
Constraint-Aware Diffusion Guidance for Robotics:
Real-Time Obstacle Avoidance for Autonomous

Racing

Hao Ma1,2, Sabrina Bodmer1, Andrea Carron1, Melanie Zeilinger1 ∗, Michael Muehlebach2∗
1 Department of Mechanical and Process Engineering, ETH Zurich, Switzerland

2 Max Planck Institute for Intelligent Systems, Tübingen, Germany
{haomah,sabodmer,carrona,mzeilinger}@ethz.ch, michaelm@tuebingen.mpg.de

Abstract: Diffusion models hold great potential in robotics due to their ability
to capture complex, high-dimensional data distributions. However, their lack
of constraint-awareness limits their deployment in safety-critical applications.
We propose Constraint-Aware Diffusion Guidance (CoDiG), a data-efficient and
general-purpose framework that integrates barrier functions into the denoising
process, guiding diffusion sampling toward constraint-satisfying outputs. CoDiG
enables constraint satisfaction even with limited training data and generalizes
across tasks. We evaluate our framework in the challenging setting of miniature
autonomous racing, where real-time obstacle avoidance is essential. Real-world
experiments show that CoDiG generates safe outputs efficiently under dynamic
conditions, highlighting its potential for broader robotic applications. Videos are
available at: https://www.youtube.com/watch?v=KNYsTdtdxOU

Keywords: Diffusion Guidance, Constraint-Aware Sampling, Real-Time Obsta-
cle Avoidance, Autonomous Racing, Safe Control

1 Introduction

Since their inception [1, 2], diffusion models have achieved groundbreaking success in image [3, 4],
audio [5], and video generation [6]. Due to their exceptional capability in modeling multimodal data
and capturing complex high-dimensional distributions, they have recently also garnered significant
attention in robotics [7, 8, 9]. Collectively, these works highlight how diffusion models address
limitations of traditional policy approaches, such as unimodal assumptions or training instability,
thereby offering a more versatile framework for robotic behavior learning.

While diffusion models hold significant promise for robotics, standard formulations still face im-
portant challenges related to safety and physical feasibility. Many approaches are trained purely on
data without explicitly enforcing constraints, which can lead to collisions or dynamic infeasibility,
particularly when encountering out-of-distribution scenarios [10, 11]. Additionally, existing meth-
ods often rely heavily on large-scale offline datasets to promote generalization, which can limit their
adaptation to unseen environments [12, 13]. Addressing these challenges is crucial for enabling safe
and reliable deployment of diffusion models in safety-critical robotic applications.

To overcome these limitations, we propose Constraint-Aware Diffusion Guidance (CoDiG), a
general-purpose, data-efficient diffusion-based framework for real-time, safe trajectory generation
in robotic tasks such as autonomous racing. CoDiG integrates a barrier function directly into the
reverse diffusion process, steering the sampling away from unsafe or dynamically infeasible regions
without relying on external classifiers or auxiliary models. To further accelerate sampling and en-
hance its stability, CoDiG employs a warm-start strategy by initializing the diffusion process near

∗Shared last author.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://www.youtube.com/watch?v=KNYsTdtdxOU

feasible solutions. By augmenting the score updates with barrier gradients during inference, CoDiG
enforces safety constraints, enabling efficient and reliable deployment in safety-critical environ-
ments. Our main contributions are summarized as follows:

• We introduce Constraint-Aware Diffusion Guidance (CoDiG), a general-purpose and data-efficient
trajectory generation framework that enforces constraints during inference, allowing safe and
physically feasible generalization from a small set of expert demonstrations to novel scenarios.

• We propose a warm-start strategy that significantly accelerates the inference process, achieving
real-time performance suitable for high-frequency, safety-critical control, while ensuring smooth
transitions between trajectories generated at successive iterations.

• We deploy CoDiG on a real-world autonomous racing car, tracking the trajectories generated by
CoDiG and demonstrating safe obstacle avoidance in dynamic scenarios.

2 Related Work

Many recent works have explored incorporating constraints into diffusion models for robotic tasks.
Some approaches enforce constraints during training: Bastek et al. [14] integrate physical laws into
the training objective to ensure physically consistent outputs; Giannone et al. [15] align sampling
trajectories with constrained optimization paths; and Power et al. [16] separately train on different
constraints and combine them at inference. Others address constraints during inference: Carvalho
et al. [17] condition the sampling process on goal-reaching and obstacle avoidance; Christopher
et al. [18], Xiao et al. [19] enforce feasibility through projection steps, albeit with significant com-
putational overhead; Römer et al. [20] incorporate model-based projections directly into the back-
ward diffusion process to enforce constraint satisfaction during trajectory generation, avoiding the
need for external post-sampling corrections; and Yu et al. [21] generate local collision-free motions
through conditional sampling. Several methods handle constraints in both training and inference
phases, such as Ajay et al. [22] for decision-making, Gong et al. [23] with trajectory-level diffu-
sion, and Botteghi et al. [24], which train safe priors and apply runtime filtering. Among these,
Yu et al. [21] primarily handle inference-time constraints, while Botteghi et al. [24] combine both
stages. Overall, incorporation during training time promotes inherent feasibility, while inference-
time methods offer flexibility at the cost of higher computational complexity during inference.

Compared to prior inference-time approaches, our CoDiG framework handles constraints by aug-
menting score updates with lightweight barrier gradients during sampling, without relying on projec-
tions, auxiliary models, or simulators, unlike classifier-guided [25] and energy-guided diffusion [26]
that learn auxiliary networks at each step. This provides efficient, continuous guidance toward feasi-
ble trajectories while preserving the generative flexibility of diffusion models with a time-dependent
weight γt that ramps up during denoising. Warm-start initialization further accelerates convergence
and enhances sampling stability, enabling real-time deployment (2.5Hz on hardware). Unlike previ-
ous works mainly evaluated in simulation or in quasi-static environments, we demonstrate CoDiG on
a real-world autonomous racing platform, where strict dynamic feasibility and rapid obstacle avoid-
ance are critical. While Sheebaelhamd et al. [27] have also suggested autoregressive architectures
as an alternative to diffusion-based generation, it is unclear whether constrained-aware generation
via barrier functions is also effective with these architectures. These aspects highlight the unique
contributions of CoDiG in enabling efficient, reliable, and real-time constraint handling within gen-
erative robotic planning. See Appendix A for a compact side-by-side summary of training- vs.
inference-time strategies (Table 1).

3 Methodology

Recent advances in score-based generative modeling introduced diffusion processes and stochastic
differential equations (SDEs), offering a continuous-time view of forward noise injection and reverse
denoising [28]. Since our work builds on this foundation, we briefly review score-based generative
modeling and introduce the notation used throughout the paper.

2

3.1 Preliminaries

Let x0 ∈ Rd denote a noise-free data sample drawn from the data distribution p0(x). A score-
based generative model defines a continuous-time diffusion process {xt}t∈[0,T], where t denotes the
diffusion time, such that xT becomes approximately Gaussian. It is important to note that throughout
this paper, we encounter two notions of “time”: here, t refers to the artificial diffusion time governing
the processes, while later, τ will denote the physical time in real-world dynamical systems.

