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Abstract

Chinese Spelling Check (CSC) aims to detect
and correct error tokens in Chinese contexts,
which has a wide range of applications. In this
paper, we introduce InfoKNN-CSC, which ex-
tends the standard CSC model by linearly in-
terpolating it with a k-nearest neighbors (KNN)
model. Moreover, the phonetic, graphic, and
contextual information (info) of tokens and con-
texts are elaborately incorporated into the de-
sign of the query and key of kNN, according to
the characteristics of the task. After retrieval, in
order to match the candidates more accurately,
we also perform reranking methods based on
the overlap of the n-gram values and inputs. Ex-
periments on the SIGHAN benchmarks demon-
strate that the proposed model achieves state-of-
the-art performance with substantial improve-
ments over existing work.

1 Introduction

The purpose of Chinese spelling check (CSC) is to
detect and correct spelling errors in Chinese text,
which often occur between characters with similar
phonetics and morphology. The research on CSC is
significant since it benefits various NLP tasks, such
as speech recognition, optical character recognition,
data cleaning, Chinese grammar error correction,
and so on. With the development of deep learning
and pretrained language models, great progress has
been made in this task (Etoori et al., 2018; Guo
et al., 2019; Zhang et al., 2020). Further, many
current works have turned to introducing phono-
logical and visual information into their models
(Nguyen et al., 2020; Wang et al., 2021; Zhang
et al., 2021). Their methods are based on statistics
from Liu et al. (2011) that 83% of Chinese spelling
errors are caused by phonological similarity, 48%
are due to visual similarity and 35% involve both
factors.

However, Chinese spelling check is still chal-
lenging because it suffers from subtle and diverse

Input B 24 % (set) & A& ¥ 89 T4 .
Error | Correct B 2 32 (this) & & ¥ 8 TA4F .
Pair Model Output A 7 (relate) & A % 49 T4k .
in Translation Because this is the principal’s job.
Training L REORMERS L.
Set | Samplesin i 4B KX L.
Traing Set
Input % 89 Ak (head) T & 89 5 -
Correct | Correct %36 A (steal) T &K 89 F 4 -
Usage | Model Output 5 i 69 Ad%(cast) T &K 6 F#t -
in Translation The person next to me stole my manual.
Training L AARTAGBE.
Set | Samplesin i yh 7m0 K.
Traing Set

Table 1: Examples of Chinese spelling errors, including
inputs, target outputs(correct), model outputs, and hints
in the training set. The model shown here is REALISE
(Xu et al., 2021), one of the strong baselines.

errors. Furthermore, we speculate that current
methods have not fully utilized the training data, let
alone the lack of an adequate parallel corpus. As
shown in Table 1, the existing model REALISE (Xu
et al., 2021) fails to correct "% (set)" to "X (this)"
at test time though the same error ("1&" — "i&X") in
similar contexts occurs a few times in the training
set. Meanwhile, the model cannot correct the token
"fr(steal)" while its correct usage also appears. To
make better use of the information in the dataset,
we introduce the retrieval-augmented method with
an elaborately designed k-nearest neighbors (KNN)
model and reranking mechanism.
Retrieval-augmented text generation, a new gen-
eration paradigm known as "open-book exam", can
be targeted to solve such problems by integrating
deep learning models with traditional retrieval tech-
nologies (Guu et al., 2020; Weston et al., 2018; Gu
et al., 2018). Among them, algorithms based on
kNN retrieval always predict tokens with a near-
est neighbor classifier over a large datastore of
cached examples, using representations from a neu-
ral model for similarity search (Khandelwal et al.,
2019, 2020; Kassner and Schiitze, 2020). The kNN



retrieval algorithms for model improvement have
proven effective for many tasks, such as machine
translation, language modeling, dialogue genera-
tion, and so on. However, CSC has some signifi-
cant differences compared with the above tasks, on
the basis of which we propose our corresponding
methods.

Above all, both correct and incorrect tokens ex-
ist in the input text, which makes it confusing and
unreasonable to arbitrarily store the hidden repre-
sentations of each token from the neural model
for retrieval. As mentioned before, the incorrect
token is often caused by phonological and visual
similarity. So we incorporate the phonological and
visual information of each token itself into the cal-
culation of the key. Furthermore, the contextual
information around the target token is also encoded
according to a certain distribution. We suppose that
phonological and visual information, fused with the
contextual encoding, which we call error-robust in-
formation (denoted as ERInfo), is more robust and
not as sensitive as the pure semantic information
during retrieval. In addition, there are many over-
laps between each pair of input and output texts in
CSC since only a few tokens are incorrect. So we
can store the n-gram around the target token as the
value to construct the datastore for further filtering
and reranking instead of conventionally just storing
the token itself.

