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ABSTRACT

Financial organizations collect a huge amount of data about clients that typi-
cally has a temporal (sequential) structure and is collected from multiple sources
(modalities). However, despite the urgent practical need, developing deep learn-
ing techniques suitable to handle such data is limited by the absence of large open-
source multi-source real-world datasets of event sequences. To fill this gap mainly
caused by security reasons, we present the industrial-scale publicly available mul-
timodal banking dataset, MBD, that contains more than 2M corporate clients with
several data sources: 950M bank transactions, 1B geo position events, 5M em-
beddings of dialogues with technical support and monthly aggregated purchases
of four bank’s products. All entries are properly anonymized from real proprietary
bank data. Moreover, we introduce a novel multimodal benchmark incorporating
our MBD and two open-source financial datasets. We provide numerical results
demonstrating the superiority of fusion baselines over single-modal techniques
for each task. Moreover, our anonymization techniques still save all significant
information for introduced downstream tasks.
Code Link: https://anonymous.4open.science/r/MBD-034B/
Dataset Link: https://disk.yandex.ru/d/Pk9Mhx70VnUzbA

1 INTRODUCTION

The key tasks in the banking industry, such as campaigning, fraud detection, credit risk assess-
ment, customer segmentation, and personalized recommendations, heavily rely on various aspects
of clients’ financial activities, e.g., product purchase history. This data, spanning extended periods,
is typically annotated with temporal information, forming what is known as event sequences Babaev
et al. (2022); Udovichenko et al. (2024); Yeshchenko & Mendling (2022); Kolosnjaji et al. (2016).
An event is described by several heterogeneous fields, numerical and categorical. An essential prop-
erty of event sequences is that these data are often gathered from multiple sources or channels,
rendering multimodal.

Thus, the success of financial organizations strongly depends on their availability to analyze such
multi-source heterogeneous event sequences accurately. However, existing multimodal models Xu
et al. (2023); Zhang & Yan (2023) cannot be directly applied to such event/tabular data due to
their significant difference with audio, images, texts, and regular time-series. Unfortunately, despite
the urgent business needs, the progress in the development of multimodal techniques for multi-
source event sequences is limited by the absence of large-scale datasets Indeed, though several
datasets of event sequences are used in research, e.g., credit card transactions Padhi et al. (2021) or
MIMIC Johnson et al. (2023), they are either small or contain only one modality. Thus, tackling the
complexity of multimodal event sequence data is still very challenging.

To bridge this gap, this paper introduces the Multimodal Banking Dataset (MBD), an unprecedented
open-source resource encompassing extensive multichannel event sequence data of banking cor-
porate clients. It is the largest of its kind, featuring detailed records of approximately 2 million
clients across four distinct modalities: money transfers (about 950 million events), geo position data
(around 1 billion events), technical support dialog embeddings (approximately 5 million entries),
and monthly aggregated bank product purchases categorized into four types. Each modality encom-
passes roughly one or two years of historical, time-annotated data, making it a rich resource for
analyzing the dynamics of client behavior over time.
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The MBD dataset enables the research of several critical business problems in a multimodal context,
such as future purchase prediction (campaigning) and matching of different modalities for the same
clients. In addition, we provide benchmarks for these tasks using the MBD and other existing
financial datasets of much smaller size. Our possibility to publish the dataset is caused by properly
anonymizing all data to protect client privacy. Our experiments confirm that this procedure preserves
the consistency of model performance between original and anonymized data.

2 RELATED WORKS

2.1 FINANCIAL DATA

The multitude of services and processes in banks generates a variety of data that can be considered
as modalities. Early works such as Moro et al. (2014); Mancisidor et al. (2021) use feature pro-
cessing techniques that remove multimodal complexity and present data in tabular form. The Amex
dataset ame improves information content and complexity. Here, a wide range of different finan-
cial aggregates are presented as a sequence of historical slices. The development of deep learning
methods has led to the ability to work with complexly structured data, such as sequences of events.
Quite a few datasets age; ros; alp, mostly unimodal, presented mainly at ML competitions. To work
with such data, both supervised Ala’raj et al. (2022); Babaev et al. (2019); Wang & Xiao (2022) and
unsupervised methods Padhi et al. (2021); Babaev et al. (2022); Skalski et al. (2023) are used. A
multimodal financial sequential dataset was introduced in DataFusion 2022 competition dat. There
are two sequential modalities, transaction and web clickstream, and two downstream tasks: match-
ing and education level prediction. However, this is an extremely small dataset of 22K clients, and
no accurate baseline model is available.

2.2 OTHER EVENT SEQUENCE DOMAINS

Temporal point process Mei & Eisner (2017); Zhuzhel et al. (2023) model streams of discrete events
in continuous time by constructing a neurally multivariate point process. The authors use a large
collection of datasets from different types of modalities: Media (Retweets Zhao et al. (2015), Meme-
Track Leskovec & Krevl (2014), Amazon ama (2018), IPTV Luo et al. (2014)), Medical (MIMIC-II
Johnson et al. (2016)), Social(Stack Overflow Leskovec & Krevl (2014), Linkedin Xu & Zha (2017))
and Financial (Transaction Fursov et al. (2021)) data. All datasets are independent, and each one is
single-modal. EventStreamGPT McDermott et al. (2024) uses multimodal medical record datasets,
MIMIC-IV Johnson et al. (2023). The authors propose a GPT-like approach for continuous-time
event sequences. The structure of this dataset is close to the MDB. However, financial data, unlike
medical data, contains longer chains of events, more regular patterns, and individual transactions are
less informative.

2.3 GEOSTREAM AND DIALOGUES

Geodata is used for various tasks. One of the uses of geo is a visualization of analytics on a map Hao
et al. (2011). However, geo is used here not as a separate modality but as additional tags to the main-
stream of tweets. Mobile marketers Baye et al. (2024) use geo-targeting for pricing and send per-
sonalized recommendations. In Verma et al. (2020), geo hashes are used for user mobility detection
and prediction.

We encode our dialogue entries via a pretrained NLP model. Such models have already been used
Hassan et al. (2019) for text anonymization tasks. Embeddings preserve the meaning of the text,
which was shown in Vaswani et al. (2017). Pre-trained text embeddings can capture text sentiment
and improve text-to-speech models Hayashi et al. (2019).

3 PROPOSED DATASET

Modern innovative banking institutions actively develop AI technologies for customizing their
human-oriented technologies and making everyday decisions. A superior level of technologies will
lead to new cases of customer experience, which should form a competitive advantage of services
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provided, including the speed, accuracy, and price of customer services, including personal credit
conditions, individual finance strategy, etc.

One of the main benefits of using AI is the ability to analyze large amounts of customer data. This
helps banks better understand their customers’ needs and offer them the most suitable products and
services. Additionally, AI can protect customers from fraud and prevent financial losses. More
accurate forecasting of financial risks associated with lending or investing allows us to provide more
favorable conditions to more reliable clients. This strategy is more effective if there is a lot of data,
so banks strive to accumulate as much information as possible.

Being a team of a bank that stores petabytes of data about bank processes and clients, we understand
the urgent needs of fintech data scientists in large sets of publicly available temporal data from
various sources (bank transactions, client locations, purchased products, etc.) to drive innovation and
scientific discovery. Unfortunately, the number of appropriate datasets is limited because providing
such data comes with certain risks. Typically, banks are wary of sharing their data due to potential
leaks of confidential information or violations of data protection regulations. In addition, the data is
considered to have commercial value, and companies do not want to disclose it. To mitigate these
risks, it is required to take all necessary steps to ensure data security and remove any identifying
information. This allows information to be shared without violating client confidentiality, but this
procedure requires significant effort from engineers, managers, and lawyers. Though there exist
a small number of properly anonymized banking datasets, such as credit card transactions Padhi
et al. (2021) or AlphaBattle alp, to the best of our knowledge, there are no publicly available large
multimodal temporal datasets for banks.