Diffusion Process. The forward diffusion process gradually perturbs the data by solving the fol-
lowing SDE:

dxt = f(xt, t) dt+ g(t) dwt, t ∈ [0, T], x0 ∼ p0,

where xt ∈ Rd is the perturbed data at time t, f : Rd× [0, T] → Rd is the drift term, g : [0, T] → R
is the scalar-valued diffusion term, and wt ∈ Rd denotes a standard Wiener process.

A common instantiation of the diffusion process is the Ornstein–Uhlenbeck (OU) process [29], in
which the drift pulls xt toward a mean µ ∈ Rd:

dxt = β(t)(µ− xt) dt+ g(t) dwt, t ∈ [0, T], (1)

where β (t) is a positive scalar-valued function controlling the drift strength. In this case, the OU
process admits a closed-form solution for the mean and variance of the marginal distribution of xt.
Specifically, by introducing

β̄t := exp

(
−
∫ t

0

β (ν) dν

)
,

then the marginal distribution of xt is Gaussian and expressed as

pt (xt | x0) = N

(
xt; µ− (µ− x0)β̄t,

g (t)
2

2β(t)

(
I− β̄2

t I
))

, (2)

where I ∈ Rd×d is the identity matrix.

Sampling Process. To generate new data, one samples from the reverse-time SDE corresponding
to the forward process. Under suitable regularity conditions, this reverse SDE takes the form [30]:

dxt =
[
f (xt, t)− g (t)

2 ∇x log pt (xt)
]
dt+ g (t) dw̃t, t ∈ [0, T] , xT ∼ pxT

, (3)

where w̃t is a standard Wiener process running backward in time, and ∇x log pt(xt) is the score
function of the marginal distribution.

In practice, the score function is unknown and approximated by a neural network sθ(xt, t) trained
using denoising score matching. The training objective minimizes the expected squared error be-
tween the predicted score and the true score:

Et∼U[0,T]Ex0∼p0(x)Ext∼pt(xt|x0)

[
|sθ (xt, t)−∇x log pt (xt | x0)|2

]
,

where |·| denotes the ℓ2-norm, and U [0, T] the uniform distribution with support [0, T].

3.2 Constraint-Aware Diffusion Guidance

Before introducing the proposed CoDiG framework, we specify the functional forms of the drift and
diffusion terms in (1) for concreteness and clarity. It is important to emphasize that the proposed
framework does not rely on these specific choices - the following definitions are adopted purely for
illustrative purposes and to remain consistent with the experimental setup described later.

We let µ = 0, and define the drift term and the diffusion term as

f (xt, t) = −β (t)xt, g (t) =
√

2β (t), t ∈ [0, T] ,

3

which yields the so-called variance preserving SDE [28], where g (t)
2
= 2β (t) holds for all t ∈

[0, T] such that the marginal variance of xt is preserved over time. This specific choice ensures that
the forward process remains stable and tractable for training and sampling, while still allowing for
an expressive and well-defined reverse-time generative process. Under this formulation, the forward
diffusion process described by (1) converges to a standard Gaussian distribution for large T . As
analyzed in Song et al. [28], the term

√
2β(t) should grow with time, requiring β(t) to be strictly

increasing.

For simplicity and numerical stability, we normalize the diffusion process to t ∈ [0, 1]. To ensure
convergence to a standard Gaussian, the diffusion term

√
2β (t) must grow rapidly within this in-

terval. In our implementation, we model β (t) as a quadratic function, β (t) = r1t
2 + r0, with

parameters detailed in Appendix D.3. In this case, (3) can be reformulated as:

dxt = [−β (t)xt − 2β (t)∇x log pt (xt)] dt+
√

2β (t) dw̃t, t ∈ [0, 1] , x1 ∼ px1
. (4)

Next, we consider the marginal distribution pt (xt), which represents the probability distribution of
a sample at an intermediate time step, in the absence of constraints. Before incorporating constraints
into this distribution, we first introduce the following definitions. Let c : Rd × [0, 1] → Rk denote
a time-dependent constraint function, encoding the safety or feasibility requirements of the system.
We define the feasible region at time τ ≥ 0 as

Cτ :=
{
x ∈ Rd | c (x, τ) ≤ 0

}
,

where the inequality is interpreted element-wise. Naturally, when constraints are introduced, the
distribution of interest becomes the conditional distribution:

pt (xt | Cτ) , t ∈ [0, 1] , τ ≥ 0.

These constraints may encode different forms of feasibility or safety requirements, depending on
the task setting. For example, in autonomous racing, Cτ refers to the obstacle-free, drivable region
of a racing track. While in diffusion-based control policies, Cτ must account for system dynamics,
for respecting the underlying physical constraints of the system. Here, we use the time subscript
τ to emphasize that such constraints can be time-varying, which is often the case in dynamic or
interactive environments. For simplicity, and without loss of clarity, we will omit this subscript in
the following when no confusion arises.

Several existing methods attempt to directly model the marginal distribution pt (xt | C) by injecting
the constraint representation into the diffusion model architecture [31]. While effective in big-data
domains such as image synthesis, these approaches face significant limitations in the context of
robotics: (i) Learning pt (xt | C) from scratch requires many expert demonstrations that satisfy C,
which are often expensive or impractical to collect in robotics. (ii) Since C is often time-varying
and task-specific, models trained on a fixed distribution may fail to generalize to unseen or dynamic
constraints at test time.

To overcome these limitations, we leverage the known structure of the constraint C during sampling
to dynamically guide the generation process. We propose an alternative formulation of the con-
strained distribution pt (xt | C), which does not require learning the conditional model directly from
data:

pt (xt | C) = pt (xt)
e−γtV (xt; C)

Zt
,

where Zt :=
∫
Rd pt (x) e

−γtV (x, C) dx is a normalization constant. The barrier function V : Rd →
R+ assigns large values to infeasible data points, while remaining close to zero within the feasible
region. Intuitively, applying the barrier function pushes the probability of infeasible data points
toward zero. Importantly, the barrier function is derived from explicit task constraints (e.g., obstacle
clearance and near time-optimality) rather than a heuristic penalty, and we use a time-dependent
weight γt that ramps up across denoising steps to enforce constraints more strongly as samples
approach the data manifold. As a result, the constrained distribution focuses its support almost
entirely on the feasible region. We substitute the above formula into the score function and get

∇x log pt (xt | C) = ∇x log pt (xt)− γt∇xV (xt; C) , (5)

4

where the normalization constant Zt vanishes when taking the gradient of the log-probability, and
hence does not affect the reverse-time dynamics. By substituting the right-hand side of (5) into (4),
we obtain the modified reverse SDE that incorporates constraint information:

dxt = β (t) [−xt − (1 + η) (∇x log pt (xt)− γt∇xV (xt; C))] dt+ η
√

2β (t) dw̃t, (6)

where a constant η ∈ [0, 1] is introduced to accelerate convergence and enhance the stability of
the sampling process [32]. We observe that the first term on the right-hand side of (5) corresponds
exactly to the unconstrained score function defined in (4). This term can still be approximated by
the neural network sθ (xt, t) trained without considering any constraints. Crucially, the effect of
the constraint appears only during the denoising process, in an explicit gradient-based form - as an
additive term derived from the constraint potential (e.g., a barrier function). This formulation signif-
icantly reduces the need for large amounts of constraint-compliant training data, as the constraint is
not encoded in the network itself but instead injected at inference time. Moreover, because the con-
straint enters the reverse SDE as a differentiable time-varying potential, the framework can naturally
accommodate dynamic, time-varying constraints.

