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Figure 1: Depth and distribution visualization of SM4Depth that enables good generalization across multiple metric depth
datasets captured by different sensors. Top: input images. Middle: depth prediction. Bottom: distribution of the prediction (red)
and ground truth (green). Six datasets: SUN-RGBD[48], DIODE[54], iBims-1[23], ETH3D[42], nuScenes-val[6], and DDAD[20].

ABSTRACT
In the last year, universal monocular metric depth estimation (uni-
versal MMDE) has gained considerable attention, serving as the
foundation model for various multimedia tasks, such as video and
image editing. Nonetheless, current approaches face challenges
in maintaining consistent accuracy across diverse scenes without
scene-specific parameters and pre-training, hindering the practi-
cality of MMDE. Furthermore, these methods rely on extensive
datasets comprising millions, if not tens of millions, of data for
training, leading to significant time and hardware expenses. This
paper presents SM4Depth, a model that seamlessly works for both
indoor and outdoor scenes, without needing extensive training data
and GPU clusters. Firstly, to obtain consistent depth across diverse
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scenes, we propose a novel metric scale modeling, i.e., variation-
based unnormalized depth bins. It reduces the ambiguity of the
conventional metric bins and enables better adaptation to large
depth gaps of scenes during training. Secondly, we propose a “di-
vide and conquer" solution to reduce reliance on massive training
data. Instead of estimating directly from the vast solution space, the
metric bins are estimated from multiple solution sub-spaces to re-
duce complexity. Additionally, we introduce an uncut depth dataset,
BUPT Depth, to evaluate the depth accuracy and consistency across
various indoor and outdoor scenes. Trained on a consumer-grade
GPU using just 150K RGB-D pairs, SM4Depth achieves outstanding
performance on the most never-before-seen datasets, especially
maintaining consistent accuracy across indoors and outdoors. The
code can be found here.
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1 INTRODUCTION
Monocular depth estimation is a fundamental visual task with wide-
ranging applications in the field of multimedia, such as video editing
[7] image editing [17, 69, 71], 3D generation/synthesis [45, 47, 67],
3D reconstruction [55, 56], and human pose estimation [36, 50]. In
this community, early research focused on MMDE [44, 49, 51, 58,
60, 70, 74], which were trained and tested only on specific datasets.
However, they suffered from poor generalization when applied to
unseen datasets, which limited their applications in the real world.
To solve this issue, much research shifted their focus to monocular
relative depth estimation (MRDE) [29, 38, 66] while disregarding the
metric scale. Leveraging diverse and easily accessible relative depth
data, these studies have achieved impressive performance, enabling
their application in scale-free tasks, such as image editing [13, 34]
and image stylization [22, 32], but not scale-sensitive applications,
e.g. virtual reality [1, 33, 75], 3D reconstruction [52], and even robot
navigation [8, 31, 61–63].

Beyond these approaches, universal MMDE has recently gained
prominence for its generalization capabilities, marked by Depth
Anything [64], ZoeDepth [5], and Metric3D [65]. However, these
methods still face challenges in the two aspects of MMDE:

(1) Inconsistent accuracy across scenes: The real world varies
widely in depth, ranging from [1𝑚, 2𝑚] (close-up scenes) to
[0.5𝑚, 80𝑚] (street scenes), making models tend to focus
on specific scenes and causing inconsistent accuracy across
scenes.

(2) Heavy reliance on data amount: The reliance on massive
training data (e.g. 8M metric depth data for Metric3D) re-
mains due to the high complexity of determining a unique
metric scale from a vast solution space of the natural scene.

Aiming to address these issues, we propose a Seamless Model for
MMDE across Multiple cameras and scenes (SM4Depth for short).
First, based on explicit modeling of metric scale, we propose novel
variation-based unnormalized depth bins which adaptively activate
some parts rather than all of the fixed-length bins vector to describe
themetric scale. This reduces the bin ambiguity inherent in previous
width-based bins, and promotes the learning of widely different
depth ranges in multiple scenes. Regarding the second issue, we
propose a domain-aware bin estimation mechanism based on the
“divide and conquer” idea, which estimates metric bins from various
solution sub-spaces, not the entire one, for reducing complexity.
Divide: we divide the common depth range into several range
domains (RDs) offline and generate independent metric bins for
each RD online. Conquer: we predict the RD that the input image
belongs to and weightedly fuse all bins into a single one. To verify
the accuracy consistency across diverse scenes, we propose BUPT
Depth, a seamless RGB-D dataset, that consists of various indoor
and outdoor scenes. Owing to the design of SM4Depth, it performs
superiously on the consistency of accuracy across diverse scenes,
which can be seen in Fig. 1. Notably, it also achieves comparative
performance compared with the state-of-the-art zero-shot MMDE

methods but uses far fewer training samples (only 150K RGB-D
pairs) and an affordable GPU (only single RTX 3090).

Our primary contributions are as follows:

(1) SM4Depth achieves consistent accuracy across diverse scenes
using a single model, eliminating the need for scene-specific
parameters and pre-training. This enhances the practicality
of MMDE in real-world applications.

(2) This paper tackles the long-term unresolved issue of bin
ambiguity using variation-based depth bins. The proposed
bins facilitate depth learning across scenes with significantly
different depth ranges.

(3) Our domain-aware bin estimation mechanism reduces the
reliance on massive training data in universal MMDE. This
enables SM4Depth to achieve state-of-the-art accuracy with
150K RGB-D training pairs (only 0.02% amount used by
previous methods) and a consumer-grade GPU.

