Under review as a conference paper at ICLR 2023

EFFICIENT SURROGATE GRADIENTS FOR TRAINING
SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Network (SNN) is widely regarded as one of the next-generation
neural network infrastructures, yet it suffers from an inherent non-differentiable
problem that makes the traditional backpropagation (BP) method infeasible. Sur-
rogate gradients (SG), which are an approximation to the shape of the Dirac’s
d-function, can help alleviate this issue to some extent. To our knowledge, the
majority of research, however, keep a fixed surrogate gradient for all layers, ig-
norant of the fact that there exists a trade-off between the approximation to the
delta function and the effective domain of gradients under the given dataset, hence
limiting the efficiency of surrogate gradients and impairing the overall model perfor-
mance. To guide the shape optimization in applying surrogate gradients for training
SNN, we propose an indicator x, which represents the proportion of parameters
with non-zero gradients in backpropagation. Further we present a novel x-based
training pipeline that adaptively makes trade-offs between the surrogate gradients’
shapes and its effective domain, followed by a series of ablation experiments for
verification. Our algorithm achieves 69.09% accuracy on the ImageNet dataset
using SEW-ResNet34 - a 2.05% absolute improvement from baseline. Moreover,
our method only requires extremely low external cost and can be simply integrated
into the existing training procedure.

1 INTRODUCTION

Spike Neural Networks (SNN) have gained increasing attention in recent years due to their biological
rationale and potential energy efficiency as compared to the common real-value based Artificial
Neural Networks (ANN). SNN communicates across layers by the addition of spiking signals. On the
one hand, this spiking mechanism turns multiplicative operations to additive operations, increasing the
inference procedure’s efficiency. On the other hand, it introduces an intrinsic issue of differentiability,
which makes training SNNs more challenging. At present, the method for obtaining practical SNNs
can be roughly divided into three categories: converting a pretrained ANN to SNN (Sengupta et al.,
2019; |Deng & Gu, 20205 |Li et al.l 2021a; Bu et al.} 2021), training with biological heuristics methods
(Hao et al.,2020; Shrestha et al., 2017} [Lee et al.,|2018)), and training with BP-like methods (Wu et al.|
2018;[Zheng et al.,|2020; Li et al., 2021b; [Yang et al.,|2021). The converting method may not promote
increased inference efficiency in practice since it requires a lengthy simulation period (high inference
latency) to catch up to the accuracy of the source ANN (Sengupta et al., |[2019; Rueckauer et al.|
2017). Although the biological heuristics technique requires just local information to change network
parameters, it is confined to small datasets due to its limitation in representing global information
(Wu et al.| 2018} Shrestha et al.| [2017). Compared to these two approaches, direct training with
BP-like method is capable of handling complex models with a very short simulation duration to attain
adequate model performance (Zheng et al., 2020; Fang et al., 2021} |Li et al., |2021b).

With the help of surrogate gradient, the SNN can be directly trained through the BPTT algorithm
on an ANN-based platform (Wu et al., 2018)). Nonetheless, there is a non-negligible performance
disparity between directly trained SNN and ANN, particularly on large and complicated datasets
(Deng et al., 20205 Jin et al.l 2018). This is because training SNN with surrogate gradient can
only obtain approximate gradients, and the final performance is highly affected by the surrogate
gradient shape. A more suitable surrogate gradient shape usually results in a better performing SNN
(Neftci et al.,|2019). However, an appropriate surrogate gradient must strike a compromise between
the approximation shape and the effective domain of gradients. So just altering the shape of the

Under review as a conference paper at ICLR 2023

surrogate gradient to be more similar to the §-function may result in the training failing due to gradient
disappearance, as the gradients of most membrane potentials are extremely small. Additionally, the
optimal surrogate gradient shapes for various layers may different and may change throughout the
training process (Li et al.;[2021b)). As a result, using a fixed initial surrogate gradient shape (adequate
effective domain) during the whole training phase will always have a substantial gradient error, which
affects the final training result.

The purpose of this work is to optimize the SNN training pipeline by adaptively altering the shape of
surrogate gradient in order to control the effective domain for the surrogate gradients. We suggest an
index x to denote the proportion of membrane potential with non-zero gradients in backpropagation
and present a technique to control the proportion of non-zero gradients (CPNG) in the network. The
CPNG technique modifies the shape of surrogate gradients during network training, progressively
approaching the d-function while maintaining the index x steady within an effective range to ensure
training stability. Finally, each layer succeeds in finding a surrogate gradient shape that makes a
better balance between the approximation error to the J-function with the size of effective domain
than the fixed-shape surrogate gradients. It’s worth mentioning that our strategy only incurs minor
additional costs during the training phase and has no effect on the inference phase. We verify the
compatibility of CPNG to the existing mainstream SNN infrastructures such as VGG (Simonyan
& Zisserman, 2014), ResNet (He et al.l 2016), and Sew-ResNet (Fang et al.[2021). In all reported
comparative experiments, training with CPNG gives more accurate models than training with vanilla
surrogate gradients.