It is important to note, as pointed out by Bastek et al. [14], that applying constraints to data that is
close to pure noise in diffusion models is not meaningful. Therefore, during the denoising process
- i.e., as t decreases from one to zero - we gradually increase the value of γt starting from zero at
t = 1. This progressive scheduling is crucial for ensuring the stability of the denoising process. The
specific design of γt is detailed in Appendix B.

4 Case Study of Autonomous Racing

In this section, we illustrate how to design a constraint-aware barrier function and analyze its impact
on inference through a concrete application - obstacle avoidance in autonomous racing. While this
example serves to ground our discussion, the barrier function design and constraint-handling mech-
anisms are task-agnostic. Thus, our framework is not limited to autonomous racing but serves as a
general-purpose solution for safety-critical robotics applications. For details on dataset construction,
diffusion model architecture, and training procedures, please refer to Appendix D.

4.1 Constraint-Aware Barrier Function

For the considered application, the barrier function, which is instantiated from task constraints
(safety and near time-optimality) rather than tuned heuristics, is designed as follows:

V
(
ŷ, ϕ̂; C

)
=

N−1∑
k=0

α1 {ŷk /∈ Ck}︸ ︷︷ ︸
first part

+
ϵ

2
|ŷk − ŷnominal,k|2 +

ϵ

2

∣∣∣ϕ̂k − ϕ̂nominal,k

∣∣∣2︸ ︷︷ ︸
second part

, (7)

where the symbol 1 {·} denotes the indicator function2, and the subscript (·)nominal refers to the time-
optimal solution computed offline in the absence of obstacles, which serves as a reliable reference.
Here, N represents the number of discrete points obtained by uniformly sampling along the track
center line. In our setting, ŷ denotes the lateral displacement and ϕ̂ represents the yaw angle in the
Frenet coordinate system (see Appendix D.1). The feasible region Ck is also defined in the Frenet
frame, capturing the obstacle-free area at each sampled position along the track.

In (7), the first term handles time-varying obstacles, while the second biases toward nominal time-
optimal motion when curvature is absent in the Frenet view, aiding dynamic feasibility. Beyond
promoting near time-optimality without requiring global geometric knowledge of the track, this
part also facilitates the generation of dynamically feasible trajectories. The local representation
ensures that the resulting motions adhere more closely to the physical and kinematic constraints of
the system. The positive constants α and ϵ are tunable hyperparameters that balance the importance

2One possible differentiable approximation is provided in Appendix E.

5

of the two components. Specifically, α modulates the influence of physical safety constraints, while
ϵ regulates the adherence to nominal time-optimality.

It is worth noting that the design of the barrier function is not unique and can be tailored to the
specific task. While such customization may require a small amount of tuning effort, it is negligible
compared to the cost of collecting expert demonstrations, especially in robotics domains where data
is expensive. This makes our framework both flexible and data-efficient.

4.2 Constraint-Aware Inference

We train the diffusion model as described in Appendix D.2 for 500 epochs. During inference, we
applied the Euler-Maruyama discretization (8), which corresponds to the discretized version of (6).
The denoising process proceeds from t = 1.0 to t = 0.0 in 1000 steps, gradually transforming sam-
ples from noise to data. The results are shown in Fig. 1, where the gray regions indicate obstacles,
the (light) red curve shows the trajectory in the z-y plane. Fig. 1a illustrates the denoising process

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

(a) Sampling without barrier function.

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

(b) Sampling with barrier function.

Figure 1: Intermediate denoising results during sampling at three representative time steps t =
1 s, 0.591 s, 0.002 s, from left to right. The black arrows denote the generated position and heading
of the vehicle, and the gray arrows denote the offline-computed optimal solution.

without using the barrier function, while Fig. 1b shows the effect of the proposed constraint-aware
guided generation. Each row depicts intermediate generation results at t = 1 s, 0.591 s, 0.002 s,
from left to right. See Appendix B for the concrete values of the hyperparameters used during
inference.

In Fig. 1a, we observe that the diffusion model learns important features of the data distribution.
The model respects the fundamental constraints of the racetrack, such as staying within bounds
and satisfying the loop closure. However, despite conditioning on constraints during training, the
generated samples still fail to consistently avoid obstacles - primarily due to limited training data.
Additionally, the lack of curvature information in the local Frenet frame leads to unrealistic and
physically implausible results.

6

In contrast, Fig. 1b incorporates the barrier function as described in Sec. 4.1. The guidance sig-
nificantly improves the sampling process. The model denoises faster (i.e., the samples become
structured earlier), the trajectories successfully avoid all obstacles, and the resulting motion aligns
well with a physically consistent motion. Moreover, due to the second part in (7) (albeit with a
small weight ϵ), the final trajectories closely follow the nominal time-optimal ones, exhibiting near
time-optimal properties. For more details on the near time-optimality of the generated trajectories,
please refer to Appendix G.

5 Real-World Experiments

We evaluate CoDiG in experiments on a real-world miniature autonomous racing platform [33,
34]. For more details on the experimental platform, the obstacle setup, and a flowchart illustrating
how the CoDiG framework is deployed to achieve real-time obstacle avoidance, please refer to
Appendix H.

5.1 Warm-Starting

Real-time obstacle avoidance requires not only safe trajectories but also fast replanning. As shown
in Sec. 4.2, our diffusion model with a barrier function produces high-quality trajectories after 1000
denoising steps, but this results in a low sampling frequency of 0.25Hz, which is insufficient for
real-time racing.

While various acceleration techniques exist [35, 11, 36], we propose a warm-start strategy tailored
to robotic control. Unlike standard diffusion generation, which samples each trajectory from pure
noise, our proposed warm-start technology perturbs the previous output with small noise and reuses
it as the next input. This maintains temporal consistency, reduces trajectory variance, and improves
control stability [37]. By promoting smooth transitions between consecutive trajectories, warm-
starting significantly lowers the number of denoising steps required and enhances real-time feasibil-
ity. A detailed analysis and comparison of results with and without warm-starting are provided in
Appendix F.

5.2 Experimental Results

Through the integration of our warm-start technique, we achieve a sampling frequency of 2.5Hz
on a computer equipped with an NVIDIA RTX 4090 GPU. While there is still potential for further
acceleration, this performance already satisfies the real-time requirements of obstacle avoidance in
racing scenarios.