Thus, in this paper, we introduced the first large-scale multimodal banking dataset to support future
research on multimodal techniques for event sequences. In particular, we select several practically
important tasks, such as campaigning, i.e., prediction if a client would purchase some of four rather
popular products in the next month. Each client is described by sequences of typical bank data:
transactions, geo positions where the customer used the bank application, and dialogues with tech-
nical support. These data sources highlight the main difficulties in developing multimodal mod-
els, namely, asynchronous events in different modalities, various intensities of events, rare/irregular
events, and even the absence of some modalities for many clients. Based on our dataset, the re-
searchers will be able to fully take into account cross-modal connections of sequences from multiple
sources at the level of individual events.

Let us discuss the details of the dataset collection procedure. At first, we select a complete sample of
clients for two years (2021 and 2022) to cover all seasons. Among all customers who had the oppor-
tunity to purchase at least one of four products during 2022, we randomly choose 2,186,230 clients,
among which 1M customers are labeled by monthly aggregated purchases of each of four products
in each month. For these clients, we collect 947,899,612 financial operations, 1,117,213,760 geo
position events, and 5,080,781 dialogues with technical support. Our data raise typical practical
challenges for training multimodal models. For example, many clients do not have all three modali-
ties simultaneously because they can never make a transaction, call tech support, or leave their geo
trace while running the bank application. Next, all the data are properly anonymized to guarantee
the confidentiality and privacy of customer information. As a result, it is impossible to recover real
clients from our anonymous data. We will show in the experimental study that such anonymization
still allows us to extract valuable information about clients.

To demonstrate the complete transformation of data from various sources, Fig. 1 briefly shows ex-
ample data for each modality, and the temporal structure of the data for a campaigning model is
presented. Let us introduce further details for each modality in the following subsections.

We present a comparative analysis of various event sequence datasets alongside our MBD dataset.
As shown in Table 1, the MBD dataset is substantially more comprehensive, offering a greater
number of modalities, events, clients, and downstream tasks compared to other datasets. MBD in-
corporates a diverse set of data modalities, including bank transactions, geo-locations, and technical
support dialogues, providing a richer and more realistic basis for analysis. Additionally, it supports
a broader range of downstream tasks, detailed in the following sections, allowing for more sophisti-
cated and flexible modeling approaches.
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Figure 1: Pipeline for processing original data sources for solving campaigning task. Examples
of raw data for each modality are presented on the left. Only anonymized data is published in the
dataset. The center shows the temporal anonymized structure of the data. The multimodal multi-
label classification model for predicting purchases is shown on the right.

Table 1: Overview of existing transaction datasets.
Dataset # Clients Downstream Tasks # Events Class Balance Modalities

Datafusion dat 22K Binary classification
Multimodal matching 146M Imbalanced Transactions, Clickstream

Alphabattle alp 1.5M Binary classification 443M Imbalanced Transactions
Age age 50K Multiclass classification 44M Balanced Transactions
Rosbank ros 10K Binary classification 1M Imbalanced Transactions

Credit Card Transac-
tion Padhi et al. (2021)

2K Binary classification
Regression task 2M Highly Imbalanced Transactions

MBD (ours) 2M Multilabel binary classification
Multimodal matching 2B Highly Imbalanced Transactions, Geostream,

Dialogues

3.1 MODALITIES

1. Bank transactional data are financial operations (events) carried out between different clients.
Collected over a two-year period (2021 and 2022), the sequence of financial operations can uniquely
characterize the client Babaev et al. (2022), so this data source plays one of the most significant
roles in planning and recommendations. Thus, the main component of our MBD dataset is each
client’s transactional history, represented by an event with a timestamp and various attributes of the
anonymized counterparty. Clients have 638 transactions on average.

2. Dialogues. The dialogue data consists of transcriptions from customer calls to technical support
and negotiations between clients and their managers, collected over a two-year period (2021 and
2022). We incorporate dialogues from key communication channels, including sales and service
calls, which account for most interactions with bank customers. It is an extremely important source
of information about client needs and problems Bauman et al. (2024). The audio utterance is fed into
a commercial Speech-to-Text algorithm. Personal information, e.g., the client’s name, is detected
in the text and masked. To further anonymize the dialogue, we feed its text into a pre-trained NLP
model1 and save the resulting embeddings of size 768 in dialogue modality. Only 46% of customers
contact support and have records of conversations, 98% of them have no more than 10 dialogues.

3. Geostream data contains a sequence of geo-coordinates of a client obtained throughout 2022.
To anonymize this modality, the coordinates are encoded using geohashes2, a geocoding system that
converts a geographic location into a short string. Each unique geohash corresponds to a region on
the Earth’s surface. It is possible to adjust the accuracy and size by removing characters from the end
of the code. In our dataset, the coordinates are encoded with a precision of 4, 5, and 6 characters,

1https://huggingface.co/ai-forever/ruBert-base
2https://pypi.org/project/pygeohash/
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representing cells of different sizes on the map. As a result, there are 43,999 distinct values of
geohash 4, 347,698 numbers of geohash 5, and 2,264,404 most precise locations (geohash 6).

4. Products purchases. Our dataset serves as a valuable resource for analyzing the needs of bank
customers and optimizing the campaigning process, a critical task that directly impacts both the
volume of products sold by the bank and its overall profitability. High-quality recommendations
play a key role in enhancing the customer experience, making campaigning essential not only for
business outcomes but also for customer satisfaction. Specifically, MBD includes monthly data on
the purchases of four distinct banking products throughout 2022, providing a broader temporal scope
that captures patterns beyond the pandemic’s peak. We concentrate on the most popular of these
products, as internal analysis across various tasks using proprietary data consistently showed that
these products provide a robust foundation for model selection. The insights from this data enable
the development of models that demonstrate superior performance across a broad spectrum of related
tasks. To predict a purchase in a certain month, it is necessary to take events (transactions, geo,
dialogues) strictly before the beginning of this month. Therefore, the date range for the purchases
dataset is shifted by 1 month, i.e., information is available from February 1, 2022, to January 31,
2023. The campaigning task is a multi-label classification problem, i.e., we store a binary label for
each product that indicates whether it is purchased by a customer in a certain month. The peculiarity
of this dataset is its imbalance, which is specific to this type of business task: 81% of clients have no
purchases, 15% have one, and the remaining 4% have two or more purchases. A historical overview
over 12 months allows us to model the customer behavior dynamic and predict the date of purchase
more accurately.

Detailed information on all modalities is provided in Appendix A, including the sequence length of
event sequences and data samples.

3.2 DATA ANONYMIZATION

Our dataset contains no personal or confidential information whatsoever. Nevertheless, the event
sequences are detailed enough that it could be possible to compare individuals from the publicly
accessible portion of the dataset with the original proprietary data. To mitigate this risk, noise is
introduced to the data, ensuring that such comparisons and identification are impossible. The noise
patterns were selected by our bank’s internal security department. These patterns are applied locally,
preserving the overall structure of the data. The specific noise parameters are not disclosed to prevent
potential attacks on the dataset.

All ID fields are hashed with a random salt. All categorical field values are mapped to enumerated
indexes. Random noise is added to numerical fields and dates, preserving the hour of the original
date, which may be the cause of the shuffle of the local sequence. The dialogue embedding space is
divided into regions, which are then shuffled.

4 BENCHMARK

In this paper, we introduce a benchmark for widely used event sequence datasets, incorporating prac-
tically important downstream tasks. This section provides a detailed description of the downstream
tasks, baseline methods, and evaluation protocols.

4.1 DATASETS AND DOWNSTREAM TASKS

For each downstream task in every dataset, we implement an out-of-fold validation protocol to con-
duct our experiments. The client dataset is partitioned into five folds, with four folds used for train-
ing and the remaining fold reserved for testing. The training and testing sets are publicly available
alongside the dataset, allowing future researchers to compare performance metrics. As each dataset
in our benchmark exhibits label imbalance, ROC AUC is the most robust and informative evaluation
metric due to its resilience to class imbalances. In real-world business, campaign effectiveness is
measured by revenue, but conducting A/B tests for every ML model is impractical. Instead, ROC
AUC is a reliable proxy metric for model comparison, with only the top performers advancing to
A/B testing. This method was validated through real-world A/B tests and is recognized as the core
evaluation metric by leading institutions, including one of the largest global banks. The choice
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of AUC for campaigning is supported by the reason that ranking models by their ROC curves are
similar to comparing their non-response ratio at all possible cutoff points simultaneously Liu et al.
(2012); Rosset et al. (2001). Let us discuss the details of downstream tasks for each dataset in our
benchmark.