Our main contributions can be summarized as follows:

* We identify and investigate the impact of the shape of surrogate gradients on SNN training. Our
finding characterizes a special representative power for SNN that can be utilized to improve its
performance.

* We propose a statistical indicator y for the domain efficiency of surrogate gradients and a y-based
training method CPNG that adjusts the shape of surrogate gradients through the training process,
driving the surrogate gradients close to the theoretical -function with ensured trainability on
sufficiently large domains.

* Our CPNG method improves classification accuracy on both static image datasets including
CIFAR10, CIFAR100 and ImageNet, as well as event-based image datasets such as CIFAR10-DVS.
We achieve an accuracy of 69.09% in the experiment that trains ImageNet on Sew-ResNet34.

2 RELATED WORK

There are two primary branches of training a high-performing deep spiking neural network, converting
a pretrained artificial neural network to its corresponding spiking neural network, and directly training
a spiking neural network through BP-like method.

ANN-SNN Conversion ANN-SNN conversion takes advantage of the high performance of ANN
and converts the source ANN to the target SNN through weight-normalization (Diehl et al., 2015;
2016) or threshold balancing (Sengupta et al.,|2019). However, SNN forming this method requires a
huge simulation length to catch up with the source ANN’s performance. Numerous strategies have
been proposed to shorten the simulation time, including robust threshold (Rueckauer et al., |2016)),
SPIKE-NORM (Sengupta et al.,[2019), and RMP (Han et al., 2020). A work (Deng & Gu, [2020)
examines the conversion error theoretically, decomposes it layer by layer, and offers threshold ReLU
and shift bias procedures to decrease the error. Based on it, Li et al. (Li et al., [2021a) divide the
conversion error into clip error and floor error and design adaptive threshold, bias correction, potential
correction, and weight calibration to dramatically decrease the required simulation length. A recent
work (Bu et al.|[2021) further proposes unevenness error, trains ANN with a novel activation function
and reduce simulation length.

BP-like Method HM2-BP (Jin et al.,|2018) enables SNN to adjust the spike sequence rather than
just the spike at a certain moment. TSSL-BP (Zhang & Li,[2020) decomposes the backpropagation
error into inter and intra interactions, calculating the derivatives only at the spiking moment. NA
algorithm (Yang et al.,|2021), which calculates the gradient of the non-differentiable part through

Under review as a conference paper at ICLR 2023

finite difference. The surrogate gradient based BP algorithm uses differentiable functions instead
of the Dirac’s d-function to mitigate the non-differentiation problem in the process of SNN training.
Different from ANNs, SNNs naturally have time attribute. Therefore, the existing studies consider
both temporal and spatial information in BP procedure (Wu et al., 2018)). Normalization methods
are crucial in SNN training, which help speed up the network’s convergence and prevent gradient
disappearance or explosion. For this purpose, SNN-friendly normalization algorithms such as
NeuNorm (Wu et all 2019) and threshold-dependent batch normalization (tdBN) (Zheng et al.|
2020) have been developed. The majority of studies have employed fixed-shape surrogate gradients,
and some work has preliminarily explored the performance of surrogate gradients with different
shapes (Wu et al) 2018} |[Neftci et al., 2019; [Bellec et al.l 2018)). A recent work looked into the
shape-changing surrogate gradient (Li et al.,|2021b)), proposed Dspike as surrogate gradient, and used
the finite difference to guide the change of Dspike’s shape, significantly improving the performance
of SNN. In order to train a very deeper SNN, Sew-ResNet (Fang et al.,[2021) structure is proposed,
which enables SNN training even on a 152-layer network.

3 PRELIMINARY

Through out the paper, we use bold letters to denote matrices and vectors, superscripts to identify
specific layers, subscripts to denote specific neurons, and indexes to identify specific moments.

