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Abstract
We study whether transformers can learn to im-
plicitly reason over parametric knowledge, a skill
that even the most capable language models strug-
gle with. Focusing on two representative rea-
soning types, composition and comparison, we
consistently find that transformers can learn im-
plicit reasoning, but only through grokking, i.e.,
extended training far beyond overfitting. The lev-
els of generalization also vary across reasoning
types: when faced with out-of-distribution exam-
ples, transformers fail to systematically general-
ize for composition but succeed for comparison.
We delve into the model’s internals throughout
training, conducting analytical experiments that
reveal: 1) the mechanism behind grokking, such
as the formation of the generalizing circuit and
its relation to the relative efficiency of generaliz-
ing and memorizing circuits, and 2) the connec-
tion between systematicity and the configuration
of the generalizing circuit. Our findings guide
data and training setup to better induce implicit
reasoning and suggest potential improvements to
the transformer architecture, such as encourag-
ing cross-layer knowledge sharing. Furthermore,
we demonstrate that for a challenging reasoning
task with a large search space, GPT-4-Turbo and
Gemini-1.5-Pro based on non-parametric memory
fail badly regardless of prompting styles or re-
trieval augmentation, while a fully grokked trans-
former can achieve near-perfect accuracy, show-
casing the power of parametric memory for com-
plex reasoning.

1. Introduction
Large language models (LLMs) have been shown defi-
cient in implicit reasoning with their parametric memory
of knowledge and rules. For example, a range of LLMs
are found to be incapable of robustly composing internal-

ized facts (Press et al., 2023; Yang et al., 2024), and even
GPT-4 (OpenAI, 2023a) cannot adequately compare entities’
attributes despite knowing them (Allen-Zhu & Li, 2023).

Deficiency in implicit reasoning has profound impacts. It
implies the models’ limitations in inducing structured and
compressed representations of facts and rules, which lead to
redundant knowledge storage and difficulty in propagating
knowledge updates (Zhong et al., 2023), and importantly,
fundamentally impede the model from systematic gener-
alization over knowledge (Lake & Baroni, 2018). While
explicit verbalizations of reasoning steps (e.g., chain-of-
thought rationales) can improve task performance (Wei et al.,
2022; Wang et al., 2022; Zelikman et al., 2022; Sun et al.,
2023; Liu et al., 2023b), they are not available during large-
scale (pre-)training where the model’s core capabilities are
acquired (Zhou et al., 2023; Lin et al., 2024).

Is implicit reasoning doomed given that even the most capa-
ble models struggle? Can it be resolved by further scaling
data and compute, or are there fundamental limitations of
the transformer (Vaswani et al., 2017) that prohibit robust
acquisition of this skill?

In this paper, we rigorously study these questions by con-
structing synthetic training and evaluation datasets, training
transformers from scratch, and examining their generaliza-
tion. We conceptualize reasoning as the induction and appli-
cation of inference rules, and expose the model to a mixture
of “atomic facts” and “inferred facts” (which are deduced
from the atomic facts via a set of latent rules), resembling
“axioms” and “theorems” in a formal system. To evaluate
how well the model learns the rules, we test its ability to
make novel deductions (i.e., completing unseen inferred
facts) in both in-distribution (ID) and out-of-distribution
(OOD) scenarios.1 This approach allows us to control the
training data and perform clean evaluations, which would
be challenging when studying existing LLMs trained on
uncontrolled data.

Our experiments reveal that transformers can learn to per-

1Definitions of ID/OOD are introduced in §2.
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Figure 1. We find that transformers can learn to reason implicitly, but this skill is only robustly acquired through grokking, i.e., an extended
period of training far beyond overfitting. Moreover, the transformer fails to systematically generalize for composition, yet succeeds for
comparison. We conduct a mechanistic study into the model internals throughout grokking, which reveals distinct generalizing circuits
across the two tasks (Figure 5, 6) that explains the variations in systematicity.

form implicit reasoning, but this skill is only robustly ac-
quired through extended training far beyond overfitting (Fig-
ure 1), a phenomenon known as grokking (Power et al.,
2022). We find that the speed of improvement in generaliza-
tion correlates with the ratio between inferred and atomic
facts in training, and depends little on the absolute size
of the training data (Figure 2,3). This suggests a correc-
tion of prior explanations of grokking based on critical
data size (Liu et al., 2023c; Varma et al., 2023; Zhu et al.,
2024; Huang et al., 2024), in that it should instead be the
critical data distribution that decides the characteristics of
grokking. Our findings extend prior observations of the
grokking phenomenon primarily in algorithmic and linguis-
tic tasks (Power et al., 2022; Murty et al., 2023) to the
domain of knowledge-based reasoning, and deepen our un-
derstanding of the grokking phenomenon.

Moreover, we find that the transformer exhibits different
levels of systematicity across reasoning types. While ID
generalization is consistently observed, in the OOD set-
ting, the model fails to systematically generalize for com-
position but succeeds in comparison (Figure 1). To un-
derstand why this happens, we conduct mechanistic anal-
ysis of the internal mechanisms of the model. The anal-
ysis uncovers the gradual formation of the generalizing
circuit throughout grokking and establishes the connection
between systematicity and its configuration, specifically,
the way atomic knowledge and rules are stored and applied
within the circuit. Our findings imply that proper cross-
layer memory-sharing mechanisms for transformers such

as memory-augmentation (Sukhbaatar et al., 2015; Graves
et al., 2016) and explicit recurrence (Dehghani et al., 2019;
Hutchins et al., 2022; Tan et al., 2023) are needed to further
unlock transformer’s generalization.

