vq(x, y) +

 1

m

∑
i ̸=j

((x2
i + σ2

xi)(y
2
j + σ2

yj) + xiyixjyj)

 (69)

V (⟨x̂, ŷ⟩) = Vq(x, y) + Vp(x, y) +

 1

m

∑
i ̸=j

((x2
iσ

2
yj + y2jσ

2
xi + σ2

yjσ
2
xi)

 (70)

 1

m

∑
i ̸=j

((x2
iσ

2
yj + y2jσ

2
xi + σ2

yjσ
2
xi)

 ≤ 1

m

w2

4
(2(n− 1)) +

1

m

n(n− 1)

1

w4

16
(71)

Thus,

Vpq(⟨x̂, ŷ⟩) ≤
w2

2
+

nw4

16
+

k

m
+

1

m

w2

2
((n− 1)) +

1

m

n(n− 1)

1

w4

16
(72)

where w = D/2b = 2/2b

Vpq(⟨x̂, ŷ⟩) ≤ Q(b)

(
1 +

n− 1

m

)
+ P (m) (73)

effective bits per element is B = (mb)/n = F (m/n)(b/F )) = cpcqF .

Vpq(⟨x̂, ŷ⟩) ≤ Q(b)

(
1 +

n− 1

m

)
+ P (m) ≈ Q(cq)(1 +

1

cp
) + P (cp) (74)

Q(cq) =
2

22b
+

n

24b
=

2

22cqF
+

n

24cqF
(75)

Q(cq) =
2

22b
+

n

24b
=

2

22cqF
+

n

24cqF
(76)

P (cp) =
k

cpn
(77)

R(cpcq) = R̃(cp, cq) = Q(cq)

(
1 +

1

cp

)
+ P (cp) (78)
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G Projection Details

Firstly, note that parameter sharing in SS1 is only inside a single neuron. So, there are independent
RPS instances for each neuron. Thus, the projection of the K ×N weight matrix is independently
projecting each neuron. Consider a single neuron under RPS y⊤ = x⊤w and w = Sz. Given w , the
solution to get best z which minimizes ||w − Sz||2 is nothing but solution of linear regression, i.e.
z = (S⊤S)−1)S⊤w. Also, since S is a sparse matrix with exactly one non-zero in each row, S⊤S is
a diagonal matrix. The hash function defined in the paper ensures that all elements of the diagonal
are non-zero. Thus, it is invertible. In fact, if you view S as a mapping matrix that maps each element
of w (i.e., range K) to some element of z ( range K/c), then the value of z is just an aggregation of
all those elements from w that map to this element in z ( computed via S⊤w) and then normalized by
the total number of elements from w that map to this element in z ( computed via S⊤S)−1 ). This is
straightforward to implement and can be done in a blocked manner for the entire matrix Z. This is
presented in the Algo 2.

Algorithm 2 SS1-project(W)

Require: c ∈ N : compression factor, W ∈ RK×N : full weight matrix, BM,BK,BN: coalescing
parameters,h : N3 → {0, . . . , BK − 1}, g : N3 → {±1}, cBK|K

Ensure: Z∗ = argminZ ||W − SS1(Z, I(K))||F
1: Z∗=Zero-Matrix(K//c,N)
2: Tw=TILE(BK,BN)
3: for j ∈ [⌈N/BN⌉] do
4: for k ∈ [⌈K//c⌉] do
5: Tw[:, :] = 0
6: for l ∈ [c] do
7: a=Tw[(kc+l)BK:(kc+l+1)BK,

jBN:(j+1)BN]
8: a=a[(RG(BK)−h(j, k, l))%BK, :]
9: Tw+=g(j, k, l)a

10: end for
11: Tw=Tw/c
12: Z∗[kBK:(k+1)BK, jBN:(j+1)BN]=Tw

13: end for
14: end for

H Backward kernel algorithms

We implement both the forward and backward kernels with Triton [35]. The backward pass computes
the compressed weight gradients and also the input gradients with respect to the hash functions used
in the forward pass. It includes two kernels to output the SS1 weight gradients and input gradients.