We successfully deployed CoDiG on our real-world autonomous racing platform for real-time tra-
jectory planning. A tracking model predictive control (TMPC) [38, 39] is employed to follow the
planned trajectories. Notably, the TMPC operates without any knowledge of obstacles, relying
solely on the reference trajectories for control. Fig. 2 illustrates two representative obstacle avoid-
ance maneuvers during autonomous driving. In both Fig. 2a and Fig. 2b, the red lines represent
the trajectories planned by CoDiG, the gray circles denote static obstacles, while the black circles
indicate dynamic obstacles. The black dashed lines show the predicted trajectories generated by the
TMPC as it attempts to follow the red reference trajectory. Each sequence from left to right captures
a complete avoidance cycle: (i) Obstacle Encroachment: An obstacle intrudes into a previously fea-
sible trajectory, making it infeasible. (ii) Replanning: The planner detects the encroachment and
generates a new collision-free trajectory. (iii) Successful Avoidance: The vehicle safely bypasses
the obstacle.

As shown in the figures, the predicted trajectories from the TMPC closely align with the reference
trajectories generated by the diffusion model. This highlights that the planned trajectories are closely
aligned with physical feasibility, enabled by the barrier function, which is crucial for effective track-
ing performance. Additionally, even in the presence of obstacles, the generated trajectories maintain
near time-optimality, indicating that the planner does not overly sacrifice efficiency for safety.

7

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

(a) Obstacle avoidance episode 1.

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

(b) Obstacle avoidance episode 2.

Figure 2: Real-world demonstration of real-time obstacle avoidance using CoDiG. Red lines repre-
sent the planned trajectories generated by the CoDiG diffusion planner. Gray circles indicate static
obstacles, and black circles represent dynamic obstacles. Black dashed lines show the predicted
trajectory from the TMPC while following the reference plan. Each episode illustrates a complete
avoidance cycle: obstacle encroachment, real-time replanning, and successful passage.

Finally, thanks to the warm-start strategy, significant replanning is only triggered when the obstacle
actually interferes with the current path. In static conditions, consecutive trajectories remain almost
unchanged, ensuring system stability. We conducted five experimental trials, each consisting of 15
racing laps, across ten different obstacle configurations. The framework achieved a 100% success
rate in obstacle avoidance, demonstrating its robustness and reliability in diverse scenarios.

6 Conclusion

In this work, we propose CoDiG (Constraint-Aware Diffusion Guidance), a general, data-efficient
framework that leverages diffusion models for real-time, safety-critical motion planning in robotics.
While diffusion models have shown strong capabilities in learning complex distributions, their direct
application in robotics is hindered by the lack of constraint-awareness and physical feasibility. We
address this challenge by introducing a barrier function into the denoising process, guiding the gen-
erated trajectories toward safe and dynamically consistent regions without requiring extensive expert
data. A warm-start inference strategy further improves inference speed and temporal consistency for
real-time deployment.

We demonstrate CoDiG on autonomous racing with dynamic obstacles, achieving robust real-world
performance with reliable obstacle avoidance, precise tracking, and near time-optimal planning
at 2.5Hz. These results highlight the potential of diffusion-based methods for constraint-aware
planning and control, offering a promising direction for safe, efficient, and generalizable robotic
decision-making in varying environments.

8

7 Limitations

While our proposed CoDiG framework has demonstrated promising results in generating safe, dy-
namically consistent trajectories with high data efficiency, we acknowledge several limitations and
potential areas for improvement:

Sampling Frequency Constraints. Although we have introduced a warm-start strategy to signif-
icantly accelerate the sampling process, the current planning frequency of 2.5Hz may still fall short
in scenarios involving fast-moving or rapidly appearing obstacles. In such cases, the planner may
fail to respond quickly enough to ensure safe maneuvering.

Inability to Detect Infeasible Scenarios. Our current framework does not explicitly identify sit-
uations where no feasible trajectory exists - such as when the track is completely blocked. Due to
the nature of diffusion models, the network continues to generate trajectories regardless of feasi-
bility, which can result in solutions that appear smooth but are physically invalid. This limitation
arises from the data distribution encountered during training, where such infeasible configurations
are typically not represented.

Heuristic Design of Barrier Function. The construction of the barrier function, which plays a
central role in enforcing safety and physical consistency, currently relies on heuristic parameter
tuning. While this provides sufficient flexibility to adapt to various environments, it lacks theoreti-
cal grounding or systematic design principles. Developing more principled methods for parameter
selection remains an open challenge.

9

Acknowledgments

We thank Matteo Facchino for providing code related to time-optimal control solvers. We also
gratefully acknowledge Jan-Hendrik Bastek for the insightful discussions on constraint handling in
diffusion models. We thank the German Research Foundation and the Max-Planck ETH Center for
Learning Systems for the support.

References
[1] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep Unsupervised Learn-

ing using Nonequilibrium Thermodynamics. In International Conference on Machine Learn-
ing, pages 2256–2265, 2015.

[2] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In Advances in Neural
Information Processing Systems, pages 6840–6851, 2020.

[3] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans. Cascaded Diffusion
Models for High Fidelity Image Generation. Journal of Machine Learning Research, 23(47):
1–33, 2022.

[4] G. Batzolis, J. Stanczuk, C.-B. Schönlieb, and C. Etmann. Conditional Image Generation with
Score-Based Diffusion Models. arXiv:2111.13606, pages 1–19, 2021.

[5] M. Jeong, H. Kim, S. J. Cheon, B. J. Choi, and N. S. Kim. Diff-TTS: A Denoising Diffusion
Model for Text-to-Speech. arXiv:2104.01409, pages 1–5, 2021.

[6] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video Diffusion
Models. In Advances in Neural Information Processing Systems, pages 8633–8646, 2022.

[7] R. Wolf, Y. Shi, S. Liu, and R. Rayyes. Diffusion Models for Robotic Manipulation: A Survey.
arXiv:2504.08438, pages 1–28, 2025.

[8] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, 0(0):1–21, 2024.

[9] J. Urain, N. Funk, J. Peters, and G. Chalvatzaki. SE(3)-DiffusionFields: Learning smooth
cost functions for joint grasp and motion optimization through diffusion. In International
Conference on Robotics and Automation, pages 5923–5930, 2023.

[10] K. Kondo, A. Tagliabue, X. Cai, C. Tewari, O. Garcia, M. Espitia-Alvarez, and J. P. How.
CGD: Constraint-Guided Diffusion Policies for UAV Trajectory Planning. arXiv:2405.01758,
pages 1–8, 2024.

[11] N. D. Palo, L. Hasenclever, J. Humplik, and A. Byravan. Diffusion Augmented Agents: A
Framework for Efficient Exploration and Transfer Learning. In Conference on Lifelong Learn-
ing Agents, pages 268–284, 2025.

[12] K. M. Lee, S. Ye, Q. Xiao, Z. Wu, Z. Zaidi, D. B. D’Ambrosio, P. R. Sanketi, and M. Gom-
bolay. Learning Diverse Robot Striking Motions with Diffusion Models and Kinematically
Constrained Gradient Guidance. arXiv:2409.15528, pages 1–8, 2025.