(4) This paper presents the first no-clip RGB-D dataset. It is tai-
lored to evaluate the consistent accuracy of MMDE methods
across diverse indoor and outdoor scenes.

2 RELATEDWORK
Monocular metric depth estimation is a classic visual task, in
which determining metric scales is a crucial point, and there are
two paradigms. Mainstream MMDE methods [11, 16, 24, 27, 28, 57,
72, 76] directly model this task as a pixel-wise regression problem
(predicting continuous depth values in the real metric space), where
metric scales are implicitly encoded. In contrast, since [19], several
methods [3, 4, 46] have defined this task as a classification problem.
Adabins [3] explicitly encoded the metric scale into image-level
depth bins. We follow the latter paradigm as this paper focuses on
recovering the metric scale. However, the same bin on two images
with a large gap in depth range represents drastically different
depths, causing misleading back-propagation during training. In
this paper, we introduce variation-based bins to overcome this issue.
Zero-shot generation has become a new trend inmonocular depth
estimation in recent years. Early works [29, 39, 40] mainly achieved
this goal by training with more accessible relative depth data. Ini-
tially, Li et al. [29] developed an MRDE pipeline on large-scale
relative depth data. Ranftl et al. [40] trained an MRDE model on
five datasets and re-applied the training strategy to [39]. For high
practicality, the universal MMDE was first proposed in [5] which
combined relative depth and metric depth to achieve generaliza-
tion. Yin et al. [65] trained the model on 8M metric depth data for
generalization. Yang et al. [64] proposed DepthAnything trained
on 1M depth data and over 60M unlabeled data. Piccinelli et al. [37]
designed a camera-adaptive model, UniDepth, and trained it on
300Mmetric depth images. This reliance on numerous training data
is due to the complexity of determining correct metric scales from
diverse scenes. Our approach aims to reduce this reliance.

3 PROBLEM ANALYSIS AND
COUNTERMEASURES

In this section, we delve deep into the two issues of MMDE at the
scene and data levels, and provide specific solutions for each issue.

https://doi.org/10.1145/3664647.3681405
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Figure 2: Two bin-center curves on (a) a distant-view im-
age with range [0𝑚, 30𝑚] and (b) a close-up one with range
[0𝑚, 3.5𝑚] from iBims-1 [23]. (c) represents probability maps
𝑃 corresponding to the red curve in (b).

3.1 Inconsistent Accuracy across Scenes
Generally, real-world images exhibit vastly different depth ranges,
e.g. [1𝑚, 2𝑚] for indoor close-up and [0.5𝑚, 80𝑚] for street scenes.
Such a large gap causes the model to overly concentrate on specific
scenes instead of all scenes, leading to inconsistent accuracy
across different scenes. In this section, we solve this issue by
novel variance-based depth bins that bridge the gap of metric scale
representation across scenes. Before that, we briefly review the
conventional depth bin [3] and outline its weakness.
Reviewing width-based depth bin and its weakness. Given
the input image 𝐼 ∈Rℎ×𝑤×3, Adabins [3] generates an 𝑁 -channel
probability map 𝑃 ∈ Rℎ×𝑤×𝑁 and a vector 𝑐 ∈ R𝑁×1 representing
the centers of 𝑁 depth bins discreted from the depth interval, which
are linearly combined to obtain a metric depth map 𝐷 ∈ Rℎ×𝑤 :

𝐷 (𝑖) =
∑︁𝑁

𝑛=1 𝑐𝑛𝑃𝑛 (𝑖) (1)

where 𝐷 (𝑖) is the 𝑖th pixel’s predicted depth, and 𝑃𝑛 (𝑖) denotes the
probability for pixel 𝑖 that its depth is equal to the 𝑛th bin center
𝑐𝑛 . In Eq. (1), the bin center 𝑐𝑛 is calculated by accumulating the
width of each bin 𝑏 ∈ R𝑁×1:

𝑐𝑛 = 𝑑min + (𝑑max − 𝑑min) (𝑏𝑛/2 +
∑︁𝑛−1

𝑗=1 𝑏 𝑗 ) (2)

where 𝑏𝑛 = (𝑏′
𝑛 + 𝜖)/∑𝑁𝑖=1 (𝑏′

𝑖
+ 𝜖) denotes the normalized width

of the 𝑛th depth bin, with 𝜖 = 10−3 and 𝑏′
𝑛 ∈ [0, +∞) being the

unnormalized width predicted through a feedforward neural net-
work (FFN) with the ReLU activation function. During training, the
bi-directional Chamfer loss [18] is employed to enforce the small
width 𝑏′ within the interesting depth interval in the ground truth
depth map D:

L𝑏𝑖𝑛 (𝑐,D) =
∑︁

d∈Dmin
𝑐𝑛∈𝑐

| |d − 𝑐𝑛 | |2 +
∑︁

𝑐𝑛∈𝑐
min
d∈D

| |d − 𝑐𝑛 | |2 (3)

where d is the pixel’s correct depth.
In natural scenes, the depth range of images varies significantly,

yet all images must represent metric scales using the 𝑁 bins. This
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Figure 3: The heatmaps show the frequency of depth values
occurring in each depth bin, which are obtained from iBims-
1 [23]. If a square (X,Y) appears darker, it indicates that the
depth value Y mainly occurs within the Xth depth bin.