Combining the above two ideas, we retrieve the
n-gram neighbors of the target token by its error-
robust information, rerank them based on their
overlap with the corresponding input n-gram, and
finally get the word distribution over the vocab-
ulary, which is called InfoKNN for convenience.
We introduce InfoKNN-CSC which extends a pre-
trained CSC model by linearly interpolating the
original word distribution with the InfoKNN. The
experimental results of InfoKNN-CSC on three
SIGHAN benchmarks surpass those of the previ-
ous methods. Furthermore, thanks to the design
of ERInfo, we can expand the data more easily by
adding non-parallel texts to the datastore directly
than other methods that need to construct pseudo-
data with confusion sets.

In summary, our contributions are as followed:

1) To our best knowledge, our work is the first
to employ the retrieval-augmented method on
Chinese spelling check task, which can be used
in a plug-and-play manner without training and
allows more flexible expansion of the datastore.

2) We elaborately design the specific key and value
in the datastore and propose InfoKNN to fuse
richer information for more robust retrieval.

3) The experiment shows that our model achieves
state-of-the-art performance on the SIGHAN
datasets with substantial improvement. The
code will be released to the community.

2 Background
2.1 Nearest Neighbor Language Modeling

Given a context sequence ¢; = (w1, ,W¢—1),
the language model estimates the distribution over
the target token prn (wy | ¢;). Khandelwal et al.
(2019) proposed KNN-LM to involve augmenting
the pre-trained LM with a nearest neighbors re-
trieval mechanism.

Firstly, let f(-) be the function that maps a con-
text c to a fixed-length vector representation. There-
fore, we can use the training set D to build the
datastore:

(K, V) ={(f (ci) ,wi) | (ci;wi) € D} (1)

Then at step ¢ during inference, given the input
context c¢, the model queries the datastore with
f(ct) to retrieve its k-nearest neighbors N using
a distance function d(-, -) and then gets the target
token’s probability over the vocabulary:

pkNN(wt+1 | Ct) X

Z ]th+1=v¢ €xXp (_d (kiv f(ct))) - (2

(k‘i,vi)e./\/'

Finally, the distribution obtained by NN will
be interpolated to the standard LM distribution:

p(witt | cr) = Apinn (Wit | ¢r)
+ (1 = Mpm(werr | ). (3)

2.2 Chinese Spelling Check

The goal of the standard CSC model is to learn
the conditional probability pesc (y | x) for cor-
recting a sentence x = {z1, - ,2,} which in-
cludes errors to a corresponding correct sentence
vy = {y1, - ,yn}. Correction is typically per-
formed in a masked language modeling manner,
and the probability of each predicted token can be
factored as pese (Vi | X).

The CSC model always encodes x into the hid-
den states h. Due to the characteristics of CSC, er-
ror correction usually requires phonetic and graphic
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Figure 1: An illustration of InfoKNN-CSC. We use all the tokens in the training set to make the datastore. The key
includes the phonetic, graphic and contextual information of the token obtained from the pre-trained CSC model,
and the value is in the form of an n-gram. There are both correct tokens (the majority) and incorrect tokens (marked
in red) in the training data, such as "#.:now" (which should be changed to ".:observe") and "% :committee” (which
should be changed to " E:health"). The test sample in the figure shows the correction process for the token " A (to)"
in "X XA A(this to)", which should be changed to "—(one)".

information for each token. So the CSC model
usually also obtains hidden representations of font
images and pronunciations of input tokens, which
are denoted as p and g.

Token representations are obtained after fusing
these hidden representations using an appropriate
approach, such as a gating mechanism, denoted as
m:

m = G(h,p,g). )

CSC model will output probability distribution
of each token over vocabulary V according to the
corresponding hidden representation,

Pesc (yi ‘ xz) = O(mz)7 5)

where O is a predict function, such as a linear trans-
form followed by Softmax.

Since Chinese Spelling Check can be performed
in a masked language modeling manner, similar
to language modeling, we can enhance the CSC
model with a nearest neighbor retrieval mechanism.
Based on this idea, it is natural to make a datastore
using the hidden vectors in the CSC model as dense
indexes and then perform retrieval to integrate with
the CSC model. However, due to the characteristics
of the CSC task, such as the mix of correct and
incorrect tokens in the input, we need to make
some adjustments with full consideration, which
will be described in Section 3.

3 Methodology

As shown in Figure 1, the core idea of our work
is to enhance the CSC model with a nearest neigh-
bor retrieval mechanism. The datastore used for
retrieval is carefully designed according to the char-
acteristics of CSC task to enhance the robustness
of retrieval and make better use of every token, no
matter it is correct or incorrect. In Section 3.1, we
introduce the method of building the datastore. In
Section 3.2, we introduce our method to utilize
kNN search results.

3.1 Datastore Building

The structure of the datastore is a dictionary, in
which each element consists of the pair (key, value).
The key is used to retrieve the nearest neighbor and
obtain the value which contains the information we
need.

