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Abstract
Recent watermarked generation algorithms in-001
ject detectable signatures during language gen-002
eration to facilitate post-hoc detection. While003
token-level watermarks are vulnerable to para-004
phrase attacks, SEMSTAMP (Hou et al., 2023)005
applies watermark on the semantic represen-006
tation of sentences and demonstrates promis-007
ing robustness. SEMSTAMP employs locality-008
sensitive hashing (LSH) to partition the seman-009
tic space with arbitrary hyperplanes, which re-010
sults in a suboptimal trade-off between robust-011
ness and speed. We propose k-SEMSTAMP,012
a simple yet effective enhancement of SEM-013
STAMP, utilizing k-means clustering as an al-014
ternative of LSH to partition the embedding015
space with awareness of inherent semantic016
structure. Experimental results indicate that017
k-SEMSTAMP saliently improve its robustness018
and sampling efficiency while preserving the019
generation quality, advancing a more effective020
tool for machine-generated text detection.021

1 Introduction022

To facilitate the detection of machine-generated023

text (Mitchell et al., 2019), recent watermarked024

generation algorithms usually inject detectable sig-025

natures (Kuditipudi et al., 2023; Yoo et al., 2023;026

Wang et al., 2023; Christ et al., 2023; Fu et al.,027

2023; Hou et al., 2023, i.a.). A major concern for028

these approaches is their robustness to potential029

attacks, since a malicious user could attempt to re-030

move the watermark with text perturbations such031

as editing and paraphrasing (Krishna et al., 2023;032

Sadasivan et al., 2023; Kirchenbauer et al., 2023b;033

Zhao et al., 2023). Hou et al. (2023) propose SEM-034

STAMP, a paraphrase-robust and sentence-level wa-035

termark which assigns signatures to each water-036

marked sentence according to the locality sensitive037

hashing (LSH) (Indyk and Motwani, 1998) parti-038

tioning of semantic space (explained in 2.1). While039

demonstrating promising robustness against para-040

phrase attacks, SEMSTAMP arbitrarily partitions041
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Figure 1: Illustrations of the semantic space. Sentence
embeddings with close meanings share similar colors.
(Left) Random planes from LSH arbitrarily partition
the semantic space and split similar sentences into dif-
ferent regions. (Right) Margin-based rejection in k-
SEMSTAMP. Sentence embeddings which fall into the
gray-shaded areas of a valid region will be rejected.

the semantic space by a set of random hyperplanes, 042

potentially splitting groups of semantically similar 043

sentences into different partitions (see Figure 1). 044

This limitation motivates our proposed method, 045

k-SEMSTAMP (detailed in §2.2), which partitions 046

the space by performing k-means clustering (Lloyd, 047

1982) on the semantic structure of a given text do- 048

main (e.g. news, narratives, etc.). In section 3, 049

we show that the clustering-based partitioning in k- 050

SEMSTAMP greatly improves its robustness against 051

sentence-level paraphrase attacks and sampling ef- 052

ficiency. 053

2 Approach 054

We first review some existing watermark algo- 055

rithms for machine-generated text detection, and 056

introduce our proposed k-SEMSTAMP watermark. 057

2.1 Preliminaries 058

Token-Level Watermark Kirchenbauer et al. 059

(2023a) develop a popular token-level watermark 060

algorithm. Given a token history w1:t−1, the vocab- 061

ulary V is pseudo-randomly divided into a “green 062

list” G(t) and a “red list” R(t), where a hash of the 063
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Figure 2: An overview of the proposed k-SEMSTAMP algorithm. k-means clustering partitions the semantic space
into semantically similar regions. The sentence generation is accepted if the closest cluster of its sentence embedding
corresponds to a "valid" region in the semantic space.