Finally, to demonstrate the power and potential of paramet-
ric memory for complex reasoning, we show that for a rea-
soning task with a large latent search space, a fully grokked
transformer can achieve near-perfect accuracy, while state-
of-the-art LLMs like GPT-4-Turbo (OpenAI, 2023b) and
Gemini-1.5-Pro (Google, 2024) based on non-parametric
memory fail badly regardless of prompting styles or retrieval
augmentation.

2. General Setup
Training data & ID/OOD evaluation. As stated in §1,
we are interested in whether transformers can induce and
apply latent rules over knowledge implicitly in a generaliz-
able way. We create a data-generating process consisting
of 1) sampling a set of basic atomic facts, and 2) using the
atomic facts and latent rules to deduce inferred facts. To bet-
ter characterize the level of generalization acquired by the
model, we evaluate the model’s in-distribution (ID) and out-
of-distribution (OOD) performance. We prepare two sepa-
rate sets of atomic facts: atomicID and atomicOOD. Our
training set includes all the atomic facts and a uniformly ran-
dom portion of the inferred facts deduced from atomicID,
which we call train_inferredID. For evaluation, (1)
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ID generalization aims to evaluate whether the model learns
the latent rules correctly, by testing its ability to complete un-
seen inferred facts also deduced from atomicID, which we
denote by test_inferredID. (2) OOD generalization
aims to evaluate the systematicity (Lake & Baroni, 2018)
acquired by the model, namely, the ability to apply rules
over knowledge regardless of its distribution. To do this,
we test the model on the facts deduced from atomicOOD,
denoted by test_inferredOOD.

Model & optimization. The model we use is a standard
decoder-only transformer as in GPT-2 (Radford et al., 2019)
with 8 layers, 768 hidden dimensions and 12 attention heads
(we explore the impact of different model scales in Ap-
pendix B). Optimization is done by AdamW (Loshchilov
& Hutter, 2019) with learning rate 10−4, batch size 512,
weight decay 0.1 and 2000 warm-up steps with a linear
schedule. More details are included in Appendix A.

3. Composition—Delayed Generalization
without Systematicity

We begin our investigation with composition, where a model
needs to “chain” different pieces of facts, e.g., “Barack’s
wife is Michelle” and “Michelle is born in 1964”, to success-
fully complete a compositional sentence, e.g., “Barack’s
wife is born in [1964]”. Prior work extensively studied
whether transformer-based language models can perform
implicit composition, and negative results are consistently
reported (Press et al., 2023; Allen-Zhu & Li, 2023; Yang
et al., 2024). Specifically, there exists a “compositionality
gap” (Press et al., 2023), i.e., the frequency at which the
model knows all the underlying basic facts but fails to com-
pose them, which is considerable across different LLMs
and does not decrease as models scale. Are transformers
doomed to fail on such kind of reasoning, and if so, why?

3.1. Setup

We focus on two-hop composition in this work. For atomic
facts, we generate a random knowledge graph G consist-
ing of |E| entities and |R| = 200 relations, where each
entity (as the subject) has 20 outgoing edges that connect
through a random relation to another random entity (as the
object). The atomic facts are then the edges, i.e., (subject,
relation, object) triplets in G, which we partition disjointly
into atomicID and atomicOOD (95%: 5%). The rule of
(two-hop) composition is

∀h, b, t ∈ E ,∀r1, r2 ∈ R :

(h, r1, b) ∧ (b, r2, t) =⇒ (h, r1, r2, t),
(1)

which is used to deduce the ID and OOD inferred facts from
atomicID and atomicOOD, respectively. For convenience,
in the above rule, we will call h the head entity, b the bridge

entity, and t the tail entity. For both atomic and inferred
facts, training/testing is done by having the model predict
the final tail entity. We assign a unique token to each rela-
tion/entity by default, and also find that the results are robust
to different tokenizations (details in Appendix C).

We study the influence of the following two aspects on the
model’s learned behaviors:

• Ratio between inferred and atomic facts. By
varying the amount of inferred facts included in
training, we study the effect of the ratio ϕ =
|train_inferredID|/|atomicID| on the model.

• Training data size. We study the impact of the training
data size by varying |E|, the total number of entities, while
controlling the ratio ϕ. Note that the size of training data
(both atomic/inferred facts) scales linearly with |E|.

3.2. Results

Grokking observed in ID generalization but not in OOD
generalization. Figure 1(left) shows the model’s accuracy
on the train and test facts throughout optimization, with
|E| = 2000 and ϕ = 7.2. We find that the model can gen-
eralize to ID test examples, but high performance is only
achieved through extended training far beyond overfitting, a
phenomenon called grokking (Power et al., 2022). Specif-
ically, the training performance saturates (over 99% accu-
racy on both atomic and inferred facts) at around 14K opti-
mization steps, before which the highest ID generalization
accuracy is merely 9.2%. However, generalization keeps
improving by simply training for longer, and approaches
almost perfect accuracy after extended optimization lasting
around 50 times the steps taken to fit the training data. On
the other hand, OOD generalization is never observed. We
extend the training to 2 million optimization steps, and there
is still no sign of OOD generalization.

Inferred/atomic ratio ϕ correlates with generalization
speed. Figure 2 shows the ID accuracy across different ϕ.
We omit the other splits since for all settings, the training
performance saturates quickly and the OOD accuracy re-
mains at zero as earlier.2 It could be seen that the ratio ϕ
strongly correlates with the speed of generalization. A very
large ratio can push generalization to improve at a similar
pace as the model fits the training data, reducing the need
for extended training.3

Training data distribution, instead of training data size,
qualitatively influences generalization behavior. When
ϕ increases and |E| holds constant, the size of training data
also gets larger. Prior studies hypothesize that training data

2The training performances of all settings saturate within 25K
steps, where larger ϕ takes more steps.

