
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Time-Frequency Domain Fusion Enhancement for Audio
Super-Resolution

Anonymous Authors

ABSTRACT
Audio super-resolution aims to improve the quality of acoustic
signals and is able to reconstruct corresponding high-resolution
acoustic signals from low-resolution acoustic signals. However,
since acoustic signals can be divided into two forms: time-domain
acoustic waves or frequency-domain spectrograms, most existing
research focuses on data enhancement in a single field, which can
only obtain partial or local features of the audio signal, resulting
in limitations of data analysis. Therefore, this paper proposes a
time-frequency domain fusion enhanced audio super-resolution
method to mine the complementarity of the two representations
of acoustic signals. Specifically, we propose an end-to-end audio
super-resolution network. Including the variational autoencoder
based sound wave super-resolution module (SWSRM), U-Net-based
Spectrogram Super-ResolutionModule (SSRM), and attention-based
Time-Frequency Domain Fusion Module (TFDFM). SWSRM and
SSRM can generatemore high-frequency and low-frequency compo-
nents for audio respectively. As a critical component of our method,
TFDFM performs weighted fusion on the above two outputs to ob-
tain a super-resolution audio signal. Compared with other methods,
experimental results on the VCTK and Piano datasets in natural
scenes show that the time-frequency domain fusion audio super-
resolution model has a state-of-the-art bandwidth expansion effect.
Furthermore, we perform super-resolution on the ShipsEar dataset
containing underwater acoustic signals. The super-resolution re-
sults are used to test ship target recognition, and and the accuracy
is improved by 12.66%. Therefore, the proposed super-resolution
method has excellent signal enhancement effect and generalization
ability.

KEYWORDS
Audio super-resolution, Time-frequency domain fusion, Sound
wave, Spectrogram

1 INTRODUCTION
Audio is a digital representation of sound waves, which can be ex-
pressed in twoways: time domain and frequency domain. Audio pro-
cessing tasks such as audio denoising[4], audio classification[25, 29],
speaker recognition[21], and emotion recognition[30] use both
forms of audio signals. Therefore, audio signal quality has an impor-
tant impact on completing the above tasks. However, poor acoustic

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

sensor performance, attenuation during transmission, and over-
compression of data can result in low-quality signals[26]. To obtain
high-resolution (HR) audio, many audio super-resolution methods
(SR) have been proposed[3, 7, 8, 11, 14, 17, 32]. Similar to image
super-resolution, the purpose of audio super-resolution is to recover
high-resolution audio from low-resolution(LR) audio.

Audio super-resolution has applications inmany practical scenar-
ios. For example, it can improve call quality in voice communication
systems, improve music processing and audio editing, and improve
the accuracy of speech recognition systems. Research shows that
artificially expanding audio bandwidth can improve perception for
people with hearing impairments[24]. This significantly improves
the performance of speech enhancement [39], emotion recognition
[12] and music reconstruction [38]. In addition, audio frequency
signals are widely used in fields such as ocean exploration and un-
derwater target detection because of their advantages such as long-
distance transmission under water, penetrating obstacles, and good
directionality. However, due to the influence of seawater salinity
and temperature, ocean currents, and environmental noise, the qual-
ity of audio signals collected by sonar is often very poor. Through
audio super-resolution, the quality of sonar signals can be effec-
tively improved, thereby improving the accuracy of underwater
target recognition and the accuracy of ocean detection. Therefore,
audio super-resolution is required in various environments and
transmission media.

In recent years, some researchers have utilized the time domain
or frequency domain information of audio signals to expand the
bandwidth to obtain high-quality audio. The time-domain super-
resolution method acts directly on the original acoustic data, and
theoretically can obtain speech input containing all original infor-
mation, and the speech reconstruction process will not be limited by
phase errors. However, due to its inherent high-dimensional long
sequence structure, different time scales, and inability to directly
obtain the frequency domain energy distribution, it has certain
limitations in the deeper information processing of speech wave-
forms. The frequency domain super-resolution method can directly
use the structured information in the low-frequency band of the
spectrogram to construct the high-frequency spectrogram of the
speech signal. However, such methods are highly dependent on
the feature engineering of short-time Fourier transform, and the
error in phase estimation also leads to large distortion when con-
verting frequency domain signals into time domain signals. To sum
up, using time domain or frequency domain data alone to train
the network for bandwidth expansion can only capture some local
features of cognitive objects, but cannot exploit the data correla-
tion between different domains. This places limitations on the data
analysis process, resulting in limited audio super-resolution effects.
Therefore, dual-domain fusion audio super-resolution synthesis in
time domain and frequency domain has great research value. Dual-
domain fusion audio super-resolution aims to learn the relationship

https://doi.org/XXXXXXX.XXXXXXX
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between data in different domains and combine the comprehensive
characteristics of the audio signal in the time domain and frequency
domain to perform better super-resolution reconstruction of the
audio signal.

