
Under review as submission to TMLR

Distributed Training of Large Graph Neural Networks with
Variable Communication Rates

Anonymous authors
Paper under double-blind review

Abstract

Training Graph Neural Networks (GNNs) on large graphs presents unique challenges due to
the large memory and computing requirements. Distributed GNN training, where the graph
is partitioned across multiple machines, is a common approach to training GNNs on large
graphs. However, as the graph cannot generally be decomposed into small non-interacting
components, data communication between the training machines quickly limits training
speeds. Compressing the communicated node activations by a fixed amount improves the
training speeds, but lowers the accuracy of the trained GNN. In this paper, we introduce a
variable compression scheme for reducing the communication volume in distributed GNN
training without compromising the accuracy of the learned model. Based on our theoretical
analysis, we derive a variable compression method that converges to a solution that is
equivalent to the full communication case. Our empirical results show that our method
attains a comparable performance to the one obtained with full communication and that
for any communication budget, we outperform full communication at any fixed compression
ratio.

1 Introduction

Graph Neural Networks (GNNs) are a neural network architecture tailored for graph-structured data (Zhou
et al., 2020; Wu et al., 2020; Bronstein et al., 2017). GNNs are multi-layered networks, where each layer is
composed of a (graph) convolution and a point-wise non-linearity (Gama et al., 2018). GNNs have shown
state-of-the-art performance in robotics (Gama et al., 2020a; Tzes et al., 2023), weather prediction (Lam
et al., 2022), protein interactions (Jumper et al., 2021) and physical system interactions (Fortunato et al.,
2022), to name a few. The success of GNNs can be attributed to some of their theoretical properties such
as being permutation-invariant (Keriven and Peyré, 2019; Satorras et al., 2021), stable to perturbations of
the graph (Gama et al., 2020b), transferable across graphs of different sizes (Ruiz et al., 2020), and their
expressive power (Xu et al., 2018; Bouritsas et al., 2022; Kanatsoulis and Ribeiro, 2022; Chen et al., 2019).

In a GNN, the data is propagated through the graph via graph convolutions, which aggregate information
across neighborhoods. In large-scale graphs, the data diffusion over the graph is costly in terms of computing
and memory requirements. To overcome this limitation, several solutions were proposed. Some works have
focused on the transferability properties of GNNs, i.e. training a GNN on a small graph and deploying it on
a large-scale graph (Ruiz et al., 2020; Maskey et al., 2023; 2022). Other works have focused on training on a
sequence of growing graphs (Cerviño et al., 2023; Cerviño et al., 2023). Though useful, these solutions either
assume that an accuracy degradation is admissible (i.e. transferability bounds), or that all the graph data
is readily accessible within the same training machine. These assumptions may not hold in practice, as we
might need to recover the full centralized performance without having the data in a centralized manner.

Real-world large-scale graph data typically cannot fit within the memory of a single machine or accelerator,
which forces GNNs to be learned in a distributed manner (Cai et al., 2021; Wang et al., 2021; Zheng et al., 2020;
Wang et al., 2022). To do this efficiently, several solutions have been proposed. There are data-parallel ap-
proaches that distribute the data across different machines where model parameters are updated with local data
and then aggregated via a parameter server. Another solution is federated learning(FL), where the situation is

1

Under review as submission to TMLR

even more complex as data is naturally distributed across nodes and cannot be shared to a central location due
to privacy or communication constraints(Bonawitz et al., 2019; Li et al., 2020a;b). Compared to data parallel
approaches FL suffers from data heterogeneity challenges as we cannot control the distribution of data across
nodes to be identically distributed(Shen et al., 2022). The GNN-FL adds additional complexity as the graph
itself (input part of the model) is split across different machines. The GNN FL counterpart has proven to be suc-
cessful when the graph can be split into different machines(He et al., 2021; Mei et al., 2019). However, training
locally while assuming no interaction between datasets is not always a reasonable assumption for graph data.

PARTITION

machine2

machine3

machine1

Figure 1: Example of partitioning a graph with 9 nodes
into 3 machines. Each machine only stores the features
of the nodes in their corresponding partition.

This work is drawn by two observations of GNNs.
First, large graph datasets cannot be split into non-
interacting pieces across a set of machines. Therefore,
training GNNs distributively requires interaction be-
tween agents in the computation of the gradient
updates. Second, the amount of communicated data
affects the performance of the trained model; the
more we communicate the more accurate the learned
model will be. In this paper, we posit that the com-
pression rate in the communication between agents
should vary between the different stages of the GNN
training. Intuitively, at the early stages of training,
the communication can be less reliable, but as train-
ing progresses, and we are required to estimate the
gradient more precisely, the quality of the communi-
cated data should improve.

In this paper, we consider the problem of efficiently learning a GNN across a set of machines, each of which
has access to part of the graph data (see Figure 1). Drawn from the observation that in a GNN, model
parameters are significantly smaller than the graph’s input and intermediate node feature, we propose to
compress the intermediate GNN node features that are communicated between different machines. Given
that this compression affects the accuracy of the GNN, in this paper we introduce a variable compression
scheme that trades off the communication overhead needed to train a GNN distributively and the accuracy of
the GNN.