3When ϕ = 18.0, the model achieves 96.7% accuracy before
training performance saturates.
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Figure 2. The speed of grokking correlates with the ratio between
inferred and atomic facts.

size plays a central role in order for grokking to happen. In
particular, previous work connects grokking with the notion
of critical data size (CDS) (Liu et al., 2023c; Varma et al.,
2023; Zhu et al., 2024; Huang et al., 2024), where it is hy-
pothesized that CDS marks the shift from memorization to
generalization (via grokking), and the speed of generaliza-
tion improves as the training data further scales. However,
results from our controlled experiments seem to contradict
such a hypothesis. Figure 3 shows the results of varying
|E| with a fixed ϕ = 9.0, where we change the horizontal
axis from optimization step to epoch for better visualiza-
tion.4 When fixing the ratio ϕ, the training data size does
not qualitatively affect the model’s generalization. Specif-
ically, scaling the data affects neither the relative speed of
ID generalization and training improvement (as seen by the
rather constant “gap” between train_inferredID and
test_inferredID curves), nor the systematicity level
(OOD performance stays zero). We also run the experiments
across different ϕ and find the results to be consistent. This
suggests that critical data “distribution”, not size, may be
the actual deciding factor behind grokking and generaliza-
tion. In addition, we find that scaling up the model size also
does not qualitatively change the generalization behaviors
observed here (Appendix B), and the pattern is that larger
models converge in fewer optimization steps, which shares
with prior findings (Tirumala et al., 2022; Li et al., 2020).

Summary. We have shown that transformers are capable of
acquiring the rule of composition through grokking, with
controlled experiments suggesting the crucial factor of data

4The optimization steps for each epoch scale linearly with the
training size since we use a fixed batch size.
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Figure 3. The speed of grokking depends little on the size of train-
ing data, when controlling the ratio ϕ.

distribution (e.g., the inferred/atomic ratio ϕ) in charac-
terizing the model’s generalization. However, important
questions still remain: what happens during grokking, why
does it happen, and why do transformers struggle with OOD
examples? Answering these questions requires a deeper un-
derstanding of (the changes in) the model’s inner workings,
which we investigate next.

3.3. Analyzing the inner workings of the model
throughout grokking

We analyze the internal mechanisms within the model via
a combination of two prevalent approaches: logit lens
and causal tracing. We apply our analysis to the setting
with |E| = 2000, ϕ = 9.0 on 300 random examples from
train_inferredID.

Logit lens. We interpret individual hidden states via logit
lens (nostalgebraist, 2020; Geva et al., 2022; Yang et al.,
2024), where the activation is converted into a set of logits
for each vocabulary token by multiplying with the output
embedding matrix. We follow the recent practice (Yang
et al., 2024) where the activation first goes through the
transformer’s final normalization layer before multiplying
with the output embedding (Figure 4, top right).

Causal tracing. The transformer could be viewed as a
causal graph (Pearl, 2009) that propagates information from
the input to the output through a grid of intermediate states,
which allows for a variety of causal analyses on its internal
computations (Vig et al., 2020; Meng et al., 2022; Hanna
et al., 2023; Wang et al., 2023; Feng & Steinhardt, 2024).
For convenience, we will refer to a hidden state by S[i, a],
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Figure 4. Illustration of our circuit analysis approach (on the com-
position task). We use logit lens to interpret individual states, and
use causal tracing to measure the strength of connections between
states. Details are in the main content.

where i is the layer index and a is the input token at the
same position as the state (one of {h, r1, r2}). We illustrate
our method in Figure 4, where the hidden state of interest is
S[4, r1] and the target is the model’s final prediction state
S[8, r2]. There are in total three steps:

1. The normal run records the model’s hidden state acti-
vations on a regular input (h, r1, r2). Note that since the
model maintains perfect training performance through-
out grokking, the final prediction is always the ground
truth tail entity t.5

2. In the perturbed run, a slightly perturbed input is fed
to the model which changes the prediction, where again
the hidden state activations are recorded. For the per-
turbation, prior work has explored adding noise to the
input (Meng et al., 2022) and replacing key tokens with
semantically close ones (Vig et al., 2020; Feng & Stein-
hardt, 2024). We adopt token replacement which avoids
unnecessary distribution shifts (Zhang & Nanda, 2024).
Specifically, for the hidden state of interest, we replace
the input token at the same position as the state to be a
random alternative of the same type (e.g., r1 → r′1) that
leads to a different target prediction (e.g., t → t′).

3. Intervention. During the normal run, we intervene the
state of interest by replacing its activation with its acti-
vation in the perturbed run. We then run the remaining
computations and measure if the target state (top-1 token
through logit lens) is altered. The ratio of such alterations
(between 0 and 1) quantitatively characterizes the causal
strength between the state of interest and the target.

The generalizing circuit. We run a set of causal tracing and
logit lens experiments across different model checkpoints
throughout training. The discovered generalizing circuit

5For convenience, when we refer to a state as a token, we mean
the top token of the state via logit lens.