In order to fully explore the relationship between the frequency
domain and time domain of the sound signal to improve the super-
resolution effect of the audio signal, in this paper, we propose a time-
frequency domain fusion enhanced audio super-resolution method
(TFDFE-ASR). The super-resolution model of this method consists
of three parts: the VAE-based SoundWave Super-ResolutionModule
(SWSRM), the U-Net-based Spectrogram Super-Resolution Module
(SSRM) and Time-Frequency Domain FusionModule(TFDFM) based
on the attention feature pyramid. First, time-domain sound waves
and frequency-domain spectrograms are defined as auditory and
visual domain data, respectively. Then, SWSRM and SSRM are
employed to perform audio super-resolution in the time domain
and frequency domain respectively. The designed one-dimensional
convolution and one-dimensional deconvolution layers of VAE can
effectively enhance the high-frequency components of audio signal.
And U-Net-based SSRM can enrich details of spectrogram by the
multi-scale residual network and residual channel attention block.
Finally, TFDFM is utilized to fuse the complementary information
contained in the frequency and time domain data. Based on self-
attention and time-frequency domain fusion attention, the common
and unique characteristics of each data domain are retained as
much as possible. Experimental results show that our method can
be considered state-of-the-art compared to other methods, further
enhancing the audio-visual effects on VCTK and Piano datasets. In
addition, audio super-resolution effectively improves the accuracy
of underwater acoustic signal target recognition.

2 RELATEDWORK
Early audio super-resolution models use matrix decomposition
for bandwidth expansion. However, training models can only be
performed on small datasets due to the high computational cost
of matrix decomposition [2]. Some audio encoders even directly
truncate the high-frequency part of speech signal without encod-
ing, and adopt speech enhancement to recover the high-frequency
components. These methods do not take good advantage of the
correlation between high and low-frequency signals. With the de-
velopment of deep learning, convolutional neural networks (CNN)
and generative adversarial networks (GAN) are widely used for
multimedia processing tasks. The first convolutional architecture
was proposed by Kuleshov et al. [15]. It is a bottleneck architecture
model based on convolutional neural networks, using deep CNN
to increase the sampling rate of the signal. Later on, many models
used CNN to parse the audio. The audio signal is non-stationary, so
CNN-based methods always fail to capture detailed information and
produce over-smoothed results [22]. Hence, Eskimez et al. [6] pro-
posed an audio super-resolution GAN to predict the high-frequency
components of the log-power spectrogram and reconstruct the time-
domain signal. Li et al. [20] proposed a conditional GAN for audio
super-resolution and achieved better performance than previous
models. In recent years, it has emerged that attention mechanisms,
instead of recurrent neural networks, can modulate the activation

of CNN [31]. It has shown better performance than traditional
methods in computer vision.

In the current research, the phase of the high-frequency band is
obtained by inverting the phase of the narrow band and adding a
negative sign or by copying the phase of the narrow band spectrum.
Most of the existing studies on audio super-resolution tasks have
workedmainly in the frequency domain. Eskimez et al. [5] proposed
an adversarial network structure using log-power spectrum (LPS)
as input to generat the corresponding high-frequency LPS. This
approach requires manual feature extraction and does not satisfy
the end-to-end design. The conditional GAN model was used by
Kumar et al. [16] to predict the missing high-frequency part in
the amplitude spectrogram. Audio is generated by calculating the
inverse Fourier transform using the full amplitude spectrogram
and reusing the phase without changing the interpolated audio.
Aaron et al. [28] proposed a WaveNet for generating original audio
waveforms. The probability distribution of the current audio sample
is predicted based on all the samples that have been generated
before. This motivates some audio generation researchers to shift
their focus to the time domain.

Some work explored audio super-resolution tasks directly in the
time domain. For example, Ling et al. [23] applied hierarchical re-
current neural networks for audio super-resolution tasks. However,
thismethod suffers from over-smoothing, where themodel is unable
to learn high-frequency data distributions and reconstruct detailed
features in noisier speech segments with low signal-to-noise ratios.
In [22], the time and frequency domains are combined for audio
super-resolution. The authors proposed a time-frequency network
utilizing supervision in both time and frequency domains. This
model satisfied end-to-end training, and it is composed of a fully
convolutional encoder-decoder network. The glow-based model
solution was proposed by Zhang et al. [41] to encode low-resolution
information in the time and frequency domains, respectively, us-
ing WaveNet and Glow integration. Su et al. [35] proposed BWE
method is based on a feed-forward WaveNet architecture trained
with a GAN-based deep feature loss. Different from the above au-
dio super-resolution methods, our audio super-resolution model
not only combines information in the time domain and frequency
domain, but also analyzes the characteristics of the audio signal
in the visual and auditory modes to better combine information
from different domains, thereby outputting better super-resolution
results.

3 METHODOLOGY
We consider that the TFDFE-ASR model requires both waveform
and spectrogram, and design the SWSRM and SSRM as well as
the attentional feature pyramid fusion module, respectively. The
SWSRM is a SR network based on VAE for sound wave. VAE is a
data enhancement method which is not affected by data format and
has strong universality. In the paper, a series of frequency values
sampled from LR audio act as input of VAE. Through multilayer
convolution and deconvolution, the enhanced frequency vector
is output by VAE, which includes more high-frequency compo-
nent. We employ the reconstruction method based on Von-Mises-
Distribution [36] to generate the SR sound wave combined with
sampled phase and amplitude sequence.
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Figure 1: Architecture illustration of TFDFE-ASR model, where SR is the abbreviation for super-resolution.

