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Abstract

Talking-head generation has progressed rapidly in recent years,
driven by advances in vision, speech, and generative modeling. Yet
despite this momentum, the field lacks a clear, consolidated un-
derstanding of how its research themes, datasets, and evaluation
practices have evolved. To address this gap, we curate a comprehen-
sive corpus of over 100 influential works and derive a coherent se-
mantic taxonomy that reveals the main directions shaping the area,
including speech-to-motion representation, style- and emotion-
aware animation, and high-fidelity diffusion models. Building on
this taxonomy, we present the first longitudinal analysis of datasets
and metrics used in talking-head generation from 2021 to 2025.
Our findings uncover distinct trends: increasing dependence on
audio-visual and emotion-rich datasets, and a rapid rise in newly
proposed evaluation metrics, especially those targeting expression
naturalness, audio-visual synchronization, and landmark accuracy
or driving-signal alignment. These patterns indicate a shift in the
community’s priorities from frame-level realism toward semantic
alignment, temporal coherence, and perceptual quality. By unifying
methodological structure with quantitative historical insights, this
survey offers concrete guidance for developing future talking-head
systems, choosing appropriate benchmarks, and designing mean-
ingful evaluation protocols. We expect the work to serve as a central
reference for advancing expressive, controllable, and perceptually
aligned talking-head generation. Our appendix is available here.
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1 Introduction

Talking-head generation [6, 18, 21, 23, 33-35, 45, 47, 66], synthesiz-
ing realistic and expressive human head motions from audio, text,
or driving signals, has rapidly transformed from a niche problem
into a central capability for digital humans, virtual communication,
education, entertainment, and accessibility technologies. Fueled by
advances in deep generative modeling, modern systems can now
produce high-fidelity facial motion [59, 63], nuanced emotional
expression [20, 40], and identity-preserving appearance from mini-
mal inputs [31, 58, 62]. The last five years, in particular, have seen
an explosion of new approaches spanning motion-representation
learning [12, 53], neural radiance fields (NeRFs) [14, 59], diffusion-
based synthesis [11, 40], and multimodal control [56]. This rapid
progress has pushed the field forward at an unprecedented pace,
but it has also made it increasingly challenging to understand the
broader landscape.

Despite this momentum, several fundamental questions remain
unanswered. What core problem formulations are driving current re-
search? How are the latest models different in terms of representation,
controllability, and expressiveness? Which datasets and evaluation
protocols are shaping the community’s standards, and how have they
changed over time? As new models emphasize emotion, style, or se-
mantic alignment, are existing metrics still adequate? And most
importantly, what emerging trends reveal where the field is heading
next? The literature has grown too quickly and too heterogeneously
for these questions to be answered through anecdotal understand-
ing alone [32, 46, 60].

Existing surveys and tutorials [10, 19, 38, 41, 65] cover only nar-
row subsets of talking-head generation, e.g., lip synchronization,
animation frameworks, or specific model families, and thus do not
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Figure 1: Hierarchical semantic taxonomy of 117 representative talking-head generation methods from 2021-2025. The taxonomy
shows ten major research directions that have naturally emerged from data-driven clustering of paper abstracts and titles,
spanning foundational advances, such as speech-to-motion representation learning, NeRF-based 3D heads, and high-fidelity
diffusion models, to higher-level themes in style control, emotion modeling, and multimodal fine-grained facial control.
Adjacent clusters highlight areas of conceptual convergence, including the rise of expressive, personalized, and identity-
preserving generation. The horizontal axis represents the linkage distance in hierarchical clustering, indicating the degree of
semantic dissimilarity between groups of methods. Collectively, the taxonomy offers a structured map of the field’s evolution,
illustrating how modern talking-head research is diversifying from low-level realism toward semantic alignment, controllability,
and fully generalizable portrait animation frameworks.
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capture the breadth, diversity, and evolution of the field. Meanwhile,
experimental practices have shifted dramatically: datasets have ex-
panded from celebrity video corpora [7, 30] to emotion-rich [25],
high-resolution [64], and multi-view collections [50]; metrics have
diversified from simple pixel-space measures [16, 51] to those eval-
uating semantic correctness [5, 13], audio-visual coherence [33, 57],
and driving-signal alignment [53]. Yet there is currently no system-
atic, quantitative analysis showing how these choices have evolved
and what they imply for future research.

To address these gaps, we curate a comprehensive corpus of
more than 100 influential papers from 2021-2025 and analyze them
through both semantic structure and experimental trends. Our goal
is not only to map the methodological landscape but also to provide
practical guidance for designing future systems, selecting appropri-
ate benchmarks, and developing meaningful evaluation standards.
The resulting survey aims to offer a clear, consolidated view of a
rapidly evolving research area, and to serve as a foundation for the
next generation of expressive, controllable, and perceptually aligned
talking-head models. Our main contributions are threefold:

i. A unified taxonomy of talking-head generation, derived from a
curated corpus of over 100 influential papers and revealing the
major research directions that define the current landscape.

ii. The firstlongitudinal analysis of datasets and evaluation metrics
(2021-2025), uncovering trends in dataset selection, benchmark
evolution, and the community’s shifting focus toward semantic,
temporal, and perceptual evaluation.

iii. Actionable guidance for future research, highlighting exper-
imental best practices, underexplored problem settings, and
emerging opportunities for building more expressive, control-
lable, and reliable talking-head generation systems.

We review existing surveys and studies in Appendix; below, we
present a unified perspective on this field from several aspects.

2 Framework for Unified Analysis

Appendix provides full details of the corpus curation process, se-
mantic taxonomy methodology, and experiment extraction pipeline.
Below we present our analytical framework and detailed analysis.

2.1 Analytical Framework

Our analytical framework is built on a curated corpus of 117 repre-
sentative talking-head generation papers, selected through a multi-
stage process designed to balance completeness and quality.

We begin with broad keyword-based retrieval from arXiv, then
enrich each entry with metadata and code links. Peer-reviewed pub-
lications are automatically retained, while arXiv-only preprints are
filtered using community impact signals, ensuring inclusion only
when the work has demonstrable influence (e.g., implementation
popularity). A final semantic screening removes papers that fall
outside the scope of explicit talking-head generation. This yields a
corpus that captures the major model families (e.g., GANs, NeRFs,
diffusion models, transformers, etc.), the dominant control modal-
ities (e.g., audio-driven, text-driven, motion-driven, etc.), and the
community’s most visible and methodologically mature contribu-
tions. From this corpus, we extract all dataset and evaluation-metric
information by parsing each paper’s experiment section and pro-
cessing it with a structured LLM-based extraction prompt. Dataset
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names, metric names, and training/testing splits are normalized
to unified identifiers, enabling consistent cross-paper comparison.
These standardized elements form the basis for our longitudinal
analyses of dataset usage and metric evolution.

To reveal the thematic structure of the field, we construct a hi-
erarchical semantic taxonomy using TF-IDF [39] representations
of titles and abstracts, followed by hierarchical agglomerative clus-
tering with Ward’s linkage. This method is chosen because it min-
imizes within-cluster variance and naturally exposes multi-level
topic organization. The resulting dendrogram provides a visual and
data-driven map of research themes, while cluster labels are refined
using a large language model to ensure interpretability.

This pipeline (e.g., representative corpus construction, structured
experiment extraction, and hierarchical semantic mapping) forms a
coherent framework that supports all subsequent analyses of trends,
practices, and emerging directions in talking-head generation.

2.2 Semantic Taxonomy of Research Directions

Figure 1 presents the hierarchical semantic taxonomy derived from
our corpus of 117 representative works, offering a view of how
the talking-head generation community has organically structured
itself over the past five years. It provides not just a static categoriza-
tion, but a conceptual map that shows how the field has evolved,
where current momentum is concentrated, and which thematic con-
nections may shape the next generation of talking-head systems.
Rather than imposing predefined categories, the taxonomy emerges
directly from data-driven clustering, showing ten coherent research
directions that together map the conceptual terrain of the field.

At the top of the taxonomy lie methodological backbones, such
as speech-to-motion representation learning, NeRFs for 3D talking
heads, and high-fidelity diffusion models. These clusters represent
the generative foundations underpinning most recent advances.
Their clear separation highlights how the community has diver-
sified beyond traditional encoder-decoder pipelines: NeRF-based
3D heads emphasize spatial consistency and view-dependence; dif-
fusion models drive improvements in realism and temporal stabil-
ity; and representation-learning methods focus on robust, speaker-
independent motion modeling. The size and density of these clusters
indicate that they collectively power much of the field’s technical
momentum. A second set of clusters reflects emerging forms of
control and expressiveness, including style-controllable and per-
sonalized animation, emotion-driven synthesis, multimodal fine-
grained facial control, and audio-visual synchronization modeling.
These areas illustrate a shift from lip-sync correctness toward richer
communicative behaviors, emotional nuance, stylistic identity, con-
trollable expressivity, and fine-grained semantic responsiveness.
Their close spatial proximity in the taxonomy shows that many
recent works operate at the intersection of these goals, blending
speech cues, emotional priors, and multimodal signals to achieve
more lifelike head motion.

Finally, two clusters, general-purpose portrait animation frame-
works and fully controllable identity-preserving talking heads,
capture systems that integrate multiple capabilities into unified
frameworks. These works often pull techniques from several up-
stream clusters, reflecting a trend toward versatile pipelines that
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support reenactment, instruction-based generation, long-term iden-
tity preservation, and user-controllable behavior. The prominent
position of these clusters suggests that the community increasingly
values practical, deployable solutions that can generalize across
identities, styles, and input modalities.

The taxonomy illustrates three key insights. First, the field has be-
come structurally multidimensional: progress is no longer driven
by a single innovation path, but by parallel advances across rep-
resentation, controllability, realism, and user alignment. Second,
there is a convergence toward models that reconcile expressive-
ness with reliability, seen in the adjacency of emotional, stylistic,
and identity-preserving clusters. Third, the boundaries between
categories are porous: many recent systems sit at the intersec-
tions, indicating a maturation of the field toward holistic, multi-
modal, and semantically grounded talking-head generation.

2.3 Longitudinal Trends in Dataset Usage

Figure 2 summarizes the longitudinal trends in dataset selection,
grouped into four major categories, face image datasets, audio
datasets, audio-visual datasets, and emotion-rich datasets, while
distinguishing training and testing usage. The figure exposes a clear
transition in the data foundations of talking-head research, reflect-
ing the community’s expanding requirements for expressiveness,
multimodal alignment, and performance generalization.