The algorithms used in the backward kernels are presented in Algo 3 and Algo 4.
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Algorithm 3 SS1-backward: weight grad

Require: c ∈ N : compression factor
Require: O ∈ RM×N : output gradient
Require: X ∈ RM×N : data matrix
Require: BM,BK,BN: coalescing parameters
Require: h : N3 → {0, . . . , BK − 1}
Require: g : N3 → {±1}
Require: cBK|K
Ensure: Wg ∈ RN×(K//c)

1: w=TILE(BN,BK)
2: for m ∈ [⌈K/BK⌉] do
3: for j ∈ [⌈N/BN⌉] do
4: w[:, :] = 0
5: for i ∈ [⌈M/BM⌉] do
6: w = w +MM(OT [jBN:(j+1)BN, iBM:(i+1)BM],

X[iBM:(i+1)BM,mBK:(m+1)BK])
7: end for
8: k = m//c ▷ Index of block in SS1matrix
9: l = k%c ▷ Offset of block in full matrix used for hashing

10: w=w/c ▷ Scaling down gradients by compression factor
11: Wg[jBN:(j+1)BN, kBk+(RG(BK)− h(j, k, l))%BK] =

g(j, k, l)w +Wg[:, kBK:(k+1)BK]
12: end for
13: end for

Algorithm 4 SS1-backward: input grad

Require: c ∈ N : compression factor
Require: O ∈ RM×N : output gradient
Require: W ∈ RK//c×N : SS1matrix
Require: BM,BK,BN: coalescing parameters
Require: h : N3 → {0, . . . , BK − 1}
Require: g : N3 → {±1}
Require: cBK|K
Ensure: Xg ∈ RM×K

1: x=TILE(BM,BK)
2: for l ∈ [c] do
3: for k ∈ [⌈K//c/BK⌉] do
4: for i ∈ [⌈M/BM⌉] do
5: x[:, :] = 0
6: for j ∈ [⌈N/BN⌉] do
7: x = x+MM( O[iBM:(i+1)BM, jBN:(j+1)BN],

g(j, k, l)WT [jBN:(j+1)BN, kBk+(RG(BK)−h(j, k, l))%BK])
8: end for
9: Xg[iBM:(i+1)BM, (k + l)BK + :(k + l + 1)BK]=x

10: end for
11: end for
12: end for

I Experiment settings

I.1 GPT experiment settings

We follow the standard GPT2-Small implementation of monarch paper [16] from the HazyResearch
group at fly repo (https://github.com/HazyResearch/fly.git).
To optimize training the GPT model on our GPUs, we replaced Huggingface’s transformers[33]
’Conv1D’ layers with PyTorch[34] ’nn.Linear’ in the feedforward blocks, as the transformation
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remains the same. The architecture of the GPT2 models used in these experiments is detailed in 7.
All models are trained using mixed-precision-training [36] with FP16 precision and implemented
using PyTorch [34] AMP. We use V100-32GB GPUs to train the models from scratch.

Table 7
Architecture #Layers #Heads Dimension
GPT2 Small 12 12 768
GPT2 Medium 24 16 1024
GPT2 Large 36 20 1280

Hyperparameters: For training we use the AdamW optimizer with α=6e−4, β1=0.9, β2=0.999,
ϵ = 1e− 08 and weight_decay = 0.1 we employ a linear schedule and wramup 1% of steps. The
effective batch size is 512, which is not achievable on our hardware memory; thus, we perform
gradient accumulation every 32 step to reach that. All models are trained for 100 epochs. The
hyperparameters are adopted from the Monarch paper [16].

Dataset: We use wikitext-103 [29] to train, evaluate, and test the model. The reported perplexity
numbers are based on an evaluation of the test dataset. The length of the generated sequence is 1024.

I.1.1 Baselines

SS1: To build SS1 models, we substitute the transformer’s feedforward linear layers with
our SS1 layer. We use a fixed block size of Block_Size_K = 32, Block_Size_N = 32, and
Block_Size_M = 64 for both the forward and backward kernels across all layers during training and
testing. Additionally, each SS1 layer is assigned a different seed to ensure reproducibility of the hash
functions used. In addition to the coalescing parameters, the vectorization parameter E V EC is set to
4.