The contributions of this paper are:

1. We present a novel algorithm to learn graph representations while compressing the data communicated
between the training agents. We propose to vary the compression rate progressively, to achieve a
comparable performance to the no-compression case at a fraction of the communication cost.

2. We theoretically show that our method converges to a first-order stationary point of the full graph
training problem while taking distributed steps and compressing the inter-server communications.

3. We empirically show that our method attains a comparable performance to the full communication
training scenario while incurring fewer communication costs. In particular, by plotting accuracy
as a function of the communication costs, our method outperforms full communication and fixed
compression rates in terms of accuracy achieved per communicated byte.

Related work

Mini-Batch Training. In the context of distributed GNN training, Zheng et al. (2020) proposes to
distribute mini-batches between a set of machines, each of which computes a local gradient, updates the GNN,
and communicates it back to the server. Zheng et al. (2020) uses METIS (Karypis and Kumar, 1998) to
partition the graph, which reduces communication overhead and balances the computations between machines.
Although (Zheng et al., 2020) provides good results in practice, the GNN does not process data on the full
graph, only a partition of it, which can yield sub-optimal results compared to processing the full graph. In

2

Under review as submission to TMLR

1 - Compute Activations Locally

machine1

4 - Decompress Received Activations

machine1

2 - Compress Activations

machine1

3 - Communicate Activations

machine1

Figure 2: To compute a gradient step, we need to gather the data. To do so, each machine starts by
computing the activations of the local nodes. Then, these activations are compressed and communicated
to adjacent machines. Once all the activations are communicated, each machine decompresses the data
from the compressed nodes.

Kaler et al. (2023) they employ a policy to cache data associated with frequently accessed vertices in remote
partitions. This method reduces the communications across partitions by creating local copies of the data.

Memory Optimization. In this work we do full batch training, which has also been considered in the
literature. Similar to us is sequential aggregation and rematerialization (Mostafa, 2022), which sequentially
re-constructs and frees pieces of the large GNN during the backward pass computation. Even in densely
connected graphs, this deals with the memory limitations of the GNN, showing that the memory requirements
per worker decrease linearly with the number of workers. Others have studied similar approaches in the context
of distributed training (Mostafa et al., 2023). In Md et al. (2021) they propose to use a balanced partitioning
of the graph, as well as a shared memory implementation. They utilize a delayed partial aggregation of
remote partitions by either ignoring or delaying feature vector aggregation during training.

Quantization. A related approach to dealing with the limitations of a single server for training compression
in communication is quantization in the architecture. To train GNNs more efficiently using quantization,
the most salient examples are feature quantization (Ma et al., 2022), Binary Graph Neural Networks (Bahri
et al., 2021), vector quantization (Ding et al., 2021), last bit quantization (Feng et al., 2020), and degree
quantization (Tailor et al., 2020). There are also works on adaptive quantization of the messages between
machines. In Wan et al. (2023), they adapt the quantization level using stochastic integer quantization.
However similar, this work adapts the quantization level locally, at the message level, which differs from our
global view of compression. In all, although related in spirit, quantizing a GNN is a local operation that
differs from compressing the communication between servers.

Sampling Based Methods Our method can be applied in conjunction with sampling-based methods.
In sampling-based methods, each node only aggregates from a random subset of its neighbors Zeng et al.
(2021); Bai et al. (2021); Serafini and Guan (2021); Liu et al. (2021). In the context of distributed learning,
this random subset could include remote nodes. Therefore communication between machines becomes a
bottleneck, and our method would still be relevant to reduce the communication volume. If we bias the
sampling to only consider local nodes, then this would hurt performance, as it is equivalent to splitting the
graph into multiple disconnected components, which does not work well in practice.

2 Learning Graph Neural Networks

In this paper, we consider the problem of training GNNs on large-scale graphs that are stored in a set of
machines. Formally, a graph is described by a set of vertices and edges G = (V, E), where |V| = n is the
set of vertices whose cardinality is equal to the number of nodes n, and E ⊆ V × V is the set of edges.
The graph G can be represented by its adjacency matrix S ∈ Rn×n. Oftentimes, the graph includes vertex
features, FV ∈ R|V|×|Dv|, and edge features, FE ∈ R|E|×|Dv|, where Dv and DE are the vertex and edge
feature dimensions, respectively. Graph problems fall into three main categories: node-level prediction where
the goal is to predict properties of individual nodes; edge-level prediction where the goal is to predict edge
features or predict the locations of missing edges; and graph-level prediction where the goal is to predict
properties of entire graphs. In this paper, we focus on distributed training of GNNs for node classification

3

Under review as submission to TMLR

problems. Our distributed training approach is still relevant to the other two types of graph problems, as
they also involve a series of GNN layers, followed by readout modules for edge-level or graph-level tasks.