In the early years, the landscape is dominated by audio-visual
video datasets, particularly VoxCeleb1/2 7, 30], LRS2/3 [1, 2], and
GRID [9]. These datasets provided large-scale, speaker-diverse
audio-visual pairs, making them ideal for traditional lip-sync and
audio-driven head-motion models. Their consistent presence across
both training and testing indicates their role as de facto benchmarks
during this period. However, their relative dominance gradually
declines as more specialized datasets begin to enter the ecosys-
tem. From 2023 onward, we observe a rising dependence on high-
resolution and multi-view portrait datasets, as seen in the growing
use of CelebV-HQ [67], HDTF [64], and other sources. This trend
mirrors the shift toward 3D-aware and diffusion-based models (see
Figure 1), which require richer spatial variation, higher fidelity
appearances, and more consistent lighting conditions to train view-
consistent head renderers and NeRF-style representations.

A particularly notable trend is the steady increase in emotion
datasets used for both training and evaluation. Starting from al-
most negligible usage in 2021, emotion datasets, such as CREMA-
D [4] and RAVDESS [25], become substantially more common in
later years, especially by 2024-2025. This growth directly reflects
the community’s expanding interest in expressive and emotion-
ally aligned talking-head generation, where models should move
beyond neutral lip movement to capture affective nuance, speak-
ing style, and conversational authenticity. Meanwhile, audio-only
datasets maintain consistent but modest usage, primarily serving
as supplementary resources when large-scale or domain-matched
speech is required. Their secondary role underscores that talking-
head generation fundamentally relies on synchronized audio-visual
data or emotion-annotated corpora, rather than speech alone.

Across all categories, the increasing diversity of training-testing
splits highlights a broader methodological maturation: models are

Zhicheng Zhang, Lei Wang, Yongsheng Gao, and Yu Zhang

tested on data distributions increasingly different from those they
were trained on. This reflects growing emphasis on generalization,
robustness, and evaluation fairness, central concerns as talking-
head technologies move from controlled laboratory conditions to
real-world applications.

This shows an evolution from early reliance on generic, large-
scale audio-visual datasets toward high-resolution, emotion-
rich, multi-view, and semantically annotated datasets. This shift
demonstrates that the field is no longer satisfied with generating
visually plausible motion, but is now targeting identity robust-
ness, expressive fidelity, and semantically coherent behavior, all
of which demand more diverse and specialized data foundations.

2.4 Evolution of Evaluation Metrics

Evaluation metric landscape. Figure 3 presents a longitudinal
analysis of evaluation metrics used in talking-head generation, or-
ganized into five core metric families: visual quality, audio-visual
synchronization, geometry and landmark accuracy, expression nat-
uralness, and driving-signal alignment. The figure shows a notable
shift in how the community measures progress, reflecting deeper
changes in research priorities and modeling capabilities.

Early in the timeline, research is dominated by visual-quality
metrics, e.g., SSIM [51], PSNR [16], LPIPS [43], and FID [15]. These
metrics, inherited from general video synthesis, were sufficient
when the primary challenge was achieving realistic textures, stable
frames, and identity preservation. However, their relative decline
after 2023 indicates a growing consensus that frame-level similarity
is no longer the main bottleneck for state-of-the-art systems.

Starting in 2023, we observe a steady rise in audio-visual synchro-
nization metrics (e.g., LSE-C/D [8], Sync-C/D [33]), reflecting re-
newed attention to temporal coherence and phoneme-viseme align-
ment as models achieve higher realism but still struggle with precise
timing. This trend underscores the community’s recognition that
perceptual synchronization is essential for speech-driven animation
and profoundly impacts user trust and perceived naturalness. Even
more striking is the rapid growth of geometry and landmark accu-
racy metrics and expression naturalness metrics. Metrics such as
LMD, F-LMD, emotion accuracy, and smoothness [24, 29, 33, 42, 54]
become increasingly common after 2023, peaking around 2024-2025.
This shift shows a deeper transition in the field: from surface-level
realism to semantic correctness, evaluating whether the generated
facial motion matches linguistic cues, emotional intent, and human
expressive norms. These metrics reflect the rising influence of emo-
tionally aware and style-controlled models, which require more
nuanced evaluation beyond pixel fidelity.

Driving alignment metrics (e.g., APD, AKD, ARD) [18, 22, 61],
see meaningful adoption closer to 2025. Their growth suggests an
emerging focus on controllability, where the goal is not merely
to produce realistic motion but to ensure that user-specified con-
trol signals, motion trajectories, landmarks, expression codes, are
faithfully reproduced. These metrics are critical for next-generation
systems emphasizing fine-grained, user-driven manipulation.
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Figure 2: Longitudinal trends in dataset usage. Datasets are grouped into four categories, face images, audio-only speech datasets,
audio-visual datasets, and emotion-rich datasets, separately tracked for training and testing. The vertical axis represents the
number of papers that use the corresponding dataset in a given year. The figure highlights a shift from early reliance on
large-scale audio-visual benchmarks (e.g., VoxCeleb, LRS, etc.) toward growing adoption of high-resolution portrait, multi-view,
and emotion-annotated datasets (e.g., HDTF, MEAD, RAVDESS, etc.). This evolution reflects the field’s increasing emphasis on
expressiveness, semantic alignment, and generalization beyond standard lip-sync benchmarks.
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Figure 3: Longitudinal evolution of evaluation metrics used. Metrics are grouped into five functional categories: visual quality,
audio-visual synchronization, geometry/landmark accuracy, expression naturalness, and driving-signal alignment. The vertical
axis represents the number of papers that use the corresponding evaluation metric in a given year. The trends show a clear shift
from early reliance on pixel-level fidelity measures toward richer, semantically oriented evaluation, including synchronization
accuracy, emotional expressiveness, and controllability. This progression highlights the community’s move toward assessing
temporal coherence, semantic alignment, and expressive behavior rather than surface-level realism alone.

Our analysis shows a clear trajectory: the field is maturing from Shifts in metric priorities over time. Figure 4 provides a
evaluating how real the frames look to how semantically correct, two-part view of how evaluation practices in talking-head gen-
expressive, and controllable the generated motion is. The increas- eration have evolved across 117 papers. Figure 4a visualizes the
ing diversity of metrics also reflects an expanding understanding usage frequency of the five major metric families each year, while
of talking-head generation as a multimodal communication task, Figure 4b shows how newly introduced metrics are distributed
not just a visual synthesis problem. This evolution highlights across these same categories. They show not only what the com-
the need for more unified, perceptually grounded metrics and munity measures, but how its priorities and innovation efforts have
suggests that future progress will depend on evaluation protocols shifted as models have progressed from basic lip-sync generation
capable of capturing high-level behaviors, e.g., emotional reso- to expressive, controllable, and multimodal talking-head systems.
nance, conversational authenticity, and user-intent alignment.
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Figure 4: Evolution of evaluation metrics. Both subfigures
share the same legend. (a) Radar visualization of metric us-
age across five major dimensions, showing the field’s early
dependence on visual-quality measures and its gradual shift
toward audio-visual synchronization and geometric accuracy
as models pursue greater temporal coherence and semantic
correctness. (b) Distribution of newly proposed evaluation
metrics over time, highlighting a clear rise in measures tar-
geting expression naturalness, driving-signal alignment, and
fine-grained motion accuracy.

The left radar plot (Figure 4a) shows that visual-quality metrics
(e.g., LPIPS, SSIM, PSNR) dominated early years, reflecting a stage
where improving sharpness, identity fidelity, and artifact reduc-
tion was the foremost challenge. Their relative share decreases
over time, not because they disappear, but because progress in
generative backbones (GANs — NeRFs — diffusion models) has
reduced the centrality of pixel-level fidelity as the primary bot-
tleneck. Meanwhile, the remaining four dimensions: audio-visual
synchronization, geometry and landmark accuracy, expression nat-
uralness, and driving-signal alignment, all expand steadily, indicat-
ing a broadened understanding of what constitutes good talking-
head generation. Synchronization metrics grow notably after 2023,
aligned with audio-aware diffusion models and transformer-based
speech, motion encoders that require precise temporal consistency.
Geometry-related metrics increase in step with the rise of 3D-aware
and NeRF-based heads, where spatial correctness and stable struc-
ture matter as much as appearance.

The right radar plot (Figure 4b) shows the direction of metric in-
novation. Newly proposed metrics concentrate not in visual quality,
where mature measures already exist, but in expression natural-
ness, landmark/geometry accuracy, and driving-signal alignment.
This indicates that researchers are actively developing tools to
evaluate behavioral and semantic performance: emotional expres-
siveness, physically plausible motion, responsiveness to control
signals, and fine-grained alignment with speech or driving inputs.
Synchronization-related metrics also appear among new proposals,
reflecting a renewed focus on perceptual audio-motion coherence.

The combined evidence from Figures 4a and 4b demonstrates a
clear maturation of evaluation methodology. The field has moved
beyond asking “Does the face look realistic?” toward “Does the
face behave realistically, respond correctly, and communicate
meaningfully?”, a shift that mirrors the trajectory of modern
talking-head research toward expressiveness, controllability, mul-
timodal grounding, and human-aligned communication.
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3 Findings and Emerging Trends

The analyses presented above collectively show a field that is not
only expanding in capability but also maturing in scope and am-
bition. In this section, we synthesize these findings across three
dimensions, models, datasets, and metrics, to highlight emerging
trends, persistent challenges, and future opportunities.

3.1 Evolution of Model Paradigms

The semantic taxonomy in Figure 1 illustrates how the field has
diversified into multiple coherent yet interconnected research di-
rections. Early audio-driven models, which focused primarily on
phoneme-viseme alignment and frame-level realism, have now been
complemented, and in some cases surpassed, by multimodal and
highly expressive approaches.

Foundational modeling innovations. Three clusters, speech-
to-motion representation learning, NeRF-based 3D heads, and high-
fidelity diffusion models, represent the core methodological engines
driving recent progress. Representation-learning methods empha-
size generalizable motion priors, NeRF-based systems elevate spatial
realism and view consistency, and diffusion models substantially
boost visual fidelity and temporal stability.

Shift toward expressiveness and alignment. Clusters related
to emotion-driven synthesis, style control, and fine-grained multi-
modal manipulation demonstrate a clear pivot from lip-sync cor-
rectness to richer communicative behavior. Models introduced from
2023 onward increasingly incorporate emotion cues, prosody, se-
mantic context, or user instructions, resulting in head motions that
exhibit personality, style, and narrative coherence.

Toward unified & controllable systems. The emergence of
general-purpose animation frameworks and fully controllable identity-
preserving systems suggests a trend toward integrated solutions
capable of reenactment, audio-driven generation, style modulation,
and semantic alignment within a single architecture. These systems
reflect the field’s ambition to support real-world deployment, where
controllability, rather than raw realism, is decisive.

These model trends show a clear trajectory: talking-head gener-
ation is evolving from narrowly defined, modality-specific syn-
thesis tasks into a broader paradigm of expressive, controllable,
and semantically grounded digital human communication.