Key Design The goal of our key design is to
avoid mixing correct and incorrect tokens in the
input and provide sufficient information for error
correction. Each token needs to be represented
more rationally and robustly in the same high-
dimensional space.

We take the last sentence " & 284245 & ...(The
World Commission states that...)" in the training
context in Figure 1 as an example. It should be cor-



rected to " T 284245 H...(WHO states that...)",
where "Z" is wrong and has a similar pronunci-
ation ("wei") to "E". We believe that using the
semantic information of the wrong token is mis-
leading and unreliable in the process of retrieval,
but its phonetic or morphological information is
usually approximately correct, according to the
study of Liu et al. (2011). Therefore, it is more
robust to use the information about phonology and
morphology.

Furthermore, to be able to correct errors, it is
not enough to only use phonetic and graphic in-
formation, but contextual information should also
be added. In this example, what is helpful for the
correction is that the context of "% is "# (world)"
and " %823 (organization)" and the pronunciation of
"Z" is "wei". Based on the information above,
we can infer that it should be "# E A £3(WHO)".
Although the word representation in the semantic
encoder has integrated contextual information to
some extent, we suppose it is not robust enough
because it is mainly influenced by the input word,
which may be wrong. Therefore, we would like to
use a more careful approach to obtain contextual
information. Here, we use a Gaussian distribu-
tion to weight the hidden representations of tokens
around the current token to obtain the contextual
representation.

Formally, given an incorrect-correct sentence
pair (z,y) € (X,)) in the training set, a CSC
model corrects the -th input token z; to the ¢-th
target token y; based on the input context . we
denote the hidden representation of the input to-
ken x;’s hidden representation of its pronunciation,
morphology and semantics as ph(z;), mo(x;) and
s(zy), respectively. They can be obtained sepa-
rately with the phonetic, graphic, and semantic
encoders, and they are fused as follows:

f(mt) = f(ph(lit), mo(‘rt)? S(xt))7 (6)

where the fusion function f is usually a gate mech-
anism. The contextual representation of x; we de-
signed is obtained by weighting its neighboring
words’ representations:

clw) = Y falist,o)f(z:), (D)

0<i<L
N 1 (i —t)?
fn(zv tv U) - \/%O' ea:p(— 20_2 )7 (8)

where L is the length of input sequence z, f,, is the
probability density function of Gaussian distribu-
tion.

In the end, we use concatenation to combine and
store three parts of information and obtain the key
that satisfies our needs,

ke = [ph(we); mo(wy); c(y)], 9

We call the information stored in the key error-
robust information (denoted as ERInfo). For conve-
nience, the design of the key is called InfoK.

Value Design The standard KNN-LM is designed
to only use the target token as the value, which is
relatively simple. Considering the test sample "3
YA /~(this to)" in Figure 1, we can find that using
the ERInfo to retrieve is still not enough. It always
gets lots of same target tokens as the query token.
It may be because they have the same phonology
and morphology representation in ERInfo.

Furthermore, we find that we can rely on the con-
text of the the input token for further filtering. In
other words, we believe that the retrieved neighbors
with the same context as the input token should be
more accurate and useful. For example, “i& —
/(this one)" is more likely to be the target than
"X YA J& (after this)* for "3X ¥A/~(this to)".

Therefore, we decide to store the n-gram with
a window of size n centered on the corresponding
token y; in the target output to store contextual
information more explicitly. Formally, we obtain
the value,

Ve = Y |nj2ls Yt s Yerlng2)) (10)

For convenience, we call the design that stores
n-gram values as contextual information and then
uses them for further reranking NRV.

In this way, the datastore is built from the train-
ing set,

(IC7V) = U

(z,y)€(X,Y)
3.2 KNN Retrieval and Utilization

Retrieval During inference, for each token z,
the InfoKNN-CSC model aims to predict g, given
the input sequence = as well as x;’s hidden rep-
resentation f(x;) and the ERInfo representation
ph(z), mo(x;) and c(x). We use these represen-
tations to generate the query g; in the same way in
Section 3.1,

qr = [ph(t); mo(zr); e(a4 )],

which will be used to retrieve the k nearest neigh-
bors in the datastore with respect to the [ distance.

{(ke,ve), Ve € y}. (A1)



After retrieval we can get k nearest neighbors
Ny = {(ki,v;),i € {1,2,---k}} and the distance
Dy = {d(q, k:),i € {1,2,---k}}, where d(g, k;)
means /5 distance between k; and g;.

Reranking Remember that the value in the data-
store is in the form of n-gram, so we can use the
nature of the CSC where the input and output over-
lap a lot to rerank the k retrieved nearest neighbors.