1. MBD. For our dataset, we introduce a campaigning downstream task. In this task, it is required to
predict the customer’s propensity to purchase four different products in the next month (Fig. 1) given
sequences of transactions, geo locations, and dialogues from the beginning of this month. Solutions
to this problem are used to plan marketing campaigns and prepare sales communications through
various communication channels with the client.

The baseline methods outlined in the following section are applied as follows. First, we train our
models using the training set. Considering the temporal structure of our target, we compute the
embedding of each client’s history for up to one month, focusing on the presence of the target
product (Fig. 1). We then evaluate the model using the multi-label classification metric ROC AUC
across the 12 months of 2022 and for four binary product labels.

2. Datafusion. In this dataset, the proposed downstream task is to predict the higher education
attainment of bank clients. It involves analyzing two client modalities (transaction histories and
clickstream data) to accurately infer their educational background. The task is formulated as a
binary classification problem, with 75% of the labels corresponding to clients with higher education.
The objective is to develop predictive models that leverage these multimodal data sources to extract
meaningful insights, which can be applied to further analysis.

3. Alphabattle. We incorporate the large unimodal Alphabattle dataset into our benchmark along-
side the multimodal datasets. This inclusion of data from various financial institutions aims to
support more robust and reliable conclusions. In this dataset, the downstream task estimates the
probability of a customer defaulting based on their historical card transaction behavior. This task
is framed as a binary classification problem, with 2.7% of the labels representing clients who have
defaulted. Although the dataset is unimodal, the downstream task remains highly relevant for finan-
cial institutions, offering critical insights into credit risk assessment in improving decision-making
processes related to customer management and financial strategies.

Multimodal matching

For the multimodal datasets MBD and Datafusion, we propose a downstream task of multimodal
matching Zong et al. (2023). Multimodal matching involves aligning and comparing modalities to
identify meaningful relationships or connections. Frequently, data from multiple sources for the
same client are matched using predefined rules or heuristics, which may not always yield optimal
results. To enhance the accuracy of this process, specialized identification algorithms are required
to compare modalities more precisely.

For the matching task, we employ a framework analogous to CLIP Radford et al. (2021). We utilize
GRU encoders to embed pairs of samples from two input modalities, labeling them as either positive
(i.e., data from the same client) or negative matches (i.e., data from different clients). The model is
trained using the InfoNCE loss function Chen et al. (2020), which maximizes similarity for positive
pairs while minimizing it for negative pairs. To assess the model’s performance, we use Recall@1,
Recall@50 and Recall@100 metrics.

4.2 METHODS

To establish performance baselines, we implement several widely adopted architectures. Our ap-
proach prioritizes unsupervised and semi-supervised methods Balestriero et al. (2023), enabling the
training of a general-purpose encoder on unlabeled sequential data. Additionally, we incorporate su-
pervised methods that allow for the immediate training of the encoder in a fully supervised manner.

4.2.1 UNIMODAL APPROACHES

The following techniques are implemented in our benchmark to extract features from data:

1. Aggregation Baseline that contains hand-crafted aggregation statistics Babaev et al.
(2022): Events are represented either numerically, such as transaction amount, or cate-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

gorically, like event types. For numerical attributes, we apply aggregation functions (e.g.,
sum, mean, std) across all events in a sequence. Categorical attributes are grouped by
unique values, aggregating numerical attributes using functions like count or mean.

2. CoLES (Contrastive Learning for Event Sequences), a self-supervised contrastive
model Babaev et al. (2022) specially developed to obtain representations of such event
sequences as bank transactions. The sequence encoder is a GRU (Gated Recurrent Unit)
with a hidden size of 256.

3. Two Tabular Transformers from IBM Padhi et al. (2021). The first model, TabBERT,
adapts BERT to event sequences such as bank transactions. The second model, TabGPT,
was initially proposed to generate synthetic tabular sequences. Both models extract 256-
dimensional embeddings of an input event sequence. After that, we pool output embed-
dings of the client in result embedding of size 1024, calculating min, max, mean, and std.

To obtain representation of a sequence of dialogues, we borrow several conventional techniques to
aggregate the sequence of embeddings of each dialog of a client: 1) mean pooling of all embeddings;
and 2) use only the most recent embedding for the date of interest.

For unimodal supervised methods (Supervised RNN), we utilize GRU architectures Babaev et al.
(2019) with a hidden size 32. The models are trained in a multi-label setting using binary cross-
entropy (BCE) loss, ensuring effective optimization for tasks with multiple targets.

4.2.2 MULTIMODAL APPROACHES

To explore the potential of multimodal processing for event sequence analysis, we compare several
fusion techniques:

1. Blending computes a weighted sum of class posterior probabilities from individual single-
modal classifiers, effectively combining the predictions from each modality.

2. Late Fusion: embeddings from all data sources are concatenated and fed into a classifier.
This technique allows the model to learn interactions between modalities after they have
been individually processed Huang et al. (2020). In supervised Late Fusion, we utilize
separate GRU encoders for each modality, concatenating their embeddings to form a unified
representation (Supervised RNN).

3. Early Fusion combines representations from multiple modalities at the initial stages of the
model, enabling joint processing of multimodal data. We employ the CrossTransformer
approach Zhang & Yan (2023), which utilizes a cross-attention mechanism to integrate
information across modalities efficiently. In our experiments, this method is applied within
a supervised learning framework.

5 EXPERIMENTS

Our models, experiments, and training procedures were implemented in Python, leveraging PyTorch
and PyTorch Lightning for deep learning tasks, and PySpark for distributed data processing. We
trained the neural networks using NVIDIA V100 GPU, while the boosting models were trained
on computational clusters equipped with 600 cores. The reported experiments, including extensive
hyperparameters optimization, required approximately 500 hours of computation.

5.1 MODEL AND TRAINING HYPERPARAMETERS

We employ the unsupervised baseline methods (CoLES, TabGPT, TabBERT, Aggregation) with de-
fault hyperparameters from the pytorch-lifestream framework. The PyTorch implementation of the
Adam optimizer is utilized, with an initial learning rate of 0.001, coupled with the StepLR sched-
uler. Models are saved based on the lowest validation loss or the highest validation unsupervised
metrics Tsitsulin et al. (2023), evaluated after each training epoch, with training of 15 epochs. We
employ 24-dimensional embeddings for categorical features and clipped the number of categories
for features with many unique values. We apply either an identical mapping or a logarithmic trans-
formation for numerical features. We use the gradient boosting algorithm available in PySpark ML
for downstream tasks.
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Figure 2: Model performance comparison on private and public data. Kendall-Tau=0.94

5.2 DOWNSTREAM TASKS

5.2.1 MBD: CAMPAIGNING TASK

This Subsection contains experimental results for the campaigning task in the MBD dataset in uni-
modal and multimodal baselines. One of the main objectives of our paper is to provide a real data
benchmark to facilitate the development of multimodal algorithms. To achieve this, it is necessary
to demonstrate that an algorithm outperforming another on our public benchmark will similarly
outperform it on real data.

Table 2 shows that the transaction modality plays the most crucial role in achieving accurate clas-
sification. In contrast, dialogues and geostream, when used in an unimodal setting, perform only
slightly better than a random estimator. However, as shown in Table 3, the predictive performance
improved significantly in the multimodal setting by integrating additional modalities. The overall
trend indicates a consistent improvement in validation metrics as more modalities are incorporated.
Specifically, the multimodal late fusion approach enhances predictive accuracy by 1-1,5% when
adding other data sources to the transaction stream.

Fig. 2 highlights a strong correlation between performance metrics on public and private datasets,
with a Kendall-tau correlation coefficient of 0.94. Hence, the anonymization process has minimal
impact on model performance for the downstream task of campaigning. The consistency in relative
ranking across both datasets underscores the reliability of our benchmark for advancing research in
multimodal event sequence analysis.