previous token wt−1 is used as the seed of the par-064

tition. The algorithm then adds a bias to the logits065

of all tokens in the green-list and sample the next066

token with an increased probability from the green-067

list. For a given piece of text, the watermark can068

be detected by conducting one proportion z-test069

(detailed in §C) on the number of green list tokens.070

SEMSTAMP Under the intuition that common071

sentence-level paraphrase modifies tokens but pre-072

serves sentence meaning, Hou et al. (2023) intro-073

duce SEMSTAMP to apply watermark on sentence074

semantics by partitioning the embedding space075

with locality sensitive hashing (LSH).076

To initialize the LSH partitioning, d normal vec-077

tors are randomly sampled from a Gaussian dis-078

tribution to specify d hyperplanes in the semantic079

space Rh. For an embedding vector v ∈ Rh, a080

d-bit binary LSH signature is assigned, where each081

digit specifies the position of v in relation to each082

hyperplane. Each signature c ∈ {0, 1}d indexes a083

region consisting of all vectors with signature c.084

During generation, given a sentence history de-085

noted by s(0) . . . s(t−1), the space of signatures is086

pseudorandomly partitioned into a set of “valid”087

regions G(t) and a set of “blocked” region R(t).088

The LSH signature of the last generated sentenceis089

used as the random seed to control randomness.090

A new sentence generation, s(t), will be accepted091

and if its embedding belongs to any valid region,092

and rejected otherwise. To detect the watermark093

in a given piece of text, a one-proportion z-test094

is performed on the number of sentences whose095

signatures belong to valid regions (see §C).096

2.2 k-SEMSTAMP097

As discussed above, in SEMSTAMP, the semantic098

space is partitioned by random planes from LSH.099

However, the random planes could separate two 100

semantically similar sentences into two different 101

regions, as depicted in Figure 1. Paraphrasing sen- 102

tences near the margins of regions may shift their 103

sentence embeddings to a nearby region, resulting 104

in suboptimal watermark strength. This weakness 105

motivates our proposed k-SEMSTAMP, a simple 106

yet effective enhancement of SEMSTAMP that par- 107

titions the semantic space with k-means clustering 108

(Lloyd, 1982). 109

To initialize k-SEMSTAMP , we assume the lan- 110

guage model generates text in a specific domain D 111

(e.g., news articles, scientific articles, etc.). We aim 112

to model the semantic structure of D and partition 113

its semantic space into k regions. Concretely, we 114

first randomly sample a large number of data from 115

D. We obtain their sentence embeddings with a 116

robust sentence encoder fine-tuned on D with con- 117

trastive learning (detailed in §A). We cluster the 118

sentence embeddings into K clusters with k-means 119

(Lloyd, 1982) and save the cluster centroids. We 120

index a region with i ∈ {1, ...,K} representing the 121

set of all vectors assigned to the i-th centroid. 122

The generation process is analogous to SEM- 123

STAMP (Hou et al., 2023), as illustrated in Figure 124

2: given a sentence history s(0) . . . s(t−1), K re- 125

gions are pseudorandomly partitioned into a set of 126

valid regions G(t) of size γ ·K and a set of blocked 127

regions R(t) of size (1− γ) ·K, where γ ∈ (0, 1) 128

is the ratio of valid regions. The cluster assignment 129

of s(t−1), C(s(t−1)), seeds the randomness of the 130

partition at time step t, where C(.) returns the clus- 131

ter index by finding the closest cluster centroid of 132

the input sentence embedding. We then conduct re- 133

jection sampling and only sentences whose embed- 134

dings fall into any valid regions (i.e. C(s) ∈ G(t)) 135

are accepted while the rest are rejected. If no valid 136
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sentence is accepted after Nmax tries, the last de-137

coded sentence will be chosen. The full algorithm138

is presented in Algorithm 1.139

Cluster Margin Constraint To prevent the sam-140

pled sentences from being assigned to a nearby141

cluster after paraphrasing, we propose a cluster142

margin constraint. We constrain the sentence em-143

beddings to be sufficiently away from the cluster144

boundaries (visualized in Figure 1). Concretely,145

the cosine distance (dcos) of the candidate sentence146

embedding (v) to the closest centroid (cq) needs to147

be smaller than other cluster centroids by at least a148

margin m:149

dcos(v, cq) < min
i∈{1,...,K}\q

dcos(v, ci)−m, (1)150

where151

q = argmin
i=1,...,K

dcos(v, ci). (2)152

q is the index of the closest cluster centroid to v,153

and v = Membd(s
(t)) is the embedding of the gen-154

erated sentence at time step t by a robust sentence155

embedder Membd.156

The detection procedure of k-SEMSTAMP is157

analogous to SEMSTAMP, which is also a one-158

proportion z-test performed on the number of sen-159

tences belong to valid regions, explained in §C and160

Algorithm 2.161

3 Experiments162

3.1 Experimental Setup163

Following Hou et al. (2023), we conduct para-164

phrase attack experiments and compare the detec-165

tion robustness of watermarked generations.166

Task and Metrics We evaluate 1000 water-167

marked generations after paraphrase, respectively168

on the RealNews subset of the C4 dataset (Raffel169

et al., 2020) and on the BookSum dataset (Kryś-170

ciński et al., 2021). We paraphrase watermarked171

generations sentence-by-sentence with the Pegasus172

paraphraser (Zhang et al., 2020), Parrot used in173

Sadasivan et al. (2023), and GPT-3.5-Turbo (Ope-174

nAI, 2022). We also implement the strong bigram175

paraphrase attack as detailed in Hou et al. (2023).176

Detection robustness of paraphrased watermarked177

generations is measured with area under the re-178

ceiver operating characteristic curve (AUC) and the179

true positive rate when the false positive rate is at180

1% and 5% (TP@1%, TP@5%).1 Generation qual-181

1We denote machine-generated text as the ”positive” class
and human text as the ”negative” class. A piece of text is
classified as machine-generated when its z-score exceeds a
threshold chosen based on a given false positive rate, detailed
in §C.