[13] Z. Liang, Y. Mu, M. Ding, F. Ni, M. Tomizuka, and P. Luo. AdaptDiffuser: Diffusion Models
as Adaptive Self-evolving Planners. In International Conference on Machine Learning, pages
20725–20745, 2023.

[14] J.-H. Bastek, W. Sun, and D. M. Kochmann. Physics-Informed Diffusion Models.
arXiv:2403.14404, pages 1–26, 2025.

10

[15] G. Giannone, A. Srivastava, O. Winther, and F. Ahmed. Aligning Optimization Trajectories
with Diffusion Models for Constrained Design Generation. In Advances in Neural Information
Processing Systems, pages 51830–51861, 2023.

[16] T. Power, R. Soltani-Zarrin, S. Iba, and D. Berenson. Sampling Constrained Trajectories Using
Composable Diffusion Models. In International Conference on Intelligent Robots and Systems,
pages 1–5, 2023.

[17] J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters. Motion Planning Diffusion: Learn-
ing and Planning of Robot Motions with Diffusion Models. In International Conference on
Intelligent Robots and Systems, pages 1916–1923, 2023.

[18] J. K. Christopher, S. Baek, and F. Fioretto. Constrained Synthesis with Projected Diffusion
Models. arXiv:2402.03559, pages 1–20, 2024.

[19] W. Xiao, T.-H. Wang, C. Gan, and D. Rus. SafeDiffuser: Safe Planning with Diffusion Proba-
bilistic Models. arXiv:2306.00148, pages 1–19, 2023.

[20] R. Römer, A. von Rohr, and A. P. Schoellig. Diffusion Predictive Control with Constraints.
arXiv:2412.09342, pages 1–14, 2024.

[21] W. Yu, J. Peng, H. Yang, J. Zhang, Y. Duan, J. Ji, and Y. Zhang. LDP: A Local Diffusion
Planner for Efficient Robot Navigation and Collision Avoidance. In International Conference
on Intelligent Robots and Systems, pages 5466–5472, 2024.

[22] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is Conditional Genera-
tive Modeling All You Need for Decision-Making? arXiv:2211.15657, pages 1–24, 2023.

[23] Z. Gong, A. Kumar, and P. Varakantham. Offline Safe Reinforcement Learning Using Trajec-
tory Classification. In Conference on Artificial Intelligence, pages 16880–16887, 2025.

[24] N. Botteghi, F. Califano, M. Poel, and C. Brune. Trajectory Generation, Control, and Safety
with Denoising Diffusion Probabilistic Models. arXiv:2306.15512, pages 1–18, 2023.

[25] P. Dhariwal and A. Nichol. Diffusion Models Beat GANs on Image Synthesis. In Advances in
Neural Information Processing Systems, pages 8780–8794, 2021.

[26] C. Lu, H. Chen, J. Chen, H. Su, C. Li, and J. Zhu. Contrastive Energy Prediction for Exact
Energy-Guided Diffusion Sampling in Offline RL. In International Conference on Machine
Learning, pages 22825–22855, 2023.

[27] Z. Sheebaelhamd, M. Tschannen, M. Muehlebach, and C. Vernade. Quantization-Free Autore-
gressive Action Transformer. arXiv:2503.14259, pages 1–15, 2025.

[28] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based
Generative Modeling through Stochastic Differential Equations. In International Conference
on Machine Learning, pages 10362–10383, 2021.

[29] B. Øksendal. Stochastic Differential Equations. Springer Berlin Heidelberg, 1995.

[30] B. D. Anderson. Reverse-Time Diffusion Equation Models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[31] J. Ho and T. Salimans. Classifier-Free Diffusion Guidance. arXiv:2207.12598, pages 1–14,
2022.

[32] Y. Song and S. Ermon. Improved Techniques for Training Score-Based Generative Models. In
Advances in Neural Information Processing Systems, pages 12438–12448, 2020.

11

[33] S. Bodmer, L. Vogel, S. Muntwiler, A. Hansson, T. Bodewig, J. Wahlen, M. N. Zeilinger, and
A. Carron. Optimization-Based System Identification and Moving Horizon Estimation Using
Low-Cost Sensors for a Miniature Car-Like Robot. arXiv:2404.08362, pages 1–11, 2024.

[34] A. Carron, S. Bodmer, L. Vogel, R. Zurbrügg, D. Helm, R. Rickenbach, S. Muntwiler, J. Sieber,
and M. N. Zeilinger. Chronos and CRS: Design of a miniature car-like robot and a software
framework for single and multi-agent robotics and control. In International Conference on
Robotics and Automation, pages 1371–1378, 2023.

[35] J. Song, C. Meng, and S. Ermon. Denoising Diffusion Implicit Models. arXiv:2010.02502,
pages 1–22, 2022.

[36] Q. Zhang and Y. Chen. Fast Sampling of Diffusion Models with Exponential Integrator.
arXiv:2204.13902, pages 1–33, 2023.

[37] M. Morari and J. H. Lee. Model predictive control: past, present and future. Computers &
Chemical Engineering, 23(4-5):667–682, 1999.

[38] D. Limon, I. Alvarado Aldea, T. Alamo, and E. F. Camacho. MPC for tracking piecewise
constant references for constrained linear systems. Automatica, 44(9):2382–2387, 2008.

[39] R. Soloperto, J. Köhler, and F. Allgöwer. A Nonlinear MPC Scheme for Output Tracking
Without Terminal Ingredients. Transactions on Automatic Control, 68(4):2368–2375, 2023.

[40] T. Sauer. Numerical Solution of Stochastic Differential Equations in Finance. In Handbook of
Computational Finance, pages 529–550. Springer, 2012.

[41] R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl. Time-optimal Race Car Driving using
an Online Exact Hessian based Nonlinear MPC Algorithm. In European Control Conference,
pages 141–147, 2016.

[42] H. C. Crenshaw and L. Edelstein-Keshet. Orientation by Helical Motion—II. Changing the
Direction of the Axis of Motion. Bulletin of Mathematical Biology, 55(1):213–230, 1993.

[43] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-Resolution Image
Synthesis with Latent Diffusion Models. arXiv:2112.10752, pages 1–45, 2022.

[44] J. Hensman, N. Durrande, and A. Solin. Variational Fourier Features for Gaussian Processes.
Journal of Machine Learning Research, 18(151):1–52, 2018.

12

A Comparison of Constraint-Enforcement Strategies

This section provides a concise, side-by-side comparison of how constraints are handled across
methods in Table 1: whether constraints are enforced during training, inference, or both; the guid-
ance source (e.g., classifier, energy, projection, or physics-based barrier); whether learned auxiliary
models or projection steps are required; and whether any real-time evidence is reported.

B Hyperparameters

During inference, the hyperparameters are set as follows:

η = 0.1, α = 15.0, ϵ = 0.4.