The SSRM adopts the method of image super-resolution, which
treats the spectrogram transformed by the acoustic signal as visual
pattern. Therefore, the SSRM is design as a U-Net-based residual
super-resolution method to generate the HR image (SR spectro-
gram). Finally, the SWSRM and the SSRM are combined using the
attention-based pyramid fusion module to synthesize the HR au-
dio. The TFDFE-ASR model is described in Figure 1, from which
it can be seen that after the input of the LR audio 𝐴𝑖 , the audio
super-resolution reconstruction is performed by the VAE mod-
ule to produce 𝐴′

𝑖
. The spectrogram 𝑆𝑖 obtained from the Fourier

transform of the LR audio is used as the input of the U-Net dual
regression module to perform the spectrogram SR reconstruction to
time-frequency domain fusion module. The following subsections
describe each part of TFDFE-ASR model, respectively.

3.1 Sound Wave Super-Resolution Module
When processed sound wave signal is not an integer period, the
signal at the endpoints is obviously discontinuous. These discon-
tinuous periodic signals can cause a number of high-frequency
components, but they are not present in the original signal. Pro-
cessing the discontinuous signals at endpoints by Fourier trans-
form only results in some sort of artifact. This indicates that some
high-frequency features, which can contribute significantly to the
representation of the audio signal are an anomaly. For eliminat-
ing this misleading information, a windowing approach is used to
generate a periodic signal before the Fourier transform on each
audio frame and eliminate the contents located at the endpoints
of each frame. The window size indicates the size of a segment
of the audio signal, and the frame size is the number of samples
considered in each signal block. This again introduces a problem in
which some part of the signal is lost when the eliminated parts are
joined together between adjacent frames. One effective solution to
address this issue is by using overlapping frames.

As a acoustic representations, the waveform is used to train an
end-to-end VAE with simple pre-processing (uniform sampling).

The frequency, phase and amplitude are uniformly sampled in the
windowed LR audio signal. As the input of VAE, a series of frequency
values are used for one-dimensional convolution and deconvolution.
The amplitude and phase values sequence are adopted to recover
the loudness of SR acoustic signal. The SWSRM employs VAE as
it excels at representation learning without requiring any prior
information, and learns the data automatically to ensure a low
dimensional representation of the original data. The output of VAE
combines the phase and amplitude sequence to synthesize the SR
sound wave based on Von-Mises-Distribution [36].
Module Architecture. The architecture of the VAE is shown in
Figure 2, which is an end-to-end audio-reconstructed model with an
encoder and a decoder. Where the encoder serves to compress the
frequency vector into a lower dimensional representation which is
referred to as the latent space. The latent space is a representation
of the raw data, only focusing on the most important features.
However, the design of the potential space becomes extremely
important to enable the encoder to compress the data efficiently and
satisfy that the data has dependencies in different dimensions. In
other words, if the different dimensions of the data are independent,
it is essentially impossible to learn low-dimensional representations
that capture the most important features. Each layer of the encoder
in Figure 2 is composed of three parts: convolution/deconvolution,
activation function, and batch normalization.

The convolutional kernels with 1×3, 1×5, or 1×7 in the convolu-
tional layer can extract local features from subspaces of frequency
vector and synthesize them to obtain global features. The same
convolutional kernels can be used to process different input fea-
tures or different parts of an input feature. The activation function
enhances the characterization and the generalization of the model.
ReLU is chosen as the activation function for the encoder part. Batch
normalization is to transform the output of each layer into a distri-
bution with a mean of 0 and a variance of 1. Maintaining parameter
value within a reasonable interval can prevent gradient disappear-
ance and explosion, and make the parameter updates faster. The
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Figure 2: VAE-based SWSRM, where LR and SR represent
low-resolution and super-resolution, respectively.

decoder restores the representation to the original domain, starting
from the low-dimensional representation and trying to reconstruct
the frequency vector. The backpropagation is used to minimize
the reconstruction error. The reconstruction process expects the
autoencoder to be sensitive enough to the input data and at the
same time sufficiently vague not to memorize the original input to
prevent over-fitting. The decoder compresses it using deconvolu-
tion, where each layer contains three parts: the deconvolution layer,
the activation function, and the batch normalization. The latent
space retains the most important features of the input data, creating
a compact version of the original data. The encoder maps all the
input vectors to a point in the potential space, and the decoder
samples a new point in the potential space that is different from all
the other points that have been learned. The decoder generates a
meaningful new frequency vector.

The focus of VAE is on the design of the latent space, capturing
the most important features and ignoring unnecessary details when
encoding in the latent space. The audio signal generated by a low-
dimensional latent space is more blurred; the audio signal generated
by a high-dimensional latent space is less noisy and has a higher
similarity with the original HR audio signal.
Loss. The loss function is a measure of the difference between
true and predicted results during model training. The goal of the
training process is also to minimize the loss function by comparing
the distance between the original vector and the reconstructed
vector element-wise using root mean square error (RMSE). Using
KL loss provides the difference between the normal distribution
and the standard normal distribution. By continuously changing
the two parameters of the minimization vector and the variance
vector, the KL loss again analyzes the difference between the normal
distribution identified by the encoder and the standard normal
distribution. The RMSE is defined as:

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑡=1

(
𝑓𝑡 − 𝑓𝑡

)2
(1)

where 𝑓𝑡 and 𝑓𝑡 denote the original vector and the reconstructed
vector, respectively. 𝑁 is the number of sampling points.