leads to great variations in the metric depth represented by a single
bin, a phenomenon we call “bin ambiguity”. Taking Fig. 2 as an
example, a 3𝑚 pixel would be classified in the 208th bin for an image
with a range of [0, 3.5𝑚] (Fig. 2(b)), but in the 72𝑡ℎ bin for an image
with a range of [0, 30𝑚] (Fig. 2(a)). Such an excessive gap would
confuse the metric meaning of the probability map’s channels and
lead to the back-propagation of misleading signals during training.
Depth variation-based bins for consistent accuracy. The intu-
itive idea is to use the front portion of bins for short-range images
and the entire bins for long-range images. To achieve this, we
propose the variation-based unnormalized depth bins. Unlike the
conventional bin 𝑏′

𝑛 , we use only an FFN without ReLU activa-
tion. In this way, the FFN outputs variations that allow negative
values, denoted as 𝑏′ ∈ R𝑁×1. Then, the bin center 𝑐 in Eq. (2) is
re-formulated to an unnormalized bin center 𝑐 , which is no longer
limited by the depth range of specific datasets (e.g., [0𝑚, 10𝑚] for
NYUDv2 and [0𝑚, 80𝑚] for KITTI):

𝑐𝑛 = 𝜖 + 𝑏
′
𝑛/2 +

∑︁𝑛−1
𝑗=1 𝑏

′
𝑗 (4)

Analysis: Since the depth variations 𝑏′ are allowed to be neg-
ative, the bin center can reach the maximum depth on some in-
termediate bin 𝑐n (n < 𝑁 ) in short-range images, not necessarily
the last bin center 𝑐𝑁 . Thus, all pixels can be fully expressed by
the front bins {𝑐𝑛 |𝑛 ∈ [1, n]}, and do not have to involve the latter
bins {𝑐𝑛 |𝑛 ∈ (n, 𝑁 ]}. As indicated by the red lines in Fig. 2, for
the close-up image, the bin center reaches the maximum depth
at the 110𝑡ℎ bin and then continues to decrease. While the later
bins {𝑐𝑛 |𝑛 ∈ (110, 𝑁 ]} correspond to some probability channels
close to zero {𝑃𝑛 |𝑛 ∈ (110, 𝑁 ]}, which can be observed through
the visualization of part channels in Fig. 2 (c). This illustrates that
these later bins are not actually used.

Fig. 3 presents additional statistics information, i.e., the frequency
of depth values occurring in each depth bin. For the width-based
depth bin (𝑐, 𝑏, 𝑏 ′ ), depths below 4𝑚 occur most frequently across
all bins. Conversely, variation-based depth bin (𝑐, 𝑏′ ) exhibits larger
depths in the latter bins. This means that the depth values repre-
sented by each bin center are pulled apart on the level of the entire
dataset, suppressing the bin ambiguity.
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3.2 Reliance on Massive Training Data
Reason behind the reliance. Practical applications differ from
specific datasets in that images are taken from various camera
angles and innumerable scenes. Due to the diverse nature of ap-
pearance, mapping from visual cues to a wide range of depth values
becomes highly intricate and cannot be exhaustively presented.
Consequently, determining metric depth bins entails exploring a
vast solution space, which necessitates greater attention to reducing
its complexity. However, previous works have overlooked this cru-
cial aspect by directly making predictions (e.g., [5] solves for metric
bins and [65] predicts metric depth) from the entire solution space,
inevitably requiring massive training data. To address this issue, we
first divide the whole solution space into several sub-spaces. Then,
a “divide and conquer” method is proposed to generate metric bins
in each sub-space and predict the best metric bins for the input.

Stage 1: Online depth range domain generation. To divide the
solution space into sub-spaces, the previous approaches group all
images according to semantic categories [5, 30]. However, a large
gap in depth range may exist within one scene. Differently, we
group all training images according to the depth range that better
constrains the perspective and scene from which the image is taken.

According to [19], the amount of information for depth estima-
tion decreases as the depth value increases. Thus, we employ a
space-increasing strategy to gain more image groups (named range
domain, RD) when the depth value is smaller. Assuming that the
depth range is [𝑍min, 𝑍max] and there are 𝐾 RDs, the 𝑘th RD can
be formulated as:

𝑅𝐷𝑘 =

[
𝑍min, 𝑍min +

∑︁𝑘

𝑖=1
2𝑖 (𝑍max − 𝑍min)

𝐾 (1 + 𝐾)

]
(5)

We further visualize the RDs in the supplementary material here.

Stage 2: Online domain-aware bin estimation design.We de-
sign a domain-aware bin estimation mechanism that generates
metric bins for each RD and finds the best-matching metric bins,
following the “divide and conquer” idea in two steps.

The “Divide” step aims to discretize each depth interval 𝑅𝐷𝑘
into 𝑁 bins. Specifically, given the deep feature of the input image,
we leverage a transformer encoder to learn the relationship between
the deep feature and 𝐾 preset learnable 1-D embeddings (called bin
queries). The output embeddings of these queries are fed into an
FFN to generate 𝐾 depth variation vectors {𝑏′ [𝑘 ] |𝑘∈[1, 𝐾]}, and
calculate the bin center vectors {𝑐 [𝑘 ] |𝑘 ∈ [1, 𝐾]} using Eq. (4). To
illustrate our idea, we compare three possible design choices:

• 1 Query + 𝐾 FFNs: Using 𝐾 FFNs to process the output of
only one query.