For each input token x;, we can obtain its n-
gram gr = [Ty_|p/2), Tty " 5 Tyy|py2)] With a
window of size n centered on x;. For the x;’s j-th
neighbor N;(j), we denote the distance between
it and z; as Dy(j). We modify the distance Dy(j)
based on the n-gram overlap between the input x;
and the neighbor N¢(j)’s value v;:

B 21§i§n H(U;:’g%)wi
= n o (12)
Dy(j) = (1 — as) Dy(4),

where w is the gain of each position if they are
same, and a; represents how much the retrieved
n-gram overlaps with the input, which can measure
their similarity.

Utilization With the above designs, the target
word’s probability distribution over the vocabulary
based on the retrieved neighbors is computed as:

PN (Yt | ) o

s
3 1 = o Hep(—21)13)
(Ki,v) T
where T is the softmax temperature and vitk/ 2 is
the central word of v;. The final probability when
predicting y; is calculated as the interpolation of
two distributions with a hyper-parameter A:

p(yt | J?t) = /\pkNN(yt | ﬂUt)

14
+ (1 - /\)pcsc(yt | xt) (19

where p¢s. indicates the vanilla CSC model’s pre-
diction.

4 Experiment

In this section, we introduce the details of experi-
ments, including datasets, metrics, baselines, and
the main results we obtained. Then we conduct
analysis and discussions to verify the effectiveness
of our method.

4.1 Datasets

Training Data We use the same training data
by following previous works (Zhang et al., 2020;
Liu et al., 2021; Xu et al., 2021; Li et al., 2022c¢),
including the training samples from SIGHAN13
(Wu et al., 2013), SIGHAN14 (Yu et al.,, 2014),
SIGHANTIS (Tseng et al., 2015) and the pseudo
training data, denoted as Wang271K (Wang et al.,
2018).

In addition, we randomly select 10% of the train-
ing data during training as our verification set to
select the best hyperparameters.

Test Data To guarantee fairness, we use the same
test data as previous work, which are from the
SIGHAN13/14/15 test datasets. It is noted that
the text of the original SIGHAN dataset is in
Traditional Chinese, so we use OpenCC to pre-
process these original datasets into Simplified Chi-
nese which has been widely used in previous work
(Wang et al., 2019; Cheng et al., 2020; Zhang et al.,
2020; Xu et al., 2021). Detailed statistics of the
training/test data we used in our experiments are
shown in Appendix A.

4.2 Evaluation Methods

We evaluate our model’s predictions with the
sentence-level metrics which was used in most of
the previous work. The results are reported at both
detection level and correction level. At the detec-
tion level, a sentence is considered correct if all
spelling errors in the sentence are successfully de-
tected. At the correction level, the spelling errors
not only need to be detected, but also need to be cor-
rected. We report accuracy, precision, recall, and
F1 scores at both levels. To facilitate comparisons
in the later works, we also report our results using
the official SIGHAN tool and results in character-
level metrics in Appendix C.

4.3 Baseline Models

To evaluate the performance of InfoKNN-CSC, we
select several advanced strong baseline methods:
FASpell designed by Hong et al. (2019) is a model
that consists of a denoising autoencoder and a de-
coder. SpellGCN (Cheng et al., 2020) integrates
the confusion set to the correction model through
GCNs to improve CSC performance. PLOME
(Liu et al., 2021) is a task-specific pretrained lan-
guage model to correct spelling errors. REALISE
(Xu et al., 2021) is a multimodel CSC model which
captures and mixes the semantic, phonetic and



Detection Level Correction Level

Dataset Model Acc Pre Rec F1 | Acc Pre Rec Fl1
FASpell (Hong et al., 2019) 63.1 762 632 69.1 |60.5 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) 80.1 744 77.2 - 783 7277 754

SIGHAN13 ECOPOf (Li et al., 2022c¢) 83.3 89.3 83.2 86.2|82.1 885 820 85.1
REALISE! (Xuetal., 2021) | 82.7 88.6 825 854|814 872 812 84.1
InfoKNN-CSCT (Ours) 834 90.0 828 86.3|82.3 89.1 82.2 85.6
FASpell (Hong et al., 2019) 70.0 61.0 535 5701693 594 52.0 554

SpellGCN (Cheng et al., 2020) 65.1 695 672 - 63.1 672 653
SIGHAN14 ECOPO (Liet al., 2022¢) 79.0 68.8 721 704|785 67.5 71.0 69.2
REALISE (Xu et al., 2021) 784 678 715 69.6 |77.7 663 70.0 68.1
InfoKINN-CSC (Ours) 799 721 706 71.3]79.6 71.3 69.8 70.6
FASpell (Hong et al., 2019) 742 676 60.0 635|737 66.6 59.1 62.6

SpellGCN (Cheng et al., 2020) 74.8 80.7 77.7 - 721 777 759
SIGHANIS PLOME (Liu et al., 2021) 774 815 794 - 753 793 772
ECOPO (Li et al., 2022¢) 85.0 77.5 82.6 80.0 | 842 76.1 81.2 785