3.2 Transformation of Dataset Foundations

Figure 2 shows a parallel evolution in dataset usage. Early mod-
els depended heavily on large-scale audio-visual datasets such as
VoxCeleb. These datasets enabled progress in lip synchronization
and basic head motion generation but provided limited coverage of
emotion, style, or high-frequency appearance details.

Rise of high-fidelity and multi-view datasets. As NeRF-
based and diffusion-based models gained popularity, the reliance on
high-resolution and multi-view datasets increased. Resources such
as CelebV-HQ, HDTF, and other high-quality portrait collections
provide the spatial richness needed for geometric consistency and
fine-grained appearance modeling.

Growing importance of emotion and expressive datasets.
One of the strongest trends after 2023 is the increased use of
emotion-rich and affect-annotated datasets (e.g., RAVDESS, MEAD,
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and self-collected). These datasets support the modeling of expres-
sive cues, an area that traditional lip-sync corpora cannot cover.
Their rising adoption also reflects the community’s recognition that
expressive realism matters as much as pixel-level realism.

Training-testing divergence as a mark of maturity. As the
field matured, models increasingly trained on specialized datasets
while testing on diverse or unseen distributions. This shift indicates
a push toward robustness, generalization, and fair benchmarking,
all of which are essential for real-world applications.

Dataset evolution mirrors model evolution: to generate expres-
sive, controllable talking heads, the field is gradually adopting
datasets that are richer in emotion, higher in resolution, and
more diverse in viewing conditions.

3.3 Maturation of Evaluation Practices

Figures 2-4 collectively show a decisive evolution in how talking-
head generation is evaluated. The shift from traditional visual met-
rics to semantically grounded measures aligns with the field’s con-
ceptual transformation.

Pixel-level visual metrics. SSIM, PSNR, and FID dominated
early evaluation but gradually lost prominence as models reached
high visual fidelity. These metrics were never sufficient to capture
temporal coherence, emotional intent, or semantic correctness, and
their decline reflects increased awareness of these limitations.

Rise of audio-visual synchronization metrics. Metrics such
as LSE-C/D and SyncScore surged beginning in 2023, corresponding
with growing emphasis on natural timing, speech-driven dynamics,
and prosody-aware motion. Synchronization is now seen as a key
determinant of perceived naturalness and trustworthiness.

Geometry and landmark accuracy. With the proliferation of
3D-aware and deformation-based models, landmark- and geometry-
based metrics (e.g., LMD, F-LMD) have become essential for evalu-
ating structural correctness. Their adoption signals that models are
now judged not only by appearance but by their ability to maintain
identity, pose accuracy, and geometric consistency.

Emergence of expression and driving-alignment metrics.
The steep rise in expression naturalness and driving-alignment
metrics after 2023 is perhaps the most important trend. As models
incorporate emotion, style, and multimodal control, evaluation
should consider whether generated motion reflects intended affect,
follows control signals, and behaves consistently over time.

This metric evolution reflects a deeper philosophical shift: talking-
head generation is no longer evaluated solely as a graphics prob-
lem, but increasingly as a communication problem, where seman-
tics, timing, and expressiveness matter as much as pixel quality.

3.4 Practical Guidelines

Below we provide some practical guidelines.

We recommend adopting a compact, standardized metric suite
that balances perceptual, temporal, geometric, and controllability
signals. For perceptual quality report LPIPS and FID (or E-FID for
expressive/affective domains) together with a frame-level visual
fidelity measure (e.g., PSNR). For synchronization report an audio-
visual sync metric such as LSE-C/LSE-D or SyncScore and include
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Sync-offset statistics. For geometry and identity preservation report
landmark/vertex errors (LMD or LipVertexError) and an identity
similarity score (e.g., ArcFace). For expression and affect fidelity re-
port AU consistency or emotion-classification accuracy on emotion-
annotated test sets. For controllability report driver-alignment mea-
sures (AKD/APD/ARD) and a smoothness/stability metric (e.g., ve-
locity/acceleration MSE). Automatic evaluation should be comple-
mented by human perceptual judgments, e.g., run a small MOS
study with at least 30 independent raters per method and report
mean MOS with 95% confidence intervals. Compute metrics per-
video and aggregate results using medians and interquartile ranges
(and means where appropriate), and release evaluation scripts and
exact hyperparameters to ensure reproducibility.

For test splits we suggest a multi-faceted protocol to stress gener-
alization, expressiveness, and controllability. Use (i) an IID holdout
by withholding 20% of speakers from the primary training corpus to
measure in-distribution performance; (ii) a cross-dataset split that
evaluates models on a high-fidelity portrait dataset (e.g., CelebV-HQ
or HDTF) unseen during training; (iii) an emotion/expressiveness
split using emotion-annotated corpora (e.g., CREMA-D, RAVDESS)
to measure affective fidelity; and (iv) a low-shot personalization
and novel-view split (1 - 5 frames for personalization and a multi-
view/novel-view dataset such as HDTF) to evaluate identity stability
and view consistency. For each split report per-condition statistics
(gender, age, lighting) where available and pair automatic metrics
with the MOS study described above. Finally, publish the exact split
definitions, sampling seeds, and all evaluation code to enable fair,
reproducible comparison.

3.5 Future Outlook

The evolution of talking-head generation from 2021 to 2025 re-
veals a field transitioning from narrow, task-specific pipelines to
a broader paradigm of expressive, controllable, and semantically
aligned digital human communication. By integrating insights from
our taxonomy, dataset analysis, and evaluation trends, a coherent
picture emerges of how the community has expanded its technical
foundations and redefined its ambitions (see also Appendix).

From a modeling perspective, the field has moved decisively
beyond traditional 2D appearance-based synthesis. Recent systems
increasingly incorporate 3D-aware representations, multimodal
encoders, and diffusion-based refinement modules that jointly en-
hance geometric consistency, expressive motion, and temporal sta-
bility. This progression reflects a shift from focusing on lip-sync
realism alone to modeling communicative behavior more holis-
tically, including emotion, prosody, speaking style, and semantic
cues. A growing emphasis on controllability further underscores
this shift. Modern architectures aim not only to generate photoreal-
istic faces but also to expose interpretable control interfaces through
landmarks, expression codes, style tokens, or textual instructions,
enabling fine-grained and user-driven animation.

These changes in modeling practice have been accompanied
by equally notable shifts in dataset usage. Early work relied heav-
ily on large audio-visual corpora such as VoxCeleb, which remain
valuable but are insufficient for capturing emotional nuance or
high-quality geometric detail. The field now increasingly depends
on high-resolution, multi-view, and emotion-rich datasets, which
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offer the diversity and expressive coverage needed for training mod-
els that mimic natural conversational behavior. The trend toward
training on specialized datasets while testing on diverse or unseen
sets also signals a maturing understanding of generalization and
robustness, which are essential for real-world deployment.

Evaluation practices have matured in parallel. Traditional visual-
fidelity metrics, e.g., SSIM, PSNR, or FID, have gradually lost domi-
nance as researchers recognize their limitations in capturing tem-
poral coherence or expressive realism. Synchronization measures,
geometric and landmark accuracy metrics, and expression-oriented
criteria have become central to evaluation, reflecting an under-
standing that speaking heads must be assessed not solely by their
appearance but by the behavioral correctness and perceptual plau-
sibility of their motion. This shift from pixel-level to semantic and
perceptual evaluation highlights a broader reorientation of the field
toward modeling communication rather than visual frames alone.

These developments point toward several promising opportuni-
ties. Semantic grounding and conversational consistency remain
underexplored, and deeper integration of linguistic context could
yield more coherent and contextually appropriate motion. Person-
alization at extremely low data cost is another challenge, as current
approaches still require substantial footage to capture identity and
expressive priors. Ethical considerations, including misuse preven-
tion, watermarking, consent mechanisms, and bias mitigation, will
become increasingly important as realism continues to improve.
Finally, a longer-term frontier lies in unified generative humans
that integrate head motion, gaze behavior, emotional state, and
upper-body gesturing into a single cohesive model.

Talking-head generation is entering a new phase where semantic
correctness, expressive fidelity, controllability, and reliability are
becoming as important as visual realism. The field’s trajectory
suggests that future progress will depend on jointly advancing
model architectures, dataset design, evaluation protocols, and
ethical frameworks. These directions offer practical guidance for
researchers and practitioners seeking to build the next generation
of expressive, trustworthy, and context-aware digital humans.

4 Ethics, Limitations, and Conclusion

Ethical considerations. Talking-head generation technologies
carry significant ethical implications due to their potential for both
beneficial and harmful use. While recent advances enable more nat-
ural, expressive, and controllable digital humans, the same capabili-
ties can be misappropriated for impersonation, misinformation, ha-
rassment, and other malicious applications [3, 26, 27, 36, 49, 52, 68].

Many datasets used in this field contain real individuals whose
images and voices may not have been collected with explicit consent
for synthetic content generation, raising concerns about privacy,
consent, and downstream data reuse.

In addition, demographic imbalances in commonly used training
corpora may amplify biases in identity preservation, expressive
fidelity, and emotional rendering, leading to unequal performance
across gender, age, or ethnic groups [28, 48, 55]. To mitigate such
risks, researchers should adopt responsible data handling practices,
use consent-aware or licensed datasets whenever possible, report
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demographic composition transparently, and consider integrating
watermarking or provenance signals into generative pipelines.

We recommend that future work include explicit discussions
of intended use, potential harms, and safety constraints, and
that evaluations incorporate robustness and misuse-resilience
criteria. Addressing these ethical and societal issues is essential
for ensuring that advances in talking-head generation contribute
positively to human communication rather than eroding trust or
enabling deceptive media [17, 37, 44].

Limitations. Although the analysis in this survey draws on
a large and diverse corpus of 117 papers, several limitations may
influence the completeness and generality of our findings. First, the
paper selection is based on keyword-driven searches and public
availability, which may bias the corpus toward popular research
directions. Second, while our taxonomy construction combines TF-
IDF clustering with LLM-assisted labeling, both steps introduce
methodological sensitivity: clustering outcomes depend on vocab-
ulary choices and similarity thresholds, and LLM summaries may
reflect prompt phrasing or model priors. Third, the extraction of
dataset and metric usage is subject to inconsistencies in how papers
report their experimental setups, and despite manual verification,
occasional omissions or misclassifications may remain. Fourth, our
longitudinal trends reflect the publication distribution of 2021 -
2025 and should not be interpreted as causal evidence of method-
ological superiority. Finally, because our survey focuses on publicly
documented methods, it cannot fully capture proprietary datasets,
unpublished internal benchmarks, or emergent industrial practices.
These limitations do not undermine the core insights but highlight
the need for continued community curation, open artifacts, and
standardized reporting protocols.