More detailed comparison of result on MBD and the private dataset and comprehensive results for
each modality and all possible fusion combinations of multiple modalities are shown in Appendix B
(Tables 9 - 12). Our modalities, namely, geostream, transactions, and dialogues, are denoted as Geo,
Trx, and Dialogs, respectively. To specify a method applied to a modality, we use a clear notation.
For instance, if embeddings from the CoLES model are applied to transactions, we denote this as
TrxCoLES.

5.2.2 DATAFUSION: HIGHER EDUCATION

In this subsection, we present the results of unimodal and multimodal experiments on the DataFu-
sion dataset, as shown in Tables 2 and 3. While the dataset is small, leading to an insignificant
increase in quality metrics when incorporating additional sources in multimodal settings, the results
in both unimodal and multimodal configurations remain valuable as they contribute to expanding
our benchmark.
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Table 2: Mean ROC-AUC of downstream results using unimodal methods.
Model MBD Datafusion Alphabattle

Transactions Geostream Transactions Clickstream Transactions
Aggregation 0.783 ± 0.002 0.595 ± 0.002 0.793 ± 0.013 0.537 ± 0.018 0.785 ± 0.0010
CoLES 0.773 ± 0.002 0.598 ± 0.004 0.784 ± 0.012 0.641 ± 0.013 0.793 ± 0.0005
TabBERT 0.762 ± 0.004 0.603 ± 0.002 0.762 ± 0.014 0.590 ± 0.026 0.778 ± 0.0003
TabGPT 0.802 ± 0.002 0.621 ± 0.003 0.766 ± 0.013 0.618 ± 0.016 0.775 ± 0.0010
Supervised RNN 0.819 ± 0.002 0.540 ± 0.012 0.712 ± 0.016 0.563 ± 0.011 0.792 ± 0.0030

Table 3: Mean ROC-AUC in late fusion setting.
Dataset Modalities CoLES TabGPT TabBERT Supervised RNN
MBD Trx 0.773 ± 0.002 0.802 ± 0.001 0.762 ± 0.004 0.819 ± 0.002

Trx + Geo 0.775 ± 0.002 0.800 ± 0.001 0.764 ± 0.004 0.819 ± 0.001
Trx + Dialog 0.781 ± 0.002 0.810 ± 0.002 0.773 ± 0.003 0.821 ± 0.0006
Trx + Dialog + Geo 0.783 ± 0.002 0.808 ± 0.001 0.775 ± 0.003 0.824 ± 0.001

Datafusion Trx 0.784 ± 0.012 0.766 ± 0.013 0.762 ± 0.014 0.712 ± 0.015
Trx + Click 0.785 ± 0.011 0.766 ± 0.011 0.761 ± 0.012 0.703 ± 0.008

5.2.3 ALPHABATTLE: DEFAULT

In Table 2, we present the metrics for unimodal methods on the Alphabattle dataset. Interestingly,
the results demonstrate that supervised methods on both the MBD and Alphabattle datasets perform
as well as, or better than, unsupervised methods. This may be attributed to the dataset size and the
amount of labeled data available.

5.2.4 MULTIMODAL MATCHING TASK

In this subsection, we present the results of our proposed multimodal matching benchmark, sum-
marized in Table 4, which includes both MBD and Datafusion datasets. Detailed results for other
modalities can be found in Appendix B, in Table 7. We report Recall@1, Recall@50, and Re-
call@100 for each modality, measured in both directions. For example, in the case of the transaction
and geostream pair for MBD, we compute both Trx2Geo and Geo2Trx, allowing for an evaluation
of alignment from both perspectives.

For MBD, our analysis reveals considerable variation in performance across different modality pairs.
Specifically, dialogue data consistently exhibits weaker matching performance compared to other
modalities, such as transactions and geostream, demonstrating significantly stronger alignment. This
disparity suggests potential limitations within the dialogue modality, indicating that it may offer
less complementary or aligned information. Alternatively, the unique structure of dialogue data
may necessitate more sophisticated or specialized techniques for effective integration with other
modalities. We also present the multimodal matching results for the DataFusion dataset.

5.3 COMPARISON OF MULTIMODAL FUSION METHODS

In this subsection, we evaluate the performance of multimodal fusion techniques across multiple
datasets. For this analysis, we select the best-performing models for Blending and Late Fusion to
compare against Early Fusion. As shown in Table 5, Late Fusion with a Supervised RNN con-
sistently delivers superior results on the MBD dataset, demonstrating its robustness in effectively
integrating multimodal data. Early Fusion, implemented via the cross-attention from CrossTrans-
former Zhang & Yan (2023), achieves competitive performance but slightly lags behind Late Fusion
while Blending exhibits considerably weaker results. On the Datafusion dataset, Late Fusion with
TabGPT is the most effective method, with Early Fusion also performing well and outperforming
Late Fusion with a Supervised RNN. Blending, in contrast, consistently yields the lowest perfor-
mance across all modalities. These findings highlight the effectiveness and reliability of Late Fusion
for multimodal data integration while identifying Early Fusion as a promising direction for further
research and optimization.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Multimodal matching task
Dataset Modalities Recall@1 Recall@50 Recall@100
MBD Trx2Geo 0.006 ± 0.0003 0.196 ± 0.002 0.303 ± 0.004

Geo2Trx 0.004 ± 0.0003 0.162 ± 0.002 0.262 ± 0.004
Datafusion Trx2Click 0.002 ± 0.0010 0.063 ± 0.004 0.120 ± 0.009

Click2Trx 0.001 ± 0.0007 0.070 ± 0.005 0.115 ± 0.008

Table 5: Comparison of Multimodal Fusion Techniques: Blending, Late Fusion, and Early Fusion.
Dataset Modalities Blending Late Fusion Early Fusion

TabGPT TabGPT Supervised RNN CrossTransformer
MBD Trx + Geo 0.804 ± 0.001 0.800 ± 0.001 0.819 ± 0.001 0.815 ± 0.001

Trx + Dialog 0.742 ± 0.001 0.810 ± 0.002 0.821 ± 0.0006 0.821 ± 0.002
Datafusion Trx + Click 0.756 ± 0.013 0.766 ± 0.011 0.703 ± 0.008 0.735 ± 0.010

6 LIMITATIONS

Data was subject to de-identification, which limits the possibility of using models trained on this
dataset outside of it. Also, the data analysis results can not be generalized. In other words, based on
this dataset, it is impossible to draw conclusions regarding specific regions and market characteris-
tics or perform deep text analytics. However, within our benchmark, the data is consistent, which
allows us to draw correct conclusions about the performance of multimodal or unimodal methods
for working with sequences. It is also worth noting that the study was conducted on a sample of
clients of a certain segment who had the opportunity to purchase certain products and does not cover
all possible groups of consumers.

7 CONCLUSION AND FUTURE WORK

In this paper, we present the first large-scale, publicly available multimodal banking dataset, MBD,
which comprises anonymized sequential data, including bank transactions, geo-locations, and tech-
nical support dialogues for more than 2 million bank clients. Our findings indicate that anonymiza-
tion does not significantly affect algorithm performance, making the dataset ideal for selecting mod-
els suitable for deployment in real-world production environments. Furthermore, excluding sensi-
tive attributes such as gender, age, and race mitigates the potential for bias in the resulting models,
promoting the development of more ethical AI systems.

Moreover, MBD, together with the Datafusion and Alphabattle datasets, serves as the foundation
for a novel benchmark targeting key practical downstream tasks. This benchmark paves the way
for the development of scalable algorithms, both multimodal and unimodal, with potential applica-
tions in event sequence prediction across various industries. Our experimental results demonstrate
that even basic multimodal fusion techniques surpass single-modal baselines in overall model qual-
ity (Table 3). Furthermore, based on our results of Late and Early Fusion (Table 5), it is possible
to develop more advanced models that can effectively capture interactions between modalities, to
achieve further improvements in overall performance. Given the scale of data and its real-world ap-
plicability, even moderate improvements in model performance metrics can translate into substantial
financial benefits when applied to a large customer base.