A GNN is a multi-layer network, where at each layer, messages are aggregated between neighboring nodes via
graph convolutions. Formally, given a graph signal x ∈ Rn, where [x]i represents the value of the signal at
node i, the graph convolution can be expressed as

zn =
K−1∑
k=0

hkSkxn, (1)

where h = [h0, . . . , hK−1] ∈ RK are the graph convolutional coefficients. In the case that K = 2, and S is
binary, the graph convolution (1) translates into the AGGREGATE function in the so-called message-passing
neural networks. A GNN is composed of L layers, each of which is composed of a graph convolution (1)
followed by a point-wise non-linear activation function ρ such as ReLU, or tanh. The l-th layer of a GNN can
be expressed as,

Xl = ρ

(K−1∑
k=0

SkXl−1Hl,k

)
, (2)

where Xl−1 ∈ Rn×Fl−1 is the output of the previous layer (with X0 is equal to the input data X =
[x1, . . . , xn] ∈ Rn×F0), and Hl,k ∈ RFl−1×Fl are the convolutional coefficients of layer l and hop k. We group
all learnable coefficients H = {Hl,k}l,k, and define the GNN as Φ(x, S, H) = XL.

2.1 Empirical Risk Minimization

We consider the problem of learning a GNN that given an input graph signal x ⊂ X ⊆ Rn can predict an
output graph signal y ⊂ Y ⊆ Rn of an unknown distribution p(X, Y),

minimize
H

Ep[ℓ(y, Φ(x, S, H))], (SRM)

where ℓ is a non-negative loss function ℓ : Rd × Rd → R+, such that ℓ(y, y) = 0 iif y = y. Common choices
for the loss function are the cross-entropy loss and the mean square error. Problem (SRM) is denoted called
Statistical Risk Minimization (Vapnik, 2013), and the choice of GNN for a parameterization is justified by
the structure of the data, and the invariances in the graph Bronstein et al. (2017). However, problem (SRM)
cannot be solved in practice given that we do not have access to the underlying probability distribution p. In
practice, we assume to be equipped with a dataset D = {xi, yi}i drawn i.i.d. from the unknown probability
p(X, Y) with |D| = m samples. We can therefore obtain the empirical estimator of (SRM) as,

minimize
H

ED[ℓ(y, Φ(x, S, H))] := 1
m

m∑
i=1

ℓ(yi, Φ(xi, S, H)). (ERM)

The empirical risk minimization problem (ERM) can be solved in practice given that it only requires access
to a set of samples D. The solution to problem (ERM) will be close to (SRM) given that the samples are
i.i.d., and that there is a large number of samples m(Vapnik, 2013). To solve problem (ERM), we will resort
to gradient descent, and we will update the coefficients H according to,

Ht+1 = Ht − ηtED[∇Hℓ(y, f(x, S, H))], (SGD)

where t represents the iteration, and ηt the step-size. In a centralized manner computing iteration (SGD)
presents no major difficulty, and it is the usual choice of algorithm for training a GNN. When the size of
the graph becomes large, and the graph data is partitioned across a set of agents, iteration (SGD) requires
communication. In this paper, we consider the problem of solving the empirical risk minimization problem
(ERM) through gradient descent (SGD) in a decentralized and efficient way.

4

Under review as submission to TMLR

3 Distributed GNN training

Consider a set Q, |Q| = Q of workers that jointly learn a single GNN Φ. Each machine q ∈ Q is equipped with
a subset of the graph S, and node data, as shown in Figure 2. Each machine is responsible for computing the
features of the nodes in its local partitions for all layers in the GNN. The GNN model H is replicated across
all machines. To learn a GNN, we update the weights according to gradient descent (SGD), and average
them across machines. This procedure is similar to the standard FedAverage algorithm used in Federated
Learning(Li et al., 2020b).

The gradient descent iteration (SGD) cannot be computed without communication given that the data in
(y, x)i is distributed in the Q machines. To compute the gradient step (SGD), we need the machines to
communicate graph data. What we need to communicate is the data of each node in the adjacent machines;
transmit the input feature xj for each neighboring node j ∈ N k

i , j ∈ q
′ . For each node that we would like to

classify, we would require all the graph data belonging to the k-hop neighborhood graph. This procedure is
costly and grows with the size of the graph, which renders it unimplementable in practice.

As opposed to communicating the node features, and the graph structure for each node in the adjacent
machine, we propose to communicate the features and activation of the nodes at the nodes in the boundary.
Note that in this procedure the bits communicated between machines do not depend on the number of nodes
in the graph and the number of features compressed can be controlled by the width of the architecture used
(see Appendix A). The only computation overhead that this method requires is computing the value of the
GNN at every layer for a given subset of nodes using local information only.

3.1 Computing the Gradient Using Remote Compressed Data

Following the framework of communicating the intermediate activation, to compute a gradient step (SGD),
we require 3 communication rounds (i) the forward pass, in which each machine fetches the feature vectors of
remote neighbors and propagates their messages to the nodes in the local partition, (ii) the backward pass, in
which the gradients flow in the opposite direction and are accumulated in the GNN model weights, and (iii)
the aggregation step in which the weight gradients are summed across all machines and used to update the
GNN model weights. The communication steps for a single GNN layer are illustrated in Figure 2.