Leaky Integrate-and-Fire Model. We use the Leaky Integrate-and-Fire (LIF) module for spiking

neurons. Formally, given the pre-synaptic input (denoted by cgl) [t + 1]) of the i*" neuron in the [*"
layer at time stept + 1, we can model the iterative process in LIF as

NU=D
Dt +1) = Z w41, (1

] J
uE”[tH]=mﬁ-”[t](l—sE”[t]HcE”[tHL s+ =H@ t+1]-v). @

Here, N(~1) is the number of neurons in the (I — 1)*” layer, s(lfl) [t + 1] is the output spike of the

h OF

4" neuron in the (I —1)*" layer at time t + 1, w; is the weight between j* " neuron in (I — 1) layer

and i neuron in 1" layer, u\"[¢] is the membrane potential of the 7*" neuron in the [*" layer at time
t, 7 is the membrane potential attenuation factor, H (-) is the step function, and v is the activation
threshold. When the membrane potential of a neuron exceeds the activation threshold, a spike is
released and the membrane potential of the current neuron is set to zero.

Surrogate Gradient Function. There are various surrogate gradient shapes adopted by previous
work (Wu et al.l 2018} Neftci et al., |2019). In this work, we used triangle-like function, rectangular-
like function and arctan-like function to verify the effectiveness of CPNG. These functions are
described below:

_) BA=Blz—v]) if [z-v|<1/B
Freangte () = { 0 otherwise ’ S
B if Jr—v| < 1/(2P) . B
frectangular(x) = { 0 otherwise ; farctn(2) = 1+ (nB(z —)2’)

where [represents the maximum gradient value of current surrogate gradient function. Notably, the
surrogate gradient satisfy | _Jr;o f(x) = 1, which is also the property of the J-function.

Loss Function. In our experiments, we use cross-entropy-loss (Lcg) as the loss function. The
formula is given as

T
1 _
out = - E WE . SED - Loss = Leg(out, label), 5

t=1

Under review as a conference paper at ICLR 2023

where T represents the simulation time, L represents the last layer of the SNN, wb) represents the

weight matrix of the L'" layer, and) represents the output spike vector of the (L — 1)!" layer.
Consistent with (Wu et al.|2019; He et al., |2016), our final output layer is a voting layer devoid of
any LIF model.

4 METHOD

4.1 SHAPE PARAMETERS AND EFFECTIVE DOMAIN INDICATOR

Shape Parameters. Intuitively, increasing the shape parameter 5 of surrogate gradients would drive
it closer to the d-function (Fig. [I(right)). One might expect to adopt a very high /3 to obtain SNN
for a good performance. We first examine whether this intuitive approach is possible. We trained
VGG16-structured SNN (replace ReLLU with LIF, and use average pooling.) on CIFAR100 using
triangle-like surrogate gradient with /3 set from 0.25 to 2 respectively. As shown in Fig. [T(left), the
test accuracy increases when S varies from 0.25 to 1.0 but remains at 1.0% when g is set to 1.5 and
2.0, indicating that properly increasing 5 may benefit the training but arbitrarily increasing 3 will
drive the training collapse. According to another viewpoint (Zenke & Vogels| 2021} Herranz-Celotti
& Rouat| [2022), when the beta is greater than 1, the gradient explosion on the deep SNN will occur,
resulting in training failure; thus, some of the most recent surrogate gradients fix the maximum
value of surrogate gradients at 1 (Suetake et al., 2022; [Zenke & Ganguli, 2018)). But the narrow
effective interval of the surrogate gradients is the primary culprit in our experiments. We detected the
maximum gradient absolute values for SNN training at the first 100 batches when 5 = 1(1.0001)
and 8 = 1.5(1.000), respectively. These results illustrate that when [is 1.5, the gradient explosion
does not always occur in the network.

—— beta=0.5
60 beta=1.0
—— beta=2.0
— dirac

—— beta=0.25
—— beta=0.5

beta=1.0
— beta=1.5
—— beta=2.0

Test accuracy

Backward grad
s

20

il

0 50 100 150 200 250 300 -10 -05 00 05 10 15 20 25 30
Epoch Membrane

o
]

)
o
o

Figure 1: Left: Test accuracy of different 5 when threshold is 1.0. Right: J-function and triangle-like
surrogate gradient when the threshold is 1.0.

In fact, these results unveil that efficient training of SNN’s requires not only the approximation to the
d-function but also the insurance for the surrogate gradients to work. Thus it is necessary to employ a
dynamic shape-changing strategy rather than using a fixed-shape surrogate gradient. This issue is also
covered by (Li et al.| 2021b) as well and was owed to the lack of adaption to the dataset variation.