(i.e., the causal computational pathways after grokking) is
illustrated in Figure 5(a). Specifically, we locate a highly in-
terpretable causal graph consisting of states in layer 0, 5, and
8, where we have pruned away the weak nodes/connections
(details in Appendix D). Layer 5 splits the circuit into lower
and upper layers, where 1) the lower layers retrieve the
first-hop fact (h, r1, b) from the input h, r1, store the bridge
entity b in S[5, r1], and “delay” the processing of r2 to
S[5, r2]; 2) the upper layers retrieve the second-hop fact
(b, r2, t) from S[5, r1] and S[5, r2], and store the tail t to the
output state S[8, r2].

What happens during grokking? To understand the under-
lying mechanism behind grokking, we track the strengths
of causal connections and results from logit lens across dif-
ferent model checkpoints during grokking (the “start” of
grokking is the point when training performance saturates).
We observe two notable amplifications (within the identi-
fied graph) that happen during grokking. The first is the
causal connection between S[5, r1] and the final prediction
t, which is very weak before grokking (Appendix D) and
grows significantly during grokking (Figure 5(b)). The sec-
ond is the r2 component of S[5, r2] via logit lens, for which
we plot its mean reciprocal rank (MRR) (Figure 5(c)). Ad-
ditionally, we find that the state S[5, r1] has a large compo-
nent of the bridge entity b throughout grokking (Figure 5(c)).
These observations strongly suggest that the model is gradu-
ally forming the second hop in the upper layers (5-8) during
grokking. This also indicates that, before grokking, the
model is very likely mostly memorizing the examples in
train_inferredID by directly associating (h, r1, r2)
with t, without going through the first hop.

Why does grokking happen? These observations suggest
a natural explanation of why grokking happens through the
lens of circuit efficiency (Varma et al., 2023). Specifically,
as illustrated above, there exist both a memorizing circuit
Cmem and a generalizing circuit Cgen that can fit the train-
ing data. While Cmem is learned first (which causes training
performance to saturate quickly), Cgen is relatively more
efficient, in the sense that it could fit the data with a lower
complexity. To see this, we can compare the amount of facts
Cmem and Cgen need to store (denoted as Nmem and Ngen)
as a proxy for their complexity.6 Cmem stores both atomic
facts and inferred facts in the weights. Cgen (Figure 5(a))
stores the atomic facts in the lower layers, and another copy
of the atomic facts that appear as the second hop in the
inferred facts in the upper layers. As the inferred/atomic
ratio ϕ increases, Nmem would increase rapidly while Ngen

increases slowly and is always bounded by two times the to-
tal amount of atomic facts, and hence, the relative efficiency
of Cgen increases. In the long run, the model will be in-

6While the circuits also consist of other components, they pale
in comparison as the number of facts scales.
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Figure 5. Left: the generalizing circuit for composition. Middle: the change in causal strengths during grokking, where the target is the
prediction state. Right: mean reciprocal rank (via logit lens) of the bridge entity b at S[5, r1] and second relation r2 at S[5, r2].

centivized to transition from Cmem to Cgen due to implicit
bias of the optimization (Soudry et al., 2018) and explicit
regularization such as weight decay which prefers more effi-
cient circuits, and the transition would happen faster as ϕ
increases. This also explains why the training data size does
not affect the speed of grokking, since solely increasing the
size does not change the relative efficiency of Cmem and
Cgen. The explanation also implies that a larger regular-
ization factor should accelerate grokking (and vice versa),
which we confirm by varying the degree of weight decay
(Appendix E.1).

Explaining and mitigating the deficiency in OOD gen-
eralization. The configuration of Cgen also has another
important implication: while the model does acquire com-
positionality through grokking, it does not have any incen-
tive to store atomic facts in the upper layers that do not
appear as the second hop during training. This explains
why the model fails in the OOD setting where facts are only
observed in the atomic form, not in the compositional form—
the OOD atomic facts are simply not stored in the upper
layers when queried during the second hop.7 Such issue
originates from the non-recurrent design of the transformer
architecture which forbids memory sharing across different
layers. Our study provides a mechanistic understanding
of existing findings that transformers seem to reduce com-
positional reasoning to linearized pattern matching (Dziri
et al., 2023), and also provides a potential explanation for
the observations in recent findings that LLMs only show
substantial positive evidence in performing the first hop rea-
soning but not the second (Yang et al., 2024). Our findings
imply that proper cross-layer memory-sharing mechanisms
for transformers such as memory-augmentation (Sukhbaatar
et al., 2015; Graves et al., 2016) and explicit recurrence (De-
hghani et al., 2019; Hutchins et al., 2022; Tan et al., 2023)
are needed to improve their generalization. We also show

7On the other hand, over 97% (100% for ϕ ≥ 7.2) of ID atomic
facts do appear as second hop in training.

that a variant of the parameter-sharing scheme in Univeral
Transformer (Dehghani et al., 2019) can improve OOD gen-
eralization in composition (Appendix E.2).

4. Comparison—Systematic Generalization
via Parallel Circuit

We have just shown that the vanilla transformer fails to
achieve OOD generalization for composition, but is the
vanilla transformer generally incapable of acquiring sys-
tematic implicit reasoning skills? We show that for com-
parison, a task where SoTA LLMs such as GPT-4 also
struggle (Allen-Zhu & Li, 2023), the vanilla transformer
does have the capability to acquire systematic generaliza-
tion, again through grokking. On the surface, it seems that
the comparison task is no different than the composition
task—both require retrieving and reasoning over two pieces
of facts. However, as it turns out through our analysis, the
comparison task emits a “parallel circuit” that is learned by
the transformer during grokking, which allows atomic facts
to be stored and retrieved in the same region and enables
systematicity to happen.
Setup. The comparison task involves comparing the at-
tribute values of entities. We assume there are |E| = 1000
entities, |A| = 20 attributes and |V| = 20 ordinal values
for the attributes. Each attribute a ∈ A has a label space
{a<, a=, a>}, a set of relations specifying its comparative
form. For example, an attribute age would have a<, a=, a>
to be younger, contemporary, older, respectively.