In the future, we are going to extend the dataset to its new versions. First, it is necessary to in-
corporate new data sources, which will predominantly be utilized as additional data sources (e.g.,
clickstreams or enriched dialogue features, e.g., discussed topics). Second, it is important to expand
a set of downstream tasks to campaigning for other financial products and analyzing customer be-
havior insights (customer churn, fraud detection, credit risk assessment). Finally, it is possible to
extend the time range of the dataset, enabling longitudinal studies and trend analysis.
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A DATASET STATISTICS AND DATA SAMPLES

In this section, we present data samples from various modalities and a histogram of sequence lengths.
Table 6 provides a list of attributes for the transactional modalities, while Figure 3 illustrates the
distribution of sequence lengths for these modalities. Additionally, Figure 6 shows a sample of geo-
graphical data, and Figure 7 displays the distribution of sequence lengths for geostream modalities.
For dialogue data, a sample is presented in Figure 4, with the distribution of sequence lengths for
dialogue events shown in Figure 5.Figure 8 demonstrates a sample of data for product purchases.
Here, we observe that geographical and transactional modalities have long tails in the histogram of
distributions.
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Table 6: Transaction features
Features Number of categories Description
amount - transaction amount
event time - transaction time
currency 15 transfer currency
event type 56 transaction type
event subtype 62 transaction subtype
src type11 101 sender field type 1
src type12 536 sender field subtype 1
dst type11 123 receiver field type 1
dst type12 649 receiver field subtype 1
src type21 40131 sender field type 2
src type22 87 sender field subtype 2
src type31 2389 sender field type 3
src type32 88 sender field subtype 3
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Figure 3: The histogram of the number of clients with a certain length of transaction history

B DETAILED EXPERIMENTAL RESULTS

B.1 MULTIMODAL MATCHING

For the multimodal matching task Table 7, it is observed that the dialogue modality exhibits poor
compatibility when combined with other modalities.

B.2 HANDLING CLASS IMBALANCE

We conducted experiments on the MBD dataset, focusing on transaction modalities, and explored
various techniques including random undersampling, oversampling, and class balancing within gra-
dient boosting for CoLES embeddings. Additionally, stratified batching was applied to better align
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Figure 4: Sample data of dialogues modality.
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Figure 5: The histogram of the number of clients with a certain number of dialogues

Figure 6: Sample data of geostream modality.
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Figure 7: The histogram of the number of clients with a certain length of geostream

Figure 8: Example data of client’s purchases.
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Figure 9: Median amount per client for
private transaction data. The data reveals
a trend of increasing median amounts over
four years.
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Figure 10: Mean sequence length per
clients for private transaction data. The
mean sequence length has slightly increased
over the past four years

Table 7: MBD: Detailed multimodal matching results
Recall@1 Recall@50 Recall@100

Trx2Geo 0.006 ± 0.0003 0.1967 ± 0.002 0.303 ± 0.004
Geo2Trx 0.004 ± 0.0003 0.1624 ± 0.002 0.262 ± 0.004
Trx2Dial 0.00004 ± 0.00001 0.0001 ± 0.00005 0.003 ± 0.0001
Dial2Trx 0.00003 ± 0.00001 0.001 ± 0.00005 0.003 ± 0.0001
Dial2Geo 0.00002 ± 0.000001 0.0006 ± 0.00001 0.001 ± 0.0001
Geo2Dial 0.00002 ± 0.000001 0.0005 ± 0.00001 0.001 ± 0.0001

the target distribution in Supervised RNN. The results of these experiments are summarized in Ta-
ble 8.

Here, stratified batching consistently maintains a high ROC-AUC of 0.819 for Supervised RNN,
demonstrating its robustness to label imbalance. For CoLES embeddings, balancing techniques
result in minimal variations in performance, with ROC-AUC values ranging from 0.772 to 0.774.
This indicates that CoLES embeddings exhibit limited sensitivity to label imbalance, highlighting
the potential need for more advanced balancing strategies to achieve further improvements.

B.3 CAMPAINING RESULTS ON THE PRIVATE DATASET AND MBD

The experimental results presented in Tables 11 and 12 underscore the pivotal importance of modal-
ity fusion in enhancing model performance. Here, integrating dialogue data with transaction data
leads to a significant performance boost. For instance, augmenting TrxTabGPT with DialogLast re-
sults in a 1.8% improvement in the mean metric for blending and a 3.4% enhancement in fusion. The
most substantial performance gains are observed when all modalities are combined. Specifically, the
integration of TrxTabGPT, GeoTabGPT, and DialogLast yields a 2% improvement over unimodal
transaction models and a 3.2% improvement in late fusion, highlighting the synergistic benefits of
incorporating dialogue and geographical data into transaction-based models. These findings provide
robust evidence supporting the effectiveness of multimodal integration. The inclusion of dialogue
and geographical data significantly boosts the performance of models centered on transaction data.
Moreover, this trend observed in public datasets is consistently replicated in proprietary data, as
shown in Tables 9 and 10.

These results also prove the low impact of our anonymization procedure. Indeed, the ranking of
methods remains consistent despite differences in absolute metric values. As shown in Table 10,
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Table 8: Performance Comparison for Label Imbalance on MBD (Transactions)
Method Description ROC-AUC
Supervised RNN Baseline 0.819
Supervised RNN (stratified batching) Balanced target distribution 0.819
CoLES Baseline embeddings 0.773
CoLES (undersampling) Random undersampling applied 0.772
CoLES (oversampling) Random oversampling applied 0.774
CoLES (class balanced) Class balancing in gradient boosting 0.774