Conclusion. Our findings reveal a field that has rapidly pro-
gressed from frame-level lip-sync synthesis toward expressive, con-
trollable, and semantically grounded head motion generation. Mod-
ern systems increasingly use 3D-aware representations, diffusion
models, and multimodal control signals to achieve higher fidelity,
stronger identity preservation, and more natural communicative
behavior. In parallel, we observe a clear shift toward richer and
more diverse datasets, including high-resolution, multi-view, and
emotion-annotated corpora, and toward evaluation metrics that em-
phasize perceptual realism, temporal coherence, geometric correct-
ness, and expressive fidelity. These developments reflect a growing
recognition that talking-head generation should be assessed not
only by visual similarity but also by its alignment with linguistic,
emotional, and user-provided cues. The trajectory of the field points
toward digital humans that are more trustworthy, expressive, and
contextually aligned. We hope that the taxonomy, analyses, and
insights presented here provide a useful foundation for future re-
search, guiding the development of more controllable, perceptually
aligned, and ethically responsible talking-head generation systems.
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A Related Work

Research on talking-head generation spans multiple communities in computer vision, speech processing, computer graphics, and multimedia.
Prior reviews and tutorials have discussed selective aspects of this area, yet none provide a comprehensive, quantitatively grounded analysis
of models, datasets, and evaluation practices over time. In this section, we briefly summarize representative surveys most relevant to our
topic and describe how our work differs.

Surveys on talking-head generation and facial animation. A number of surveys and tutorials have examined subdomains of talking-
head generation, including facial animation, lip synchronization, or multimodal speech-driven motion. For example, early reviews focused
on traditional graphics pipelines and parametric animation models, emphasizing blendshape manipulation and rule-based speech-to-lip
generation. More recent surveys have outlined high-level deep-learning pipelines for face reenactment or lip-sync generation, summarizing
canonical architectures such as encoder-decoder models, audio-to-landmark regressors, and GAN-based video synthesis [18, 35, 47, 65]
. While these efforts provide valuable overviews, they share key limitations: (i) Narrow scope: Existing surveys typically cover only one
subtask, such as lip-sync synthesis or face reenactment, without mapping the broader landscape of expressive talking-head generation. (ii)
Static categorization: Prior taxonomies rely on manually defined categories that may not reflect the rapid diversification of recent approaches
(e.g., diffusion, NeRF-based heads, style or emotion control, instruction-driven generation). (iii) Limited temporal perspective: None of the
existing surveys quantitatively evaluate how research focus, datasets, or metrics have evolved over time.

We provide the first comprehensive and semantically grounded taxonomy built from more than 100 representative papers, showing
not only what categories exist but how the field has naturally organized itself. Unlike previous surveys, our taxonomy is derived from
the literature rather than imposed upon it, offering a more faithful and up-to-date understanding of the major directions in talking-head
generation.

Surveys on deepfake synthesis, video manipulation, and portrait animation. Another line of surveys addresses deepfake generation,
video manipulation, or portrait animation more broadly. These works typically classify technologies for face swapping, reenactment, audio-
driven animation, expression editing, or identity transfer. They discuss safety, ethics, and detection pipelines, reflecting their focus on
manipulation robustness and security implications [10, 19, 69, 101, 150, 184]. However, these reviews differ from our interests in several
ways: (i) Broader but shallower: Although they cover a wider range of facial manipulation techniques, they do not specialize in talking-head
generation and thus provide limited depth on motion modeling, audio-visual synchronization, or fine-grained controllability. (ii) Lack of
experimental analytics: Existing deepfake-oriented surveys rarely analyze dataset usage, metric evolution, or long-term trends: elements that
are crucial for understanding research maturity and future directions in talking-head synthesis. (iii) Limited coverage of recent modalities:
The rise of diffusion-based generators, NeRF-based 3D talking heads, and multimodal alignment methods is either minimally covered or
absent due to their recency.

Our survey focuses specifically on talking-head generation, enabling deep analysis of its unique challenges, such as semantic drive signal
alignment, emotional expressiveness, temporal coherence, and identity preservation. Moreover, we go beyond architectural overviews to
provide a historical, data-supported analysis of how evaluation and datasets have shifted in the last five years.

Surveys on audio-visual learning, speech-driven animation, and embodied communication. Surveys in audio-visual machine
learning often discuss cross-modal representation learning, speech-driven body or head animation, and multimodal affective computing [38,
41, 74, 182, 196, 233, 238, 245]. These works contribute insights into motion representations and human communication modeling but
generally have different objectives: (i) Focus on perception, not generation: Many emphasize recognition, understanding, or representation
learning rather than synthesis. (ii) Lack of synthesis-oriented taxonomies: These surveys do not categorize generation models based on
animation control, identity preservation, or generative backbones. (iii) No study of metrics or benchmark dynamics: Because their emphasis
lies in multimodal understanding, they do not track the evolution of evaluation protocols used for generative tasks.

While benefiting from insights in multimodal communication, our survey is centered on generation, offering a systematic comparison of
synthesis approaches, control signals, and generative architectures. Furthermore, we explicitly analyze evaluation gaps and emerging needs
in semantic, emotional, and alignment-based metrics, an area not addressed in these multimodal reviews.

B Analytical Framework Details

Below we provide full details of the corpus curation process, semantic taxonomy methodology, and experiment extraction pipeline.

B.1 Semantic Taxonomy

To systematically capture the structure of the talking-head generation literature, we construct a hierarchical semantic taxonomy that
organizes research papers according to thematic similarity.

The process begins by representing each paper’s title and abstract as a numerical feature vector. We use a TF-IDF vectorizer with English
stop-word removal and a vocabulary capped at 5,000 terms, producing a sparse document-term matrix of size 117 X 5000. This representation
emphasizes terms that are particularly distinctive to each document relative to the full corpus, providing a discriminative foundation for
uncovering latent thematic groupings.

Next, we apply hierarchical agglomerative clustering to the TF-IDF embeddings using Ward’s linkage criterion. Ward’s method minimizes
intra-cluster variance when merging clusters, which tends to produce coherent and interpretable topic structures. A distance threshold is
used to automatically determine the number of clusters, balancing granularity and interpretability.
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To visualize the hierarchical organization, we generate a dendrogram using the scipy.cluster.hierarchy.dendrogram function. The
leaf ordering preserves hierarchical relationships, placing semantically similar papers adjacent to one another. Beyond the raw clustering,
we refine cluster identities using a large language model, which assigns human-readable thematic labels to each group, bridging data-driven
organization with intuitive interpretability.

The resulting taxonomy provides a hierarchical map of research themes, showing both broad directions and fine-grained subtopics within
the talking-head generation literature. By combining quantitative text analysis with expert-guided labeling, this approach enables insights
into how methods, objectives, and modalities are distributed across the field, and highlights natural groupings that inform subsequent
analyses of datasets, evaluation metrics, and emerging trends.

To provide a meaningful overview of the talking-head generation field, it is crucial to base our analysis on a corpus that is both
comprehensive and representative. Talking-head research spans diverse subareas, including 2D and 3D face animation, audio-visual learning,
portrait synthesis, and emerging generative paradigms such as NeRF- and diffusion-based models. Standard keyword searches or ad hoc
selection risk overlooking influential contributions, particularly as high-impact work increasingly appears first as preprints. To address these
challenges, we developed a multi-stage curation process that balances breadth, relevance, and community validation.

The process begins with broad retrieval, casting a wide net across the literature using domain-specific keywords (Talking Face, Talking
Head, Visual Dubbing, Face Genertation, Lip Sync, Talker, Portrait, Talking Video, Head Synthesis, Face Reenactment, Wav2Lip, Talking
Avatar, Lip Generation, Lip-Synchronization, Portrait Animation, Facial Animation, Lip Expert). Candidate papers are automatically collected
from arXiv and enriched with structured metadata, including titles, authors, abstracts, submission history, and identifiers. Where available,
we link papers to their code implementations on GitHub or Papers With Code, capturing not only conventional approaches but also newer,
rapidly evolving paradigms. This initial stage ensures that diverse modalities, model families, and generative mechanisms are included,
minimizing selection bias while capturing the full spectrum of methodological innovation.

To improve the reliability of the corpus, we distinguish peer-reviewed publications from arXiv-only preprints, verifying acceptance
through Semantic Scholar and CrossRef. Peer-reviewed papers are treated as academically validated, while preprints are further filtered
based on community impact, with only those accompanied by widely adopted implementations retained. Venue quality is also considered,
using established top-tier lists in computer vision, machine learning, graphics, and multimedia to provide an objective proxy for academic
rigor and community recognition. This approach allows the corpus to reflect both formal scholarly validation and practical influence within
the research community.

Finally, to ensure thematic precision, all remaining papers undergo a manual semantic review. This step removes works outside the scope
of talking-head generation, such as general video synthesis, speech-only models, or unrelated multimodal systems, ensuring that the final
set of methods directly addresses the generation of realistic, expressive human head motion.

Through this carefully designed pipeline, the resulting corpus captures the major model families, diverse control modalities, and influential
contributions that collectively define the current landscape of talking-head research. By integrating automated retrieval, community
validation, venue assessment, and expert semantic review, the selection process establishes a high-quality foundation for subsequent analysis,
including the construction of a semantic taxonomy, longitudinal study of datasets and metrics, and identification of emerging research
trends. Table 1 shows the overview of selected key talking-head generation methods.

Table 1: Overview of 117 key talking-head generation methods across clusters. GitHub star counts were collected on December
8, 2025. Refer to Figure 1 for cluster details.