The atomic facts are (entity, attribute, value) triplets, where
we assign a random value v ∈ V for each (e, a) ∈
E × A. Again, we randomly partition the atomic facts
into atomicID and atomicOOD (90%: 10%). The rules of
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Figure 6. Left: the generalizing circuit for comparison. Middle: the change in causal strengths during grokking, where the target is the
prediction state. Right: mean reciprocal rank (via logit lens) of the two attribute values (v1, v2) at S[5, e1] and S[5, e2].

comparison are:

∀e1, e2 ∈ E ,∀a ∈ A,∀v1, v2 ∈ V :

(e1, a, v1) ∧ (e2, a, v2) ∧ v1 < v2 =⇒ (a, e1, e2, a<),

(e1, a, v1) ∧ (e2, a, v2) ∧ v1 = v2 =⇒ (a, e1, e2, a=),

(e1, a, v1) ∧ (e2, a, v2) ∧ v1 > v2 =⇒ (a, e1, e2, a>).
(2)

Take the attribute age as an example, the first rule means if
the age of e1 is smaller than the age of e2, then we can infer
“In terms of age, the relation between e1 and e2 is younger”.
Each entity/attribute/value/label is assigned a unique token,
and training/testing is done by having the model predict
the last token (attribute value for atomic facts; comparative
relation for inferred facts).

Results & analysis. Figure 1(right) shows the results for
ϕ = 7.2, and we include more results in Appendix E.3. It
can be seen that 1) the model again acquires robust gener-
alization only through grokking; 2) surprisingly, the model
also achieves systematicity in generalization, different from
the case of composition.

Analyzing the model’s internals similarly as in §3.3 (de-
tails in Appendix D), we find the generalizing circuit for
comparison illustrated in Figure 6(a). On a separate stream,
the model prepares the label space {a<, a=, a>} from a
and stores it in S[7, a]. In the lower layers (0-5), the model
retrieves the two atomic facts and stores the attribute values
v1 and v2 at S[5, e1] and S[5, e2]. Then, the upper layers
(5-8) compare v1, v2 and fetch the label from S[7, a] based
on the comparison result. Importantly, there is a major dif-
ference compared with the circuit for composition: the two
atomic facts are retrieved in parallel, which suggests that
the atomic facts are stored solely in the lower layers, with-
out having separate copies across different regions as in the
circuit for composition. This explains why systematicity
could happen: OOD facts are now stored and accessed in
the same way as ID facts. Tracking the changes in the model
throughout grokking, we observe significantly strengthened

causal connections from S[7, a] and S[5, e1] to the final pre-
diction (Figure 6(b)). We also find that throughout grokking,
S[7, a] always encodes the label space and S[5, e1], S[5, e2]
gradually encode the two attribute values (Figure 6(c)). This
confirms that a similar transition from Cmem to Cgen hap-
pens during grokking.

The findings here showcase transformer’s ability to learn
parallel solutions to seemingly sequential problems, akin
to the findings in Liu et al. (Liu et al., 2023a) where it is
shown that transformers can learn “shortcuts” to automata.
The difference in the acquired generalization across the two
tasks that we study also emphasizes the need for controlled
and mechanistic study on understanding the transformer’s
reasoning before making general claims on its limitations.

5. The Power of Parametric Memory for
Complex Reasoning

At the high level, our study so far paves the way towards
better understanding and improving transformer’s reasoning
with parametric representation of knowledge and rules. But
why is parametric memory practically important? Can we
not simply enhance LLMs with non-parametric memory,
e.g., by using their long-context modes and/or doing explicit
retrieval, to solve the tasks at hand?

We believe parametric memory has its unique capability
to perform deep compression and integration of informa-
tion for complex reasoning. To showcase the potential of
parametric memory for complex reasoning, we create a dif-
ficult reasoning task with a large search space, and show
that 1) it is far out of reach even for current SoTA mod-
els (e.g., GPT-4-Turbo (OpenAI, 2023b) and Gemini-Pro-
1.5 (Google, 2024)) based on non-parametric memory; 2)
a fully grokked transformer can solve the task with near-
perfect accuracy.

Our task is a variation of the comparison task above where

7
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Table 1. Results on the complex reasoning task. Direct/CoT: predict the answer directly/verbalize the reasoning steps. “+R”: retrieval
augmented setup.

GPT-4-Turbo Gemini-Pro-1.5 Grokked Transformer
Direct+R CoT+R Direct CoT Direct+R CoT+R

Accuracy (%) 33.3 31.3 28.7 11.3 37.3 12.0 99.3

we use a simple way to massively expand the search space,
based on an additional set of rules that are already con-
tained within the task itself, namely, the (anti-)symmetry
and transitivity of comparison:

∀e1, e2 ∈ E ,∀a ∈ A :

(a, e1, e2, a</a=/a>) =⇒ (a, e2, e1, a>/a=/a<),

∀e1, e2, e3 ∈ E ,∀a ∈ A,∀y ∈ {a<, a=, a>} :

(a, e1, e2, y) ∧ (a, e2, e3, y) =⇒ (a, e1, e3, y).
(3)

In the original setting (§4) of the task, for the OOD test set,
one can simply retrieve the two OOD facts and compare
the attribute values, which requires no further search. We
change the task setting via the following. For each attribute,
1) we do not add the OOD atomic facts into training, and 2)
we add a random portion of the comparisons between ID en-
tities and OOD entities into training. We test the models on
queries consisting of derivable (from all training facts) com-
parisons between OOD entities where any possible proof
would involve rules from both Eqs.(2) and Eqs.(3). Conse-
quently, answering a test query would require the model to
successfully locate two ID bridge entities which can connect
the two query entities into a proof (Figure 7). We select
a balanced (by a<, a=, a>) subset from these queries for
evaluation. More details are included in Appendix F.