ity is measured with perplexity (PPL) (using OPT- 182

2.7B (Zhang et al., 2022)), trigram text entropy 183

(Zhang et al., 2018) (Ent-3), i.e., the entropy of the 184

trigram frequency distribution of the generated text, 185

and Sem-Ent (Han et al., 2022), an automatic met- 186

ric for semantic diversity. Following the setup in 187

Han et al. (2022), we perform k-means clustering 188

(k = 50) with the last hidden states of OPT-2.7B 189

on text generations, and Sem-Ent is defined as the 190

entropy of semantic cluster assignments of test gen- 191

erations. We also measure the paraphrase quality 192

with BERTScore (Zhang et al., 2019) between orig- 193

inal generations and their paraphrases. 194

Generation We use OPT-1.3B (Zhang et al., 195

2022) as our base autoregressive LM. To obtain 196

robust sentence encoders specific to text domains 197

for k-SEMSTAMP generations, we fine-tune two 198

versions of Membd, respectively on RealNews (Raf- 199

fel et al., 2020) and on BookSum (Kryściński et al., 200

2021) datasets (See §A for specific procedure and 201

parameter choices) 202

Following Hou et al. (2023) and Kirchenbauer 203

et al. (2023a), we sample at a temperature of 0.7 204

and a repetition penalty of 1.05, with 32 being 205

the prompt length and 200 being the default gen- 206

eration length. Results with various lengths are 207

included in Fig. 5. For k-SEMSTAMP , we perform 208

k-means clustering on embeddings of sentences 209

in 8k paragraphs, respectively on RealNews and 210

BookSum. We keep k = 8 and a valid region ra- 211

tio γ = 0.25, which is consistent with the number 212

of regions in SEMSTAMP, and we use a rejection 213

margin m = 0.035. 214

Baselines Our baselines include popular water- 215

marking algorithms Kirchenbauer et al. (2023a), 216

SEMSTAMP, UNIGRAM-WATERMARK (Zhao 217

et al., 2023), and the Semantic Invariant Robust 218

(SIR) watermark in Liu et al. (2023), implemented 219

with their recommended setups. 220

3.2 Results 221

Detection Detection results in Table 1 show that 222

k-SEMSTAMP is more robust to paraphrase at- 223

tacks than KGW (Kirchenbauer et al., 2023a) 224

and SEMSTAMP across Pegasus, Parrot, and GPT- 225

3.5-Turbo paraphrasers and their bigram attack vari- 226

ants, as measured by AUC, TP@1%, and TP@5%. 227

In particular, k-SEMSTAMP demonstrates consider- 228

able robustness against GPT-3.5, in which none of 229

SEMSTAMP and KGW performed strongly. While 230

UNIGRAM-WATERMARK (Zhao et al., 2023) also 231
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AUC ↑ / TP@1% ↑ / TP@5% ↑
Domain Algorithm No Paraphrase Pegasus Pegasus-bigram Parrot Parrot-bigram GPT3.5 GPT3.5-bigram

KGW 99.6 / 98.4 / 98.9 95.9 / 82.1 / 91.0 92.1 / 42.7 / 72.9 88.5 / 31.5 / 55.4 83.0 / 15.0 / 39.9 82.8 / 17.4 / 46.7 75.1 / 5.9 / 26.3
SIR 99.9 / 99.4 / 99.9 94.4 / 79.2 / 85.4 94.1 / 72.6 / 82.6 93.2 / 62.8 / 75.9 95.2 / 66.4 / 80.2 80.2 / 24.7 / 42.7 77.7 / 20.9 / 36.4
SEMSTAMP 99.2 / 93.9 / 97.1 97.8 / 83.7 / 92.0 96.5 / 76.7 / 86.8 93.3 / 56.2 / 75.5 93.1 / 54.4 / 74.0 83.3 / 33.9 / 52.9 82.2 / 31.3 / 48.7

RealNews

k-SEMSTAMP 99.6 / 98.1 / 98.7 99.5 / 92.7 / 96.5 99.0 / 88.4 / 94.3 97.8 / 78.7 / 89.4 97.5 / 78.3 / 87.3 90.8 / 55.5 / 71.8 88.9 / 50.2 / 66.1