Table 9: Blending results on private dataset
methods mean target 1 target 2 target 3 target 4
DialogLast 0.590 ± 0.001 0.633 ± 0.001 0.604 ± 0.005 0.549 ± 0.002 0.576 ± 0.002
DialogLast+GeoAggregation 0.603 ± 0.002 0.632 ± 0.001 0.629 ± 0.007 0.558 ± 0.001 0.592 ± 0.002
DialogLast+GeoCoLES 0.632 ± 0.002 0.641 ± 0.001 0.688 ± 0.008 0.580 ± 0.002 0.619 ± 0.003
DialogLast+GeoTabGPT 0.648 ± 0.002 0.654 ± 0.001 0.715 ± 0.008 0.591 ± 0.003 0.632 ± 0.003
DialogLast+GeoTabBERT 0.628 ± 0.001 0.641 ± 0.002 0.683 ± 0.006 0.579 ± 0.002 0.610 ± 0.006
DialogLast+TrxAggregation 0.731 ± 0.001 0.701 ± 0.001 0.816 ± 0.003 0.673 ± 0.001 0.735 ± 0.002
DialogLast+TrxAggregation+GeoAggregation 0.729 ± 0.001 0.694 ± 0.001 0.812 ± 0.003 0.670 ± 0.001 0.738 ± 0.003
DialogLast+TrxCoLES 0.715 ± 0.002 0.692 ± 0.002 0.800 ± 0.005 0.645 ± 0.002 0.723 ± 0.005
DialogLast+TrxCoLES+GeoCoLES 0.720 ± 0.002 0.689 ± 0.003 0.815 ± 0.003 0.644 ± 0.002 0.734 ± 0.005
DialogLast+TrxTabGPT 0.739 ± 0.001 0.683 ± 0.001 0.820 ± 0.005 0.685 ± 0.001 0.767 ± 0.005
DialogLast+TrxTabGPT+GeoTabGPT 0.749 ± 0.002 0.690 ± 0.001 0.838 ± 0.005 0.687 ± 0.001 0.780 ± 0.005
DialogLast+TrxTabBERT 0.710 ± 0.006 0.686 ± 0.004 0.806 ± 0.004 0.628 ± 0.006 0.720 ± 0.012
DialogLast+TrxTabBERT+GeoTabBERT 0.716 ± 0.005 0.683 ± 0.003 0.821 ± 0.003 0.627 ± 0.006 0.731 ± 0.009
DialogMean 0.604 ± 0.001 0.636 ± 0.002 0.629 ± 0.001 0.564 ± 0.001 0.587 ± 0.001
DialogMean+GeoAggregation 0.613 ± 0.001 0.635 ± 0.002 0.648 ± 0.001 0.568 ± 0.001 0.601 ± 0.002
DialogMean+GeoCoLES 0.638 ± 0.002 0.643 ± 0.002 0.699 ± 0.005 0.585 ± 0.001 0.626 ± 0.001
DialogMean+GeoTabGPT 0.653 ± 0.001 0.656 ± 0.001 0.725 ± 0.005 0.595 ± 0.002 0.638 ± 0.003
DialogMean+GeoTabBERT 0.635 ± 0.002 0.643 ± 0.002 0.696 ± 0.004 0.584 ± 0.001 0.617 ± 0.006
DialogMean+TrxAggregation 0.732 ± 0.001 0.700 ± 0.001 0.816 ± 0.003 0.673 ± 0.001 0.739 ± 0.001
DialogMean+TrxAggregation+GeoAggregation 0.729 ± 0.001 0.694 ± 0.001 0.812 ± 0.004 0.670 ± 0.001 0.741 ± 0.002
DialogMean+TrxCoLES 0.715 ± 0.002 0.692 ± 0.002 0.800 ± 0.004 0.645 ± 0.002 0.725 ± 0.004
DialogMean+TrxCoLES+GeoCoLES 0.721 ± 0.002 0.689 ± 0.003 0.813 ± 0.003 0.644 ± 0.002 0.737 ± 0.004
DialogMean+TrxTabGPT 0.739 ± 0.001 0.682 ± 0.001 0.819 ± 0.005 0.684 ± 0.001 0.769 ± 0.004
DialogMean+TrxTabGPT+GeoTabGPT 0.748 ± 0.001 0.689 ± 0.001 0.837 ± 0.004 0.686 ± 0.001 0.782 ± 0.004
DialogMean+TrxTabBERT 0.711 ± 0.006 0.685 ± 0.004 0.806 ± 0.005 0.629 ± 0.005 0.726 ± 0.011
DialogMean+TrxTabBERT+GeoTabBERT 0.717 ± 0.005 0.682 ± 0.003 0.821 ± 0.004 0.628 ± 0.006 0.735 ± 0.009
GeoAggregation 0.554 ± 0.001 0.540 ± 0.001 0.584 ± 0.002 0.534 ± 0.001 0.559 ± 0.001
GeoCoLES 0.601 ± 0.004 0.565 ± 0.004 0.668 ± 0.011 0.571 ± 0.003 0.600 ± 0.003
GeoTabGPT 0.622 ± 0.001 0.589 ± 0.001 0.700 ± 0.008 0.586 ± 0.003 0.615 ± 0.004
GeoTabBERT 0.596 ± 0.002 0.566 ± 0.003 0.663 ± 0.010 0.570 ± 0.003 0.585 ± 0.007
TrxAggregation 0.783 ± 0.001 0.743 ± 0.001 0.825 ± 0.002 0.764 ± 0.001 0.801 ± 0.002
TrxAggregation+GeoAggregation 0.774 ± 0.001 0.733 ± 0.001 0.817 ± 0.003 0.756 ± 0.001 0.789 ± 0.003
TrxCoLES 0.772 ± 0.002 0.734 ± 0.003 0.813 ± 0.004 0.747 ± 0.002 0.793 ± 0.003
TrxCoLES+GeoCoLES 0.772 ± 0.002 0.729 ± 0.003 0.825 ± 0.006 0.740 ± 0.002 0.795 ± 0.003
TrxTabGPT 0.796 ± 0.000 0.746 ± 0.001 0.837 ± 0.004 0.778 ± 0.001 0.825 ± 0.004
TrxTabGPT+GeoTabGPT 0.798 ± 0.001 0.743 ± 0.001 0.850 ± 0.003 0.772 ± 0.001 0.827 ± 0.004
TrxTabBERT 0.754 ± 0.011 0.707 ± 0.019 0.815 ± 0.006 0.717 ± 0.012 0.778 ± 0.012
TrxTabBERT+GeoTabBERT 0.758 ± 0.010 0.707 ± 0.016 0.831 ± 0.006 0.713 ± 0.011 0.781 ± 0.010

TrxTabGPT (ROC-AUC 0.796) and TrxAggregation (ROC-AUC 0.780) achieve the best perfor-
mance on the private dataset. Similarly, TrxTabGPT leads on the public dataset with a ROC-AUC
of 0.802 (Table 12). Incorporating geolocation and dialogue modalities further improves results,
with DialogLast+TrxTabGPT+GeoTabGPT attaining the highest ROC-AUC on both datasets: 0.802