Cluster ArXivID  Method Venue Github Stars New Metrics

1 2409.09292  StyleTalk++ [204] TPAMI2024 No No No

1 2403.06365  Style2Talker [190] AAAT2024 No No No

1 2310.07236 AdaMesh [82] TMM2025 No No No

1 2312.10877 Mimic [102] AAATI2024 No No LDD
1 2310.00434 DiffPoseTalk [188] TOG2024 No No MOD
1 2308.04830 VAST [83] ICCV2023 No No No

1 2301.01081  StyleTalk [158] AAAI2023 Code 520 No

1 2301.00023 Imitator [194] ICCV2023 No No No

2 2504.18087 DICE-Talk [191] ACM MM2025 No No No

2 2503.00495 TexTalker [143] CVPR2025 No No No

2 2403.06375 FlowVQTalker [189] CVPR2024 No No No

2 2309.04946  EAT [13] ICCV2023 Code 294 No

2 2306.08990 EMOTE [93] SIGGRAPH2023 No No No

2 2303.11089 EmoTalk [173] ICCV2023 Code 400 EVE
2 2305.02572 HiEmoTalk [215] CVPR2023 No No No

2 2205.01155 EC-Talk [42] [JCAI2022 No No No

2 2008.03592  SpeechEmotion [99] TMM2021 Code 172 No

2 2104.07452 EVP [124] CVPR2021 No No No
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Cluster ArXivID Method Venue Github  Stars New Metrics
3 2505.23290 Wav2Sem [137] CVPR2025 No No No
3 2412.09892  VQTalker [152] AAAI2025 No No No
3 2409.19143 DCOQL [107] TVCG2025 No No FDD; UPD; LPD; MPD
3 2408.06010 DEEPTalk [132] AAAI2025 No No FFD; Emo-FID
3 2405.03121 AniTalker [151] ACM MM2024  Code 1600 No
3 2404.12888 Learn2Talk [247] TVCG2024 No No  SyncNet3D
3 2312.02781 PMMTalk [113] TMM2024 No No No
3 2309.11306  FaceDiffuser [187] SIGGRAPH2023  Code 174  Emo Diversity metric
3 2309.04814 Speech2Lip [210] ICCV2023 Code 74 No
3 2306.10799  SelfTalk [172] ACM MM2023 Code 141 LRP
3 2304.08945 DIRFA [209] PR2023 No No No
3 2304.03199 FADM [229] CVPR2023 Code 75 No
3 2301.02379  CodeTalker [53] CVPR2023 Code 598 FDD
3 2303.17480 SeeWhatUSay [200] CVPR2023 Code 425 WER
3 2212.04248 A2V-Diffusion [228] ICCV2023 No No SND
3 2211.14758 VideoReTalking [86] SIGGRAPH2022 No No No
3 2104.08223 MeshTalk [178] ICCV2021 Code 394 No
3 2112.05329 FaceFormer [12] CVPR2022 Code 899 No
3 2108.07938 FACIAL [231] ICCV2021 Code 384 No
4 2507.06071 MEDTalk [147] ACM MM2025 No No MLE; MEE,; EIE; FRD
4 2503.19383 MVPortrait [146] CVPR2025 No No  Variability
4 2503.14517 Cafe-Talk [81] ICLR2025 No No  Control Rate (CR)
4 2503.01715 KeyFace [75] CVPR2025 No No  LipScore; NSV_acc
4 2501.01808 MOoEE [1438] CVPR2025 No No No
4 2410.23836  Stereo-Talker [94] TPAMI2025 No No No
4 2304.00334 TalkCLIP [157] TMM2025 No No No
4 2211.14506 PDR-Talk [198] CVPR2023 Code 97 NLSE-C
5 2412.01064 FLOAT [131] ICCV2025 Code 428 No
5 2503.18860 HunyuanPortrait [217] CVPR2025 No No No
5 2502.19894 LCVD [110] CVPR2025 Code 57 No
5 2412.00733 Hallo3 [92] Arxiv2025 Code 1340 No
5 2407.03168 LivePortrait [109] Arxiv2024 Code 17374 No
5 2401.08503 Real3D-Portrait [222] ICLR2024 No No No
5 2403.17694  AniPortrait [208] Arxiv2024 Code 5018 No
5 2311.15230 GAIA [115] ICLR2023 No No No
5 2308.12866 ToonTalker [106] ICCV2023 No No No
5 2307.10008 MODA [153] ICCV2023 No No No
5 2106.04185 LipSync3D [134] CVPR2021 No No No
6 2504.05746 TAVCE [216] TMM2025 No No No
6 2410.13726 DAWN [85] ICLR2024 No No  Degradation Rate
6 2503.18429 Teller [240] CVPR2025 No No No
6 2501.14646  SyncAnimation [154] JCAI2025 No No  EAR; Diversity of head motion
6 2412.16915 FADA [242] CVPR2025 No No No
6 2412.09262 LatentSync [135] Arxiv2024 Code 5177 No
6 2411.19509 Ditto [22] ACM MM2025 Code 590 No
6 2411.16331 Sonic [123] CVPR2025 Code 3103 No
6 2411.16726 EmotiveTalk [199] CVPR2025 No No No
6 2411.15436  ConsistentAvatar [218] ACM MM2024 No No No
6 2410.10122 MuseTalk [235] Arxiv2024 Code 4999 No
6 2408.09384 FD2Talk [219] ACM MM2024 No No No
6 2408.01826  GLDiTalker [145] [JCAI2024 No No No
6 2407.05712 MobilePortrait [126] CVPR2025 No No No
6 2403.01901 FaceChain-ImaginelD [54] CVPR2024 Code 9491 No
6 2403.19144 MoDiTalker [20] AAAI2025 Code 176 No
6 2411.09209 JoyVASA [79] Arxiv2024 Code 844 No
7 2312.10921 AE-NeRF [136] AAAI2024 No No No



https://github.com/x-lance/anitalker
https://github.com/uuembodiedsocialai/FaceDiffuser
https://github.com/cvmi-lab/speech2lip
https://github.com/psyai-net/SelfTalk_release
https://github.com/zengbohan0217/fadm
https://github.com/Doubiiu/CodeTalker
https://github.com/sxjdwang/talklip
https://github.com/facebookresearch/meshtalk
https://github.com/EvelynFan/FaceFormer
https://github.com/zhangchenxu528/FACIAL
https://github.com/Dorniwang/PD-FGC-inference
https://github.com/deepbrainai-research/float
https://github.com/MingtaoGuo/relightable-portrait-animation
https://github.com/fudan-generative-vision/hallo3
https://github.com/KwaiVGI/LivePortrait
https://github.com/scutzzj/aniportrait
https://github.com/bytedance/LatentSync
https://github.com/antgroup/ditto-talkinghead
https://github.com/jixiaozhong/Sonic
https://github.com/tmelyralab/musetalk
https://github.com/modelscope/facechain
https://github.com/KU-CVLAB/MoDiTalker
https://github.com/jdh-algo/JoyVASA
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Cluster ArXivID Method Venue Github  Stars New Metrics
7 2307.09323 ER-NeRF [140] ICCV2023 Code 1223 No
7 2304.05097 HiDe-NeRF [23] CVPR2023 No No AVD
7 2301.13430 GeneFace [59] ICLR2023 No No No
7 2211.12368 RT-NeRF-Talk [193] JCv2025 No No No
7 2103.11078 AD-NeRF [14] ICCV2021 Code 1066 No
8 2506.14742  SyncTalk++ [170] TPAMI2025 No No No
8 2311.17590  SyncTalk [171] CVPR2024 Code 1591 No
9 2305.06225 DaGAN++ [118] TPAMI2023 Code 996  No
9 2203.06605 DaGAN [120] CVPR2022 Code 996 No
10 2505.18096 DualTalk [169] CVPR2025 No No P-FD; rPCC
10 2504.19165 IM-Portrait [144] CVPR2025 No No No
10 2504.00665 MGGTalk [105] CVPR2025 No No No
10 2502.20387 InsTaG [139] CVPR2025 Code 154 No
10 2412.08504 PointTalk [212] AAAI2025 No No No
10 2412.00719 MS-Codec [239] CVPR2025 No No No
10 2409.13180 FreeAvatar [175] SIGGRAPH2024 No No No
10 2407.08136  EchoMimic [84] AAAI2025 No No No
10 2404.14037 GaussianTalker [225] ACM MM2024 No No No
10 2404.15264 TalkingGaussian [138] ECCV2024 No No No
10 2212.05005 MemFace [192] TPAMI2024 No No No
10 2303.17550 DAE-Talker [11] ACM MM2023 No No No
10 2305.00521  StyleLipSync [130] ICCV2023 No No No
10 2312.07385 GSmoothFace [232] TVCG2025 No No No
10 2304.10168 HF-Controllable [104] CVPR2023 No No No
10 2304.03275 FCTalker [122] ACM MM2023 No No No
10 2307.09906 Implicit [119] ICCV2023 Code 254  No
10 2305.08293 IPTF [243] CVPR2023 Code 737 No
10 2305.05445  StyleSync [108] CVPR2023 No No No
10 2301.03786 Diff Talk [40] CVPR2023 Code 469 No
10 2212.08062 MetaPortrait [62] CVPR2023 Code 547  No
10 2211.12194 SadTalker [63] CVPR2023 Code 13395 No
10 2303.03988 DINet [236] Arxiv2023 Code 1097 No
10 2211.09809 SPACE [112] ICCV2023 No No No
10 2211.00924  SyncTalkFace [168] AAAT2022 No No No
10 2209.04252  StyleTalker [72] ACM MM2022 No No No
10 2208.02210 Free-HeadGAN [96] TPAMI2023 No No No
10 2203.04036  StyleHEAT [223] ECCV2022 Code 656 No
10 2201.05986 DCK [221] TMM2022 No No No
10 2112.02749 AVCT [203] AAAI2022 Code 359 No
10 2012.08261 HeadGAN [97] ICCV2021 No No No
10 2107.09293  Audio2Head [202] [JCAI2021 Code 353 No
10 2104.14557 LSRR [159] ICCV2021 No No No
10 2104.11116 PC-AVS [244] CVPR2021 Code 958 Pose LMD

B.2 Datasets and Evaluation Metrics

To analyze experimental practices in talking-head generation, we examine a curated set of 117 representative papers spanning 2021-2025. For
each paper, we extract the experiment section from its LaTeX source obtained via the arXiv API and process it with a structured GPT-based
prompt to identify the datasets used, their roles in training or testing, the evaluation metrics used, and any newly proposed datasets or
metrics.

The following prompt is used for dataset-metric extraction:

Briefly answer the following questions based on the cleaned Experiment section of the paper:

1. What datasets does this paper use?
2. Which datasets are used for training, and which for testing?
3. What evaluation metrics are used?


https://github.com/fictionarry/er-nerf
https://github.com/YudongGuo/AD-NeRF
https://github.com/ZiqiaoPeng/SyncTalk
https://github.com/harlanhong/cvpr2022-dagan
https://github.com/harlanhong/cvpr2022-dagan
https://github.com/Fictionarry/InsTaG
https://github.com/harlanhong/iccv2023-mcnet
https://github.com/Weizhi-Zhong/IP_LAP
https://github.com/sstzal/DiffTalk
https://github.com/Meta-Portrait/MetaPortrait
https://github.com/winfredy/sadtalker
https://github.com/MRzzm/DINet
https://github.com/FeiiYin/StyleHEAT
https://github.com/FuxiVirtualHuman/AAAI22-one-shot-talking-face
https://github.com/wangsuzhen/Audio2Head
https://github.com/Hangz-nju-cuhk/Talking-Face_PC-AVS
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Keep the answer concise and factual.
The following prompt is used for identifying newly proposed evaluation metrics:

Please read the following paper content and answer ONLY the three points below:

1. Did the paper propose any new evaluation metrics? Respond only with “Yes” or “No”.

2. If the answer is “Yes”, briefly describe what each new metric is used for.

3. For each new metric, indicate which evaluation category it belongs to. Use categories such as (but
not limited to):

+ Visual Quality Metrics

+ Audio-Visual Sync Metrics

+ Geometry & Landmark Accuracy

+ Expression Naturalness

« Driving Alignment

Keep the answer concise and factual.