KGW 99.6 / 99.0 / 99.2 97.3 / 89.7 / 95.3 96.5 / 56.6 / 85.3 94.6 / 42.0 / 75.8 93.1 / 37.4 / 71.2 87.6 / 17.2 / 52.1 77.1 / 4.4 / 27.1
SIR 1.0 / 99.8 / 1.0 93.1 / 79.3 / 85.9 93.7 / 69.9 / 81.5 96.5 / 72.9 / 85.1 97.2 / 76.5 / 88.0 80.9 / 39.9 / 23.6 75.8 / 19.9 / 35.4
SEMSTAMP 99.6 / 98.3 / 98.8 99.0 / 94.3 / 97.0 98.6 / 90.6 / 95.5 98.3 / 83.0 / 91.5 98.4 / 85.7 / 92.5 89.6 / 45.6 / 62.4 86.2 / 37.4 / 53.8

BookSum

k-SEMSTAMP 99.9 / 99.1 / 99.4 99.3 / 94.1 / 97.3 99.1 / 92.5 / 96.9 98.4 / 86.3 / 93.9 98.8 / 88.9 / 94.9 95.6 / 65.7 / 83.0 95.7 / 64.5 / 81.4

Table 1: Detection results against various paraphrase attacks. All numbers in each cell are in percentages and
correspond to AUC, TP@1%, and TP@5%, respectively. All three metrics prefer higher values. KGW and SIR
refer to the watermarks in Kirchenbauer et al. (2023a) and Liu et al. (2023). k-SEMSTAMP is more robust than
SEMSTAMP and KGW across most paraphrasers and their bigram attack variants and both datasets.

PPL↓ Ent-3↑ Sem-Ent↑

No watermark 11.89 11.43 2.98
KGW 14.92 11.32 2.95

SIR 20.34 11.57 3.18
SEMSTAMP 12.49 11.48 3.00

k-SEMSTAMP 11.82 11.48 2.98

Table 2: Quality evaluation of generations on BookSum.
↑ and ↓ indicate the direction of preference (higher and
lower). k-SEMSTAMP generation quality is on par
with non-watermarked generations.

demonstrates strong robustness against paraphrase,232

it has a critical vulnerability to reverse-engineering233

attacks. We discuss its vulnerability and experimen-234

tal results in §D. The BERTScores of paraphrases235

are presented in Table 5.236

Sampling Efficiency k-SEMSTAMP not only237

demonstrates stronger paraphrastic robustness, but238

also generates sentences with higher sampling239

efficiency. To produce the results on BookSum240

(Kryściński et al., 2021) in Table 1, k-SEMSTAMP241

samples 13.3 sentences on average to accept one242

valid sentence, which is 36.2% less compared to243

the average 20.9 sentences sampled by SEMSTAMP.244

We analyze the reasons of candidate sentences for245

being rejected respectively by k-SEMSTAMP and246

SEMSTAMP, discovering that around 42.0% and247

80.7% of the sentences are rejected due to the mar-248

gin requirements. Since k-SEMSTAMP determines249

the cluster centroids by k-means clustering on the250

semantic structure of a given text domain, the em-251

beddings of most candidate sentences generated252

in this text domain are closer to the centroids and253

away from the margins, and they are less likely to254

relocate to a blocked region after paraphrase.255

Quality Table 2 shows that the perplexity, text di-256

versity, and semantic diversity of both SEMSTAMP257

and k-SEMSTAMP generations are on par with the258

base model without watermarking, while KGW259

and SIR notably degrade perplexity. Qualitative260

Prompt: In Chapter 18, Richard begins at Kenge and
Carboy’s.
Non-Watermarked Generation: He goes to the inn
where Mr. Kenge has been let off by the landlord. There,
he meets a woman named Hannah, who is looking for
him. He asks her where he is wanted.
SEMSTAMP: He meets up with Lydgate, who is there to
see if the money from the deal is still there. The lawyers
are ready to go to trial, but Richard says he has a better
plan. He wants to leave Middlemarch for good.
k-SEMSTAMP : He also sees Adam for the first time
since his imprisonment. They discuss the latest updates
in their respective personal lives. Adam is living with
Dinah and is still angry with Adam for having to leave
him.