The difference between the Gaussian distribution 𝑁 (𝜇, 𝜎2) and
the standard normal distribution 𝑁 (0, 1) is calculated, and this
distance is used as the loss to regulate 𝑁 (𝜇, 𝜎2) toward 𝑁 (0, 1). The
KL loss can be defined as:

𝐷𝐾𝐿

(
𝑁

(
𝜇, 𝜎2

)
∥𝑁 (0, 1)

)
=

1
2

∑︁(
1 + log

(
𝜎2

)
− 𝜇2 − 𝜎2

)
(2)

Eq.(2) is used to calculate the summation of each dimension in the
potential space. For example, if there are 3 dimensions in the latent
space, (1 + log(𝜎2) − 𝜇2 −𝜎2) will be calculated three times in each
dimension. The final loss function is defined as:

Loss𝑆𝑊𝑆𝑅𝑀 = 𝛼 · 𝑅𝑀𝑆𝐸 + 𝐷𝐾𝐿 (3)

where 𝛼 is the reconstructed loss weight, it can be set empirically.

3.2 Spectrogram Super-Resolution Module
Module Architecture. As shown in Figure 3, the SSRM is a U-Net-
based multi-scale dual regression network. The network consists of
two parts: feature extraction and spectrogram reconstruction [10].
The orange lines show the additional supervision of the double
regression. Among them, the multi-scale residual network (MSRN)
is composed of the multi-scale residual blocks [18]. MSRN is used
as the feature extraction. Residual blocks are used to extract multi-
scale features of each scale spectrogram. An additional constraint is
simultaneously introduced to reduce the possible space, allowing a
more accurate reconstruction of the SR spectra. If the mapping from
LR to HR is optimal, the SR spectrogram can be downsampled to
obtain the same input LR spectrogram. The dual regression process
does not depend on the HR spectrogram and can be learned directly
from the LR spectrogram.

LR Spectrogram ×4 SR 

Spectrogram

×2 SR

Spectrogram 

×1 SR Spectrogram 

Feature maps of 

downsampling

Feature maps of 

upsampling

MSRN

RCAB+

PixelShuffle

Conv

......

......

......

...... ......

...... ......

Figure 3: Architecture of spectrogram super-resolution re-
construction networks.

The LR spectrogram is first used as input in the feature extrac-
tion. Then the convolutional layers and MSRN with various size
of convolutional kernels detect the feature maps at different scales
adaptively. The features information is shared by jump connections
at different scales. The residual structure is used to extract more
detailed features. And the reconstruction module takes the feature
maps of the downsampling as input.

We used the residual channel attention block (RCAB) [42] and
PixelShuffle [34] in the spectrogram reconstruction. By using a
channel attentionmechanism, the features of each channel are adap-
tively rescaled by the interdependencies between feature channels.
During upsampling, PixelShuffle can reorganize the low-resolution
feature maps between multiple channels of the convolution kernel
to obtain high-resolution feature maps.
Loss. Assume 𝐻 (𝑥) is a high-resolution spectrogram, the down-
sampled spectrogram 𝐷 (𝐻 (𝑥)) should be very close to the input
low-resolution spectrogram 𝑥 . Given a set of 𝑁 paired samples
𝑆𝐻 = {(𝑥1, 𝑦1) , (𝑥2, 𝑦2) , ..., (𝑥𝑁 , 𝑦𝑁 )}, where 𝑥𝑖 and 𝑦𝑖 denote the
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𝑖𝑡ℎ pair of low and high-resolution spectrogram in 𝑆𝐻 . The loss
defined as:

Loss 𝑆𝑆𝑅𝑀 =

𝑁∑︁
𝑖=1

𝐿𝐻 (𝐻 (𝑥𝑖 ) , 𝑦𝑖 ) + 𝜆𝐿𝐷 (𝐷 (𝐻 (𝑥𝑖 )) , 𝑥𝑖 ) (4)

where 𝐿𝐻 and 𝐿𝐷 denote the 𝐿1 loss of original U-Net and dual
regression network, respectively. Here, 𝜆 controls the weights of
𝐿𝐷 .

The 𝐿1 loss is calculated as the sum of absolute differences be-
tween the HR spectrogram and SR spectrogram. 𝐿1 loss makes the
generated SR spectrogram as close as possible to the HR spectro-
gram. It can be defined as:

𝐿1 (𝑝, 𝑝) =
𝑚∑︁
𝑖=0

���𝑝 (𝑖 ) − 𝑝 (𝑖 )
��� (5)

where 𝑝 and 𝑝 denote the pixel value of the HR spectrogram and
SR spectrogram at same coordinate point, respectively. In the ex-
periments, only dual regression loss 𝐿𝐷 is added to LR spectrogram,
which can reduce the calculate computation while improving the
performance.

3.3 Time-Frequency Domain Fusion Module
Referencing [40], we propose an attention-based time-frequency
domain fusion module (TFDFM) to combine the dual-domain SR re-
sults. The TFDFM uses attentive feature pyramid module composed
of multiple pyramid units to acquire multi-level dual-domain fea-
tures. In each pyramid unit, fixed-size multi-scale attention blocks
capture intra- and inter-modality interaction information. To com-
bine the pyramid units, an adaptive fusion layer is utilized. This
layer integrates the pyramid units in a selective fusion manner by
exploring the correlation between multi-level features.