To compute a gradient step, we first compute the forward pass, for which we need the output of the GNN at
a node i. To compute the output of a GNN at node i, we need to evaluate the GNN according to the graph
convolution (1). Note that to evaluate (1), we require access to the value of the input features xj for each
j ∈ N k

i , which might not be on the same client as i. In this paper, we propose that the clients with nodes
in N k

i , compute the forward passes locally (i.e. using only the nodes in their client), and communicate the
compressed activations for each layer l.

Once the values of the activations are received, they are decompressed, and processed by the local machine,
and the output of the GNN is obtained. To obtain the gradient of the loss ℓ, the output of the GNN is
compared to the true label, and the gradient with respect to the parameters of the GNN is computed. The
errors are once again compressed and communicated back to the clients. Which, will update the values of the
parameters of the GNN, after every client updates the values of the parameters H, there is a final round
of communication where the values are averaged. Note that this procedure allows the GNN to be updated
using the whole graph. The communication costs are reduced given that the number of bits communicated is
controlled by the compressing-decompressing mechanism. The compressing and decompressing mechanism
can be modeled as follows,

Definition 1 The compression and decompression mechanism gϵ,r, g−1
ϵ,r with compression error ϵ, and com-

pression rate r, satisfies that given a set of parameters x ∈ Rn, when compressed and decompressed, the
following relation holds i.e.,

z = gϵ,r(x), and x̃ = g−1
ϵ,r (gϵ,r(x)) and E[∥x̃ − x∥] ≤ δ with E[||x̃ − x||2] ≤ ϵ2, (3)

where z ∈ Rn/r with n/r ∈ Z is the compressed signal. If δ = 0, the compression is lossless.

5

Under review as submission to TMLR

Algorithm 1 VARCO: Distributed Graph Training with VARiable COmmunication Rates
Split graph G into Q partitions and assign them to each worker qi

Initialize the GNN with weights H0 and distribute it to all workers qi

Fix initial compression rate c0, and scheduler r
repeat

Each Worker qi: Compute the activations for each node in the local graph (cf. equation (2)) using
the local nodes.

Each Worker qi: Compress the activations of the nodes that are in the boundary using the compression
mechanism (cf. equation (3)), and communicate them to the adjacent machines.

Each Worker qi: Collect data from all adjacent machines, and compute forward pass by using
non-compressed activations for local nodes and compressed activations for non-local nodes that are fetched
from other machines.

Each Worker qi: Compute parameter gradients by back-propagating errors across machines and
through the differentiable compression routine. Apply the gradient step to the parameters in each worker(cf.
equation (SGD)).

Server: Average parameters, send them back to workers, and update compression rate ct+1
until Convergence

Intuitively, the error ϵ, and compression rate r are related; a larger compression rate r will render a larger
compression error ϵ. Also, compressed signals require less bandwidth to be communicated. Relying on the
compression mechanism (3), a GNN trained using a fixed compression ratio r during training, will converge
to a neighborhood of the optimal solution. The size of the neighborhood will be given by the variance of the
compression error ϵ2. The first-order compression error δ is related to the mismatch in the compressed and
decompressed signals. Our analysis works for any value of δ, which encompasses both lossy (δ > 0), as well
as loss-less compression (δ = 0).

AS1 The loss ℓ function has L Lipschitz continuous gradients, ||∇ℓ(y1, x) − ∇ℓ(y2, x)|| ≤ L||y1 − y2||.

AS2 The non-linearity ρ is normalized Lipschitz.

AS3 The GNN, and its gradients are M -Lipschitz with respect to the parameters H.

AS4 The graph convolutional filters in every layer of the graph neural network are bounded, i.e.

||h∗Sx|| ≤ ||x||λmax

(T∑
t=0

htSt

)
, with λmax

(T∑
t=0

htSt

)
< ∞. (4)

Assumption 1 holds for most losses used in practice over a compact set. Assumption 2 holds for most
non-linearities used in practice over normalized signals. Assumption 3 is a standard assumption, and the
exact characterization is an active area of research (Fazlyab et al., 2019). Assumption 4 holds in practice
when the weights are normalized.

Proposition 1 (Convergence of GNNs Trained on Fixed Compression) Under assumptions 1
through 4, consider the iterates generated by equation (SGD) where the normalized signals x are compressed
using compression rate c with corresponding error ϵ(cf. Definition 1). Consider an L layer GNN with F , and
K features and coefficients per layer respectively. Let the step-size be η ≤ 1/L∇, with L∇ = 4MλL

max

√
KFL

if the compression error is such that at every step k, and any β > 0,

ED[||∇Hℓ(y, Φ(x, S; Ht))||2] ≥ L2
∇ϵ2 + β, (5)

then the fixed compression mechanism converges to a neighborhood of the first-order stationary point of SRM
in K ≤ O(1

β) iterations, i.e.,

ED[||∇Hℓ(y, Φ(x, S; Ht))||2] ≤ L2
∇ϵ2 + β. (6)

6

Under review as submission to TMLR

2 4 6 8 10 12 14 16
Servers

54

56

58

60

62

64

66

68

70

A
cc

ur
ac

y(
%

)

Full Communication
No Communication
Variable Compression
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(a) Random Part. in Arxiv Dat.