Figure 3: Generation Examples of k-SEMSTAMP com-
pared with SEMSTAMP. Both generations are con-
textually sensible and coherent as compared to non-
watermarked generations. Additional examples after
paraphrase are presented in Figure 4 in the Appendix.

examples of k-SEMSTAMP are presented in Figure 261

3 and 4. Compared to non-watermarked generation, 262

k-SEMSTAMP convey the same level of coherence 263

and contextual sensibility. The Ent-3 and Sem-Ent 264

metrics also show that k-SEMSTAMP preserves 265

token and semantic diversity of generation com- 266

pared to non-watermarked generation. 267

Generation Length As shown in Figure §5, k- 268

SEMSTAMP has higher AUC than Kirchenbauer 269

et al. (2023a) and than SEMSTAMP across most 270

generation lengths by number of tokens. 271

4 Conclusion 272

We propose k-SEMSTAMP, a simple but effective 273

enhancement of SEMSTAMP. To watermark gen- 274

erated sentences, k-SEMSTAMP maps embeddings 275

of candidate sentences to a semantic space which 276

is partitioned by k-means clustering, and only ac- 277

cept sampled sentences whose embeddings fall into 278

a valid region. This variant greatly improves the 279

paraphrastic robustness and sampling speed. 280
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Limitations281

A core component of k-SEMSTAMP is performing282

k-means clustering on a particular text domain and283

partitioning the semantic space according to the284

semantic structure of the text domain. However,285

this requires specifying the text domain of gener-286

ation to initialize k-SEMSTAMP . If the k-means287

clusters and the sentence embedder are not specific288

to the text domain, k-SEMSTAMP suffers from a289

minor drop in paraphrastic robustness (see Table 4290

for experimental results with k-SEMSTAMP using291

a sentence embedder trained on RealNews).292

Ethical Considerations293

The proliferation of large language models capa-294

ble of generating realistic texts has drastically in-295

creased the need to detect machine-generated text.296

By proposing k-SEMSTAMP, we hope that practi-297

tioners will use this as a tool for governing model-298

generated texts. Although k-SEMSTAMP shows299

promising paraphrastic robustness, it is still not300

perfect for all kinds of attacks and thus should not301

be solely relied on in all scenarios. Finally, we302

hope this work motivates future research interests303

in not only semantic watermarking but also general304

adversarial-robust methods for AI governance.305
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Wojciech Kryściński, Nazneen Rajani, Divyansh Agar- 344
wal, Caiming Xiong, and Dragomir Radev. 2021. 345
Booksum: A collection of datasets for long- 346
form narrative summarization. arXiv preprint 347
arXiv:2105.08209. 348

Rohith Kuditipudi, John Thickstun, Tatsunori 349
Hashimoto, and Percy Liang. 2023. Robust 350
distortion-free watermarks for language models. 351
ArXiv, abs/2307.15593. 352

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and 353
Lijie Wen. 2023. A semantic invariant robust wa- 354
termark for large language models. arXiv preprint 355
arXiv:2310.06356. 356

Seth Lloyd. 1982. Least squares quantization in 357
pcm. IEEE Transactions on Information Theory, 358
28(2):129–137. 359

Margaret Mitchell, Simone Wu, Andrew Zaldivar, 360
Parker Barnes, Lucy Vasserman, Ben Hutchinson, 361
Elena Spitzer, Inioluwa Deborah Raji, and Timnit 362
Gebru. 2019. Model cards for model reporting. In 363
Proceedings of the Conference on Fairness, Account- 364
ability, and Transparency, FAT*’19, page 220–229, 365
New York, NY, USA. Association for Computing 366
Machinery. 367

OpenAI. 2022. ChatGPT. 368

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 369
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 370
Wei Li, and Peter J Liu. 2020. Exploring the lim- 371
its of transfer learning with a unified text-to-text 372
transformer. Journal of Machine Learning Research 373
(JMLR). 374

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala- 375
subramanian, Wenxiao Wang, and Soheil Feizi. 2023. 376
Can ai-generated text be reliably detected? 377

Lean Wang, Wenkai Yang, Deli Chen, Haozhe Zhou, 378
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun. 379
2023. Towards codable text watermarking for large 380
language models. ArXiv, abs/2307.15992. 381

5

https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
http://arxiv.org/abs/2306.04634
http://arxiv.org/abs/2306.04634
http://arxiv.org/abs/2306.04634
https://doi.org/10.1145/3287560.3287596
https://openai.com/blog/chatgpt
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2303.11156


John Wieting, Kevin Gimpel, Graham Neubig, and Tay-382
lor Berg-kirkpatrick. 2022. Paraphrastic representa-383
tions at scale. In Proceedings of the 2022 Conference384
on Empirical Methods in Natural Language Process-385
ing: System Demonstrations, pages 379–388, Abu386
Dhabi, UAE. Association for Computational Linguis-387
tics.388

Kiyoon Yoo, Wonhyuk Ahn, Jiho Jang, and No Jun389
Kwak. 2023. Robust multi-bit natural language wa-390
termarking through invariant features. In Annual391
Meeting of the Association for Computational Lin-392
guistics.393