In practice, we set α in the range 10–15, whereas ϵ is chosen at a smaller magnitude, typically
0.1–0.5. We also observe that our method is not particularly sensitive to these hyperparameters
across environments: the same settings generalize well on both training and test scenarios.

In particular, the time-varying weight γ (t) is assigned non-uniform values according to the follow-
ing scheme:

γ (t) =
ℏ1

1 + exp (−ℏ2 (ℏ3 − t))
, t ∈ [0, 1] ,

where ℏ1 = 1.0, ℏ2 = 50.0, and ℏ3 = 0.7. The choice of the function γ is not unique. The
guiding principle is to introduce the constraint progressively during denoising so that its gradient
increasingly shapes the samples as they approach the data manifold. Any monotone schedule that
follows this principle (e.g., linear or logistic ramp-up) works in practice.

C Discrete-Time Integration

Assuming a denoising process over M ∈ N++ steps, we partition the interval [0, 1] non-uniformly
as follows:

tk =

(
1− k

M

)p

, k = 0, . . . ,M,

where p = 2.2 in our case. Starting from an initial sample x0 drawn from a standard Gaussian
distribution, we perform denoising according to the following discrete Euler-Maruyama [40] update
scheme:

x̄k+1 = xk + β (tk) [−xk − (1 + η) (sθ (xk, tk)− γtk∇xV (xk; C))] ∆tk,

xk+1 = x̄k+1 + η
√
2β (tk)

√
|∆tk|σk, k = 0, . . . ,M − 1,

(8)

where ∆tk = tk+1 − tk denoting the step size between successive time points. The noise term
σk ∈ Rd is sampled from a standard Gaussian distribution. Here, x̄ denotes the mean estimate at
each step, while x denotes the noisy sample.

D Data and Model Pipeline

In this section, we describe the pipeline used to train our diffusion model for obstacle avoidance in
racing scenarios. We begin by presenting our data collection process, where expert demonstrations
are gathered to reflect optimal driving behaviors in the presence of obstacles. Then, we introduce
a data augmentation strategy that diversifies the training distribution while preserving expert in-
tent. Next, we detail the architecture of our proposed diffusion model, which is adapted to handle
time-conditioned inputs and spatial constraints relevant to the racing task. Finally, we present the
training results of the diffusion model under various input configurations, demonstrating how differ-
ent modalities affect the training performance.

13

M
et

ho
d

St
ag

e
G

ui
da

nc
e

so
ur

ce
A

ux
.m

od
el

Pr
oj

ec
tio

n
R

T
ev

id
en

ce

C
oD

iG
(o

ur
s)

In
fe

re
nc

e
B

ar
ri

er
gr

ad
ie

nt
(p

hy
si

cs
&

sa
fe

ty
)

✗
✗

✓
(2

.5
H

z)

D
ha

ri
w

al
an

d
N

ic
ho

l[
25

]
In

fe
re

nc
e

C
la

ss
ifi

er
∇

lo
g
p
(y

|x
)

✓
✗

–
L

u
et

al
.[

26
]

In
fe

re
nc

e
E

ne
rg

y
gr

ad
ie

nt
✓

✗
–

C
hr

is
to

ph
er

et
al

.[
18

]
X

ia
o

et
al

.[
19

]
In

fe
re

nc
e

Pr
oj

ec
tio

n
op

er
at

or
⃝

✓
–

R
öm

er
et

al
.[

20
]

In
fe

re
nc

e
M

od
el

-b
as

ed
co

ns
tr

ai
nt

s
⃝

⃝
–

Y
u

et
al

.[
21

]
In

fe
re

nc
e

L
oc

al
co

lli
si

on
-f

re
e

co
nd

iti
on

in
g

⃝
✗

–

B
as

te
k

et
al

.[
14

]
Tr

ai
n

Ph
ys

ic
s-

in
fo

rm
ed

tr
ai

ni
ng

lo
ss

✗
✗

–
G

ia
nn

on
e

et
al

.[
15

]
Tr

ai
n

A
lig

n
to

co
ns

tr
ai

ne
d

op
t.

pa
th

s
✗

✗
–

Po
w

er
et

al
.[

16
]

Tr
ai

n
M

ul
ti-

co
ns

tr
ai

nt
tr

ai
ni

ng
⃝

✗
–

A
ja

y
et

al
.[

22
]

B
ot

h
C

on
st

ra
in

ed
de

ci
si

on
di

ff
us

io
n

⃝
⃝

–
G

on
g

et
al

.[
23

]
B

ot
h

Tr
aj

ec
to

ry
-l

ev
el

di
ff

us
io

n
w

/c
on

st
ra

in
ts

⃝
⃝

–
B

ot
te

gh
ie

ta
l.

[2
4]

B
ot

h
Sa

fe
pr

io
rs

+
ru

nt
im

e
fil

te
ri

ng
⃝

⃝
–

Ta
bl

e
1:

C
om

pa
ri

so
n

ac
ro

ss
en

fo
rc

em
en

tp
ha

se
s.

“A
ux

.”
in

di
ca

te
s

le
ar

ne
d

au
xi

lia
ry

ne
tw

or
ks

;“
Pr

oj
ec

tio
n”

in
di

ca
te

s
pr

oj
ec

tio
n

st
ep

s;
R

T
=

re
al

-t
im

e.
“✓

”
m

ea
ns

th
e

ite
m

is
re

qu
ir

ed
,“

✗
”

m
ea

ns
it

is
no

tn
ee

de
d,

“⃝
”

de
no

te
s

th
at

it
is

op
tio

na
l,

an
d

“–
”

m
ea

ns
th

at
no

re
su

lt
is

re
po

rt
ed

.

14

D.1 Learning-Efficient Dataset Construction

Even on a miniature autonomous racing platform, collecting expert demonstrations via manual tele-
operation is highly challenging and time-consuming. Therefore, we generate expert data by solving
a time-optimal control problem [41], including car states and control inputs.

To collect expert data, we randomly place obstacles on the track and solve the aforementioned
time-optimal control problem to obtain optimal driving trajectories with continuous looping and
corresponding control inputs. An example is shown in Fig. 3a, where the gray regions indicate
obstacles. The red curve shows the trajectory in the z-y plane, and the black rectangles and arrows
illustrate the approximate shape and orientation of the vehicle, respectively, reflecting the fact that
the vehicle is not treated as a point mass to account for the system dynamics.

−1 0 1

−1

0

1

z [m]

y
[m

]

(a) Time-optimal expert trajectory.

−1 0 1

−1

0

1

z [m]

y
[m

]

(b) Redundant obstacle augmentation.

0 500 1,000 1,500 2,000 2,500 3,000

−0.2

0

0.2

Index

y
[m

]

(c) Flattened Frenet representation.

Figure 3: (a) A time-optimal trajectory (red line) computed for a given obstacle configuration (gray
regions) on the racing track. Black rectangles and arrows indicate the approximate vehicle shape and
heading. (b) Redundant obstacles (brown regions) added in areas that do not affect the trajectory,
providing data augmentation without solving additional optimal control problems. (c) A flattened
track representation in the local Frenet coordinate system, visualizing both the trajectory (red line)
and obstacles (black regions).