• 𝐾 Queries + 𝐾 FFNs: Using 𝐾 FFNs to process the outputs
of 𝐾 queries in a one-to-one way.

• 𝐾 Queries + 1 FFN (Ours): Using only one FFN to process
the outputs of 𝐾 queries.

The first two both employ 𝐾 FFNs. Thus, each FFN only learns the
knowledge of a single RD during training, which leads to drastically
different outputs of these FFNs and makes them sensitive to input
noise. The last design is recommended as the best choice and the
experiments (in Sec.6.4) verify its superiority over other options.
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Figure 4: SM4Depth Pipeline containing the domain-aware
bin estimation (blue mask) and the HSC-decoder (red mask).

The “Conquer” step aims to estimate the correct RD for the
input image and determine the best-matching metric bins. Specifi-
cally, we preset an additional 1-D embedding (called domain query)
alongside the bin queries. Its corresponding output is then fed into
a classification head (CLS) to generate the probability that the input
image belongs to each RD, denoted as {𝑦𝑘 ∈ [0, 1] |𝑘 ∈ [1, 𝐾]}.

Subsequently, considering the possibility of images being po-
sitioned near the decision boundary of RD classification, we do
not select the top-scoring metric bin but instead combine all bin
center vectors 𝑐 [𝑘 ] to a single one by using the RD probabilities
{𝑦𝑘 |𝑘 ∈ [1, 𝐾]} as weights:

c =
∑︁

𝑘∈[1,𝐾 ] 𝑐
[𝑘 ]𝑦𝑘 (6)

where c is the final bin center vector.

4 ARCHITECTURE OF SM4DEPTH
4.1 Pipeline.
Fig. 4 illustrates the structure of our network. Given an RGB image
I∈Rh×w×3, we first pre-process I to obtain a new image 𝐼 ∈Rℎ×𝑤×3

with a unified field of view (FOV) (see Sec.4.2). Then, we extract
the deep feature from 𝐼 by an encoder. Next, a pyramid scene trans-
former (PST) [46] is positioned between the encoder and decoder. It
consists of three parallel transformer encoders with inputs of differ-
ent patch sizes, respectively. We employ the transformer encoder
with the smallest patch size to process all queries. Based on the
mechanism in Sec.3.2, we obtain the bin center vector c of image
𝐼 . Finally, we design a decoder with hierarchical scale constraints
(HSC-Decoder) to anchor the metric scale in multiple resolutions
and output the metric depth map 𝐷 (see Sec.4.3).

4.2 FOV alignment Pre-Processing.
According to [65], eliminating “metric ambiguity” is the key to
achieving universal MMDE. Therefore, we pre-process all input
images to align their field of view (FOV). Given an input image

https://pan.baidu.com/s/1CCpvQ4rbVkmagVntP_XFLQ?pwd=g1ct
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Figure 5: Top view of the scene where we collected the BUPT Depth dataset. Red lines indicate indoor scenes and purple lines
indicate outdoor scenes. We give five images and their ground truth depth calculated by CREStereo [26] as examples.

I with focal length (fx, fy), we first preset the input resolution of
network as (ℎ,𝑤) and define the target FOV as (𝜔 ′

x, 𝜔
′
y) in radians.

Then, a rectangular region 𝐼 ′ ∈ Rℎ
′×𝑤′×3 on I equivalent to the

target FOV (𝜔 ′
x, 𝜔

′
y) is calculated by the FOV equation:

𝑤
′
= 2fx tan(𝜔

′
x/2) , ℎ

′
= 2fy tan(𝜔

′
y/2) (7)

Next, we crop this region 𝐼 ′ from the original image I, and fill the
pixels beyond Iwith 255. Finally, the region 𝐼 ′ is resized to the target
resolution (ℎ,𝑤) to generate a new image 𝐼 as input of the network.
Note that this FOV alignment is similar to the CSTM_image [65]
in result, but without maintaining a canonical camera space. Thus
it is more straightforward.

4.3 Decoder with hierarchical scale constraints.
Our decoder draws inspiration from the refinement decoder struc-
tures [9, 25], but the divergence lies in scale constraints on the
metric depth at each stage. As shown in Fig. 4, taking the PST’s
output, denoted as 𝐹1, as input, we employ the DPT’s decoder [39]
to gradually recover the resolution of features, denoted as 𝐹𝑠 with
a size ℎ

2(6−𝑠 ) × 𝑤

2(6−𝑠 ) , where 𝑠 ∈ {1, 2, 3, 4, 5} is the stage number.
In the first stage, 𝐹1 is compressed into 𝑁 -channel and then mul-
tiplied pixel-wisely with c by Eq. (1), generating a low-resolution
depth map 𝐷 ′

1 ∈ R
ℎ
32 ×

𝑤
32 . In the following 𝑠th stage, the depth map

of the former stage 𝐷 ′
𝑠−1 is upsampled and fused with feature 𝐹𝑠

by a residual convolution block [9]. Then we linearly combine
the fused feature and the bin centers c to generate the depth map
𝐷

′
𝑠 ∈ R

ℎ

2(6−𝑠 )
× 𝑤

2(6−𝑠 ) . In this way, the depth map of the last stage
𝐷

′
5 ∈ R

ℎ
2 ×

𝑤
2 is obtained. Compared to the previous refinement

decoder [9], the HSC-Decoder incorporates the metric bins into
each stage to progressively refine the depth range, thus performing
better in recovering the depth range. The loss functions are further
described in the supplementary material here.