Monarch: : For Monarch baseline, we convert the same layers as SS1 from the original Monarch
implementation [16] and change the number of blocks to achieve different compression rates.

Lowrank: To implement the Lowrank layer, we take the linear layer matrix and parameterize it
into two consecutive smaller matrices (linear layers) with reduced intermediate dimensions. The
intermediate dimension in the replaced layer will be:

Klr = (Ks ×Ns)//(Ks+Ns)× c

Where Ks and Ns are the input and output channels of the original matrix respectively, c ∈ N is the
compression factor, and Klr is the intermediate dimension of Lowrank matrices. Afterward, like the
other baselines, we swapped the linear layers of feedforward and replaced them with the Lowrank
layer.

Smallmodel: The Smallmodel baseline aims to assess if the mlp layers of feedforward blocks of
Large Language Models (LLM) are overparameterized and the impact on model quality by choosing
smaller matrices for those layers. To achieve this, we take the same modules of the standard model
and adjust the inner_dimension of the linear layers by a compression factor c where c ∈ N.
We were surprised to find that the smaller version of the model had moderate accuracy degradation.
We also experimented with combining the small model and SS1 by training the small model with
SS1 matrices for the FFN layers. We observed improved performance with the same number of
parameters for ’Smallmodel4x+SS12x’ compared to ’Smallmodel8x’. The conversion process is the
same as what we did in SS1-conversion.

BlockSparse: A pruning baseline that we sought to conduct the same experiment for was pytorch
block sparse5. However, pytorch block sparse is constrained to fp32 precision training, and for the
large models such as GPT2, it does not fit our available GPU memory space.

FlashAttention [37] suggests a significant latency of the inference phase lies in applying the softmax
function on attention scores, which is a memory-bound operation. Using FlashAttention kernels
shifts the workload from memory-bound to compute-bound; we know from the [37] that linear
transformations are compute-bound because of the extensive matrix multiply operations. Considering
all that, the performance contribution of SS1 is in the compute-bound setting because of reducing

5https://pypi.org/project/pytorch-block-sparse/
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the inner dimension of the linear matrices. Thus, in GPT2 latency measurement experiments, we
use the Pytorch kernel abstraction of FlashAttention, the scaled-dot-product-attention (SDPA). As
the FlashAttention kernels are yet to be released for older GPUs such as V100, we were not able
to apply them in the training phase on V100 GPUs; thus, we only replaced them in the latency
measurement experiments for all the baselines above. For the latency measurement, we employ a
single A100-40GB GPU.

I.1.2 Quantization

To unravel the potential of SS1 in the quantization domain, we utilize uniform post-training Quantiza-
tion. The method is as follows:

S = max
i

|Xi|

Ŝ = (
S

2n − 1
)

X̂ =

⌊
X

Ŝ

⌉
Where X is a floating point tensor, and X̂ is its quantized version to an integer with n number of
bits. S is the scale and Ŝ is the quantization level. ⌊·⌉ denotes rounding to the nearest integer. We
have chosen the scale to be max(|X|) as suggested by [32] due to its effectiveness in mitigating the
impact of large activations in LLMs.

In our application, we implement the proposed method to reduce the precision of activation and
weight tensors from 16 to 8 bits during the inference mode. For weight quantization, we apply the
per-channel activation, meaning the scale is computed based on values of the tensor for each output
channel; for activation quantization, we do per-token Quantization based on [32]. The quantization
process is dynamic in our case. The results are obtained from testing the pre-trained GPT2-standard
and SS1 models that we trained.

I.2 BERT finetuning settings

We conducted experiments to show that pre-trained linear layers can be projected onto SS1 layers
while retaining previous knowledge. To validate this, we project the encoder layers of BERT-base and
BERT-large models [19] onto SS1. BERT (Bidirectional Encoder Representations from Transformers)
consists of a stack of Transformer encoder layers, each containing a self-attention mechanism and
a feedforward neural network. In this work, we focus on two BERT model sizes: BERT-base (12
encoder layers, 768 hidden size, 12 attention heads, 110M parameters) and BERT-large (24 encoder
layers, 1024 hidden size, 16 attention heads, 340M parameters). We then finetune these models on the
GLUE (General Language Understanding Evaluation) benchmark [18]. Hyperparameters used during
the finetuning stage are provided in Tables 10 and 11. GLUE consists of a collection of diverse natural
language understanding tasks, such as textual entailment, question answering, and sentiment anal-
ysis. For our experiments, we utilize the GLUE dataset provided by the Hugging Face Datasets library.