John Rick
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Gold Proof

Figure 7. Illustration of the complex reasoning task, which in-
volves comparing the attributes of two query entities based on
a set of facts encompassing a large search space.

The difficulty of such a task is two-fold. First, the search
space is large. For example, on average, each query en-
tity connects with more than 50 facts, and each bridge en-
tity in the ground truth proof connects with more than 900
facts. Second, there are no surface form clues to exploit
and bias the search towards the ground truth proof, unlike
most conventional QA benchmarks where the proof steps
are transparent from the query.

To test LLMs based on non-parametric memory, we trans-
late the facts into natural language by simple templates (Ap-
pendix F). Facts/queries for each attribute are grouped/tested
separately.8 We test both the vanilla setup where all facts
(28.2K on average) are loaded into the LLM context, and
the retrieval-augmented setup (5.4K facts retrieved on av-
erage) where the two-hop neighborhoods of the two query
entities are retrieved, which includes enough facts to deduce
the answer. We also try both standard prompting where the
model answers directly, and chain-of-thought (CoT) prompt-
ing where the model is prompted to verbalize the reasoning.
We test GPT-4-Turbo and Gemini-Pro-1.5, where for GPT-
4-Turbo we only test the retrieval-augmented setup due to
context length limit.

Results. As shown in Table 1, all models based on non-
parametric memory fail badly, where the only setting that
surpasses random guess (33.3%) is the retrieval-augmented
setting with Gemini-Pro-1.5 and direct answer prediction.
Intriguingly, LLMs perform worse (especially Gemini)
when prompted to reason verbally. We find that this is be-
cause the model tends to “give up” and decide that the query
is not answerable after some search steps. More shockingly,
most of the CoT rationales are wrong due to either halluci-
nating underivable facts or logical errors, and none of them
can lead to the answer. This illustrates the current models’
inability to reason deeply with non-parametric memory. On
the other hand, the grokked transformer, trained to com-
press and integrate the information to the extreme, could
achieve near-perfect accuracy. By examining the model,
we find that it acquires the same generalizing circuit as in
Figure 6(left), and remarkably, even though not explicitly
encouraged/trained to do this, the model successfully infers
most of the OOD entities’ attribute values by integrating the
observed training facts (Appendix F).

6. Conclusion
We find that transformers are capable of learning to implic-
itly reason over parametric knowledge, however, such a
skill is only robustly acquired through extended training far
beyond the point of overfitting, or grokking. Mechanistic
analysis into the model’s internals reveals the configuration

8This could also be thought of as performing a retrieval step
into the memory based on the attribute.
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and gradual formation of the generalizing circuit, and also
explains the different levels of systematicity the model ac-
quires across tasks. These findings guide data and training
setup to better induce implicit reasoning, and suggest poten-
tial improvements to the transformer architecture to further
unlock its generalization. We conclude by showcasing the
unique power of parametric memory on a challenging rea-
soning task with a large search space. We discuss related
work in §G and limitations of our work in §H.

Impact Statement
This paper presents work whose goal is to advance our un-
derstanding of how neural network models learn to perform
reasoning over knowledge. There could be potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Training Details
All implementations were done with PyTorch (Paszke et al., 2019) and Huggingface Transformers (Wolf et al., 2020). All
model training runs are done on NVIDIA A6000 and A100 GPUs and last 96 hours at maximum.

B. Effect of Model Scale
We run the experiments on composition with larger model scales with |E| = 2000 and ϕ ∈ {5.4, 9.0, 18.0}. The results
are shown in Figure 8,9,10. Overall, it could be seen that scaling up the model won’t qualitatively change the model’s
generalization behaviors, and the main pattern is that larger models converge in fewer optimization steps, which shares with
prior findings (Tirumala et al., 2022; Li et al., 2020).
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Figure 8. Results on the composition task for different model scales (ϕ = 5.4). Larger models converge in fewer optimization steps, but
have no qualitative changes on the learned behaviors.
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Figure 9. Results on the composition task for different model scales (ϕ = 9.0). Larger models converge in fewer optimization steps, but
have no qualitative changes on the learned behaviors.
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Figure 10. Results on the composition task for different model scales (ϕ = 18.0). Larger models converge in fewer optimization steps,
but have no qualitative changes on the learned behaviors.

C. Effect of Tokenizations
In the experiments in our main content, tokenization is done by having a unique token for each entity.9 This is different
from how real-world entities are typically tokenized—in practice, entities are usually multi-token, and different entities
could share tokens at different positions. We investigate the effect of tokenizations on the composition task by having two
tokens for each entity (resembling the first name and last name of a person) in the setting with |E| = 2000 and ϕ = 12.6.
We generate a set of unique first names and a set of unique last names with equal size from which the two tokens for each
entity are randomly chosen (we make sure each entity gets a unique ordered pair of tokens). We define token multiplicity to
be the number of entities that share the same first/last name. For example, when the size of the set of first/last names is 50,
the token multiplicity would be 2000/50 = 40.