5 UNCUT RGBD DATASET: BUPT DEPTH
BUPT Depth (see in Fig. 5) is proposed to evaluate consistency in
accuracy across indoor and outdoor scenes, including streets, can-
teen, classroom, and lounges, etc. This dataset shows a variety of
lighting, scenes, and viewing angles, making depth estimation chal-
lenging. It consists of 14,932 continuous RGB-D frames captured
in BUPT by ZED2. In addition to the outputs of ZED2, we provide
the re-generated depth maps from CREStereo [26] and the sky seg-
mentation from ViT-Adapter [10]. The color and depth streams are
captured with intrinsics of 1091.517 and a baseline of 120.034mm.

6 EXPERIMENTS
6.1 Experimental setting
Datasets: For training, we randomly sample RGB-Depth pairs from
various datasets. Specifically, we sample 24K pairs from ScanNet
[15], 15K pairs from Hypersim [41], 51K pairs from DIML [12], 36K
pairs from UASOL [2], 14K pairs from ApolloScape [21], and 11K
pairs from CityScapes [14]. During training, NYUD [35] and KITTI
[53] are used for validation. In addition, we apply the same pre-
processing steps to the training data as [5, 40], elaborated in the sup-
plementary material here. During testing, we employ eight datasets
not seen during training: SUN RGB-D [48], iBims-1 [23], ETH3D
Indoor/Outdoor [43], DIODE Indoor/Outdoor [54], nuScenes-val
[6], and DDAD [20]. Note that we remove the test set of NYUD
from SUN RGB-D for a fair comparison.
Metrics: We employ four metrics [3] for evaluation: the accuracy
under threshold (𝛿𝑘 < 1.25𝑘 , 𝑘 = 1, 2, 3), the absolute relative error
(REL), and the root mean squared error (RMSE). In addition, we
use the relative improvement across datasets (mRI𝜂 ) and metrics
(mRI𝜃 ) in [5]. During the evaluation, the final output is obtained
by averaging the predictions for an image and its mirror image. In
addition, the final output is upsampled to match the original image
size, and all metrics are computed within the same FOV.
Implementation Details: SM4Depth employs the Swin Trans-
former Base as the backbone, and runs on a single NVIDIA RTX
3090 GPU. The network is trained by the Adam optimizer with
parameters (𝛽1, 𝛽2) = (0.9, 0.999). The training runs for 20 epochs
with a batch size of 10. The initial learning rate is set to 2×10−5 and
gradually reduced to 2 × 10−6. Note that, an over-large fixed FOV
would cause too large invalid area in the small FOV dataset, mak-
ing the network underfitting. We empirically set the fixed FOV to
(𝜔 ′

x, 𝜔
′
y)= (58◦, 45◦) and the fixed resolution to (𝑤,ℎ)= (564, 424).

6.2 Result on BUPT Depth
Table 1 presents a quantitative comparison between SM4Depth and
state-of-the-art methods, categorized based on different ground
truth. SM4Depth achieves superior performance in most metrics
when utilizing ground truth from either ZED2 or CREStereo [26].
Notably, SM4Depth is trained on a smaller dataset of 0.015M pairs
(only 0.02%∼5% of the data used by previous methods), with FLOPs
and parameter count typically half that of prior methods.

Fig. 6 provides a more intuitive comparison between SM4Depth
and state-of-the-art methods from a time-series perspective, visu-
alizing the RMSE of each frame using two line graphs. SM4Depth
(orange) achieves a relatively high accuracy regardless of indoor

https://pan.baidu.com/s/1CCpvQ4rbVkmagVntP_XFLQ?pwd=g1ct
https://pan.baidu.com/s/1CCpvQ4rbVkmagVntP_XFLQ?pwd=g1ct
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Method Backone Training
Pairs FLOPs Params BUPT Depth - Ground Truth gained by ZED2 BUPT Depth - Ground Truth gained by CREStereo

𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑ REL↓ RMSE↓ log10↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑ REL↓ RMSE↓ log10↓

ZoeD-NK [5] BEiT-L - 283G 267M 0.314 0.485 0.576 1.006 9.758 0.263 0.365 0.505 0.579 0.974 9.377 0.252
Metric3D [65] CNXT-L over 8M 569G 203M 0.155 0.318 0.417 2.446 23.794 0.427 0.293 0.402 0.470 1.816 22.736 0.352
DepthAnything-NK [64] ViT-L over 61M 451.9G 335.3M 0.193 0.3623 1.000 1.1362 7.9838 0.2978 0.221 0.3742 1.000 1.120 7.833 0.292
UniDepth [37] ViT-L roughly 3M - 347M 0.311 0.598 1.000 0.6559 8.399 0.1933 0.109 0.396 1.000 0.983 9.422 0.264
SM4Depth Swin-B 0.015M 105G 110M 0.536 0.805 0.924 0.295 3.440 0.118 0.629 0.875 0.966 0.241 2.888 0.094

Table 1: Quantitative results on BUPT Depth. Comparisons are conducted with the ground truths of ZED and CREStereo,
respectively. The best results are in bold, and the second-best ones are underlined. - indicates unknown numbers.