on the private dataset (Table 10) and 0.808 on the public dataset (Table 12). Overall, multimodal
approaches utilizing TabGPT or Aggregation demonstrate superior performance, with Late Fusion
consistently outperforming Blending across private and public datasets (compare results in Table 9
and Table 11 to those in Table 10 and Table 12).
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Table 10: Late Fusion results on private dataset
methods mean target 1 target 2 target 3 target 4
DialogLast 0.590 ± 0.001 0.633 ± 0.001 0.604 ± 0.005 0.549 ± 0.002 0.576 ± 0.002
DialogLast+GeoAggregation 0.636 ± 0.001 0.603 ± 0.001 0.649 ± 0.003 0.645 ± 0.001 0.648 ± 0.002
DialogLast+GeoCoLES 0.647 ± 0.002 0.615 ± 0.002 0.660 ± 0.006 0.650 ± 0.002 0.663 ± 0.003
DialogLast+GeoTabGPT 0.654 ± 0.002 0.631 ± 0.001 0.673 ± 0.005 0.652 ± 0.002 0.662 ± 0.002
DialogLast+GeoTabBERT 0.642 ± 0.003 0.613 ± 0.002 0.655 ± 0.009 0.646 ± 0.001 0.655 ± 0.004
DialogLast+TrxAggregation 0.788 ± 0.001 0.749 ± 0.001 0.826 ± 0.003 0.772 ± 0.001 0.805 ± 0.004
DialogLast+TrxAggregation+GeoAggregation 0.787 ± 0.001 0.746 ± 0.001 0.826 ± 0.004 0.773 ± 0.001 0.804 ± 0.002
DialogLast+TrxCoLES 0.776 ± 0.002 0.739 ± 0.003 0.814 ± 0.004 0.753 ± 0.002 0.797 ± 0.003
DialogLast+TrxCoLES+GeoCoLES 0.777 ± 0.002 0.739 ± 0.004 0.816 ± 0.004 0.755 ± 0.003 0.798 ± 0.002
DialogLast+TrxTabGPT 0.805 ± 0.001 0.775 ± 0.001 0.842 ± 0.002 0.778 ± 0.002 0.823 ± 0.005
DialogLast+TrxTabGPT+GeoTabGPT 0.802 ± 0.001 0.764 ± 0.001 0.845 ± 0.002 0.777 ± 0.001 0.820 ± 0.004
DialogLast+TrxTabBERT 0.764 ± 0.009 0.715 ± 0.019 0.817 ± 0.007 0.734 ± 0.007 0.789 ± 0.008
DialogLast+TrxTabBERT+GeoTabBERT 0.765 ± 0.009 0.714 ± 0.019 0.819 ± 0.006 0.738 ± 0.007 0.789 ± 0.008
DialogMean 0.604 ± 0.001 0.636 ± 0.002 0.629 ± 0.001 0.564 ± 0.001 0.587 ± 0.001
DialogMean+GeoAggregation 0.642 ± 0.001 0.605 ± 0.002 0.658 ± 0.002 0.650 ± 0.001 0.654 ± 0.001
DialogMean+GeoCoLES 0.653 ± 0.001 0.618 ± 0.002 0.670 ± 0.002 0.656 ± 0.001 0.669 ± 0.001
DialogMean+GeoTabGPT 0.661 ± 0.001 0.633 ± 0.001 0.681 ± 0.004 0.657 ± 0.002 0.671 ± 0.002
DialogMean+GeoTabBERT 0.648 ± 0.003 0.613 ± 0.003 0.666 ± 0.005 0.652 ± 0.002 0.662 ± 0.004
DialogMean+TrxAggregation 0.788 ± 0.000 0.749 ± 0.001 0.825 ± 0.003 0.773 ± 0.001 0.804 ± 0.001
DialogMean+TrxAggregation+GeoAggregation 0.787 ± 0.001 0.746 ± 0.001 0.825 ± 0.002 0.773 ± 0.001 0.804 ± 0.003
DialogMean+TrxCoLES 0.776 ± 0.002 0.739 ± 0.003 0.814 ± 0.004 0.753 ± 0.002 0.798 ± 0.003
DialogMean+TrxCoLES+GeoCoLES 0.777 ± 0.002 0.739 ± 0.002 0.815 ± 0.003 0.755 ± 0.003 0.799 ± 0.002
DialogMean+TrxTabGPT 0.805 ± 0.001 0.775 ± 0.001 0.843 ± 0.001 0.778 ± 0.002 0.824 ± 0.004
DialogMean+TrxTabGPT+GeoTabGPT 0.802 ± 0.001 0.764 ± 0.001 0.845 ± 0.002 0.777 ± 0.001 0.821 ± 0.003
DialogMean+TrxTabBERT 0.765 ± 0.009 0.715 ± 0.019 0.817 ± 0.006 0.735 ± 0.006 0.792 ± 0.007
DialogMean+TrxTabBERT+GeoTabBERT 0.766 ± 0.009 0.714 ± 0.019 0.819 ± 0.006 0.738 ± 0.006 0.792 ± 0.007
GeoAggregation 0.554 ± 0.001 0.540 ± 0.001 0.584 ± 0.002 0.534 ± 0.001 0.559 ± 0.001
GeoCoLES 0.601 ± 0.004 0.565 ± 0.004 0.668 ± 0.011 0.571 ± 0.003 0.600 ± 0.003
GeoTabGPT 0.622 ± 0.001 0.589 ± 0.001 0.700 ± 0.008 0.586 ± 0.003 0.615 ± 0.004
GeoTabBERT 0.596 ± 0.002 0.566 ± 0.003 0.663 ± 0.010 0.570 ± 0.003 0.585 ± 0.007
TrxAggregation 0.780 ± 0.005 0.743 ± 0.001 0.824 ± 0.001 0.762 ± 0.001 0.791 ± 0.017
TrxAggregation+GeoAggregation 0.779 ± 0.004 0.740 ± 0.001 0.828 ± 0.002 0.762 ± 0.001 0.787 ± 0.013
TrxCoLES 0.772 ± 0.002 0.734 ± 0.003 0.813 ± 0.004 0.746 ± 0.001 0.793 ± 0.003
TrxCoLES+GeoCoLES 0.772 ± 0.002 0.734 ± 0.004 0.814 ± 0.004 0.749 ± 0.002 0.792 ± 0.002
TrxTabGPT 0.796 ± 0.000 0.745 ± 0.001 0.837 ± 0.004 0.777 ± 0.001 0.824 ± 0.005
TrxTabGPT+GeoTabGPT 0.796 ± 0.001 0.751 ± 0.002 0.843 ± 0.003 0.774 ± 0.001 0.816 ± 0.003
TrxTabBERT 0.754 ± 0.011 0.707 ± 0.019 0.815 ± 0.006 0.717 ± 0.012 0.778 ± 0.012
TrxTabBERT+GeoTabBERT 0.756 ± 0.011 0.707 ± 0.019 0.816 ± 0.005 0.722 ± 0.010 0.778 ± 0.012