Effective Domain Indicator. As aforementioned, if we unrestrictedly increase the [in order to get
the surrogate gradient closer to the d-function, the training curve will remain flat without any update.
This is caused by the fact that the majority of the membrane potential remains outside the effective
region. On the other hand, if S is too small, it will also lead to a suboptimal training outcome due to
the presence of a substantial gradient error (Fig. [T(left)) between the adopted surrogate gradients and
the d-function. Thus a proper surrogate gradients should maintain an optimal balance between the
domain effectiveness and the §-function approximation.

To quantitatively guide the choice of 3, we need a statistical indicator to denote the percentage of
membrane potentials that fall into the domain of surrogate gradients. As illustrated in Fig. [left), the
distribution of membrane potentials on each layer takes the normal shape. Thus, for the simplicity of
calculation, we regard the membrane potential distribution of all neurons within the same layer as a
Gaussian one. By calculating the mean p and the standard deviation o of the membrane potential
before this layer releases spikes, we can obtain the proportion of the neuron with a non-zero gradient

Under review as a conference paper at ICLR 2023

during a certain iteration (the area between the red lines in Fig. 2[right)). For a given 3, the effective
gradient domain of triangle-like surrogate gradient is [v — 1/8, v + 1//3], we can obtain the definite
integral of the current normal distribution in this effective gradient domain, which is the Effective
Domain Indicator x:

vH/B 1 eew?
XZ/ 202 dx. (6)
v—1/8 \/271'0

For each layer, we record the membrane potential of all neurons in every time step (a tensor shaped
like batchsize-by-timestep-by-channels-by-H-by-W) and calculate the mean and variance. Based on
this indicator y, we can then effectively determine to what extent we can tune the 8 while ensuring
that there are enough membrane potentials located within the effective range of surrogate gradients to

make the training progress.

1l
U

Membrane Potantial -3 -2 -z 0 1 2 3

Neuron Num

Vth + 1/beta

Figure 2: Left: Membrane distribution of each layer in experiment training ResNet19 on CIFAR10.
Right: When the threshold is 1.0 and S is 1.0, the proportion of neurons with non-zero gradient.

4.2 CPNG METHOD

In this section, we will cover how to combiningly optimize 5 and x to maximize the effectiveness of
surrogate gradients. To train the network successfully, there must be sufficient membrane potential
values in the effective domain of the surrogate gradient, i.e., Y must be large enough. The most
extreme case is 5 — 0, which gives x — 1. Obviously, this is not an optimal solution as it introduces
substantial error for the gradients. In order to determine the choice of 3 for a given x, we need to

investigate the gradient form §S‘<S [L;] to see how the 3 affects the error back-propagation.

(1)
When [= L — 1, we can directively get W%’ t=1,2,---,T according to Eqn.
(1) (1)
When! =0,1,---, L — 2, we can first derive # Tu(l)[t] and %l[)t[:]l] =7(1-— sl(-l)[t])
i w;
from Eqn. [2] and further have
ocLcp 05[] _
aECE _ OS(L?[?] au((ll)) [t] t == T (7)
O oLcg sVt oL _ ’
MOW | 555t sty + oy (LS =12 T 1
8[:(1)
Lce _ asu?éf] t=T ®)
2s0[1] oLl

oL
a5 T Bud [ia1] (—ru'[t]) t=12,---,T-1

l th oL

by Eqn. [2 I Here, u")[t] represents the membrane potentlals vector of the I*" layer, as(l?[?] is the
gradient directly obtained from previous layer. The complete 2 e (l) [a needs to consider the dependence
between the current moment spike and the membrane potential at the next moment (Eqn. [8]). The

) .
can be obtained iteratively from the gradients from its succeeding layer, and 7 (l)[[?] is

Lcp s V[t]
ou [t] ou[t]’

which in turn affects the calculation

OLc
term - (lJ[t+1]

given by surrogate gradients. We can conclude that each item of the contains while

s)[t]
oud[t]’

effective interval of surrogate gradient () determines

Under review as a conference paper at ICLR 2023

Algorithm 1 Control the Proportion of Non-zero Gradient

Input: SNN model with L layer, current iterator epoch e,
Xlimit> a0d VECtor Xrecorder: Store each layer’s smallest y
Output: Each layer’s surrogate gradient parameter
if e == 0 then
for=1,2,---Ldo
calculate current y by Eqn@ for layer-/ and store at Xrecorder|(]
end for
else
fori=1,2,---Ldo
calculate current yc, by Eqnl6]for layer-/
if Xrecorder [l] <Xlimit then
Xrecorder[l] = Xlimit
else if Xcur <Xrecorder[l] then
Xrecorder[1] = Xcur
end if
Xmin = Xrecorder[l]
if Xmin 7& Xecur then
use Xmin to update 3 using binary search method.
end if
end for
end if
return (3 for each layer

(1)
OLcE 0Ly
of Sy and ERG=0

an overly relaxed surrogate is harmful to the network’s final performance. If we reasonably restrict
the effective interval of the surrogate gradients, it is possible to drive the SNN to select those more
essential membrane potentials for backpropagation.