Figure 6: RMSE per frame of SM4Depth (orange), Metirc3D (gray), ZoeDepth-NK (blue), UniDepth (yellow), DepthAnything-
NK(purple) on BUPT Depth. We use the stereo depth of ZED2 (the first chart) and CREStereo[26] (the second chart) as ground
truth, respectively. Gray indicates outdoor frames, and white indicates indoor frames.

or outdoor scenes on both two ground truth. In contrast, other
methods fail to achieve high accuracy simultaneously indoors and
outdoors. Specifically, ZoeD-NK, Metric3D, and UniDepth show
fluctuating accuracy in outdoor scenes, with some even exceed-
ing over 50 at times. And the accuracy of SM4Depth varies more
smoothly. In the first two examples we presented in Fig. 6, both
SM4Depth and UniDepth obtain a more accurate metric scale than
others, but SM4Depth provides sharper outputs, even enabling the
wooden fence in frame 9957 to be discernible. In the indoor scene,
SM4Depth produces clearer outlines than other methods.

6.3 Comparison to the state of the art
6.3.1 Quantitative Result. We employ two classical MMDE meth-
ods, i.e., BTS [25] and AdaBins [3], as well as two more advanced
MMDE approaches, i.e., NeWCRFs [68] and MIM [73], for compar-
ison. Moreover, we also employ several universal MMDE meth-
ods, i.e., Metric3D [65], ZoeDepth [5], DepthAnything [64], and
UniDepth [37], for comparison (N indicates NYUD fine-tuning and
K for KITTI fine-tuning; they are also applicable to SM4Depth).

In Table 2, the upper part shows the zero-shot performance on
four indoor datasets, and the lower part shows that on four outdoor
datasets. SM4Depth not only achieves accuracy consistency across
indoor and outdoor but also outperforms most MMDE methods
on public datasets and competes with top-performing algorithms
like UniDepth and DepthAnything. Compared to the earliest uni-
versal MMDE algorithm, ZoeDepth, SM4Depth demonstrates supe-
rior accuracy across all datasets, leading in both absolute metrics

(𝛿1, RMSE) and relative metrics (REL). This indicates SM4Depth’s
ability to learn more accurate relative depth from metric depth
data. Compared to Metric3D, SM4Depth performs better on most
datasets, (i.e., SUN RGB-D, ETH3D, DIODE, and DDAD) and similar
on iBims-1, but is only trained 150K images, which proves the effec-
tiveness of SM4Depth. Especially, SM4Depth outperforms Metric3D
by +58.08% and +8.10% mRI𝜃 on ETH3D Outdoor and DDAD. In ad-
dition, SM4Depth outperforms Metric3D on nuScenes-val by -1.285
of RMSE, but falls behind on 𝛿1 and REL, as Metric3D is trained on
much more self-driving datasets, which endows it an advantage in
such scenes. Notably, SM4Depth outperforms Metric3D by +58.08%
and +8.10% mRI𝜃 on ETH3D Outdoor and DDAD, respectively. Al-
though not surpassing UniDepth in accuracy overall, SM4Depth
closely approaches or even exceeds it on some datasets (iBims-1,
ETH3D Indoor/Outdoor).

Table 3 displays the results on NYUD and KITTI. With the zero-
shot setting, our method obtains lower 𝛿1 and higher RMSE than
Metric3D on NYUD and KITTI. However, after being fine-tuned on
NYUD and KITTI, SM4Depth achieves competitive accuracy with
the state-of-the-art methods, while avoiding a significant degrada-
tion in accuracy on zero-shot datasets (see in Table 2).

6.3.2 Qualitative Result. Fig. 7 visualizes several methods’ predic-
tions and depth distributions. The 1st − 3rd columns show close-up
scenes challenging depth range determination. Previous methods
obtain incorrect depth distributions, while Metric3D tends to push
the background farther when the foreground boundary is clearly
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Categories Method SUN RGB-D iBims-1 Benchmark ETH3D Indoor DIODE Indoor
𝛿1 ↑ REL ↓ RMSE ↓ mRI𝜃 ↑ 𝛿1 ↑ REL ↓ RMSE ↓ mRI𝜃 ↑ 𝛿1 ↑ REL ↓ RMSE ↓ mRI𝜃 ↑ 𝛿1 ↑ REL ↓ RMSE ↓ mRI𝜃 ↑

Full-shot

BTS [25] 0.718 0.181 0.533 -31.45% 0.536 0.233 1.059 -32.82% 0.360 0.324 2.210 -18.73% 0.208 0.419 2.382 -34.57%
AdaBins [3] 0.751 0.167 0.493 -23.07% 0.548 0.216 1.078 -29.56% 0.283 0.361 2.347 -31.23% 0.173 0.442 2.450 -40.95%
NeWCRFs [68] 0.779 0.159 0.437 -14.67% 0.543 0.209 1.031 -26.43% 0.452 0.268 1.874 0.76% 0.183 0.402 2.307 -33.51%
MIM [59] 0.844 0.147 0.341 0.00% 0.717 0.163 0.813 0.00% 0.453 0.287 1.800 0.00% 0.416 0.317 1.960 0.00%