The architecture of the pyramid time-frequency domain fusion
layer is shown in Figure 4. The features extracted from the SWSRM
and the SSRM are as input of TFDFM. In each pyramid unit, intra-
and inter-modality interactions are first introduced using a fixed-
size attention mechanism, features are integrated through an ex-
tended residual convolution block. Finally, the outputs of all units
are saved as pyramid-like multi-modal features. The final fusion
result is obtained by combining the pyramid features through the
adaptive fusion module.
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Figure 4: Time-Frequency Domain Fusion Module.

In the TFDFM, the self-attention (SA) and dual-domain fusion
attention (DFA) are used to provide the interaction of temporal fea-
tures. The attention score between different audio clips is calculated

by scaling the dot-product attention, as shown in Eq. (6).

Attention (𝑞, 𝑘, 𝑣) = Softmax
(
𝑞𝑘𝑇

√
𝑑𝑚

)
𝑣 (6)

where 𝑞, 𝑘, 𝑣 denote the the query, keyword, and value vectors, re-
spectively, 𝑑𝑚 is the dimension of the query vector, and 𝑇 is the
matrix transpose operation.

The SA block is defined as:

SA (𝑓 ) = Attention
(
𝑓𝑊𝑞, 𝑓𝑊𝑘 , 𝑓𝑊𝑣

)
(7)

where𝑊𝑞,𝑊𝑘 ,𝑊𝑣 is the learnable parameters and 𝑓 is the input
feature.

For DFA blocks, the features in the current modality are assigned
as query vector, while the keyword vector and value vector are de-
rived from features in other modalities, as shown in Eqs. (8) and
(9).

DFA (𝑓𝑎, 𝑓𝑖 ) = Attention
(
𝑓𝑎𝑊𝑞, 𝑓𝑖𝑊𝑘 , 𝑓𝑖𝑊𝑣

)
(8)

DFA (𝑓𝑖 , 𝑓𝑎) = Attention
(
𝑓𝑖𝑊𝑞, 𝑓𝑎𝑊𝑘 , 𝑓𝑎𝑊𝑣

)
(9)

where 𝑓𝑎 is the audio feature and 𝑓𝑖 is the spectral feature.
The DFA blocks share the parameter matrix that can project

audio and spectral features into the same subspace and further
combines the multi-modal features. Subsequently, the feedforward
layer processes the features. The TFDFM uses the normalizing layer
for regularization and uses the residual connection for identity
mapping to avoid overfitting. The interaction window is utilized to
limit the interaction size between SA and DFA layers.

To limit interaction windows, some masks are added in the ir-
relevant regions of signals. The fixed-size attention is calculated
by

SA (𝑓 , 𝑑) = Attention
(
𝑓𝑊𝑞, 𝑆𝑡 (𝑓 , 𝑑)𝑊𝑘 , 𝑆𝑡 (𝑓 , 𝑑)𝑊𝑣

)
(10)

DFA (𝑓𝑖 , 𝑓𝑎, 𝑑) = Attention
(
𝑓𝑖𝑊𝑞, 𝑆𝑡 (𝑓𝑎, 𝑑)𝑊𝑘 , 𝑆𝑡 (𝑓𝑎, 𝑑)𝑊𝑣

)
(11)

DFA (𝑓𝑎, 𝑓𝑖 , 𝑑) = Attention
(
𝑓𝑎𝑊𝑞, 𝑆𝑡 (𝑓𝑖 , 𝑑)𝑊𝑘 , 𝑆𝑡 (𝑓𝑖 , 𝑑)𝑊𝑣

)
(12)

𝑆𝑡 (𝑥, 𝑑) = [𝑥𝑡−𝑑 , ..., 𝑥𝑡+𝑑 ] (13)
where 𝑆𝑡 is the created interaction windows for the 𝑡𝑡ℎ data, 𝑑 is
the size of the window.

The outputs of SA and DFA are first connected along the chan-
nel dimension. Then, the refined features of channel attention are
computed by linear layers and S-shaped functions. Finally, the SR
audio is combined by summing the refined single-modal and double-
modal features.

4 EXPERIMENTAL RESULTS
4.1 Dataset
We perform the TFDFE-ASR experiments and analyse the experi-
mental results on the VCTK dataset [37], Piano dataset [27], and
ShipsEar dataset [33]. The VCTK dataset contains speech data from
108 English speakers. Each speaker reads about 400 different sen-
tences, for a total of 44 hours. The Piano dataset contains 10 hours
of Beethoven sonata with a sampling rate of 44.1kHz. Considering
that the audio can propagate in water, we adopt an underwater
acoustic dataset, ShipsEar, to test the performance of the TFDFE-
ASR method. The ShipsEar includes the ship radiated noise data
recorded in different regions of the Spanish coast from 2012 to 2013.
The dataset consists of 90 acoustic records of 11 types of ships and
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environmental noise within 15 seconds to 10 minutes. According to
the annotations in the original dataset, the ships can be divided into
four categories, namely A, B, C, and D, as well as E of environmental
noise.