Extracted information is then normalized to unify naming conventions, resolving ambiguities such as VoxCeleb-2 versus VoxCeleb2 or
LMD versus Landmark Distance, enabling reliable cross-paper analysis and longitudinal trend detection.

Datasets are categorized into four semantic groups, face images, speech audio, audio-visual, and emotion datasets, while evaluation
metrics are mapped to five commonly used dimensions: visual quality, audio-visual synchronization, geometry and landmark accuracy,
expression naturalness, and driving alignment. Newly proposed metrics are categorized in the same way, allowing us to track innovation
across the field over time.

C Dataset Details

Table 2 summarizes the major datasets used in talking-head generation. Figure 5 presents the dataset usage. This figure summarizes the usage
frequency of commonly adopted datasets in face image generation papers from 2021 to 2025. We select a representative set of widely used
datasets and count their occurrences across the surveyed literature. To ensure consistency, datasets with identical sources or highly similar
variants (e.g., extensions or reprocessed versions) are merged under unified names, and only explicitly reported datasets are included. The
statistics of evaluation metrics are computed using the same normalization and counting strategy. Below we provide some dataset details.

C.1 Image-only

AffectNet [162] is a large-scale in-the-wild facial expression dataset collected from the Internet. Released in 2017, it contains approximately
one million images, of which around 440K are manually annotated with basic emotion categories. The dataset exhibits diverse resolutions
and unconstrained visual conditions, making it suitable for real-world facial expression analysis.

CelebA [155] is an in-the-wild face image dataset introduced in 2015, containing 202,599 images of 10,177 identities. Images are cropped to
a typical size of approximately 178x218. The dataset was curated from publicly available Internet sources and organized by CUHK-MMLAB,
and is widely used for identity modeling and facial attribute learning.

CelebA-HQ [127] is a high-quality subset of CelebA, constructed through processing and filtering the original dataset. It provides 30,000
high-resolution images, each at 1024x1024 resolution, and is commonly used for high-fidelity face synthesis and generative modeling.

FFHQ [128] (Flickr-Faces-HQ) is an in-the-wild high-resolution face dataset released by NVIDIA. It contains 70,000 images at 1024x1024
resolution, sourced from Flickr and other Internet repositories. FFHQ provides rich diversity in age, ethnicity, lighting, and background
variations, and has become a standard benchmark for GAN-based image generation.

C.2 Audio-only

LibriSpeech [167] is a large-scale speech corpus derived from LibriVox audiobooks, recorded in relatively clean indoor environments.
Released in 2015, it includes approximately 1,000 hours of English speech from around 1,000 speakers. It is widely used for speech recognition,
audio processing, and multimodal learning.

C.3 Audio-visual

VoxCeleb1 [30] is a large-scale audio-visual speaker dataset automatically collected from public YouTube interviews in in-the-wild conditions.
Released in 2017, it contains over 150,000 utterances from 1,251 speakers, providing diverse real-world variations in pose, illumination,
background, and speech content. It is widely used for speaker verification, cross-modal matching, and audio-visual synchronization research.

VoxCeleb2 [7] is a significantly expanded version of VoxCeleb, also sourced from unconstrained YouTube videos. Released in 2018, it
comprises more than 1 million utterances from 6,112 speakers (over 2,000 hours of audio-visual data), offering substantially richer variation in
identity, speaking style, acoustic conditions, and visual appearance. It has become a standard benchmark for large-scale speaker recognition
and robust audio-visual learning.
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HDTF [64] is a high-resolution in-the-wild talking-face dataset collected from YouTube videos. Released in 2021, it includes over 16 hours
of 720p-1080p audio-visual recordings from more than 300 speakers. The dataset contains natural head movements and expressive facial
motion, making it suitable for talking-head generation, lip synchronization, and head-motion modeling.

GRID [9] is a lab-controlled audio-visual speech corpus consisting of 34 speakers, each reading 1,000 fixed-structure sentences (34,000
utterances in total). The dataset provides clean, synchronized audio and frontal facial video, making it a widely used benchmark for
lip-reading, visual speech recognition, and speech-driven facial animation.

TCD-TIMIT [114] is a controlled audio-visual speech dataset recorded in a studio environment. It contains 6,913 phonetically diverse
utterances from 62 speakers, captured with high-quality audio and synchronized frontal videos. The dataset originates from the Sigmedia
group at Trinity College Dublin and supports research in audio-visual speech recognition, lip-reading, and speech-to-video synchronization.

LRS2 [1] is a large-scale audio-visual speech dataset derived from BBC television broadcasts. Released around 2017, it contains approxi-
mately 224 hours of video with over 144,000 utterances, covering natural, unconstrained speaking scenarios. The dataset includes diverse
face tracks with noticeable lip and head movements, and is widely used for lip-reading and audio-visual speech recognition.

LRS3 [2] is an audio-visual corpus built from TED and TEDx YouTube videos collected in the wild. Released in 2018, it contains roughly
433-440 hours of English speech videos spanning thousands of speakers. The dataset offers rich variations in speaking style, facial appearance,
pose, and motion, making it a benchmark for audio-visual speech recognition and talking-head modeling.

LRS3-TED [2] is an extended large-scale audio-visual dataset constructed from TED and TEDx videos, also released in 2018. It includes
over 400 hours of face-track video accompanied by aligned audio, subtitles, and word-level annotations. The dataset captures natural facial,
lip, and head motion, and is widely used for lip-reading and end-to-end audio-visual speech learning.

LRW [88] is a large-scale in-the-wild English lip-reading dataset constructed from BBC broadcast footage. Released in 2017, it contains
over 500,000 short clips (each about 1.16 seconds, 29 frames) spanning 500 target words spoken by hundreds of speakers. The dataset provides
substantial visual variability in pose, illumination, and speaking style, and has become a standard benchmark for visual speech recognition,
lip-reading, and audio-visual synchronization research.

VFHQ [211] is a high-fidelity in-the-wild face video dataset collected from online interview and talk-show footage. Released in 2022,
it consists of more than 16,000 high-quality clips with frame resolutions ranging from approximately 700x700 to 1000x1000. The dataset
preserves rich facial detail, expression variation, and natural head motion, making it suitable for talking-head generation, face video
restoration, and super-resolution tasks.

TalkingHead-1KH [205] is a large-scale in-the-wild talking-head video dataset curated from publicly available YouTube videos under
permissive licenses. Released in 2021, it contains roughly 500,000 video clips, including around 80,000 clips with resolutions exceeding
512x512. The dataset offers diverse facial dynamics, lighting conditions, and head-motion patterns, supporting research on talking-head
generation, lip synchronization, and free-view synthesis.

CelebV-HQ [67] is a high-quality large-scale face video dataset sourced from online celebrity videos collected in the wild. Introduced in
2022, it includes 35,666 curated clips spanning 15,653 identities, with all videos at a minimum of 512x512 resolution. Each clip is annotated
with 83 human-labeled facial/action/emotion attributes. The dataset exhibits rich head pose, expression, and appearance variation, and is
widely used for face-video generation, editing, and attribute modeling.

CelebV-Text [226] is a large-scale text-video face dataset constructed from web-crawled celebrity and public-domain videos. Released in
2023, it contains approximately 70,000 face-centric video clips (around 279 hours in total), with each clip paired with 20 textual descriptions
capturing appearance, illumination, motion, emotion, and dynamic changes. It is a benchmark for text-to-video generation, expression/motion
control, and multimodal semantic modeling.

VOCASET [91] is a controlled audio-4D facial motion dataset recorded in a studio environment using high-fidelity 3D scanning. It
contains 480 speech-driven 4D facial motion sequences from 12 speakers (6 male, 6 female), each captured at 60 fps with synchronized audio.
The dataset provides precise 3D facial mesh sequences and is widely used for speech-driven 3D facial animation and speech-to-motion
modeling.

C.4 Emotion

CREMA-D [4] is a controlled audio-visual emotional speech dataset recorded in a laboratory setting. It features 91 actors of diverse age and
ethnicity portraying six basic emotions across multiple intensities, resulting in 7,442 short clips. The dataset includes audio-only, visual-only,
and audio-visual modalities, making it valuable for emotion recognition and multimodal affect analysis.

MEAD [50] is a controlled lab-recorded multi-view emotional audio-visual dataset containing 60 actors. Released in 2020, it provides
videos across 8 basic emotions and 3 intensity levels, captured simultaneously from 7 calibrated camera viewpoints. MEAD offers high-quality
facial appearance and expression variations, supporting research on emotion-controllable talking-head generation and facial expression
modeling.

RAVDESS [25] is a studio-recorded multimodal emotion dataset containing speech and song performances. It includes 7,356 audio and
video recordings from 24 professional actors (12 male, 12 female), providing high-quality 16-bit 48kHz audio and 720p video. The dataset is
widely used in speech emotion recognition, audiovisual affect modeling, and multimodal emotion analysis.
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Dataset Year Speakers Scale Resolution Source

AffectNet [162] 2017 N/A ~1,000,000 images (440k labeled) 425425 Internet in-the-wild
CelebA [155] 2015 10,177 identities 202,599 images ~178%218 Internet in-the-wild (CUHK-MMLAB)
CelebA-HQ [127] 2017 ~10,177 30,000 HQ images 1024%1024 Processed CelebA subset
FFHOQ [128] 2019 ~70,000 70,000 images 1024x1024 Flickr & Internet
LibriSpeech [167] 2015 ~1,000 1,000 hours audio N/A LibriVox audiobooks
VoxCeleb1 [30] 2017 1,251 150k utterances 360x288, 720X576 YouTube in-the-wild
VoxCeleb2 [7] 2018 6,112 1M+ utterances (~2,000 h) 224224 YouTube in-the-wild
HDTF [64] 2021 300+ 16 hours 1280x720, 19201080  YouTube in-the-wild
MEAD [50] 2020 60 Multi-emotion recorded sequences  7-view HD cameras Lab multi-view setup
GRID [9] 2006 34 34,000 utterances 360p-480p Lab-controlled
TCD-TIMIT [114] 2015 62 6,913 utterances ~720p Trinity College Dublin
LRS2 [1] 2017 N/A 224 h, 144k utterances 224x224 BBC broadcasts

LRS3 [2] 2018 ~5,000 433-440 h 224x224 TED/TEDx videos
LRS3-TED [2] 2018 ~5,000 400+ h 224x224 TED/TEDx online videos
LRW [88] 2017 N/A 500k+ clips (500 target words) 224%224 BBC broadcast

VFHQ [211] 2022 N/A 16,000+ clips 700%700-1000%x1000 Interviews / talk shows
TalkingHead-1KH [205] 2021 N/A 500k video clips >256p; 80k >512x512  YouTube licensed
CelebV-HQ [67] 2022 15,653 35,666 curated clips >512%512 Web celebrity videos
CelebV-Text [226] 2023 N/A 70k clips, 20 text per clip >512x512 Web-crawled videos
VOCASET [91] 2019 12 480 4D capture sequences 3D mesh (60 fps) Studio-controlled
CREMA-D [4] 2014 91 7,442 clips 480p-720p Lab-controlled
RAVDESS [25] 2018 24 7,356 recordings 720p; 48kHz audio Studio-recorded

Table 2: Summary of major datasets used in talking-head generation and audio-visual research.