SCOPE (Li et al., 2022b) 80.2 83.2 81.7 - 775 804 789

REALISE (Xu et al., 2021) 84.7 77.3 81.3 793|840 759 799 778
InfoKNN-CSC (Ours) 86.1 81.1 81.3 81.2|85.6 79.9 80.1 80.0

Table 2: Sentence-level performance of InfoKNN-CSC and all baseline methods. REALISE is the backbone for
InfoKNN-CSC to build the datastore. Results marked with "f" on SIGHAN 2013 are post-processed with removing
all "8)", "3&", "43" from the model output, due to the low annotation quality about them which is to follow the
previous work (Xu et al., 2021) for convenient comparison. Results marked with "{" are obtained by using the same
data as our model to implement SCOPE. The detailed comparison with SCOPE is shown in Appendix D.

graphic information. ECOPO (Li et al., 2022c)
is an error-driven contrastive probability optimiza-
tion framework and can be combined with other
CSC models. SCOPE (Li et al., 2022b), concur-
rently to our work, consists of a shared encoder and
two parallel decoders that introduces an auxiliary
task of Chinese pronunciation prediction. Note that
SCOPE uses additional training data (wiki2019zh')
compared to the other work. For fair comparison,
we show the results of our model using the same
data as SCOPE in the Appendix D.

4.4 Implementation Details

To get the ERInfo that is required to construct our
datastore, we consider using a pre-trained model
on the current task, like other kNN retrieval-related
work does. We choose REALISE, a multimodel
model that captures and mixes semantic, phonetic,
and graphic information, which meets our require-
ments very well.

More specifically, a pre-trained GRU encodes

"https://github.com/brightmart/nlp_chinese_
corpus

the pinyin sequence of input text to obtain the pho-
netic information ph(z;) of each token, and a pre-
trained ResNet encodes the character image to ob-
tain the corresponding graphic information mo(xy).
Considering the trade-off between storage space
and model performance, we store 3-gram of ev-
ery central token as the value of datastore. We
implement the grid search on the validation set to
determine the hyperparameters of our experiments,
and more details are shown in Appendix B.

4.5 Experimental Results

The results on sentence-level metrics of InfoKNN-
CSC and all baseline methods are shown in Ta-
ble 2. We also report our results using the official
SIGHAN tool and results on character-level metrics
in Appendix C. We can observe that the InfoKNN-
CSC has obtained substantial improvements on
SIGHAN14 and SIGHAN15 while achieving com-
parable results on SIGHAN13, compared to the pre-
vious state-of-the-art model ECOPO. When turn-
ing to the REALISE, on which our model is based,
the improvement is more remarkable, with about a


https://github.com/brightmart/nlp_chinese_corpus
https://github.com/brightmart/nlp_chinese_corpus

Detection-level Correction-level

SIGHANIS

D-Pp D-R D-F CP C-R C-F
InfoKNN 81.1 813 812 799 80.1 80.0
w/o Info-P 793 809 80.1 783 79.4 789
w/oInfo-G 795 81.0 80.2 787 795 79.1
w/o Info-C ~ 80.4 81.1 80.7 79.2 80.2 79.7
w/oInfoK 777 813 79.5 765 80.0 782
w/o NRV 79.7 812 804 784 799 79.1
w/o kNN 713 813 793 759 1799 7T7.8

Table 3: Ablation results of the InfoKNN-CSC model on
SIGHAN?2015 test set. We apply the following changes
to InfoKNN-CSC: 1) removing each element of ER-
Info(w/o Info-P, w/o Info-G, w/o Info-C denote the re-
duction of phonetic, graphic and contextual information
respectively.); 2) using the hidden representation of the
token as the key (w/o InfoK); 3) only using the target
token as the value(w/o NRV); 4) removing the kNN
module(w/o kNN)

2.0% average increase on three SIGHAN datasets.

On the other hand, it is notable that both the
accuracy and the precision of our model have im-
proved remarkably, while the recall score has no
great change. It demonstrates that the model be-
comes less prone to wrong corrections which may
be due to the fact that the model remembers more
correct samples. More detailed analysis is provided
in the Section 5.

5 Analysis and Discussion

5.1 Ablation Experiments

We conduct ablation experiments to analyze the
effects of the components of ERInfo and the de-
sign of InfoK and NRV on the performance of our
method. The results are shown in Table 3.

We can see that all three types of information in
ERInfo are critical, especially the phonetic informa-
tion. It may be due to the fact that most of the errors
in the sighan test set are phonological similarity er-
rors. And there is less decrease when contextual
information is removed, probably because the de-
sign of NRV also introduces contextual information
into the model.

When the InfoK and NRV are removed, the per-
formance drops significantly in both detection and
correction level. Especially in error correction, the
decrease in model effectiveness is more noticeable.
It may be because the absence of reranking by the
n-gram value can make the model unable to modify
or keep tokens in the sentence confidently. Besides,
missing the key that incorporates the ERInfo and

using only the hidden representation of each token,
the model will be confused about whether the input
token is reliable.