The results are presented in Tables 8 and 9. We are able to achieve 50% compression of
the encoder layers on both BERT-base and BERT-large models, with only a minimal drop in
model quality across the GLUE tasks. This reduction in parameters is not achieved by uniformly
compressing all layers in the encoder. Instead, we only project layers 1, 6, 8, 9, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24 (14 out of 24) for BERT-large and layers 1, 7, 8, 9, 10, 11, 12 (7 out of 12) for
BERT-base at 8x compression. This leads to a net compression ratio of 1 − 14/8+10

12 = 0.51 for
BERT-large and 1− 7/8+5

12 = 0.51 for BERT-base, approximately 50% compression for both models.

These specific layers are selected using the RTE (Recognizing Textual Entailment) task
from GLUE as calibration data. We treat RTE as a development set to determine which layers are less
sensitive to compression. Layer sensitivity is measured by the degree of performance degradation on
RTE when applying SS1 compression to individual layers in the model. The layers chosen by this
method are able to generalize well to all other GLUE tasks, achieving evaluation metrics that closely
match those of the full-sized BERT models with linear layers.
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In addition to parameter reduction, BERT models with SS1 layers are able to achieve up to
1.31x increase in inference throughput. Detailed latency measurements are provided in Table 12.
On the GLUE task, our BERT-large model with SS1 compression attains an accuracy of 79.76 (2.6
drop compared to the full model), while our compressed BERT-base model reaches 79.9 accuracy
(2.2 drop) - demonstrating that our SS1 projection method can maintain strong performance with
significantly reduced parameters and runtime.

Table 8: Fine-tuning results for Bert Large
BERT-L BERT-L × SS1

#param 335M 181M
COLA 69 70.8
STSB 89.3 87.1
RTE 76.1 65.9

MRPC 88.5 87.1
WNLI 56.3 56.3
QNLI 92 88
QQP 90 88.3
SST2 92.9 90.8
MNLI 86 81.9

Average 82.2 79.6 ± 0.203

Table 9: Fine-tuning results for Bert Base
BERT-L BERT-L × SS1

#param 110M 66M
COLA 83.6 76.2
STSB 88.8 87.5
RTE 67.5 67.5

MRPC 89.9 87.7
WNLI 53.5 56.3
QNLI 90.2 86.5
QQP 89.2 88.5
SST2 92.4 89.5
MNLI 84.4 80.5

Average 82.1 79.9 ± 0.066

Table 10: Hyper parameters for Bert(SS1) Large
Task Batch Size Learning rate Epochs
cola 16 2.5e-05 5
mnli 16 1e-05 3
qnli 16 1e-05 3
sst2 32 1.5e-05 3
wnli 8 2e-05 5
stsb 32 1.5e-05 3
rte 8 1e-05 7

mrpc 16 1.5e-05 5
qqp 32 1e-05 3

Table 11: Hyper parameters for Bert(SS1) Base
Task Batch Size Learning rate Epochs
cola 16 2.5e-05 5
mnli 16 1e-05 3
qnli 16 2.5e-05 3
sst2 16 1.5e-05 3
wnli 32 1.5e-05 5
stsb 32 2.5e-05 3
rte 16 2.5e-05 7

mrpc 32 2.5e-05 5
qqp 16 2.5e-05 3

Table 12: Latency results for Bert Models
Latency ms (median) batch

Model 8 16 32 64 128

BERT-Large 12.68755198 20.73288059 40.77404976 79.60927963 158.8201599
BERT-Large × SS1 18.04614353 17.61041546 31.79167938 60.99251175 120.5512314

Throughput Increase for SS1 0.7030616792 1.177307863 1.282538405 1.305230386 1.317449503

I.3 Llama experiments

Meta’s Llama family has emerged as one of the most powerful open-source Large Language Models.
They are designed to be powerful and efficient models for various natural language processing tasks.
In this work, we focus on the Llama3-8B model, which has 32 decoder layers, a hidden size of 4096,
and 32 attention heads, resulting in approximately 8 billion parameters.