4.2 Parameters of Experimental System
The proposed method is performed on Tensorflow with an NVIDIA
TITAN XP graphics card and CUDA version 11.0. The SWSRM is
set as follows: the number of iterations during the module training
period is 150, where a random gradient descent optimization model
is used. The learning rate was initially set at 10−5, with a batch size
of 32. The network input of the SSRM is obtained by downsampling
the original data in the dataset through Bicubic interpolation. The
original data is the spectral map obtained by Fourier transform of
the audio dataset, and then the image super-resolution downsam-
pling method is used to produce ×2, ×4, and ×8 times of the paired
spectral dataset. The SSRM is set as follows: we apply Adam with
𝛽1 = 0.9, 𝛽2 = 0.999 and set minibatch size as 32. The learning rate
is initialized to 10−4. Through the TFDFM, the feature information
from the SWSRM and the SSRM is extracted and fused to output
the final super-resolution audio signal.

4.3 Evaluation Indexes
Three objective and subjective evaluation indexes are employed to
measure the quality of SR audio signals by comparing them with
actual HR audio. The objective indexes include the signal-to-noise
ratio (SNR) and the logarithmic spectral distance (LSD) [9]. A higher
SNR indicates better audio quality, while a lower LSD indicates
better audio quality. The mean opinion score (MOS) is employed
as the subjective evaluation index, which is divided into five levels
from high to low. The higher the score, the better the audio quality.
By grading the same sentence differently, 50 evaluators are required
to rate multiple sounds and obtain the final average score.

4.4 SR Experiments on Audio Signals in the Air
We first test the SR quality of audio signals propagated in the air,
including the VCTK dataset and the Piano dataset. Each audio file
of the VCTK is 16-bit, and a mono voice file with a sampling rate
of 48kHz is selected for the experiment. The VCTK includes 223
audio files of single speaker (VCTKS) and 5878 audio files of multi
speakers (VCTKM). The dataset was first divided according to 88%
training set, 6% validation set, and 6% test set. Then the original data
is downsampled to 16kHz, the target data is downsampled to 8kHz,
and the resulting signal is interpolated with three splines to obtain
a differentiated speech signal. The original audio is converted into
a logarithmic spectrogram by Fourier transform, and a total of 800
spectrograms are randomly selected as the training dataset in the
SSRM. Arbitrarily selecting 100 spectrograms as the validation set
and 5 spectrograms as the test set. And trained for a total of 500
iteration cycles.

Each audio file of the Piano dataset with sampling rate of 44.1kHz.
10 hours of data are approximately divided into a series of 12 second
audios, totaling 2868 files. The data is divided into a training set
(88%), a validation set (6%), and a testing set (6%). The data for SSRM
undergoes the same preprocessing as the VCTK dataset task.

The traditional cubic spline interpolation is used as a comparison
method of the audio SR to upsample the LR audio signal [8]. The
first comparative method based on deep learning audio SR is SFSR-
Net [32]. It can separate the mixed audio signals, and reconstruct
the missing information in the upper frequencies by operating
on the spectrograms of the output audio source estimations. The
second comparative method is RFD-Net [14], which is a recursive
structure to iteratively refine and extract hierarchical audio feature.
It employs an up-and-down sampling learner, and captures the
deep relationships between HR and LR audio pairs, thus produc-
ing high-quality audio. The third comparative method is TFiLM
[3], which uses recurrent neural networks to modify the activation
of convolutions.The fourth comparative method is NU-Wave [17]
which is a diffusion probabilistic model based on neural vocoders.
The fifth comparative method is NU-Wave 2 [11]. It is a diffusion
model for neural audio upsampling that enables the generation of
48kHz audio signals from inputs of various sampling rates with a
single model. As shown in the data on the left side of the compar-
ison section of Table1, The TFDFE-ASR compares SNR and LSD
with other audio SR models on VCTKS, VCTKM, and Piano datasets,
respectively. R denotes the upscaling factor, 𝑅 = 2 denotes upsam-
pling from 8kHz to 16kHz, 𝑅 = 4 denotes upsampling from 4kHz to
16kHz and 𝑅 = 6 denotes upsampling from 4kHz to 24kHz.

Table 1: Objective evaluation comparing with other methods.

Model 𝑅
VCTKS VCTKM Piano ShipsEar

SNR LSD SNR LSD SNR LSD SNR LSD

Spline 2 19.07 1.99 18.89 2.08 15.48 2.27 16.21 3.25
SFSRNet 2 20.82 1.36 19.94 1.32 25.35 2.07 18.42 1.34
RFD-Net 2 21.11 1.24 19.84 1.34 24.71 2.15 18.47 1.44
TFiLM 2 20.34 1.55 19.81 1.82 25.42 2.01 18.83 1.59

NU-Wave 2 19.93 1.76 19.35 1.51 24.69 2.27 18.33 1.52
NU-Wave 2 2 21.78 1.17 20.24 1.45 25.28 2.11 19.55 1.63
TFDFE-ASR 2 21.83 1.16 20.74 1.25 25.67 1.94 22.16 1.26

Spline 4 15.33 3.13 13.42 2.99 12.43 2.23 11.84 4.50
SFSRNet 4 17.29 1.41 16.65 1.40 18.81 2.32 17.63 2.56
RFD-Net 4 18.35 1.33 17.32 1.22 18.62 2.25 17.16 2.97
TFiLM 4 17.88 2.15 16.47 1.75 19.33 2.26 16.88 3.41