As previously mentioned, collecting expert data is expensive. Solving a single time-optimal control
problem takes around 10 minutes on average. To address this limitation, we propose a method for
dataset augmentation. We observe that once the time-optimal solution is obtained for a given map
(with a specific obstacle configuration), adding extra obstacles within the safe region that do not
interfere with the trajectory will not alter the time-optimal solution. These redundant obstacles -
illustrated as brown regions in Fig. 3b - can be arbitrarily placed without affecting the outcome.
Based on this observation, we first collect 100 trajectories by solving time-optimal problems with
randomly placed obstacles, which takes approximately 16 hours in total. We then expand this dataset
to 10 000 trajectories by adding random redundant obstacles in safe regions, using 80% of them
when training the diffusion model.

15

During training, we only use the pose information - namely y and yaw angle ϕ - which are trans-
formed into a local Frenet coordinate system [42]. This yields the local variables ŷ and ϕ̂, represent-
ing the lateral displacements and heading relative to the reference path. Together with the obstacle
representation, this results in a flattened map as shown in Fig. 3c. In this map, the presence of
obstacles naturally induces an obstacle-free region, denoted by C, which is already defined in the
local Frenet frame. For notational simplicity, we omit the explicit time index τ , but we emphasize
that C is inherently time-varying, reflecting the dynamic nature of the environment. The set C pro-
vides a time-varying constraint in the planning process and is considered in the definition of our
constraint-aware barrier function.

By performing this transformation, we deliberately discard information about the global curvature
of the track. This enhances the generalization capability of the trained diffusion model, enabling
the model to handle arbitrary (even moving) obstacles. However, this also means that the generated
trajectories may not inherently account for curvature constraints, an issue we address using a barrier
function in the denoising process, which is detailed in Sec. 4.2.

D.2 Diffusion Model Architecture

As illustrated in Fig. 4, we adopt a time-conditioned U-Net architecture as the backbone of our
diffusion model [43]. The network follows a classic encoder-decoder structure, augmented with
time and conditional information to support trajectory generation in dynamic environments.

32

conv1

+

64

conv2

+

128

conv3

+

attn1

256

conv4

+

attn2 128

tconv1

+

64

tconv2

+

32

tconv3

+

output

256

time embedding

128

condition embedding

Figure 4: Architecture of the proposed time-conditioned score-based generative model. The U-
Net backbone extracts multi-scale features through a sequence of convolutional and deconvolutional
layers, with temporal embeddings injected via dense layers. Spatial transformer modules enable
conditional attention guided by task-specific context. Skip connections ensure spatial consistency
across scales.

The input is a single-channel spatial-temporal representation of the trajectory, and the output pre-
serves the same spatial resolution. Temporal conditioning is achieved via Gaussian Fourier fea-
tures [44], which embed the diffusion time step into a high-dimensional representation. This em-
bedding is injected at every resolution level to inform the network of the denoising progress.

The encoder consists of a sequence of down-sampling convolutional blocks, each followed by time
embedding fusion and group normalization. To enhance spatial reasoning and enable conditional
generation, spatial transformer modules are inserted at deeper layers, where they incorporate context
information - such as a reference track - encoded via a lightweight convolutional neural network.

The decoder mirrors the encoder with up-sampling blocks and skip connections, allowing the net-
work to reconstruct high-resolution outputs by fusing low-level and high-level features. Each de-
coding layer is also conditioned on time to ensure consistency with the diffusion process.

This architecture is designed to be data-efficient, modular, and generalizable. It supports plug-and-
play conditional guidance and is easily extendable to other tasks in robotics beyond the case study
of autonomous racing.

16

D.3 Training of the Network

We experiment with different input modalities for the diffusion model. Specifically, we considered:
(i) the lateral displacement ŷ after transforming into the Frenet coordinate system; (ii) both the lateral
displacement ŷ and the yaw angle ϕ̂ in the Frenet frame; (iii) the states including x̂, ŷ, ϕ̂ along with
their corresponding velocities v̂x, v̂y, ω̂ in the Frenet frame. For each input configuration, we train
the model for 500 epochs and explore different values of r1 and r0 in constructing the noise schedule
β (t) = r1t

2 + r0 for t ∈ [0, 1]. The training results are shown in Fig. 5, where the three plots from
left to right correspond to the aforementioned three input configurations, respectively.

0 200 400

100

101

102

103

Epoch

L
o
ss

0 200 400

Epoch

0 200 400

Epoch

r1 = 60, r0 = 1 r1 = 60, r0 = 30 r1 = 100, r0 = 1 r1 = 100, r0 = 30 r1 = 100, r0 = 90

Figure 5: Training performance of the diffusion model under different input configurations and noise
schedules. From left to right, the three plots correspond to using (i) lateral displacement ŷ in the
Frenet frame only, (ii) lateral displacement ŷ and yaw angle ϕ̂ in the Frenet frame, and (iii) the states
x̂, ŷ, ϕ̂ along with velocities v̂x, v̂y, ω̂ as model inputs. Each setting was trained for 500 epochs
while varying the parameters r1 and r0 in the noise schedule.

Our experiments show that varying r1 has negligible impact on the final training performance. In
contrast, increasing r0 generally improves training outcomes, suggesting that larger initial noise
levels may facilitate better learning. However, due to the limited size of our training dataset, ex-
cessively large values of r0 can lead to overfitting risks. Additionally, we observe that as the input
dimensionality increases, the training performance degrades, likely due to the increased complexity
of the data distribution and the limited model capacity under fixed training resources. Based on these
observations, we choose to use only the lateral displacement ŷ and the yaw angle ϕ̂ in the Frenet
frame as inputs in our final framework, setting r1 = 100.0 and r0 = 30.0.

It is important to emphasize that although we adopt a simplified input representation in this work,
our approach remains general and can naturally extend to handle higher-dimensional or multimodal
inputs. This flexibility paves the way toward directly modeling control inputs using diffusion models
in future work.

E Differentiable Approximation of the Indicator

To facilitate reproducibility, we detail a specific approximation of the indicator in (7), while not-
ing that alternative formulations are possible. We approximate the indicator 1 {ŷk /∈ Ck} with a
piecewise-linear function defined on the signed distance to the nearest obstacle center. Let dist (ŷk)
be the signed distance that is positive inside obstacles, zero on the boundary, and negative outside.
We use the normalized linear map

1̂ {ŷk /∈ Ck} = min

(
1,max

(
0,

dist (ŷk)

ρ (Ck)

))
so that points on the obstacle edge map to zero and (approximately) the obstacle center maps to
one. Here ρ is a normalization scale corresponding to the obstacle half-width (for disks, the radius;

17

for general shapes, the inradius or a fixed calibration constant). In practice, we compute dist (·)
from the obstacle binary mask using a (Euclidean) distance transform; outside obstacles dist (·) ≤ 0
hence 1̂ = 0, while inside obstacles it increases linearly with the interior distance and saturates at
one.