Figure 11 shows the ID test results, where the training and OOD results are the same from earlier (training performance
saturates quickly, OOD result remains zero). It can be seen that a larger token multiplicity would delay the generalization,
which is expected to a certain degree since the scale of the model is effectively smaller due to having fewer tokens in the
vocabulary. Nevertheless, ID generalization always happens. We also run linear probing on S[5, r1] throughout training
to predict the second token of the bridge entity b in the setting with token multiplicity 40,10, where the results are shown
in Figure 12. It can be seen that the second token of b can be perfectly decoded from S[5, r1] after grokking, and the
decodability improves throughout grokking. This suggests that for the multi-token case, the model is additionally storing the
second token of b into S[5, r1] throughout grokking, which may be another factor that further delays the speed of grokking.
These results also share with recent findings that in many cases, tokens beyond the immediate next token are linearly encoded
in the hidden states (Wu et al., 2024; Pal et al., 2023; Belrose et al., 2023; Cai et al., 2024).

In summary, different tokenizations affect the results in rather expected ways, and do not influence our main findings and
conclusions.

D. More Details on Circuit Analysis
D.1. Composition

We run causal tracing on hidden states in layer 1-7 and every position, where the target is the final prediction state S[8, r2].
The changes in the strengths are monotone and smooth, and we show in Figure 13 the strengths for the model checkpoint at
the start and end of grokking, and also their difference (same as Figure 5(b)). We also find that after grokking, the state

9Preliminary experiments show that tokenization of the relations does not exhibit notable impacts, which is expected since relations
are always explicitly given.

10Recall that S[5, r1] is the state that encodes the bridge entity in the generalizing circuit (Figure 5(left))
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Figure 11. ID generalization (on composition) across different token multiplicity.
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Figure 12. Probing accuracy (on composition) on the second token of b at S[5, r1].

S[5, r2] (which encodes r2) is not affected by perturbing the input h or r1.

Deriving the generalizing circuit. Starting from the 9 states in layers 0, 5, 8 we can directly eliminate S[8, h] and S[8, r1]
since they have no computational paths connecting to S[8, r2]. S[5, h] can be eliminated as could be seen by Figure 13(c).
The connections from S[0, h] and S[0, r1] to S[5, r2] could be eliminated as mentioned earlier.

D.2. Comparison

Figure 14 includes the causal tracing results where the target is the prediction state S[8, e2], and Figure 15 includes the
results with the target state S[5, e2]. It can be seen that after grokking, S[5, e2] does not depend on e1, which gives the
generalization circuit in Figure 6(a).

Figure 16 shows the rank (via logit lens) of the three relations {a<, a=, a>} in the label space at state S[7, a], where we use
Recall@3 as the measure. It can be seen that S[7, a] encodes the label space throughout grokking.
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Figure 13. Causal strengths on composition task, with the final prediction S[8, r2] as the target. (left) Start of grokking. (middle) Change
during grokking. (right) End of grokking.
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Figure 14. Causal strengths on comparison task, with the final prediction S[8, e2] as the target. (left) Start of grokking. (middle) Change
during grokking. (right) End of grokking.

E. Additional Results
E.1. Weight decay

Figure 17 shows the ID generalization performance when varying the degree of weight decay (|E| = 2000 and ϕ = 9.0). It
can be seen that a larger weight decay can improve the speed of grokking, and vice versa.

E.2. Transformer with parameter sharing

We share the parameters of the first 4 layers and the last 4 layers, similar as in Universal Transformer (Dehghani et al., 2019).
This would allow the model to share the knowledge in the upper and lower layers. The results on the setting with |E| = 2000
and ϕ = 12.6 are shown in Figure 18. It could be seen that the parameter-sharing scheme can unlock OOD generalization,
even though it is gained much more slowly than ID generalization during grokking.
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Figure 15. Causal strengths on comparison task, with S[5, e2] as the target. (left) Start of grokking. (middle) Change during grokking.
(right) End of grokking.
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Figure 16. For the comparison task, S[7, a] encodes the label space throughout grokking.

E.3. Comparison task across different inferred/atomic ratio

Figure 19,20 includes the result for ϕ ∈ {3.6, 7.2, 9.0, 12.6} for the comparison task. It can be seen that a higher ratio ϕ
would give a higher generalization speed, consistent with the results in the composition task.

F. Complex Reasoning Task
For the complex reasoning task, for each attribute, we include 3% random facts from the comparisons between ID and
OOD entities and the comparisons between ID and ID entities. In total, the training set contains 18K ID atomic facts, 437K
(ID, ID) comparisons, and 108K (ID, OOD) comparisons, altogether 563K facts (28K on average for each attribute). For
translating the facts into natural language for testing LLMs with non-parametric memory, we always use the attribute age11

(we find that the choice of attribute does not exhibit notable impact) and the templates “The age of {entity} is {attribute
value}.” and “{entity 1} is {younger than/older than/in the same age as} {entity 2}.” for atomic facts and comparisons.
The entities are mapped to distinct random names generated by a random generator.12 We also try different mappings
(e.g., unique IDs) and templates, and find the results to be consistent. All (retrieved) facts are randomly permuted and

11Recall that we test each attribute separately by grouping the facts/queries.
12https://pypi.org/project/names/
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Figure 17. Effect of weight decay. A larger weight decay can improve the speed of grokking, and vice versa.
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Figure 18. OOD accuracy of the shared-parameter transformer model.

concatenated before being loaded into the LLM context.

The train/test accuracy, and also the accuracy of inferring the attribute values of the query entities (which we test using the
same format as the atomic facts in training) are included in Figure 21. It could be seen that, during grokking, the model
gradually locates the ground truth attribute values of the query entities (note that the model is not explicitly encouraged or
trained to do this), allowing the model to solve the problem efficiently with near-perfect accuracy.