NU-Wave 4 17.24 1.31 16.42 1.59 17.53 2.21 16.56 3.01
NU-Wave 2 4 18.63 1.46 17.66 1.39 18.86 2.34 17.94 2.14
TFDFE-ASR 4 19.83 1.29 18.33 1.15 18.95 2.14 18.06 2.08

Spline 6 12.29 6.94 9.88 6.84 10.76 4.06 8.64 7.11
SFSRNet 6 15.36 3.73 15.83 4.52 14.12 3.22 14.06 3.82
RFD-Net 6 12.63 4.21 15.22 4.69 14.33 3.13 13.11 4.52
TFiLM 6 12.95 4.38 12.03 3.94 13.36 3.86 12.86 4.43

NU-Wave 6 12.23 4.16 14.65 3.57 13.48 3.45 12.91 4.55
NU-Wave 2 6 16.41 3.89 16.51 3.62 15.96 3.19 15.12 3.36
TFDFE-ASR 6 15.69 3.26 16.56 3.43 16.12 3.14 15.23 3.24

As can be seen from Table 1, the SNR of TFDFE-ASR audio on
the VCTK dataset with 𝑅 = 2 and 𝑅 = 4 has higher values compared
with the SR results of other methods. An obvious decline is observed
in the LSD values. On the Piano dataset, although the SNR value
is not the best among the comparison models when 𝑅 = 4, the
experimental result of TFDFE-ASR is satisfactory. Proving that the
TFDFE-ASR not only performs well on the VCTK dataset but also
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on non-vocal music signals. In addition, TFDFE-ASR performed
well in single speaker task with 𝑅 = 6, while in multi speakers and
Piano tasks, TFDFE-ASR did not perform significantly compared to
other comparison methods.

A comparison was made with other experimental models on the
subjective evaluation index MOS. MOS is divided into five levels
from 5 to 1, and a higher score indicates better speech quality [1].
The recording was randomly selected from the results of six meth-
ods, as well as a clean recording of the original version. 200 workers
participated in this experiment, and we collected a total of 14000
ratings. Finally, the average score of all evaluators is calculated.
The MOS score of ground-truth in the VCTK dataset is 4.31, while
the MOS score of ground-truth in the Piano dataset is 4.59. The
evaluation scores of MOS are shown in Figure 5, from which it
can be seen that TFDFE-ASR works significantly on the non-vocal
Piano dataset. It proves that the model not only has good results on
the speaker dataset but also can achieve good results for non-vocal
audio signals like music.
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Figure 5: Comparison results of subjective evaluation criteria.

The spectrograms after audio super-resolution are shown in
Figure 6. Fig. 6(a) displays the spectrograms of the LR audio signal,
Fig. 6(b) corresponds to the spectrum of the original HR audio
signal, and Fig. 6(c) presents the spectrograms of the SR audio
signal reconstructed by the TFDFE-ASR. The first row shows the
spectrograms of an audio segment in the VCTK. The second row
is the spectrograms of a piece of music on the Piano. It can be
seen that the TFDFE-ASR method can reconstruct the missing high-
frequency components well in the SR results.

4.5 SR Experiments of Underwater Acoustic
Signals

The comparison results between TFDFE-ASR and other audio SR
models on the ship hydroacoustic signal data set SNR and LSD are
shown in the data on the right side of table 1. From the experimental
results in Table 1, it can be seen that TFDFE-ASR outperforms the
comparative models in the ShipsEar dataset.

The ShipsEar dataset is sliced into audio data of 1 second, where
categories A, B, C, D, and E have 1875, 1560, 4270, 2455 and 1140
audio segments, respectively. On the ShipsEar dataset, we measure
and analyze the impact of the TFDFE-ASR on the target recognition
accuracy of underwater acoustic signals. The task of underwater
acoustic target recognition adopts the method of [13]. Input the
extracted fusion features into a model constructed by an 18 layer

(a) LR Spectrogram (b) HR Spectrogram (c) SR Spectrogram

Figure 6: Super-resolution spectrograms on the VCTK, Piano
datasets.

residual network for underwater acoustic signal target recogni-
tion experiments. We verify that the results of audio SR can better
improve the accuracy of target recognition in the experiments.

Figure 7 shows the time domain waveforms andMel spectrogram
of the original ShipsEar data. The up and bottom rows respectively
show the time domain waveforms and Mel spectrograms of the
original audio and the corresponding audio SR signals of the five
types of ships. Each sample has a duration of 1 second and a sam-
pling rate of 16kHz. Comparing the two spectrograms above and
below, we can see that the SR results have more details in sound
waves and spectrograms than the original data.

A-Ori                    B-Ori                    C-Ori                   D-Ori                   E-Ori

A-SR                     B-SR                    C-SR                    D-SR                   E-SR

Figure 7: Comparison of time and frequency domains of the
original audio and super-resolution audio on the ShipsEar
dataset.

The Accuracy, Precision, Recall, and F1-score are employed as the
evaluation indexes of underwater target recognition performance.
The detailed experimental results of each category are shown in
Table 2. Support in the table indicates the number of samples of this
category in the test. Compared to the original audio, the accuracy
of target recognition has improved after using SR audio. The target
recognition experiments with super-resolution performed better
on all categories of data, except for the category E environmental
noise, which had slightly lower indicators than the original data.
The model increased the target identification by about 12.66%, from
84.55% on the original data to 97.21% on the generated data. The SR
results of Spline, SFSRNet, RFD-Net, and TFiLM on the ShipsEar
dataset have almost unchanged from the original signals.