2 4 6 8 10 12 14 16
Servers

65.5

66.0

66.5

67.0

67.5

68.0

68.5

69.0

69.5

A
cc

ur
ac

y(
%

)

Full Communication
No Communication
Variable Compression
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(b) METIS Part. in Arxiv Dat.

2 4 6 8 10 12 14 16
Servers

70

72

74

76

78

A
cc

ur
ac

y(
%

)

Full Communication
No Communication
Variable Compression
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(c) Random Part. in Products Dat.

Figure 3: Accuracy as a function of the number of servers.

0 50 100 150 200 250 300
Epochs

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

Full Communication
No Communication
Variable Compression
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(a) Random Partitioning

100 125 150 175 200 225 250 275 300
Epochs

60

62

64

66

68

70

A
cc

ur
ac

y
(%

)

Full Communication
No Communication
Variable Compression
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(b) METIS Partitioning

Figure 4: Accuracy as a function of epoch for the Arxiv Dataset with 16 servers.

Proof: The proof can be found in Appendix E ■

Proposition 1 is important because it allows us to show that the fixed compression mechanism can converge
to a neighborhood of the first-order stationary point of 1. The size of the neighborhood can be controlled by
the compression rate ϵ. Although useful, Proposition 1, presents a limitation on the quality of the solution
that can be obtained through compression. In what follows we introduce a variable compression scheme that
can trade-off between efficient communication and sub-optimality guarantees.

4 VARCO - Variable Compression For Distributed GNN Learning

In this paper, we propose variable compression rates as a way to close the gap between training in a centralized
manner and efficient training in a distributed manner. We use proposition (1) as a stepping stone towards a
training mechanism that reduces the compression ratio rt as the iterates progress. We begin by defining a
scheduler r(t) : Z → R as a strictly decreasing function that given a train step t ∈ Z, returns a compression
ratio r(t), such that r(t′) < r(t) if t

′
> t. The scheduler r will be in charge of reducing the compression ratio

as the iterates increase. An example of scheduler can be the linear rlin(t) = cmin−cmax

T t + cmax scheduler (see
Appendix 2). In this paper, we propose to train a GNN by following a compression scheme by a scheduler r,
given a GNN architecture, a number of clients Q, and a dataset D.

During the forward pass, we compute the output of the GNN at a node ni using the local data, and the
compressed data from adjacent machines. The compressed data encompasses both the features at the adjacent

7

Under review as submission to TMLR

100 125 150 175 200 225 250 275 300
Epochs

50

55

60

65

70

75

80

A
cc

ur
ac

y
(%

)

Full Communication
No Communication
Variable Compression
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(a) Random Partitioning

100 125 150 175 200 225 250 275 300
Epochs

75

76

77

78

79

80

A
cc

ur
ac

y
(%

)

Full Communication
No Communication
Variable Compression
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(b) METIS Partitioning

Figure 5: Accuracy per epoch for the Products Dataset with 16 servers.

nodes, as well as the compressed activations of the intermediate layers for that node. The compression
mechanism compresses the values of the GNN using scheduler r(t), and communicates them the to machine
that owns node n. The backward pass receives the gradient from the machine that owns node n and updates
the values of the GNN. After the GNN values are updated, the coefficients of the GNN are communicated to
a centralized agent that averages them and sends them back to the machines. A more succinct explanation of
the aforementioned procedure can be seen in Algorithm 1.

4.1 Convergence of the VARCO Algorithm

We characterize the convergence of the VARCO algorithm in the following proposition.

Proposition 2 (Scheduler Convergence) Under assumptions 1 through 4, consider the iterates generated
by equation (SGD) where the normalized signals x are compressed using compression rate r with corresponding
error ϵ(cf. Definition 1). Consider an L layer GNN with F , and K features and coefficients per layer
respectively. Let the step-size be η ≤ 1/L∇, with L∇ = 4MλL

max

√
KFL. Consider a scheduler such that the

compression error ϵt decreases at every step ϵt+1 < ϵt, then for any σ > 0

ED[||∇Hℓ(y, Φ(x, S; Ht))||2] ≤ σ. (7)

happens infinitely often.

Proof: The proof can be found in Appendix A.1. ■

According to Proposition 2, for any scheduler, we can obtain an iterate t, whose gradient has a norm smaller
than σ. This is an improvement to the fixed compression Proposition 1, given that we removed the term
that depends on ϵ2, converging to a smaller neighborhood. The condition on the scheduler is simple to
satisfy; the compression error ϵ(t) needs to decrease on every step (see more information about schedulers in
Appendix A.1). This means that the scheduler does not require information about the gradient of the GNN.
Compressing the activations in a GNN can prove to reduce the communication required to train it, given
that the overall communication is reduced. However, keeping a fixed compression ratio might not be enough
to obtain a GNN of comparable accuracy to the one trained using no compression. By using a variable
compression for the communications, we obtain the best of both worlds – we reduce the communication
overhead needed to train a GNN, without compromising the overall accuracy of the learned solution. The
key observation is that in the early stages of training, an estimator of the gradient with a larger variance
is acceptable, while in the later stages, a more precise estimator needs to be used. This behavior can be
translated into efficiency; use more information from other servers only when needed.