F Warm-Start Evaluation

In this work, we incorporate a warm-starting strategy to accelerate the sampling process, thereby
enabling real-time obstacle avoidance. This section presents a quantitative analysis of the effects
introduced by this partial diffusion strategy on trajectory generation performance.

Fig. 6 illustrates the reference trajectories generated with and without the application of the warm
start technique under an identical obstacle configuration, sampled at consistent time instances. In the
figures, gray circles denote static obstacles, while black circles denote dynamic obstacles. The nine
subfigures are arranged sequentially from left to right and top to bottom. In each subfigure, the black
solid line represents the trajectory obtained using the standard diffusion model, which initiates from
standard Gaussian noise and progresses through 500 denoising steps. In contrast, the red solid line
corresponds to the trajectory generated with the warm start method, which undergoes 50 denoising
steps of partial noised initial trajectory.

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

−1

0

1

y
[m

]

−1

0

1

y
[m

]

Figure 6: Comparison of reference trajectories generated with and without the warm start technique
under an identical obstacle configuration. Gray circles denote static obstacles, and black circles
denote dynamic obstacles. The black solid lines represent trajectories produced by the standard
diffusion model after 500 denoising steps starting from standard Gaussian noise. The red solid
lines represent trajectories generated using the warm start approach, where 50 denoising steps are
performed. The warm start method accelerates the sampling process while maintaining successful
obstacle avoidance, albeit with slightly coarser trajectory profiles and more conservative motion
planning behavior.

18

As evidenced by the results, both approaches successfully achieve obstacle avoidance at all time
steps, demonstrating their respective effectiveness. Nevertheless, the trajectories generated via the
warm start technique exhibit a coarser structure, primarily due to the incomplete denoising pro-
cess inherent to partial diffusion. Furthermore, from the perspective of physical feasibility, the
trajectories derived from the standard diffusion model better adhere to realistic vehicle dynamics.
Specifically, the final subfigure demonstrates that the warm start method tends to converge to a local
solution and favors a more conservative path - remaining closer to the previous time point - to avoid
obstacles. Despite this conservatism, the warm start approach proves crucial, as it reduces the sam-
pling time by approximately a factor of three, thereby making real-time obstacle avoidance feasible.
Moreover, the conservative behavior introduced by warm start contributes positively to the overall
system stability.

G Near Time-Optimality

In this section, we demonstrate the near time-optimality of the trajectories generated by CoDiG by
comparing them with trajectories obtained by solving an offline time-optimal control problem [41].
As illustrated in Fig. 7, we present several representative obstacle configurations extracted from a
real-world experiment. In each scenario, the red trajectory denotes the real-time obstacle-avoidance
path generated by the CoDiG framework, while the black trajectory represents the time-optimal path
computed offline under the same obstacle layout.

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

−1

0

1

y
[m

]

−1

0

1

y
[m

]

Figure 7: Comparison between trajectories generated in real time by CoDiG (red) and offline-
computed time-optimal trajectories (black) under various obstacle configurations.

Overall, we observe a high degree of similarity between the real-time and offline trajectories, which
highlights the near time-optimal generation of CoDiG in practice. The main discrepancies are ob-
served in two typical situations. First, to achieve faster cornering, the offline time-optimal solution
tends to favor a larger turning radius in curved sections. Second, when navigating near obstacles,

19

the CoDiG-generated trajectory increases its clearance for safety, resulting in a slight deviation from
the time-optimal path. This trade-off ensures safety while maintaining strong time-efficiency.

H Experimental Platform and the CoDiG Framework

Fig. 8 illustrates the experimental platform used to evaluate the performance of the CoDiG frame-
work for real-time obstacle avoidance in autonomous racing. The platform consists of a down-
scaled race track (Fig. 8a), a custom-built autonomous car (Fig.8b), and a motion capture system
(not shown in the figure). This setup enables agile maneuvering and real-time control in dynamic,
safety-critical scenarios such as obstacle avoidance. It provides a reproducible environment to eval-
uate our approach under realistic conditions.

(a) Down-scaled race track. (b) Custom-built autonomous car.

(c) Obstacle configuration.

Figure 8: Experimental platform used to evaluate the performance of the CoDiG framework for real-
time obstacle avoidance in autonomous racing. The setup includes (a) a down-scaled race track, (b)
a custom-built autonomous vehicle, and (c) an obstacle configuration that simulates a challenging
and realistic racing scenario.

Additionally, Fig. 8c depicts the obstacle configuration used during the experiments. The vehicle
positioned at the starting line is the one under our control, responsible for executing the obstacle
avoidance task. Yellow boxes represent static obstacles, while the remaining vehicles serve as either
dynamic or static obstacles. This setup faithfully simulates a complex and challenging racing envi-

20

ronment, emphasizing the effectiveness and robustness of our framework under realistic and difficult
conditions.

The flowchart illustrating how the CoDiG framework enables real-time obstacle avoidance for au-
tonomous racing on the experimental platform is shown in Fig. 9. The core component of the CoDiG
framework is a trained diffusion planner module, which generates a safe reference trajectory yref ca-
pable of avoiding all obstacles. This is achieved by incorporating map and obstacle information, and
guiding the sampling process via gradients provided by a constraint-aware guidance mechanism.

CoDiG

Map and
Obstacles

Diffusion
Planner

Tracking
MPC

Car

State
Estimator

Warm
Start

Constraint-Aware
Guidance

map yref u

states

yinit

map

gradient

Figure 9: Flowchart of the proposed CoDiG framework for real-time obstacle avoidance in au-
tonomous racing. The framework integrates a diffusion-based trajectory planner, a constraint-aware
guidance module that guides the denoising process, a warm start strategy to accelerate sampling,
and a tracking MPC controller. All modules operate within the experimental platform described in
Fig. 8.

To improve sampling efficiency, the reference trajectory generated at the current time point is further
used to construct the initial input yinit for the diffusion process at the next time step, via a warm start
strategy. This replaces the conventional use of standard Gaussian noise as the initial condition,
thereby accelerating the trajectory generation process.

Subsequently, a tracking MPC module computes the control input u required to follow the reference
trajectory yref, based on the current vehicle state estimated by a state estimator module. Finally, the
control input u is applied to the vehicle to execute real-time obstacle avoidance.

21

	Introduction
	Related Work
	Methodology
	Preliminaries
	Constraint-Aware Diffusion Guidance

	Case Study of Autonomous Racing
	Constraint-Aware Barrier Function
	Constraint-Aware Inference

	Real-World Experiments
	Warm-Starting
	Experimental Results

	Conclusion
	Limitations
	Comparison of Constraint-Enforcement Strategies
	Hyperparameters
	Discrete-Time Integration
	Data and Model Pipeline
	Learning-Efficient Dataset Construction
	Diffusion Model Architecture
	Training of the Network

	Differentiable Approximation of the Indicator
	Warm-Start Evaluation
	Near Time-Optimality
	Experimental Platform and the CoDiG Framework