4.6 Ablation Experiment
In the ablation experiments, we respectively test and analyze the
impact of SWSRM, SSRM, and TFDFM for the proposed TFDFE-
ASR. By combining experimental methods, we analyze whether the
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Table 2: Target recognition experiment results(%) on the
ShipsEar dataset.

Category Precision Recall F1-score Support
Ori SR Ori SR Ori SR

A 82.70 98.72 82.70 98.22 82.70 98.45 393
B 80.71 91.96 77.47 91.37 79.06 91.67 311
C 85.41 96.79 87.91 97.37 86.64 97.09 843
D 85.86 100.00 86.73 99.80 86.91 99.90 495
E 87.16 97.24 82.97 97.25 84.63 97.25 218

Target recognition Accuracy on original acoustic signals: 84.55%
Target recognition Accuracy on SR acoustic signals: 97.21%

information of sound waves and spectrograms has been effectively
utilized, and verify the role of the proposed modules in the audio
super-resolution effect. The results of the ablation experiment are
shown in Table 3. By conducting experiments on each module on
three datasets, the impact of each module on model performance
was evaluated. Table 3 describes the SNR and LSD of SR results
by SWSRM, SSRM, and TFDFE-ASR on the above three datasets. It
can be found that the SWSRM performs better on audio signals in
the air (VCTK dataset and Piano dataset). The SSRM has a greater
impact on underwater acoustic signals (ShipsEar dataset).

Table 3: The impact of each module on model performance.

Module VCTKS Piano ShipsEar

SNR LSD SNR LSD SNR LSD

SWSRM 17.53 1.89 22.07 1.36 16.89 2.08
SSRM 15.32 2.16 20.82 1.99 19.94 1.62
TFDFE-ASR 21.83 1.16 25.67 1.94 22.16 1.26

In addition, we also perform target identification on the SR re-
sults (sound wave and spectrogram) of the ShipsEar dataset, respec-
tively. The method of [19] was applied to the spectrogram for target
recognition of acoustic signals using a neural network model with
a self-attentive mechanism. In Table 4, it can be seen that the SR
spectrogram outperformed the SR sound wave in terms of target
recognition accuracy. Various categories of targets show that the
TFDFE-ASR achieves a more prominent effect than only conducting
a single module (SWSRM or SSRM). The TFDFE-ASR algorithm can
make more contributions to target recognition.

Table 4: The impact of each module on the accuracy(%) of
underwater acoustic signal target recognition.

Category SWSRM (Sound wave) SSRM(Spectrogram) TFDFE-ASR

A 86.76 94.40 98.72
B 84.24 89.38 91.96
C 88.02 93.95 96.79
D 93.33 96.97 100.00
E 90.37 92.20 97.24

Avg. 88.67 93.89 97.21

Through the above comparative and ablation experiments, we
found that differentmodules play different roles on the three datasets.
The underwater acoustic signals are mainly characterized by low
frequencies compared to audio signals in air, which are mainly dom-
inated by high frequencies. SWSRM has a good super-resolution
effect on high-frequency signals, while SSRM has a good super-
resolution effect on low-frequency signals. By counting the fusion
effect of these three datasets with a total of about 20,000 audio
samples, we found that the fusion weights 𝑤SWSRM and 𝑤SSRM
for audio SR closely resemble the weighting relationship of a hy-
perbolic tangent function. Their functional form is shown in the
formula: 

𝑤SWSRM =
1+tanh(𝜔−�̄� )

2

𝑤SSRM =
1−tanh(𝜔−�̄� )

2

(14)

where 𝜔 is the frequency of the acoustic signal, �̄� representing the
mean of the signal frequency in the dataset. Therefore, in practical
applications, the fusion module can be defined as an activation
function based on Eq. (14) for the convenience of calculation. The
curve relationship of the function is shown in Figure 8.

w

1

0

wSWSM

wSPSM

Figure 8: Weight relationship curves of SWSRM and SSRM
in TFDFM.

5 CONCLUSION
In this paper, we propose an time-frequency domain fusion audio
super-resolution method that fully learns the correlation between
the time and frequency domains. The time-frequency domain fu-
sion approach preserves the commonality and uniqueness of the
sound wave signal in the frequency domain and time domain to the
greatest extent, improves the quality of the audio signal, and makes
the audio clearer. The method consists of three modules: VAE-
based SWSRM, U-Net-based SSRM and attention-based TFDFM.
Among them, SWSRM is an improved 1D-VAE that can generate
more high-frequency components for audio. At the same time,
SSRM enhances the details (texture) of the LR spectrum, especially
in the low-frequency component area. Finally, self-attention and
dual-domain fusion attention are used in TFDFM to better realize
time-frequency domain content interaction. The proposed method
achieves excellent audio super-resolution results. Experiments on
VCTK and Piano datasets demonstrate the effectiveness of audio
super-resolution tasks. Meanwhile, the target recognition results
on the ShipsEar dataset show that applying our method to hydroa-
coustic data can significantly improve the quality of hydroacoustic
signals and the accuracy of target recognition.
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