8

Under review as submission to TMLR

5 Experiments

We benchmarked our method in 2 real-world datasets: OGBN-Arxiv (Wang et al., 2020) and OGBN-Products
(Bhatia et al., 2016). In the case of OGBN-Arxiv, the graph has 169, 343 nodes and 1, 166, 243 edges and it
represents the citation network between computer science arXiv papers. The node features are 128 dimensional
embeddings of the title and abstract of each paper Mikolov et al. (2013). The objective is to predict which
of the 40 categories the paper belongs to. In the case of OGBN-Products, the graph represents products
that were bought together on an online marketplace. There are 2, 449, 029 nodes, each of which is a product,
and 61, 859, 140 edges which represent that the products were bought together. Feature vectors are 100
dimensional and the objective is to classify each node into 47 categories. For each dataset, we partition the
graph at random and using METIS partitioning (Karypis and Kumar, 1997) and distribute it over {2, 4, 8, 16}
machines. In all cases, we trained for 300 epoch. We benchmarked VARCO against full communication, no
intermediate communication, and fixed compression for {2, 4, 8, 16, 32, 64} fixed compression ratios. For the
GNNs, we used a 3 layered GNN with 256 hidden units per layer, ReLU non-linearity, and SAGE convolution
(Hamilton et al., 2017). For VARCO, we used a linear compression with slopes {2, 3, 4, 5, 6, 7}, and 128 and 1
maximum and minimum compression ratio respectively (see Appendix A.1). We empirically validate the
claims that we put forward, that our method (i) attains the same accuracy as the one trained with full
communication, (ii) is more efficient in terms of communication, and (iii) is robust to the choice of the
scheduler.

5.1 Accuracy

We report the accuracy over the unseen data, frequently denoted test accuracy. In terms of accuracy,
we can compare the performance of our variable compression algorithm, against no communication, full
communication, and fixed compression ratios. In Figure 3 we show the accuracy as a function of the number of
servers for the different baselines considered. We show results for both random 3a and METIS 3b partitioning
for the Arxiv dataset, and random partitioning for the products dataset 3c. As can be seen in all three plots,
the variable compression attains a comparable performance to the one with full communication. Also, the
fixed compression scheme is not able to recover the full communication accuracy when the number of servers
increases. Consistent with Proposition 1, as the fixed compression increases, the accuracy attained by the
GNN decreases.

We study the accuracy as a function of the number of epochs with 16 servers. This setup is the most
challenging, given that the size of the graph in each server is the smallest, and it is therefore the one in which
communication is needed. In Figure 4, we show the accuracy per epoch for the Arxiv dataset. As can be seen
in both random 4a, and METIS 4b partitioning, the accuracy of variable compression is comparable to the
one with full communication. Also, the different fixed compression mechanisms have a worse performance
(10% and 3% in random and METIS partitioning respectively), and their performance degrades as their fixed
compression increases. In Figure 5, we plot the results for the products dataset with 16 servers. Again, in
both partitioning schemes, our variable compression algorithm attains a comparable performance to the one
trained on full communication. In this case, compared to the Arxiv dataset 4, the spread of the results is
smaller, and the effect of our method is less significant. This is related to the fact that the graph is larger,
and therefore, the partitions are also larger. In all, for both partitioning methods, and both datasets, we can
validate that the variable compression mechanism attains a comparable performance to the one trained on
the full communication, which is not the case for fixed compression.

5.2 Efficiency

In terms of efficiency, we can plot the accuracy as a function of the number of floating point numbers
communicated between servers. The fixed compression and full communication schemes communicate a
constant number of bytes in each round of communication. This number is proportional to the cross-edges
between machines, multiplied by the compression coefficient, which in the case of full communication is one.
Our method is particularly useful given that at the early stages of training, fewer bytes of communication
are needed, and the GNN can be trained with local data only. Intuitively, all learning curves show a similar
slope at the beginning of training, and they converge to different values in the later stages. In Figure 6 we

9

Under review as submission to TMLR

10
9

10
10

10
11

Floating Points Communicated

10

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

Full Communication
Variable Compression 2
Variable Compression 3
Variable Compression 4
Variable Compression 5
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(a) Random Partitioning

10
10

10
11

10
12

10
13

Floating Points Communicated

40

50

60

70

80

A
cc

ur
ac

y
(%

)

Full Communication
Variable Compression 2
Variable Compression 3
Variable Compression 4
Variable Compression 5
Fixed Compression 2
Fixed Compression 4
Fixed Compression 8
Fixed Compression 16

(b) METIS Partitioning

Figure 6: Accuracy per floating points communicated for the products dataset with 16 servers.

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

slope2
slope3
slope4
slope5
slope6
slope7

(a) Random Part. in Arxiv Dat.