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter394
Liu. 2020. Pegasus: Pre-training with extracted gap-395
sentences for abstractive summarization. In Interna-396
tional Conference on Machine Learning (ICML).397

Susan Zhang, Stephen Roller, Naman Goyal, Mikel398
Artetxe, Moya Chen, Shuohui Chen, Christopher De-399
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.400
2022. OPT: Open Pre-trained Transformer Language401
Models. arXiv preprint arXiv:2205.01068.402

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-403
berger, and Yoav Artzi. 2019. Bertscore: Evaluating404
text generation with bert. In International Confer-405
ence on Learning Representations (ICLR).406

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xi-407
ujun Li, Chris Brockett, and William B. Dolan. 2018.408
Generating informative and diverse conversational409
responses via adversarial information maximization.410
In NeurIPS.411

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and412
Yu-Xiang Wang. 2023. Provable robust water-413
marking for ai-generated text. arXiv preprint414
arXiv:2306.17439.415

6

https://aclanthology.org/2022.emnlp-demos.38
https://aclanthology.org/2022.emnlp-demos.38
https://aclanthology.org/2022.emnlp-demos.38
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


Supplemental Materials416

A Contrastive Learning and Sentence417

Encoder Fine-tuning418

To make sentence encoders robust to paraphrase,419

we fine-tune following the procedure in Hou et al.420

(2023) and Wieting et al. (2022).421

First, we paraphrase 8000 paragraphs from Re-422

alNews (Raffel et al., 2020) and BookSum (Kryś-423

ciński et al., 2021) using the Pegasus paraphraser424

(Zhang et al., 2020) through beam search with425

25 beams. We then fine-tune two SBERT mod-426

els2 with an embedding dimension h = 768 for427

3 epochs with a learning rate of 4 × 10−5, using428

the contrastive learning objective with a margin429

δ = 0.8:430

min
θ

∑
i

max
{
δ − fθ(si, ti) + fθ(si, t

′
i), 0

}
, (3)431

where fθ measures the cosine similarity be-432

tween sentence embeddings, fθ(s, t) =433

cos
(
Mθ(s),Mθ(t)