Zero-shot

ZoeD-N [5] 0.850 0.125 0.357 3.66% 0.652 0.171 0.883 -7.53% 0.388 0.275 1.678 -1.13% 0.376 0.331 2.198 -8.72%
DepthAnything-N [64] 0.897 0.107 0.272 17.90% 0.716 0.150 0.726 6.17 % 0.438 0.250 1.663 5.73 0.277 0.339 2.113 -16.05
SM4Depth-N 0.874 0.121 0.303 10.80% 0.715 0.162 0.801 0.60% 0.486 0.249 1.662 9.40% 0.418 0.298 1.790 5.05%
ZoeD-NK [5] 0.841 0.129 0.367 1.42% 0.610 0.189 0.952 -15.99% 0.353 0.280 1.691 -4.53% 0.386 0.335 2.211 -8.57%
Metric3D[65] 0.033 2.631 5.633 × 0.818 0.158 0.582 15.18% 0.536 0.335 1.550 5.16% 0.505 0.427 1.687 0.21%
UniDepth-ViT-L [37] 0.953 0.089 0.232 28.11% 0.262 0.344 1.104 -70.09% 0.177 0.503 2.126 -51.43 0.762 0.186 1.290 52.89%
SM4Depth 0.869 0.127 0.301 9.43% 0.790 0.134 0.673 15.06% 0.527 0.233 1.407 18.99% 0.356 0.300 1.721 1.04%

Categories Method nuScenes-val DDAD ETH3D Outdoor DIODE Outdoor
𝛿1 ↑ REL ↓ RMSE ↓ mRI𝜃 ↑ 𝛿1 ↑ REL ↓ RMSE ↓ mRI𝜃 ↑ 𝛿1 ↑ REL ↓ RMSE ↓ mRI𝜃 ↑ 𝛿1 ↑ REL ↓ RMSE ↓ mRI𝜃 ↑

Full-shot

BTS [25] 0.420 0.285 9.140 -9.24% 0.802 0.146 7.611 -13.07% 0.175 0.831 5.746 7.19% 0.172 0.838 10.475 -34.70%
AdaBins [3] 0.483 0.272 10.178 -7.45% 0.757 0.155 8.673 -22.80% 0.110 0.889 6.480 -12.65% 0.162 0.853 10.322 -36.09%
NeWCRFs [68] 0.415 0.280 7.402 -0.64% 0.866 0.120 6.359 2.66% 0.258 0.799 5.061 29.57% 0.177 0.841 9.304 -29.25%
MIM [59] 0.396 0.283 6.868 0.00% 0.859 0.134 6.157 0.00% 0.159 0.889 6.048 0.00% 0.269 0.625 7.819 0.00%

Zero-shot

ZoeD-K [5] 0.379 0.290 6.900 -2.41% 0.833 0.130 7.154 -5.41% 0.303 1.012 5.853 26.65% 0.269 0.823 6.891 -6.60%
DepthAnything-K [64] 0.579 0.223 5.844 27.44% 0.840 0.118 6.953 -1.06% 0.193 0.897 6.423 4.76% 0.309 0.836 7.599 -5.35%
SM4Depth-K 0.623 0.229 7.175 23.98% 0.841 0.160 5.677 -4.56% 0.452 0.294 3.168 99.61% 0.280 0.552 8.335 3.06%
ZoeD-NK [5] 0.371 0.299 6.988 -4.57% 0.821 0.139 7.274 -8.77% 0.337 0.752 4.758 49.56% 0.207 0.735 7.570 -12.49%
Metric3D*[65] 0.868 0.143 8.506 48.27% 0.896 0.119 7.262 -0.01% 0.324 0.724 9.830 19.93% 0.169 0.499 9.353 -12.21%
UniDepth-ViT-L [37] 0.921 0.088 4.270 79.76% 0.935 0.103 5.062 16.58% 0.424 0.341 4.060 87.05% 0.597 0.483 5.631 57.54%
SM4Depth 0.672 0.214 7.221 29.65% 0.890 0.123 5.390 8.09% 0.348 0.273 3.274 78.01% 0.190 0.487 8.435 -5.05%

Table 2: Quantitative results on zero-shot datasets. mRI𝜃 denotes the mean relative improvement compared to MIM across all
metrics(𝛿1, REL, RMSE). All methods undergo evaluation consistently within a specific region. The best results are in bold and
the second-best ones are underlined. × indicates poor performance. * means that Metric3D was trained on DDAD.

Categories Method Backbone NYUD KITTI
𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑ REL↓ RMSE↓ log10↓ mRI𝜃 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑ REL↓ RMSE↓ log10↓ mRI𝜃

Full-shot

ZoeD-N/K [5] BEiT-L 0.956 0.995 0.999 0.075 0.279 0.032 0.00% 0.978 0.998 0.999 0.049 2.221 0.021 0.00%
ZoeD-NK [5] BEiT-L 0.954 0.996 0.999 0.076 0.286 0.033 -1.18% 0.971 0.994 0.996 0.053 2.415 0.024 -5.43%
DepthAnything-N/K [64] ViT-L 0.983 0.998 1.000 0.055 0.212 0.024 13.15% 0.975 0.996 1.000 0.057 2.443 0.024 -6.83%
SM4Depth-N/K Swin-B 0.932 0.991 0.998 0.088 0.328 0.038 -9.44% 0.971 0.996 0.999 0.054 2.477 0.023 -5.36%

Zero-shot
Metric3D [65] CNXT-L 0.926 0.984 0.995 0.091 0.340 0.038 -11.09% 0.962 0.993 0.998 0.060 2.969 0.026 -13.69%
UniDepth ViT-L 0.984 0.997 1.000 0.053 0.208 0.023 14.35% 0.975 0.996 1.000 0.049 2.476 0.021 -1.98%
SM4Depth Swin-B 0.860 0.981 0.997 0.126 0.417 0.052 -31.93% 0.928 0.985 0.996 0.087 3.272 0.038 -35.42%