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Blending results on public dataset
methods mean target 1 target 2 target 3 target 4
DialogLast 0.586 ± 0.001 0.602 ± 0.001 0.622 ± 0.004 0.554 ± 0.001 0.567 ± 0.002
DialogLast+GeoAggregation 0.600 ± 0.001 0.605 ± 0.000 0.648 ± 0.004 0.560 ± 0.001 0.585 ± 0.002
DialogLast+GeoCoLES 0.625 ± 0.003 0.615 ± 0.001 0.700 ± 0.005 0.577 ± 0.003 0.609 ± 0.003
DialogLast+GeoTabGPT 0.642 ± 0.002 0.629 ± 0.001 0.725 ± 0.007 0.589 ± 0.002 0.623 ± 0.002
DialogLast+GeoTabBERT 0.629 ± 0.001 0.616 ± 0.001 0.709 ± 0.006 0.577 ± 0.002 0.613 ± 0.001
DialogLast+TrxAggregation 0.732 ± 0.002 0.685 ± 0.001 0.826 ± 0.004 0.688 ± 0.001 0.731 ± 0.003
DialogLast+TrxAggregation+GeoAggregation 0.731 ± 0.002 0.681 ± 0.001 0.825 ± 0.005 0.684 ± 0.001 0.736 ± 0.003
DialogLast+TrxCoLES 0.714 ± 0.001 0.675 ± 0.001 0.806 ± 0.004 0.658 ± 0.002 0.715 ± 0.003
DialogLast+TrxCoLES+GeoCoLES 0.720 ± 0.001 0.673 ± 0.002 0.822 ± 0.004 0.657 ± 0.002 0.728 ± 0.002
DialogLast+TrxTabGPT 0.743 ± 0.002 0.677 ± 0.001 0.834 ± 0.004 0.697 ± 0.001 0.766 ± 0.003
DialogLast+TrxTabGPT+GeoTabGPT 0.753 ± 0.001 0.684 ± 0.001 0.848 ± 0.004 0.700 ± 0.001 0.779 ± 0.003
DialogLast+TrxTabBERT 0.710 ± 0.005 0.669 ± 0.003 0.814 ± 0.006 0.640 ± 0.008 0.715 ± 0.007
DialogLast+TrxTabBERT+GeoTabBERT 0.718 ± 0.004 0.670 ± 0.003 0.828 ± 0.005 0.641 ± 0.008 0.733 ± 0.006
DialogMean 0.595 ± 0.002 0.600 ± 0.001 0.633 ± 0.006 0.566 ± 0.001 0.580 ± 0.002
DialogMean+GeoAggregation 0.607 ± 0.001 0.604 ± 0.000 0.657 ± 0.004 0.572 ± 0.000 0.596 ± 0.002
DialogMean+GeoCoLES 0.630 ± 0.002 0.615 ± 0.001 0.703 ± 0.006 0.586 ± 0.002 0.618 ± 0.003
DialogMean+GeoTabGPT 0.645 ± 0.002 0.629 ± 0.001 0.727 ± 0.010 0.596 ± 0.001 0.630 ± 0.001
DialogMean+GeoTabBERT 0.634 ± 0.002 0.616 ± 0.002 0.713 ± 0.006 0.586 ± 0.002 0.621 ± 0.002
DialogMean+TrxAggregation 0.732 ± 0.001 0.684 ± 0.001 0.824 ± 0.001 0.688 ± 0.001 0.732 ± 0.002
DialogMean+TrxAggregation+GeoAggregation 0.731 ± 0.001 0.679 ± 0.000 0.822 ± 0.002 0.684 ± 0.001 0.737 ± 0.002
DialogMean+TrxCoLES 0.713 ± 0.001 0.674 ± 0.001 0.804 ± 0.002 0.659 ± 0.002 0.717 ± 0.003
DialogMean+TrxCoLES+GeoCoLES 0.719 ± 0.001 0.672 ± 0.002 0.819 ± 0.003 0.658 ± 0.002 0.729 ± 0.002
DialogMean+TrxTabGPT 0.742 ± 0.001 0.675 ± 0.001 0.829 ± 0.004 0.697 ± 0.001 0.766 ± 0.003
DialogMean+TrxTabGPT+GeoTabGPT 0.751 ± 0.001 0.682 ± 0.001 0.845 ± 0.004 0.700 ± 0.001 0.779 ± 0.004
DialogMean+TrxTabBERT 0.709 ± 0.004 0.668 ± 0.003 0.812 ± 0.008 0.642 ± 0.007 0.717 ± 0.006
DialogMean+TrxTabBERT+GeoTabBERT 0.718 ± 0.003 0.668 ± 0.003 0.826 ± 0.006 0.643 ± 0.007 0.734 ± 0.006
GeoAggregation 0.555 ± 0.001 0.539 ± 0.000 0.590 ± 0.002 0.533 ± 0.001 0.560 ± 0.001
GeoCoLES 0.598 ± 0.004 0.568 ± 0.003 0.663 ± 0.005 0.568 ± 0.007 0.593 ± 0.005
GeoTabGPT 0.621 ± 0.003 0.589 ± 0.002 0.696 ± 0.010 0.586 ± 0.002 0.614 ± 0.002
GeoTabBERT 0.603 ± 0.002 0.573 ± 0.003 0.672 ± 0.007 0.570 ± 0.004 0.598 ± 0.004
TrxAggregation 0.788 ± 0.001 0.743 ± 0.003 0.831 ± 0.002 0.777 ± 0.001 0.800 ± 0.002
TrxAggregation+GeoAggregation 0.778 ± 0.002 0.733 ± 0.002 0.822 ± 0.004 0.767 ± 0.001 0.790 ± 0.002
TrxCoLES 0.774 ± 0.002 0.734 ± 0.002 0.812 ± 0.004 0.759 ± 0.002 0.790 ± 0.003
TrxCoLES+GeoCoLES 0.775 ± 0.001 0.730 ± 0.002 0.827 ± 0.004 0.751 ± 0.003 0.792 ± 0.002
TrxTabGPT 0.802 ± 0.001 0.751 ± 0.001 0.844 ± 0.002 0.788 ± 0.002 0.826 ± 0.003
TrxTabGPT+GeoTabGPT 0.804 ± 0.001 0.748 ± 0.001 0.854 ± 0.002 0.784 ± 0.001 0.829 ± 0.003
TrxTabBERT 0.762 ± 0.004 0.717 ± 0.006 0.819 ± 0.004 0.734 ± 0.006 0.778 ± 0.006
TrxTabBERT+GeoTabBERT 0.766 ± 0.004 0.717 ± 0.006 0.831 ± 0.005 0.729 ± 0.007 0.786 ± 0.005
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Table 12: Late Fusion results on public dataset
methods mean target 1 target 2 target 3 target 4
DialogLast 0.586 ± 0.001 0.602 ± 0.001 0.622 ± 0.004 0.554 ± 0.001 0.567 ± 0.002
DialogLast+GeoAggregation 0.646 ± 0.001 0.614 ± 0.001 0.659 ± 0.003 0.654 ± 0.001 0.657 ± 0.001
DialogLast+GeoCoLES 0.660 ± 0.001 0.633 ± 0.002 0.675 ± 0.004 0.661 ± 0.001 0.671 ± 0.003
DialogLast+GeoTabGPT 0.668 ± 0.001 0.645 ± 0.001 0.690 ± 0.004 0.662 ± 0.001 0.674 ± 0.002
DialogLast+GeoTabBERT 0.662 ± 0.001 0.633 ± 0.002 0.680 ± 0.003 0.662 ± 0.001 0.675 ± 0.002
DialogLast+TrxAggregation 0.792 ± 0.002 0.752 ± 0.001 0.829 ± 0.001 0.780 ± 0.001 0.805 ± 0.006
DialogLast+TrxAggregation+GeoAggregation 0.791 ± 0.001 0.750 ± 0.001 0.829 ± 0.005 0.782 ± 0.001 0.803 ± 0.001
DialogLast+TrxCoLES 0.782 ± 0.001 0.746 ± 0.003 0.814 ± 0.003 0.765 ± 0.002 0.802 ± 0.003
DialogLast+TrxCoLES+GeoCoLES 0.783 ± 0.001 0.745 ± 0.004 0.819 ± 0.003 0.767 ± 0.001 0.803 ± 0.002
DialogLast+TrxTabGPT 0.810 ± 0.001 0.779 ± 0.001 0.846 ± 0.003 0.789 ± 0.002 0.827 ± 0.004
DialogLast+TrxTabGPT+GeoTabGPT 0.808 ± 0.001 0.770 ± 0.001 0.849 ± 0.003 0.790 ± 0.001 0.824 ± 0.004
DialogLast+TrxTabBERT 0.773 ± 0.002 0.730 ± 0.006 0.822 ± 0.005 0.749 ± 0.004 0.792 ± 0.003
DialogLast+TrxTabBERT+GeoTabBERT 0.776 ± 0.003 0.729 ± 0.006 0.827 ± 0.004 0.752 ± 0.004 0.794 ± 0.003
DialogMean 0.595 ± 0.002 0.600 ± 0.001 0.633 ± 0.006 0.566 ± 0.001 0.580 ± 0.002
DialogMean+GeoAggregation 0.649 ± 0.001 0.614 ± 0.001 0.665 ± 0.002 0.656 ± 0.001 0.662 ± 0.001
DialogMean+GeoCoLES 0.663 ± 0.001 0.632 ± 0.002 0.680 ± 0.004 0.663 ± 0.000 0.675 ± 0.002
DialogMean+GeoTabGPT 0.670 ± 0.001 0.645 ± 0.000 0.694 ± 0.004 0.664 ± 0.001 0.678 ± 0.001
DialogMean+GeoTabBERT 0.664 ± 0.001 0.633 ± 0.001 0.682 ± 0.002 0.664 ± 0.001 0.678 ± 0.001
DialogMean+TrxAggregation 0.792 ± 0.002 0.752 ± 0.002 0.828 ± 0.002 0.781 ± 0.001 0.807 ± 0.006
DialogMean+TrxAggregation+GeoAggregation 0.792 ± 0.002 0.750 ± 0.002 0.829 ± 0.002 0.782 ± 0.001 0.807 ± 0.005
DialogMean+TrxCoLES 0.781 ± 0.001 0.745 ± 0.003 0.814 ± 0.002 0.765 ± 0.002 0.802 ± 0.003
DialogMean+TrxCoLES+GeoCoLES 0.783 ± 0.001 0.744 ± 0.004 0.819 ± 0.003 0.767 ± 0.002 0.802 ± 0.002
DialogMean+TrxTabGPT 0.810 ± 0.002 0.779 ± 0.001 0.847 ± 0.004 0.789 ± 0.001 0.828 ± 0.003
DialogMean+TrxTabGPT+GeoTabGPT 0.808 ± 0.001 0.770 ± 0.001 0.848 ± 0.003 0.790 ± 0.001 0.826 ± 0.003
DialogMean+TrxTabBERT 0.773 ± 0.003 0.730 ± 0.006 0.822 ± 0.004 0.749 ± 0.004 0.791 ± 0.003
DialogMean+TrxTabBERT+GeoTabBERT 0.775 ± 0.003 0.728 ± 0.005 0.827 ± 0.003 0.752 ± 0.004 0.794 ± 0.004
GeoAggregation 0.555 ± 0.001 0.539 ± 0.000 0.590 ± 0.002 0.533 ± 0.001 0.560 ± 0.001
GeoCoLES 0.598 ± 0.004 0.568 ± 0.003 0.663 ± 0.005 0.568 ± 0.007 0.593 ± 0.005
GeoTabGPT 0.621 ± 0.003 0.589 ± 0.002 0.696 ± 0.010 0.586 ± 0.002 0.614 ± 0.002
GeoTabBERT 0.603 ± 0.002 0.573 ± 0.003 0.672 ± 0.007 0.570 ± 0.004 0.598 ± 0.004
TrxAggregation 0.783 ± 0.002 0.741 ± 0.003 0.828 ± 0.003 0.770 ± 0.004 0.792 ± 0.007
TrxAggregation+GeoAggregation 0.783 ± 0.002 0.740 ± 0.002 0.829 ± 0.003 0.771 ± 0.001 0.792 ± 0.011
TrxCoLES 0.773 ± 0.002 0.734 ± 0.002 0.812 ± 0.004 0.758 ± 0.002 0.790 ± 0.003
TrxCoLES+GeoCoLES 0.775 ± 0.002 0.734 ± 0.002 0.815 ± 0.004 0.760 ± 0.002 0.789 ± 0.003
TrxTabGPT 0.802 ± 0.001 0.751 ± 0.001 0.844 ± 0.002 0.787 ± 0.001 0.825 ± 0.003
TrxTabGPT+GeoTabGPT 0.800 ± 0.001 0.752 ± 0.001 0.846 ± 0.005 0.785 ± 0.002 0.817 ± 0.006
TrxTabBERT 0.762 ± 0.004 0.717 ± 0.006 0.819 ± 0.004 0.734 ± 0.006 0.777 ± 0.006
TrxTabBERT+GeoTabBERT 0.764 ± 0.004 0.716 ± 0.006 0.823 ± 0.004 0.737 ± 0.006 0.780 ± 0.005
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