0 50 100 150 200 250 300
Epochs

40

50

60

70

80

A
cc

ur
ac

y
(%

)

slope2
slope3
slope4
slope5
slope6
slope7

(b) Random Part. in Prods Dat.

0 50 100 150 200 250 300
Epochs

0

200

400

600

800

slope2
slope3
slope4
slope5
slope6
slope7

(c) Comm. Floats Per Epoch

Figure 7: Accuracy per epoch with 16 servers for different variable compression schemes.

corroborate that our method attains the best accuracy as a function of bytes communicated throughout the
full trajectory. Given that the VARCO curve in Figure 6 is above all curves, for any communication budget i.e.
number of bits, VARCO obtains the best accuracy of all methods considered. This indeed validates our claim
that using VARCO is an efficient way of training a GNN.

5.3 Robustness

In Figure 7 we validate the robustness of our method to the choice of compression rate. Using linear compression
rate, at epoch e, with cmin = 1, cmax = 128, E = 300 and compression rate c = min(cmax−a cmax−cmin

E e, cmin),
we vary the slope a of the scheduler and verify that the algorithm attains a comparable performance for all
runs. This is consistent with Proposition 2, as we only require that the scheduler decreases in every iteration.
In Appendix A, the equations that govern the compression rate are described.

6 Conclusion

In this paper, we presented a distributed method to train GNNs by compressing the activations and reducing
the overall communications. We showed that our method converges to a neighborhood of the optimal
solution, while computing gradient estimators communicating fewer bytes. Theoretically, we showed that by
increasing the number of bits communicated (i.e. decreasing the compression ratio) as epochs evolve, we can
decrease the loss throughout the whole training trajectory. We also showed that our method only requires

10

Under review as submission to TMLR

the compression ratio to decrease in every epoch, without the need for any information about the process.
Empirically, we benchmarked our algorithm in two real-world datasets and showed that our method obtains
a GNN that attains a comparable performance to the one trained on full communication, at a fraction of the
communication costs.

11

Under review as submission to TMLR

References
Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng

Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI open, 1:57–81,
2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Fernando Gama, Antonio G Marques, Geert Leus, and Alejandro Ribeiro. Convolutional neural network
architectures for signals supported on graphs. IEEE Transactions on Signal Processing, 67(4):1034–1049,
2018.

Fernando Gama, Qingbiao Li, Ekaterina Tolstaya, Amanda Prorok, and Alejandro Ribeiro. Decentralized
control with graph neural networks. arXiv preprint arXiv:2012.14906, 2020a.

Mariliza Tzes, Nikolaos Bousias, Evangelos Chatzipantazis, and George J Pappas. Graph neural networks
for multi-robot active information acquisition. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 3497–3503. IEEE, 2023.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexander
Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast: Learning skillful
medium-range global weather forecasting. arXiv preprint arXiv:2212.12794, 2022.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets. In ICML 2022 2nd AI for Science Workshop, 2022.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. Advances in
Neural Information Processing Systems, 32, 2019.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In
International conference on machine learning, pages 9323–9332. PMLR, 2021.

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks. IEEE
Transactions on Signal Processing, 68:5680–5695, 2020b.

Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the transferability of graph
neural networks. Advances in Neural Information Processing Systems, 33:1702–1712, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2018.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(1):657–668, 2022.

Charilaos I Kanatsoulis and Alejandro Ribeiro. Graph neural networks are more powerful than we think.
arXiv preprint arXiv:2205.09801, 2022.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph isomorphism
testing and function approximation with gnns. arXiv preprint arXiv:1905.12560, 2019.

12

Under review as submission to TMLR

Sohir Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: an extended graphon
approach. Applied and Computational Harmonic Analysis, 63:48–83, 2023.

Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message passing
neural networks on large random graphs. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 4805–4817. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
1eeaae7c89d9484926db6974b6ece564-Paper-Conference.pdf.

Juan Cerviño, Luana Ruiz, and Alejandro Ribeiro. Learning by transference: Training graph neural networks
on growing graphs. IEEE Transactions on Signal Processing, 71:233–247, 2023.

Juan Cerviño, Luana Ruiz, and Alejandro Ribeiro. Training graph neural networks on growing stochastic
graphs. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10094894.

Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. Dgcl: an efficient communication
library for distributed gnn training. In Proceedings of the Sixteenth European Conference on Computer
Systems, pages 130–144, 2021.

Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen, Wenyuan Yu, Zihang Yao, and Jingren Zhou.
Flexgraph: a flexible and efficient distributed framework for gnn training. In Proceedings of the Sixteenth
European Conference on Computer Systems, pages 67–82, 2021.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang, and
George Karypis. Distdgl: distributed graph neural network training for billion-scale graphs. In 2020
IEEE/ACM 10th Workshop on Irregular Applications: Architectures and Algorithms (IA3), pages 36–44.
IEEE, 2020.

Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and Ge Yu. Neutronstar:
distributed gnn training with hybrid dependency management. In Proceedings of the 2022 International
Conference on Management of Data, pages 1301–1315, 2022.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards federated learning
at scale: System design. Proceedings of machine learning and systems, 1:374–388, 2019.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Computers &
Industrial Engineering, 149:106854, 2020a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE signal processing magazine, 37(3):50–60, 2020b.