5.2 Data Augmentation

We also experiment with adding additional cor-
rect sentences to the datastore and find that the
results are further improved. It is worth pointing
out that other CSC researches need to perform data
augmentation by adding noise to the raw texts us-
ing the confusion set obtained with the rule-based
approach. The quality of the pseudo-data cannot
be guaranteed in this way, so it is likely to affect
the performance of the model. And it requires re-
training the model, which also consumes time and
resources. Compared to this data augmentation
method, our method is simpler and can add the
correct text to the datastore directly without retrain-
ing. The details and results are shown in Table 9 in
Appendix D.

5.3 Effect of Key Hyperparameters

While InfoKNN requires no additional training,
there are some hyperparameters still introduced.
As shown in Appendix E, we investigate how key
hyperparameters affect model’s performance.

Number of Neighbors per Query As shown in
Figure 2, the performance increases with the num-
ber of neighbors at first, and it starts to decrease
when the number of neighbors increases to about
16. It may be because more noise will be intro-
duced if too many neighbors are retrieved.

Softmax Temperature As shown in Figure 2,
the performance is relatively robust to temperature
and achieves good results over a wide range.

Interpolation Parameter As shown in Figure 3
in Appendix E, the model works best at A ~ 0.4,
probably because it can integrate the predictions of
kNN and CSC model better.

5.4 Inference Time

As shown in Appendix F, we investigate the effect
of InfoKNN on the inference time of CSC. We can
see that InfoKNN causes the inference to be slightly
slower, but the effect is not significant, probably
because CSC model decodes in parallel.

5.5 Case Study

It can be seen that the presence of similar contexts
in the training set causes the model to prefer to keep



Input: EH#ABRFERT -
Correct: ZRWRBREZET -
Translation: The teacher came into the classroom -
CSC Output: ZRHRFRERT -
InfoKNN Output: ZWH#H#ERZ £ T -
Traing Sample: LR HE — M A ER
Input: K LR .
Correct: K EEHEET .
Translation: I take my sneakers and go out -
CSC Output: E S Wtk
InfoKNN Output: & 7 LiEsh#HI] .
Traing Sample: SR EFHREAE T
’ LR VR A ATk .

Table 4: Some examples from SIGHAN 2015. The word
in red means an error, and the word in green means cor-
rect. "CSC Output” means the prediction from standard
REALISE model.

the current token and therefore avoid incorrectly
modifying it. That’s why in Table 2 the precision
score of the model has increased a lot.

As shown in Table 4, given an input, " Jf #ti%
# )% 3k T ", which means "The teacher entered the
teacher”, the standard CSC model REALISE not
only changes "% (teacher)" to " & (room)" but incor-
rectly changes "# (entered)" to "4 (invite)". Mean-
while the model argumented by the kNN avoids
incorrect modifications successfully, benefit from
a number of similar usages of "#t" in the training
set, suchas "% £ 69 % — /Ny ¥ Bt 2 2 8"
which means "When the teacher’s first footsteps
entered the classroom".

Another example is "#& # £ 12 ) # & ] ( 1 take
my sneakers and go out.)", which is correct, but RE-
ALISE incorrectly changed the " (take)" in it to
"#X (wear)" which is usually used in Chinese to re-
fer to putting on a hat, glasses, etc. And InfoKNN-
CSC do not make this mistake, because there are
many similar uses of "4 (take)" in the training set.

More similar examples can be found by compar-
ing outputs of REALISE with our model.

6 Related Work
6.1 Chinese Spelling Check

CSC has received wide attention over the past
decades. Early work (Mangu and Brill, 1997; Jiang
et al., 2012) used manually designed rules to cor-
rect the errors. After that, methods based on statisti-
cal language models also made some progress (Yu
and Li, 2014). With the development of deep learn-
ing and pretrained language model has achieved
great improvements in recent years. FASpell (Hong

et al., 2019) applied BERT as a denoising autoen-
coder for CSC. Soft-Masked BERT (Zhang et al.,
2020) chose to combine a Bi-GRU based detection
network and a BERT based correction network.

In recent times, many studies have attempted to
introduce phonetic and graphic information into
CSC models. SpellGCN was proposed to employ
graph convolutional network on pronunciation and
shape similarity graphs. Nguyen et al. (2020) em-
ployed TreeLSTM to get hierarchical character
embeddings as graphic information. REALISE
(Xu et al., 2021) used Transformer (Vaswani et al.,
2017) and ResNet5 (He et al., 2016) to capture
phonetic and graphic information separately. In
this respect: PLOME (Liu et al., 2021) chose to
apply the GRU (Bahdanau et al., 2014) to encode
pinyin and strokes sequence. PHMOSpell (Huang
et al., 2021) derived phonetic and graphic informa-
tion from multi-modal pre-trained models includ-
ing Tacotron2 and VGG19.