D Evaluation Metric Details

Figure 6, 7 and 8 present the metric usage. Below we provide some evaluation metric details.

D.1 Visual Quality Metrics

BRISQUE [160] (Blind/Referenceless Image Spatial Quality Evaluator) is a no-reference IQA metric that assesses the level of distortion in
an image without requiring a ground-truth reference. It models natural scene statistics (NSS) by applying locally normalized luminance
transforms (MSCN) and extracting statistical features from luminance coefficients and pairwise products. These features are then fed into an
SVR model trained on human-rated distorted images to predict a quality score. Lower BRISQUE values indicate images that are closer to
natural, undistorted statistics, while higher values correspond to stronger perceptual degradation.

CPBD [165] (Cumulative Probability of Blur Detection) is a no-reference blur/sharpness metric that estimates the probability that blur in
an image would be perceptually detectable by a human observer. It analyzes edge widths and edge contrast across the image, applies an
HVS-based blur detection model, and aggregates the cumulative detection probability into a score in the range [0, 1]. Higher CPBD values
indicate sharper images with less perceptible blur.

NIQE [161] (Natural Image Quality Evaluator) is a no-reference IQA metric that quantifies how much an image deviates from the statistical
regularities of pristine natural images. The method learns a multivariate Gaussian model of NSS features extracted from high-quality images;
for a test image, the same NSS features are computed and the Mahalanobis distance to the natural-image model is reported as the NIQE
score. Lower NIQE indicates statistics closer to natural images, while higher values imply larger deviations and stronger distortions.

MOS [76] (Mean Opinion Score) is a subjective human evaluation protocol widely used for assessing perceptual quality in image, video,
and audiovisual generation. Multiple human raters assign quality scores (typically on a 1-5 scale) to generated samples, and the final MOS is
obtained by averaging scores across raters and/or samples. Higher MOS reflects better perceived realism and naturalness.

SSIM [51] (Structural Similarity Index) is a full-reference image quality metric used to measure the similarity between a generated image
and its ground-truth counterpart in terms of structure, luminance, and contrast. It computes local statistics (mean, variance, covariance)
within sliding windows to obtain luminance, contrast, and structural similarity components, which are then aggregated into a final SSIM
score typically ranging from 0 to 1 (with 1 indicating perfect similarity). Higher SSIM values suggest fewer structural distortions. However,
SSIM is primarily sensitive to low-level structural differences and does not capture semantic errors, identity inconsistencies, or temporal
artifacts in video-based tasks such as talking-head generation.
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MS-SSIM [207] (Multi-Scale Structural Similarity) is a perceptual image quality metric that extends SSIM by evaluating luminance,
contrast, and structural similarity across multiple spatial scales. It is computed by iteratively applying low-pass filtering and downsampling
to the input images, calculating SSIM at each scale, and combining the contrast-structure terms multiplicatively with a luminance term at the
coarsest level. Scores range from 0 to 1, with higher values indicating greater perceptual similarity. However, MS-SSIM inherits limitations
from SSIM: it is primarily designed for aligned pairs of natural images, may be insensitive to subtle spatial misalignments or temporal
inconsistencies, and does not explicitly account for identity preservation, motion realism, or semantic correctness in talking-head generation.

PSNR [16] (Peak Signal-to-Noise Ratio) is a distortion-based full-reference metric that quantifies pixel-level fidelity between a generated
image and its reference. It is derived from the mean squared error (MSE) as

m—1n-1

MSE = % 06, - K ), @
i=0 j=0
MAX?
PSNR = 10log;,, (W) ) @

where MAX denotes the maximum pixel value (e.g., 255 for 8-bit images). Higher PSNR indicates closer pixel-wise correspondence. Despite
its simplicity and widespread use, PSNR often correlates poorly with human perceptual judgments, especially in generative tasks where
semantic errors, structural distortions, or texture inconsistencies may be visually significant but yield low MSE. Moreover, it assumes strict
spatial alignment with ground truth and therefore provides limited insight into perceptual realism, identity fidelity, or temporal coherence in
talking-head video synthesis.

LPIPS [43] (Learned Perceptual Image Patch Similarity) is a perceptual similarity metric that measures differences between images in the
deep feature space of a pretrained CNN (e.g., VGG or AlexNet). Images are passed through the network to extract multi-layer feature maps,
which are channel-normalized and compared using L2 distances (optionally with learned channel-wise weights). Lower LPIPS scores indicate
higher perceptual similarity. Compared with pixel-wise metrics such as PSNR or SSIM, LPIPS correlates better with human perception by
being more sensitive to texture, semantics, and style differences. Nonetheless, its behavior depends on the backbone network and training
domain and may not generalize perfectly to out-of-domain data such as synthetic or stylized talking-head frames.

FID [15] (Fréchet Inception Distance) is a widely used distribution-level metric for evaluating generative models. Real and generated
images are fed into a pretrained Inception network (with the classification head removed), and their feature embeddings are modeled as
multivariate Gaussian distributions. The Fréchet distance between these distributions serves as the FID score. Lower FID indicates that the
distribution of generated images more closely matches that of real images. FID jointly reflects sample quality and diversity, making it more
informative than single-image metrics such as SSIM or PSNR. However, it is sensitive to preprocessing, sample size, and the choice of feature
extractor, and it does not account for temporal coherence or identity preservation in video generation tasks.

E-FID [227] extends FID by replacing the generic Inception feature extractor with a face- or expression-specific network trained on facial
recognition or expression classification datasets. Distributional differences are then computed in this expression-aware embedding space.
Lower E-FID scores indicate that the expression and facial attribute distributions of generated faces more closely match those of real faces.
Like FID, E-FID is influenced by the choice and domain of the feature extractor and primarily captures frame-level appearance rather than
temporal consistency.

FVD [197] (Fréchet Video Distance) is a distribution-level metric for assessing video generation quality. Real and generated videos are fed
into a pretrained spatio-temporal recognition model (typically I3D) to extract embeddings that reflect both visual quality and temporal
dynamics. These embeddings are modeled as multivariate Gaussians, and the Fréchet distance between them is used as the FVD score. Lower
FVD values indicate that generated videos better match real ones in terms of appearance and motion. FVD captures temporal coherence
beyond frame-based metrics such as FID, although it remains sensitive to the feature extractor’s training domain and may not directly
measure identity consistency, lip-sync accuracy, or fine-grained perceptual artifacts.

MVE [80] (Mean Vertex Error) is a standard geometric accuracy metric used in 3D face and head reconstruction, animation, and mesh-
based talking-head generation. It computes the average Euclidean distance between corresponding vertices of the predicted mesh and the
ground-truth mesh, typically after applying a rigid alignment step. MVE measures the fidelity of reconstructed geometry, including shape,
pose, and expression. Lower MVE values indicate closer geometric correspondence to the ground truth, while higher values reflect larger
deviations. MVE focuses solely on geometric structure and does not capture appearance realism, identity consistency, expression subtlety, or
temporal smoothness.

FPS [166] (Frames Per Second) is a runtime performance metric that quantifies the speed of video generation or inference. It is defined as
the number of frames produced per second:

number of output frames
FPS =

. 3

wall-clock time (seconds) @)
Higher FPS indicates faster generation and better suitability for real-time or high-throughput applications, whereas lower FPS reflects slower
inference. FPS measures computational efficiency rather than visual quality; comparisons across methods must account for variations in
hardware, resolution, batch size, and implementation optimizations.
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D.2 Audio-Visual Synchronization Metrics

LSE-D / Sync-D [8, 33] (Lip-Sync Error Distance) is a widely used audio-visual synchronization metric based on a pretrained lip-sync model
such as SyncNet. For each audio-video segment, the mouth-region video frames and the corresponding audio snippet are fed into the sync
network to obtain video and audio embeddings. The metric is computed as the average L2 distance between these embeddings across all
temporal windows. Lower LSE-D values indicate closer alignment between lip movements and speech, while higher values reflect poorer
synchronization. LSE-D provides an automatic and quantitative measure of lip-sync quality and is also used as a supervisory loss in some
training pipelines. When the generated video quality is poor (low resolution/cropping/compression/blurring), embedding extraction may be
unstable, making LSE-D unreliable. Furthermore, multiple studies [33, 176] have shown that LSE-D/LSE-C have limited correlation with
human subjective evaluation (MOS).

LSE-C / Sync-C [8, 33] (Lip-Sync Error Confidence) is the confidence-based counterpart to LSE-D and also relies on a pretrained
SyncNet-style model. Given an audio-video pair, the model outputs a synchronization confidence score (e.g., cosine similarity, logits, or
softmax-normalized probabilities) that reflects how likely the audio and lip motions are aligned. The final LSE-C score is obtained by
averaging (or aggregating via median/percentile) confidence scores across time. Higher LSE-C values indicate stronger predicted alignment
between speech and lip motion. Similar to LSE-D, LSE-C offers an automatic quantitative indicator of synchronization quality but does not
assess appearance quality, expression naturalness, head motion, or identity stability, and its correlation with human subjective judgments is
known to be limited.

WER [77, 179] (Word Error Rate) is a standard metric for evaluating the correctness of recognized or generated speech content in
speech-driven talking-head systems. It measures the edit distance between the system output (hypothesis) and the ground-truth transcript,
defined as:

_S+D+I

WER = =————
N

where S, D, and I denote the number of substitutions, deletions, and insertions, respectively, and N is the total number of words in the
reference. Lower WER indicates more accurate speech content reproduction.

D.3 Geometry & Landmark Accuracy

L1 (Mean Absolute Error, MAE) [117] measures the pixel-wise absolute difference between a generated image or video frame and its
ground-truth counterpart. It is computed by taking the absolute value of the difference at each corresponding pixel, then averaging across all
pixels (and optionally color channels or frames). Lower L1 values indicate closer pixel-level agreement with the reference.

LMD (Landmark Distance) [33] is a geometric accuracy metric used to assess how well the synthesized facial or lip motion matches
real motion. Facial landmarks are first detected on both the generated and ground-truth frames, and the Euclidean distance between each
pair of corresponding landmarks is computed (optionally normalized by face size or inter-ocular distance). The final score is obtained by
averaging distances over all points and frames. Lower LMD values indicate better landmark alignment.