G. Related Work
Knowledge and reasoning in language models. Numerous work finds that transformer language models, even SoTA ones
such as GPT-4, struggle in implicit reasoning over their parametric knowledge (Talmor et al., 2020; Kassner et al., 2020b;
Rogers et al., 2020; Rae et al., 2021; Press et al., 2023; Allen-Zhu & Li, 2023; Yang et al., 2024), suggesting their limitations
in inducing structured and compressed representations of facts and rules during training. A series of efforts try to understand
transformer’s knowledge and reasoning through controlled experiments (Kassner et al., 2020a; Prystawski et al., 2023;
Dziri et al., 2023; Wang et al., 2024), which is also our focus. We find that transformers can learn implicit reasoning over
knowledge through grokking, and characterize the connection between the acquired systematicity level and the inductive
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Figure 19. ID accuracy for the comparison task across different ratio ϕ.
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Figure 20. OOD accuracy for the comparison task across different ratio ϕ.

bias of transformer.

“Chain-of-Thought” and verbalized reasoning. A series of studies prompt/fine-tune language models to verbalize (i.e.,
generate) the intermediate knowledge and reasoning steps (Wei et al., 2022; Wang et al., 2022; Zelikman et al., 2022; Sun
et al., 2023; Liu et al., 2023b; Zelikman et al., 2024) during inference, which has been shown to improve performance
especially for large models with strong generation capabilities. There are also theoretical results showing the benefits of
such verbalizations (Feng et al., 2023; Li et al., 2024). Our focus here on implicit reasoning is orthogonal, and it is an
interesting open problem to have principled understandings of the role of such verbalizations in reasoning problems, and
also develop methods that can decide the appropriate balance between implicit and explicit reasoning to handle challenging
problems with large intrinsic complexity. Relatedly, recent work also finds that explicit verbalizations could be a useful
medium for teaching models to reason implicitly via distillation or curriculum (Deng et al., 2023; 2024).

Grokking is first discovered by Power et al. (Power et al., 2022) on a set of small algorithmic reasoning tasks. The intriguing
phenomenon inspired follow-up works proposing different explanations and expanding the set of tasks where grokking is
observed (Thilak et al., 2022; Liu et al., 2022; Davies et al., 2022; Notsawo et al., 2023; Nanda et al., 2023; Varma et al.,
2023; Merrill et al., 2023; Murty et al., 2023; Liu et al., 2023c; Zhu et al., 2024; Huang et al., 2024). To our knowledge, we
are the first work to observe grokking in the domain of knowledge-based reasoning, and our controlled experiments suggest
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Figure 21. Accuracy on the train and test split, and also the accuracy of inferring the attribute values of the query entities (Atomic (OOD))
for the complex reasoning task in §5.

potential corrections of prior hypotheses based on critical data size. Our formulation of rule induction from atomic and
inferred facts is general, which we hope could inspire future work on understanding grokking and generalization in deep
learning.

Analyzing the inner workings of neural models. Recent work tries to open up the “black box” of neural models through a
wide range of techniques; see survey in Ferrando et al. (Ferrando et al., 2024). We apply causal tracing (Vig et al., 2020;
Meng et al., 2022; Hanna et al., 2023; Wang et al., 2023; Feng & Steinhardt, 2024) and logit lens (nostalgebraist, 2020;
Geva et al., 2022; Yang et al., 2024) to discover interpretable circuits in the model to understand the grokking process and
how/why generalization happens.

Parametric and non-parametric memory. Our focus in this work is on parametric memory in language models, and an
orthogonal direction is to enhance models with non-parametric memory, such as extending the effective context length (Xiong
et al., 2023; OpenAI, 2023b; Fu et al., 2024; Google, 2024) and augmenting with retrieval (Guu et al., 2020; Lewis et al.,
2020; Borgeaud et al., 2022; Tay et al., 2022; Zhong et al., 2022; Min et al., 2023). The two types of memory are
largely complementary to each other—parametric memory has its unique ability to compress and integrate information
but is also inevitably lossy and subject to hallucination, while non-parametric memory is lossless and could also provide
attribution. Similarly for humans—a human acquires expertise in a domain by acquiring and structuring knowledge in the
brain (parametric), but he/she also wouldn’t memorize all pieces of details and could refer to the source when necessary
(non-parametric). How to decide the tradeoff between parametric and non-parametric memory (or, how to define the
objective for such a tradeoff) is another interesting open problem for future work.

H. Limitations
Scope of our task formulation. As mentioned in §1, we formulate the implicit reasoning problem as induction and
application of inference rules from a mixture of atomic and inferred facts. This may not apply to the full spectrum of
reasoning which has a range of different types and meanings (Huang & Chang, 2023). Still, our formulation could capture
the nature of a wide range of reasoning problems, and crucially, we believe that it is a good conceptualization of certain
aspects of language model (pre-)training, where the model needs to both memorize the “atomic” world knowledge and also
induce generalizable rules from the massive amount of records of human activities, which allow the model to connect and
reason over knowledge, and ultimately help with humans.
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Abstract nature and connection with practice. Our study has an abstract nature, which is required for the complete
solidity and rigor of our experiments and evaluation. We also strive to make sure that the results are robust to different setups
closer to practice through additional experiments (Appendix B,C,E). Still, there are certain distances from our settings to
those in practice. However, we believe that it is far more important to build solid understandings, even having distances with
practice, than to draw conclusions or make claims that are closer to practice but questionable due to insufficient control over
data and evaluations.
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