6.2 Retrieval-Augmented Paradigm

Retrieval-augmented text generation have been ap-
plied to many tasks including language modeling
(Guu et al., 2020), dialogue (Weston et al., 2018),
machine translation (Gu et al., 2018) and others. Li
et al. (2022a) provide an overview of this paradigm.

Of these retrieval-augmented methods, the stud-
ies that most relevant to our paper are kNN-LM
(Khandelwal et al., 2019), which extends a pre-
trained neural language model by linearly interpo-
lating it with a k-nearest neighbors model, KNN-
NMT (Khandelwal et al., 2020), which combines
k nearest neighbors algorithm closely with NMT
models to improve performance, BERT-kNN (Kass-
ner and Schiitze, 2020) that interpolates BERT s
prediction for question ¢ with a kNN-search.

7 Conclusion

We propose the InfoKNN-CSC to improve the cur-
rent CSC model with a nearest neighbor retrieval
mechanism. The keys and values in the datastore
for retrieval are carefully designed according to the
characteristics of CSC to effectively make use of
the data. The experimental results prove the effec-
tiveness of our method and its improvement over
previous work. Furthermore, because our method
is simple to implement and can be combined with
other CSC models without retraining, the perfor-
mance can be continuously improved.



Ethics Statement

Chinese Spelling check usually won’t present any
ethical violation. Nevertheless, our datastore can
be built from any open source corpus, and thus our
model may still have a low risk of producing toxic
content if there exists toxic text in the source text.
Other limitations, such as disk space usage, are
shown in Appendix G.
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A Statistics of the Datasets

The statistics of the dataset we used to make the
datastore in our experiments are shown in Table 5.

Dataset ‘ #Sent  #Error  #Error-pair
SIGHAN13 1000 1217 748
SIGHAN14 1062 769 461
SIGHANI15 1100 703 460

SIGHANTrain | 6126 8470 3318
Wang271K | 271329 381962 22409

Table 5: Statistics of the SIGHAN (transferred to sim-
plified Chinese) and Wang271K. We report the number
of sentences in the datasets (#Sent), the number of mis-
spellings the datasets contains (#Errors) and the number
of different kinds of errors (#Error-pair).

B Hyperparameters of the Model

Since we do not need to retrain CSC model, we
do not need to set hyperparameters such as epoch,
batch size, and learning rate, which brings great
convenience. The hyperparameters of the model at
the inference time are obtained on the validation
set and we show them in Table 6.


https://doi.org/10.5281/zenodo.3402023
https://doi.org/10.5281/zenodo.3402023
https://doi.org/10.5281/zenodo.3402023

Parameter Value
k 12
n-gram 3
A 0.45
Temperature 50
Woalue (1.68, 0.68, 1.68)
d 1
seed 17
size of datastore 13254850

Table 6: The hyperparameters of the model, obtained
by testing on the validation set.

C More Detailed Results

Some previous work used scores calculated by the
official evaluation tool, which are provided along
with the datasets 234, and some work reported re-
sults in character-level metrics only. The baseline
methods include: 1) SpellBERT (Ji et al., 2021) is
a lightweight pre-trained model for CSC. 2) GAD
(Guo et al., 2021) proposes a global attention de-
coder approach for CSC. 3) CRASpell (Liu et al.,
2022) proposes a noise modeling module to gen-
erate noisy context in training process to improve
performance of the CSC model. In order to com-
pare with these works and to facilitate the compar-
ison of later works, our more detailed results on
SIGHAN2015 are shown in Table 7 and 8.

D Results with Data Augmentation

To demonstrate the advantages of our approach that
allows simple data augmentation and to compare
more fairly with SCOPE (Li et al., 2022b) that uses
additional data, we also use the wiki2019zh (Xu,
2019) mentioned above, which is licensed under
the MIT License. Wiki2019zh corpus consists of
one million Chinese Wikipedia articles that are all
with no spelling errors. Note that we do not use the
confusion set to make pseudo data, but add these
correct sentences to the datastore directly.

As shown in Table 9, after performing data aug-
mentation, our model substantially outperforms
SCOPE on SIGHAN2013 and SIGHAN2014,
while being slightly lower on SIGHAN2015.

In the meantime, there is an overall improve-
ment in the scores compared to our results without
data augmentation. It also proves that the simple

2http://ir.itc.ntnu.edu.tw/lre/sighan7csc. html
3http://ir.itc.ntnu.edu.tw/lre/clpl4csc. html
4http: //ir.itc.ntnu.edu.tw/1lre/sighan8csc.html
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way of adding the correct sentences directly to the
datastore can effectively improve the results of our
model.

—e—T=1

—a—T=10
—4—T=100
——T=1000
----REALISE

F1 score

4 8 16 32
Number of neighbors (k)

64 128

Figure 2: Effect of the number of neighbors retrieved
and the softmax temperature on the SIGHAN 2015 test
set. The performance of the baseline is marked with a
dashed line.