)
, and Mθ is the sentence434

encoder parameterized by θ that is to be fine-tuned.435

B Algorithms436

The algorithms of k-SEMSTAMP are presented in437

Algorithm 1.438

C Watermark Detection439

The detection of both SEMSTAMP and k-440

SEMSTAMP follows the one-proportion z-test441

framework proposed by Kirchenbauer et al.442

(2023a). The z-test is performed on the number443

of green-list tokens in Kirchenbauer et al. (2023a),444

assuming the following null hypothesis:445

Null Hypothesis 1. A piece of text, T, is not gener-446

ated (or written by human) knowing a watermark-447

ing green-list rule.448

The green-list token z-score is computed by:449

z =
NG − γNT√
γ(1− γ)NT

, (4)450

where NG denotes the number of green tokens, NT451

refers to the total number of tokens contained in452

the given piece of text T , and γ is a chosen ratio of453

green tokens.454

The z-test rejects the null hypothesis when the455

green-list token z-score exceeds a given threshold456

M . During the detection of each piece of text, the457

2sentence-transformers/all-mpnet-base-v1

number of the green tokens is counted. A higher 458

ratio of detected green tokens after normalization 459

implies a higher z-score, meaning that the text is 460

classified as machine-generated with more confi- 461

dence. 462

Hou et al. (2023) adapts this z-test to detect SEM- 463

STAMP, according to the number of valid sentences 464

rather than green-list tokens. 465

Null Hypothesis 2. A piece of text, T, is not gener- 466

ated (or written by human) knowing a rule of valid 467

and blocked partitions in the semantic space. 468

z =
SV − γST√
γ(1− γ)ST

, (5) 469

where SV refers to the number of valid sentences, 470

γ is the ratio of valid sentences out of the total 471

number of sentences ST in a piece of text T . To 472

detect SEMSTAMP, the given piece of text, T , is 473

first broken into sentences and the number of valid 474

sentences SV is counted to calculate the z-score. 475

Likewise, the null hypothesis 2 is rejected when 476

the z-score exceeds a threshold M. 477

The detection procedure of k-SEMSTAMP is 478

analogous to SEMSTAMP. We break a text into 479

sentences and count the number of valid sentences 480

to calculate the z-score, where only the determina- 481

tion of whether a sentence falls into a valid region 482

is different. k-SEMSTAMP assigns the sentence 483

generation to its closest cluster centroid and con- 484

sider if the index of the cluster centroid belongs to 485

a valid partition. See the full detection algorithm 486

in Algorithm 2. 487

For a comprehensive evaluation of detection ro- 488

bustness, we consider a range of possible threholds 489

Mf ∈ [0, 6.0], where each Mf is determined by a 490

given false positive rate rf , and consider machine- 491

generated text as "positive" and human text as "neg- 492

ative" in a traditional classification setting. We es- 493

timate a false positive rate of corresponding Mf 494

by computing the misclassification rate of human 495

text samples. We let rf = 0.01 and rf = 0.05 to 496

respectively measure TP@1% and TP@5% metrics 497

in Table 1. 498

D Additional Experimental Results 499

Table 3 shows the detection results of UNIGRAM- 500

WATERMARK (Zhao et al., 2023) against para- 501

phrase attacks, demonstrating more robustness 502

compared to SEMSTAMP and k-SEMSTAMP . How- 503

ever, UNIGRAM-WATERMARK has the key vul- 504

nerability of being readily reverse-engineered by 505
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Algorithm 1 k-SEMSTAMP text generation algorithm and subroutines

Input: language model PLM, prompt s(0), the text domain D, number of sentences to generate T .
Params: sentence embedding model fine-tuned on D, MD

embd with embedding dimension h, maxout number Nmax, margin
m > 0, valid region ratio γ ∈ (0, 1), number of k-means clusters K, a large prime number p, a large integer N .
Output: generated sequence s(1) . . . s(T ).

procedure k-SEMSTAMP
CK ← INITIALIZE(D,K) to initialize K cluster centroids based on D.
for t = 1, 2, . . . , T do

1. Find the index of the closest cluster centroid of the previously generated sentence, c
(t−1)
q ←

ASSIGN(s(t−1), CK), and use c(t−1)
q ·p as the seed to randomly divide the set of clusters CK into a “valid region

set” G(t) of size γ ·K and a “blocked region set” R(t) of size (1− γ) ·K.
2. repeat Sample a new sentence from LM,

until the index of the closest cluster centroid of the new sentence is in the “valid region set”, c(t)q and the margin
requirement

MARGIN(s(t),m) is satisfied.
or has repeated Nmax times

3. Append the selected sentence s(t) to context.
end for
return s(1) . . . s(T )

end procedure

function INITIALIZE(D,K)
D

′
N ∼ D // sample N sentences from D

CK ← K-MEANS(D
′
N ,K) // obtain k cluster centroids

return CK

end function

function ASSIGN(s, CK )
cq ← mini=1,...,K |dcos(v, ci)| // find the index of the closest cluster centroid by cosine distance
return cq

end function

AUC / TP@1% / TP@5%
Algorithm Domain Pegasus Pegasus-bigram Parrot Parrot-bigram

UNIGRAM-WATERMARK
RealNews 99.1 / 92.2 / 96.4 98.4 / 87.9 / 94.3 98.9 / 82.7 / 94.0 98.7 / 79.6 / 91.5
BookSum 99.4 / 96.4 / 99.0 99.7 / 91.6 / 98.2 99.5 / 91.6 / 97.7 99.6 / 87.8 / 97.2

Table 3: Detection results of UNIGRAM-WATERMARK in Zhao et al. (2023)

an adversary. Since UNIGRAM-WATERMARK can506

be understood as a variant of the watermark in507

Kirchenbauer et al. (2023a) but with only one fixed508

greenlist initialized at the onset of generation. An509

adversary can reverse-engineer this greenlist by510

brute-force submissions to the detection API of |V |511

times, where each submission is repetition of a to-512

ken wi, i ∈ {1, ..., |V |} drawn without replacement513

from the vocabulary V of the tokenizer. Therefore,514

upon each submission to the detection API, the ad-515

versary will be able to tell if the submitted token is516

in the greenlist or not. After |V | times of submis-517

sion, the entire greenlist can be reverse-engineered.518

On the other hand, such hacks are not applicable519

to SEMSTAMP and k-SEMSTAMP , since both al-520

gorithms do not fix the list of valid regions and521

blocked regions during generation. In summary,522

despite having strong robustness against various523

paraphrase attacks, UNIGRAM-WATERMARK has524

a notable vulnerability that may limit its applica- 525

bility in high-stake domains where adversaries can 526

conduct reverse-engineering. 527

Computing Infrastruture and Budget We ran 528

sampling and paraphrase attack jobs on 8 A40 and 529

4 A100 GPUs, taking up a total of around 200 GPU 530

hours. 531
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Algorithm 2 k-SEMSTAMP text detection algorithm
Input: a piece of text T , saved k-kmeans cluster centroids CK