Zebang Shen, Juan Cervino, Hamed Hassani, and Alejandro Ribeiro. An agnostic approach to federated
learning with class imbalance. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=Xo0lbDt975.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He, Liangwei
Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and benchmark for graph
neural networks. arXiv preprint arXiv:2104.07145, 2021.

Guangxu Mei, Ziyu Guo, Shijun Liu, and Li Pan. Sgnn: A graph neural network based federated learning
approach by hiding structure. In 2019 IEEE International Conference on Big Data (Big Data), pages
2560–2568. IEEE, 2019.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on scientific Computing, 20(1):359–392, 1998.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/1eeaae7c89d9484926db6974b6ece564-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1eeaae7c89d9484926db6974b6ece564-Paper-Conference.pdf
https://openreview.net/forum?id=Xo0lbDt975

Under review as submission to TMLR

Tim Kaler, Alexandros Iliopoulos, Philip Murzynowski, Tao Schardl, Charles E Leiserson, and Jie Chen.
Communication-efficient graph neural networks with probabilistic neighborhood expansion analysis and
caching. Proceedings of Machine Learning and Systems, 5, 2023.

Hesham Mostafa. Sequential aggregation and rematerialization: Distributed full-batch training of graph
neural networks on large graphs. Proceedings of Machine Learning and Systems, 4:265–275, 2022.

Hesham Mostafa, Adam Grabowski, Md Asadullah Turja, Juan Cervino, Alejandro Ribeiro, and Nageen
Himayat. Fastsample: Accelerating distributed graph neural network training for billion-scale graphs.
arXiv preprint arXiv:2311.17847, 2023.

Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos Georganas, Alexander
Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and Sasikanth Avancha. Distgnn: Scalable distributed
training for large-scale graph neural networks. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–14, 2021.

Yuxin Ma, Ping Gong, Jun Yi, Zhewei Yao, Cheng Li, Yuxiong He, and Feng Yan. Bifeat: Supercharge gnn
training via graph feature quantization. arXiv preprint arXiv:2207.14696, 2022.

Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary graph neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9492–9501, 2021.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom Goldstein.
Vq-gnn: A universal framework to scale up graph neural networks using vector quantization. Advances in
Neural Information Processing Systems, 34:6733–6746, 2021.

Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding. Sgquant: Squeezing the last bit
on graph neural networks with specialized quantization. In 2020 IEEE 32nd International Conference on
Tools with Artificial Intelligence (ICTAI), pages 1044–1052. IEEE, 2020.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant: Quantization-aware
training for graph neural networks. In International Conference on Learning Representations, 2020.

Borui Wan, Juntao Zhao, and Chuan Wu. Adaptive message quantization and parallelization for distributed
full-graph gnn training. Proceedings of Machine Learning and Systems, 5, 2023.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neu-
ral networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 19665–19679. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
a378383b89e6719e15cd1aa45478627c-Paper.pdf.

Youhui Bai, Cheng Li, Zhiqi Lin, Yufei Wu, Youshan Miao, Yunxin Liu, and Yinlong Xu. Efficient data
loader for fast sampling-based gnn training on large graphs. IEEE Transactions on Parallel and Distributed
Systems, 32(10):2541–2556, 2021.

Marco Serafini and Hui Guan. Scalable graph neural network training: The case for sampling. ACM SIGOPS
Operating Systems Review, 55(1):68–76, 2021.

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and choose: a
gnn-based imbalanced learning approach for fraud detection. In Proceedings of the web conference 2021,
pages 3168–3177, 2021.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient and
accurate estimation of lipschitz constants for deep neural networks. Advances in Neural Information
Processing Systems, 32:11427–11438, 2019.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/a378383b89e6719e15cd1aa45478627c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a378383b89e6719e15cd1aa45478627c-Paper.pdf

Under review as submission to TMLR

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia. Microsoft
academic graph: When experts are not enough. Quantitative Science Studies, 1(1):396–413, 2020.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classification reposi-
tory: Multi-label datasets and code, 2016. URL http://manikvarma.org/downloads/XC/XMLRepository.
html.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Cur-
ran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse matrices. 1997.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Dimitri P Bertsekas and John N Tsitsiklis. Gradient convergence in gradient methods with errors. SIAM
Journal on Optimization, 10(3):627–642, 2000.

Rick Durrett. Probability: Theory and Examples. Cambridge University Press, 2019.

15

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

	Introduction
	Learning Graph Neural Networks
	Empirical Risk Minimization

	Distributed GNN training
	Computing the Gradient Using Remote Compressed Data

	VARCO - Variable Compression For Distributed GNN Learning
	Convergence of the VARCO Algorithm

	Experiments
	Accuracy
	Efficiency
	Robustness

	Conclusion
	Compression Mechanism
	Scheduler

	Partitioning Details
	Cross-Edge analysis
	Accuracy
	Proof of Proposition 1
	Proof of Proposition 2