Table 3: Quantitative result on NYUD and KITTI. All methods undergo evaluation in a consistent region. The best results are in
bold and the second-best ones are underlined.

delineated. The 4th and 5th columns show indoor scenes containing
a large area of wall. Other methods suffer from incorrect depth
range, while SM4Depth recovers the depth distribution accurately.
The 6th and 7th columns show two close-up outdoor scenes. The
predictions of ZoeDepth and DepthAnything exhibit overall shifts,
while Metric3D fails to distinctly differentiate between the front ob-
jects and the wall. Due to training on multiple metric depth datasets,
SM4Depth generates a visually reasonable depth distribution while
it does not assign an extreme depth value to sky regions because
they are set to 0 during training. The last two columns show images
from self-driving scenes. Although all methods generate good depth
maps, SM4Depth obtains a more accurate depth distribution and
captures richer details than other methods. Especially in the 9th
column, where objects are up to 80m away, our method correctly
predicts their farthest depths as well as generating fine tree trunk
edges.

6.4 Detail Analysis
6.4.1 Number of depth range domain. We explore the optimal num-
ber of RD, i.e., 𝐾 , and additionally evaluate the uniform partition

V-Bin1 WF-Bin2.1 DBE2.2 HSC3 iBims-1 ETH3D DIODE DDAD mRI𝜂 ↑
√ √ √ √

0.673 2.373 5.605 5.390 10.92%
× √ √ √

0.692 2.504 6.033 5.726 6.03%
× × √ √

0.701 2.692 6.111 5.486 4.53%
× × × √

0.741 2.566 6.163 5.587 3.67%
× × × × 0.695 2.695 6.107 6.767 0.00%

1: Depth-Variation based Bin 2.2: Domain-aware Bin Estimation
2.1:Weighted Fusion of Bins 3: Decoder with Hierarchical Scale Constraints

Table 4: RMSE results of the ablation study. The best results
are in bold, while the second-best ones are underlined.

strategy [19] when using the best 𝐾 . Fig. 8 shows all variants’ per-
formance on the mixing test sets. As 𝐾 increases, RMSE decreases
slowly. RMSE suddenly drops below 3.4 when 𝐾 = 4 and increases
again at 5 or 6. We argue that this phenomenon occurs because
RDs better describe images with different appearance when 𝐾 =
4 and prevent excessive similarity between RDs due to redundant
division. In addition, using the uniform partition strategy leads to
a notable decrease in 𝛿1 and RMSE.

6.4.2 Ablation study. We conduct the ablation study by gradually
removing our designs and comparing all variants on the mixing
test sets. In Table 4, the baseline (last row) consists of only an
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Figure 7: Qualitative comparison with MDE methods on zero-shot datasets. The depth distribution is under the depth maps
with green for ground truth and red for prediction.

RMSE

Figure 8: Parameter experiment about 𝐾 . The performance,
as measured by 𝛿1 and RMSE, is optimal when 𝐾 equals 4.
The dots represent the use of the uniform partition strategy.

encoder-decoder structure and a Pyramid Scene Transformer [46].
Observably, the RMSEs increase overall as the proposed modules
and innovations are gradually removed. The depth-variation based
bins make the greatest contribution (+4.89% mRI𝜂 ), indicating its
effectiveness in learning large depth range gaps. The entire domain-
aware bin estimation increases mRI𝜂 by 2.36%, with the weighted fu-
sion scheme contributing 1.5% of this. In addition, the HSC-decoder
improves mRI𝜂 by 3.67%.

6.4.3 Comparing designs for domain-aware bin estimation. As shown
in Table 5, we compare three design choices of our domain-aware
bin estimation mentioned in Sec.3.2 on the same four datasets in the
ablation study. Compared to the other settings, “𝐾*Query+1*FFN”
achieves the lowest RMSE and highest mRI𝜂 , and outperforms
other variants by a large margin. The reason is that the single FFN

Design Choices iBims-1 ETH3D DIODE DDAD mRI𝜂 ↑
1 * Query + 𝐾 * FFNs 0.770 2.522 5.982 6.601 0.00%
𝐾 * Queries + 𝐾 * FFNs 0.734 2.401 5.820 6.920 1.84%
𝐾 * Queries + 1 * FFN 0.673 2.373 5.605 5.390 10.79%

Table 5: RMSE results of DBE. The best results are in bold,
while the second-best ones are underlined.

is trained on multiple RDs and thus learns common knowledge for
bin estimation from multiple RDs.

7 CONCLUSION
This paper proposes a seamless MMDE algorithm, SM4Depth, to
solve the problems of inconsistent accuracy across diverse scenes
and reliance on massive training data. Firstly, we discuss the inher-
ent issue of the bin-based methods when learning depth range with
large gap, that is the large inconsistency of the same bin in differ-
ent images. To address this issue, we propose the variation-based
depth bins that allow the network to effectively learn scenes with
different depth ranges. Next, to reduce the complexity of estimating
correct metric bins from a vast solution space, this paper designs a
“divide and conquer” method to determine metric bins from multi-
ple solution sub-spaces, thereby reducing the network’s reliance on
massive training data. Finally, we propose an uncut depth dataset,
BUPT Depth, to verify the accuracy consistency across scenes. Our
method obtains outstanding performance with only 150K RGB-D
pairs for training and achieves accuracy consistency.
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