Params: sentence embedding model finetuned on D, MD
embd, z-threshold range Z, human-written texts H , a large prime

number p, valid region ratio γ ∈ (0, 1), number of k-means clusters K.
Output: a z-score based on the ratio of detected sentences.
procedure DETECT(T,CK )

s1, ..., sN ← SENTENCE-TOKENIZE(T)
c
(1)
q ← ASSIGN(s1, CK)

seed← c
(1)
q · p

G(1) ← RANDOM-SAMPLE(seed,K, γ) // pseudo-randomly sample a set of cluster centroid indices of size K ·γ, where
the randomness of sampling is controlled by seed.

for t = 2, . . . , N do
c
(t)
q ← ASSIGN(st, CK)

if c(t)q ∈ G(t−1) then
SV += 1

end if
SEED ← c

(t)
q · p

G(t) ← RANDOM-SAMPLE(seed,K, γ)
end for
z ← SV −γN√

γ(1−γ)N

return z

Prompt: Pompey has a meeting with the pirates and they discuss the fact that Antony is in Egypt with Cleopatra.
SEMSTAMP: The pirates want to ransom him, but they aren’t sure how high the price would be. They have heard that
Antony is a powerful monarch who can do whatever he wants. The pirates also say that he has a lot of money. Pompey
says it wouldn’t matter if he had 1,000 times as much money as Antony; he would still be a tyrant. The conversation
turns to the bribes Antony was accused of taking. One pirate says that if Antony were a man of honor, he would have
given up his rights to the Sea-Sir by now.
Paraphrased SEMSTAMP: The pirates don’t know how much they would get for him. They have heard that Antony
can do whatever he wants. He has a lot of money according to the pirates.He would still be a tyrant if he had more
money than Antony. Antony was accused of taking bribes. According to a pirate, Antony would have given up his
rights to the Sea-Sir by now if he were a man of honor.

k-SEMSTAMP : They also discuss Caesar Augustus. The captain invites Pompey to share his thoughts on
Caesar. He says that he doesn’t like him very much. In fact, he thinks he’s probably a bad leader. He goes on to say that
Brutus should be his guest. Brutus replies that he can’t because he’s already got a guest for that matter - the Senate’s
spaghetti-spilling friend, Publius Cornelius.
Paraphrased k-SEMSTAMP : They talked about Caesar Augustus. Pompey was invited by the captain to share his
thoughts on Caesar. He doesn’t like him very much. He thinks he’s a bad leader. He said that he should be his guest.
Publius Cornelius is the Senate’s spaghetti-spilling friend and he can’t because he’s already there.

Figure 4: Examples of k-SEMSTAMP after being paraphrased by Pegasus Paraphraser (Zhang et al., 2020). Green
and plain sentences are detected, while red and underlined sentences are not. k-SEMSTAMP generations are more
robust to paraphrase, having a higher detection z-score than SEMSTAMP.
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AUC / TP@1% / TP@5%
Algorithm Train Domain Test Domain Pegasus Pegasus-bigram Parrot Parrot-bigram

k-SEMSTAMP
RealNews BookSum 98.2 / 78.2 / 94.9 97.3 / 70.7 / 93.8 96.8 / 65.5 / 90.9 96.4 / 61.9 / 89.2
BookSum BookSum 99.3 / 94.1 / 97.3 99.1 / 92.5 / 96.9 98.4 / 86.3 / 93.9 98.8 / 88.9 / 94.9

Table 4: Detection results of k-SEMSTAMP with a sentence encoder only fine-tuned on RealNews and tested on
BookSum. k-SEMSTAMP is able to generalize some level of paraphrastic robustness across domains.

RealNews BookSum

Algorithm↓ Paraphraser→ Pegasus Parrot GPT3.5 Pegasus Parrot GPT3.5

KGW 71.0 / 66.6 57.1 / 58.4 54.8 / 53.3 71.8 / 69.3 62.0 / 61.8 60.3 / 56.7
SSTAMP 72.2 / 69.7 57.2 / 57.4 55.1 / 53.8 73.0 / 71.3 64.4 / 67.1 55.4 / 50.0
k-SSTAMP 71.9 / 67.8 55.8 / 56.1 54.8 / 53.3 73.5 / 71.5 64.2 / 67.1 35.7 / 33.4

Table 5: BERTScore (Zhang et al., 2019) between original and paraphrased generations under different watermark
algorithms and paraphrasers. All numbers are expressed in percentages. The first number in each entry is the result
under regular sentence-level paraphrase attack in Hou et al. (2023), while the second number is the result under the
bigram paraphrase attack. Compared to regular paraphrase attacks, bigram paraphrase attack only slightly
corrupts the semantic similarity between paraphrased outputs and original generations.
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Figure 5: Detection results (AUC) under different gen-
eration lengths. k-SEMSTAMP is more robust than
SEMSTAMP and KGW across length 100-400 tokens
in most cases.
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