We conduct experiments to demonstrate that the pre-trained linear layers in Llama can be
directly projected onto SS1 layers without any finetuning while maintaining model performance.
This is a significant finding, as it highlights the effectiveness of our SS1 compression method in
preserving the knowledge captured by the pre-trained model. By avoiding the need for finetuning,
our approach offers substantial computational savings and facilitates more efficient deployment of
compressed models. To validate our approach, we project the transformer layers of the Llama3-8B
model onto SS1 layers. Specifically, we use the ’meta-llama/Meta-Llama-3-8b’ model provided by
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the Hugging Face Transformers library. We then evaluate the compressed model on the MMLU
(Massive Multitask Language Understanding) [38] and Winogrande [39] tasks without any further
training or finetuning using Language Model Evaluation Harness [40].

For calibration purposes, we utilize two small datasets: tinyMMLU and tinyWinogrande
[41]. These datasets consist of 100 curated examples from the original MMLU and Winogrande
datasets, respectively. By using these tiny datasets, we aim to identify the layers that are less sensitive
to compression while minimizing the computational overhead of the calibration process. The results
of our experiments are presented in Table 9. We achieve a 25% compression ratio of the decoder
layers in Llama3-8B without any finetuning. This compression is obtained by projecting layers
18, 19,20, 21, 22, 23, 24, 25, 26, 27 in the case of MMLU and layers 18, 19, 20, 21, 22, 23, 24,
25, 26, 30 in the case of Winogrande onto SS1 at 8x compression, resulting in a net compression
ratio of approximately 0.25. The selection of layers for compression is based on their sensitivity to
compression, as determined by the performance on the tinyMMLU and tinyWinogrande datasets. The
layers chosen using the tiny calibration datasets generalize well to the full MMLU and Winogrande
datasets. This observation suggests that the compressed model retains the essential knowledge
captured by the pre-trained Llama model, enabling it to perform competitively on the complete
datasets without any finetuning.

Table 9 presents the evaluation metrics of the compressed Llama model on the full MMLU
and Winogrande datasets. On MMLU, our compressed model achieves an accuracy of 61.26%,
which is only a slight decrease from the 65.05% accuracy of the original Llama3-8B model.
Similarly, on Winogrande, the compressed model obtains an accuracy of 69.93%, compared to
the 76.1% accuracy of the uncompressed model. These results demonstrate the effectiveness
of our SS1 compression method in maintaining the performance of the Llama model while
significantly reducing its parameter count. Furthermore, the compressed Llama model exhibits
improved inference speed, achieving up to 1.1x increase in throughput compared to the original model.

The ability to compress large language models like Llama without finetuning opens up new
possibilities for efficient deployment and utilization of these models in various applications. Our
SS1 compression method offers a practical solution for reducing the computational and memory
requirements of large models while preserving their performance on downstream tasks.

Table 13: Llama Projection Results
Model #param MMLU Wingogrande Speedup

LLAMA-3-8b 8.03B 65.05 ± 4e-3 76.1 ± 1e-2 1x
SS1 6.12B 61.26 ± 4e-3 69.93 ± 1e-2 1.1x

I.4 Vision

We use the following MLPMixer models We use the repository: https://github.com/omihub777/MLP-

MLPMixer-S MLPMixer-M MLPMixer-L
#layers 8 8 8

hidden-size 128 512 1024
hidden-c 512 2048 4096
hidden-s 64 256 512

Mixer-CIFAR with default settings for all runs. We do not use hyperparameter tuning for compression
methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give our main kernel implementation.(link in PCQs in appendix) The
experiment section is created using set of patched github repositories forked from original
implementations. We will release our experimentation repository after acceptance. We detail
our experiment methodology in appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have added resource details to the appendix section A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: To the best of our knowledge there is no specific societal impact of our work
apart from that we are contributing to faster AI.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided all the information at sec A

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

33

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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