F-LMD (Fréchet Landmark Distance) extends landmark-based evaluation to the distribution level. Landmark features extracted from
generated and real videos are modeled as multivariate Gaussian distributions, and the Fréchet distance between these distributions is
computed, analogous to FID in image synthesis. Lower F-LMD values indicate closer alignment between the geometric motion distributions
of generated and real faces.

M-LMD (Mean Landmark Distance) refers to the average Euclidean distance between corresponding facial landmarks across frames,
often normalized by facial scale (e.g., inter-ocular distance). Despite naming differences across papers, M-LMD is mathematically equivalent
to landmark-based mean distance measures such as LMD, and it evaluates how closely generated facial or lip motion follows the ground
truth.

AVConfidence (Audio-Visual Confidence) measures the alignment between the generated video (typically the lip or mouth region)
and its corresponding audio using a pretrained audio-visual synchronization network such as SyncNet. The audio and video segments are
encoded into embeddings, and their similarity (e.g., cosine similarity or another confidence score) is computed over sliding windows or
the full clip. The final AVConfidence is obtained by averaging (or taking the maximum of) these similarity scores. Higher values indicate
stronger audio-lip synchrony. This metric is commonly used both for assessing lip-sync quality and for filtering misaligned samples during
dataset preprocessing.

AVOffset (Audio-Visual Offset) quantifies the temporal misalignment between the speech signal and the corresponding lip or mouth
motion. Using an AV-sync model (e.g., SyncNet), the audio embedding is compared against video embeddings at multiple temporal shifts. For
each time offset, a similarity or confidence score is computed, and the offset that yields the highest similarity (or lowest distance) is taken
as the estimated time lag. The absolute offset, averaged across windows or frames, is reported as AVOffset. Values closer to zero indicate
more accurate temporal synchronization. This metric is widely used to detect and correct audio-video drift in in-the-wild videos during
preprocessing.

D.4 Expression Naturalness

EmotionAcc [42, 54] is an accuracy-based metric that evaluates how well the generated face preserves or expresses target emotional states
in talking-head generation or facial reenactment. It is typically computed by applying a pretrained emotion recognition classifier (e.g., trained
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to predict discrete categories such as happy, sad, angry, etc.) to both the generated frames and the reference (or target-labeled) frames, and
reporting the proportion of frames where the predicted emotion matches the ground-truth or target emotion. Some methods additionally
employ human raters to assess perceived emotional correctness.

Diversity [29] measures the variability of generated outputs across different samples, typically in terms of appearance attributes such
as identity, pose, and expression, rather than realism alone. It is commonly computed as the average pairwise distance between feature
embeddings extracted from a pretrained network (e.g., a face recognition or image encoder). Higher average distances indicate more diverse
outputs, while lower values suggest redundancy or mode collapse.

Smoothness [24] evaluates whether the motion or appearance of consecutive frames in a generated video changes smoothly over time,
without jitter, flicker, or abrupt transitions. A typical formulation computes first- or second-order temporal differences in pixel space, feature
space, or geometric representations such as landmarks, mesh vertices, or optical flow (e.g., ||xs — x—1|| or ||x; — 2x;_1 + x¢_2]|). These values
are then averaged across frames to produce a Smoothness score. Lower values indicate smoother and more temporally consistent motion.
Recent work also proposes more advanced temporal metrics, such as Fréchet Video Motion Distance (FVMD), which compares distributions
of motion trajectories between real and generated videos, extending temporal evaluation beyond simple frame differencing.

PRMSE (Pose RMSE) [73] measures the accuracy of generated or predicted head pose relative to the ground truth in talking-head
synthesis or facial animation. For each frame, yaw, pitch, and roll (and optionally translation parameters) are estimated for both the generated
and reference frames using a consistent pose estimator. The squared differences between corresponding pose parameters are averaged
across frames and parameters, and the square root of this mean yields the PRMSE. Lower PRMSE values indicate more accurate head-pose
reproduction.

D.5 Driving Alignment

ARD (Absolute Relative Difference) measures the relative error between predicted values (e.g., depth, scale, motion magnitude, or 3D
reconstruction parameters) and ground-truth values. For each sample x (ground truth) and its prediction £, ARD computes |% — x|/|x| and
averages this ratio across all samples. Lower ARD values indicate closer agreement between prediction and ground truth in a relative sense.

AKD (Average Keypoint Distance) evaluates geometric accuracy by comparing facial or head keypoints extracted from generated
frames and corresponding ground-truth frames using the same landmark detector. The Euclidean distances between corresponding 2D or
3D keypoints are computed and averaged across all points and frames. Lower AKD implies better alignment of facial motion, pose, and
expression.

APD (Average Pose Distance) [61] quantifies the discrepancy between pose parameters estimated from generated frames and from the
driving or reference frames. Pose may include head rotation (yaw, pitch, roll), translation, or 3DMM-based pose parameters. The distance
between pose vectors is computed per frame and averaged across the sequence. Lower APD indicates more accurate reproduction of head
pose and motion.

AED (Average Expression Distance) [18] measures how closely the generated facial expression matches the expression of the driving
or target frame. Expression representations, typically 3DMM expression coefficients, dense landmarks, or other expression parameters, are
extracted for both generated and reference frames, and their distances are averaged across frames. Lower AED indicates better alignment of
facial expression and mouth motion dynamics.

FDD (Face / Motion Dynamics Deviation) [22] assesses temporal motion consistency by measuring how closely the dynamic trajectories
of facial geometry (e.g., 3D mesh vertices or facial keypoints) in generated videos follow those in the ground-truth sequence. For each frame,
geometric differences between predicted and real representations are computed (e.g., via L2 distance), and aggregated across time. Lower
FDD reflects more faithful and natural facial-motion dynamics.

E Future Directions and Limitations
E.1 Limitations of Text-Based Clustering and LLM-Based Labeling

The resulting clustering is inherently influenced by the vocabulary choices adopted in paper titles and abstracts, as TF-IDF representations
capture lexical co-occurrence patterns rather than underlying methodological equivalence. Variations in terminology across authors, research
communities, and publication periods may therefore affect fine-grained cluster boundaries. In addition, while large language models are
used solely for post-hoc cluster labeling rather than structure generation, their inherent priors can influence the phrasing and emphasis of
semantic summaries. Importantly, these factors primarily impact interpretability at the label or boundary level, while the overall hierarchical
organization remains largely consistent with the manually derived taxonomy.

E.2 Limitations Due to Public Data Availability

This survey is necessarily restricted to publicly available research and may therefore omit proprietary industrial systems or unpublished
benchmarks. While such industrial practices can play an important role in advancing the field, their reliance on private datasets, undisclosed
architectures, or non-reproducible evaluation protocols limits their suitability for systematic analysis. To ensure transparency, comparability,
and longitudinal consistency, we deliberately focus on reproducible and publicly accessible research practices. As a result, the proposed
taxonomy and trend analysis are intended to reflect the evolution of open and verifiable academic research, rather than to provide a
comprehensive account of closed industrial developments.
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E.3 Reporting Inconsistencies and Extraction Limitations

The extraction process in this survey is inherently influenced by how original papers report their experimental setups and evaluation results,
reflecting a broader lack of standardization in experimental reporting within the talking-head generation community. In practice, identical
evaluation metrics are often described using different terminology, and experimental settings are reported with varying levels of granularity,
which increases the difficulty of systematic information extraction and normalization and may lead to occasional omissions. To mitigate these
effects, we adopt a combination of unified mapping rules and manual verification to ensure a reasonably robust and consistent extraction
strategy across studies. Nevertheless, we acknowledge that fully addressing this issue requires community-level efforts beyond the scope of
this work. Accordingly, we emphasize in the future outlook the potential value of establishing standardized experimental reporting templates
to improve the completeness, comparability, and reproducibility of large-scale survey analyses and benchmarking efforts.

E.4 Emerging Ethical Standards and Misuse Prevention

Although this work discusses issues related to deepfake technologies and demographic bias, concrete and widely accepted standards
for misuse prevention and ethical risk assessment remain under active development. Current discussions surrounding deepfake misuse,
bias amplification, and content provenance are still exploratory in nature, and no unified evaluation framework has yet been established.
Accordingly, the goal of this survey is not to propose a mature ethical assessment methodology, but rather to explicitly identify misuse
prevention as an important and currently under-standardized research frontier. By systematically reviewing existing debates and emerging
perspectives, we aim to raise awareness within the research community of the significance and complexity of these ethical challenges, and to
encourage further collective efforts toward developing robust and actionable ethical standards.

E.5 Demographic Granularity and Benchmark Coverage

Although recent studies increasingly acknowledge demographic imbalance as a critical factor affecting model performance, the demographic
composition of existing talking-head benchmarks remains underreported. As a result, it is difficult to assess whether current evaluation
practices systematically under-represent certain populations across gender, age, or ethnicity. This limitation also affects our longitudinal
analysis of 117 representative papers, as most datasets do not disclose sufficiently detailed demographic metadata. Future benchmark
construction and reporting efforts would benefit from standardized demographic annotations, which would enable more rigorous analysis of
fairness, bias amplification, and cross-demographic generalization in talking-head generation systems

E.6 Human Evaluation Metadata and Subjective Reliability

Human evaluation remains an essential component for assessing perceptual quality, expressiveness, and naturalness in talking-head
generation. While several studies recommend Mean Opinion Score (MOS) evaluations with at least 30 raters, detailed metadata such as
inter-rater reliability, rater expertise, and annotation consistency are rarely reported in a standardized manner. This lack of transparency
limits large-scale meta-analysis and complicates the interpretation of subjective scores. Moreover, recent evidence suggests that correlations
between traditional MOS and emerging semantic metrics, such as lip-sync error scores (e.g., LSE-C/D), are often weak. Future work should
place greater emphasis on reporting detailed human evaluation protocols and reliability statistics, facilitating deeper investigation into how
subjective judgments align with objective and semantic evaluation metrics.

E.7 Toward Unified Head-Body Dynamics and Semantic Grounding

Most existing talking-head generation methods focus exclusively on facial motion, often neglecting the broader context of body dynamics,
gaze behavior, and emotional expression. However, recent trends suggest a growing interest in unified generative frameworks that integrate
head motion with upper-body gestures and posture. In parallel, there is increasing recognition of the need for richer semantic grounding,
ensuring that generated motions are not only synchronized with audio but also contextually appropriate for the spoken content. Future
research should explore more rigorous linguistic and semantic evaluation metrics that assess whether generated behaviors align with
dialogue intent, discourse context, and affective cues, rather than relying solely on low-level synchronization measures.
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