F1 score

—8—Y=2014 —e—Y=2015
----RL2014 ----RL2015

—o—Y=2013
----RL2013
0.1 0.2

0.3 0.4

Lambda (1)

0.5
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0.7

Figure 3: Effect of the interpolation parameter A on
the SIGHAN 2013, 2014 and 2015 test set. The perfor-
mance of the REALISE in these test sets is marked with
a dashed line in the same color.

E Effect of Key Hyperparameters

Effect of the number of neighbors retrieved and the
softmax temperature on the SIGHAN 2015 test set
is shown in Figure 2. Effect of the interpolation
parameter A on the SIGHAN 2013, 2014 and 2015
test set is shown in Figure 3. For more convenient
comparison, we also show the baseline scores in
the figures.

F Inference Time

We compare the inference time on SIGHAN2015
test set of CSC model(REALISE) and InfoKNN-
CSC conditioned on different batch size. The re-
sults are summarized in Table 10.


http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html
http://ir.itc.ntnu.edu.tw/lre/clp14csc.html
http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html

Detection-level Correction-level
D-P D-R D-F C-P C-R C-F
SpellGCN(Cheng et al., 2020) 77.7 85.6 81.4 969 829 894

SIGHAN2015  CRASpell(Liu et al., 2022)  83.5 89.2 86.3 97.1 86.6 91.5
InfoKNN-CSC (ours) 88.1 879 88.0 98.6 854 91.6

Dataset Model

Table 7: The results on SIGHAN2015 of our model and baseline models on character-level metrics, where baseline
results are directly from other published paper. Note that CRASpell uses an additional 3 million unlabeled corpus
for pre-training, compared to our model.

Detection-level Correction-level
D-P D-R D-F C-P C-R C-F

SpellGCN(Cheng et al., 2020) 859 80.6 83.1 854 77.6 81.3
GAD(Guo et al., 2021) 86.0 804 83.1 856 778 815
SpellBERT(Ji et al., 2021) 87.5 73.6 80.0 87.1 715 785
InfoKNN-CSC (ours) 89.6 81.2 852 89.5 80.0 84.5

Dataset Model

SIGHAN2015

Table 8: The results on SIGHAN?2015 of our model and baseline models on sentence-level metrics calculated by
SIGHAN official evaluation tools, where baseline results are directly from other published paper.

Detection-level Correction-level
D-P D-R D-F CP CR C-F
SCOPE (Liet al., 2022b) 87.4 834 854 863 824 843

Dataset Model

SIGHAN2013 InfoKNN-CSC# 90.0 82.8 86.3 89.1 822 85.6
InfoKNN-CSC 90.2 83.1 86.5 89.2 822 85.6

SCOPE (Lietal,2022b) 70.1 731 71.6 68.6 715 70.1

SIGHAN2014 InfoKNN-CSC# 72.1 706 713 713 69.8 70.6
InfoKNN-CSC 723 71.0 717 714 700 70.7

SCOPE (Lietal.,2022b) 81.1 84.3 82.7 79.2 823 80.7

SIGHAN2015 InfoKNN-CSC# 81.1 813 812 799 80.1 80.0
InfoKNN-CSC 814 817 815 80.7 81.0 80.9

Table 9: The results of our model and SCOPE model after performing data augmentation. The result marked with
"%" is the original result obtained without data augmentation. Note that SCOPE is a concurrent work with us.

batch=1 batch=16 batch=32 batch=64 batch=128
86.6 60.6 54.7 41.9 39.1

4 | 97.6(x1.13) 64.9(x1.07) 56.6(x1.03) 43.6(x1.04) 40.5(x1.04)
8 | 103.7(x1.20) 68.5(x1.13) 57.3x(1.05) 45.6(x1.09) 40.9(x1.05)
16 | 105.4(x1.22) 69.7(x1.15) 58.4(x1.07) 47.0(x1.12) 42.8(x1.09)
32 | 106.5(x1.23) 70.4(x1.16) 59.7(x1.09) 48.4(x1.16) 45.3(x1.15)

ms/sent

CSC

InfoKNN-CSC

Table 10: Inference time of REALISE and InfoKNN-CSC. All results are tested on 112 cores Intel(R) Xeon(R)
Gold 6330 CPU 2.00GHz with a A40-48GB GPU
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G Limitations

Since our study focuses on exploring the augmen-
tation of kNN on CSC, we don’t attempt the im-
proved version of other kNN method, such as adap-
tive kNN or fast kNN, which may lead to further
improvement. In addition, due to the common prob-
lem of retrieval-based methods, many samples need
to be stored, which can take up lots of disk space.
Specifically, the key stored takes up about 50G
of disk space. But after processing by the FAISS
(Johnson et al., 2019), the total size of the datastore
is less than 1G.
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