. However, the surrogate gradient is only an approximation of d-function, and

We also need to ensure that the new y does not make the network difficult to train, for this, CPNG
sets the target x of each layer to the smallest x that has occurred in the current layer during the
training iteration, rather than an artificial goal. If the network can be trained when the smallest x
appears, then the network should still be trained after we adjust the 8 and maintain the smallest x.
When using CPNG, we expect that the network parameters are appropriate, that is, the network has
traversed the whole dataset to prevent the misleading of network parameters by data randomness. For
example, if we use CPNG once per batch, the network parameters are mostly affected by the first few
batches in the early stages of network training, and the statistical indicator y obtained by using such
network parameters will have a lot of randomnesses.

CPNG computes the smallest x of each layer during the iteration process as Xmin and records it. If
the x value of a certain layer rises after an epoch, CPNG adjusts the y value of the current layer to
Xmin DY increasing the (3, otherwise, keep the current g fixed and update x,. Since the y;, of each
layer of neurons may be different, different layers may have different surrogate gradient shapes. In
addition, we set a safe lower bound Yimi.. When x falls below the lower bound, the 5 may decrease to
force x back above i in order to guarantee that sufficient membrane potential values are covered
in the effective domain of surrogate gradient for successful SNN training. The CPNG algorithm is
detailed in Algo[l]

4.3 THE CoST OF CPNG METHOD

The extra cost of CPNG occurs in two steps: (1) collecting the mean and variance of the membrane
potential before releasing the spikes of each layer; (2) altering the [using the indicator . In our
experiment, we only use the mean and variance of the last batch to calculate the indicator x, which
makes the cost of the first step in the same order of magnitude as the batch normalization (loffe &
Szegedy, 2015) operation. For the latter step, we provide a binary search method that solves the
problem very fast, and further optimization algorithms can further improve the solution speed. The
above analysis is the cost of using CPNG once, the overall cost takes into account the frequency of
using CPNG. In our experiments, we employ CPNG just once every epoch, which is quite economical

Under review as a conference paper at ICLR 2023

Table 1: The impact of using time and batch size on Vgg16+CIFAR100 experiment.
256(w/o CPNG) 256(B) 256(E) 512(w/o CPNG) 512(B) 512(E)

Acc 69.08% 71.05% 71.54% 68.44% 69.59% 70.20%
Time 705.59m 799.4lm 716.67m 377.776m 424.49m 381.79m
B: Use CPNG per batch. E: Use CPNG per epoch (last batch)

when compared to the network training time. Quantitatively, in the VGG16+CIFAR100 experiment,
it takes an average of 1.7GFLOPs to obtain the output corresponding to an input without CPNG, and
the first step of CPNG will only add 5.59 x 103 additional GFLOPs. Using CPNG once per epoch
takes an average of 3.3 seconds of overhead (1.57% of total training time).

5 EXPERIMENT

To verify the effectiveness of the CPNG method, we provide groups of comparative experiments (Sec.
5.2) on both static and neuromorphic datasets. We also compare CPNG with existing works in Sec.
and show the final 3 of SNN after training with CPNG in Sec.

5.1 IMPLEMENTATION DETAILS

All the SNN architectures include the tdBN layer (Zheng et al.| [2020) with the average-pooling
layer, and compared to their ANN versions, we replace the activation function ReLU with LIF. Our
experiment settings, such as optimizer, learning rate, are detailed in Appendix. Except for
applying the CPNG method at the end of each epoch, all other conditions, such as learning rate, batch
size, etc., are consistent. The data preprocessing for each dataset included in the experiments are as
follows:

CIFAR and ImageNet. We use standard processing methods for these datasets, see appendix.
for more details.

CIFAR10-DVS. CIFAR10-DVS is an event-based image datasets. Following the previous work (Li
et al.| 2021b), we re-sample 10 simulation length, divide the dataset into 9k training images and 1k
test images, reduce the spatial resolution to 48x48, and apply data augmentation techniques.

Table 2: ximir Experiments on ResNet18+CIFAR-DVS.
Xlimit 0.05 0.1 0.2 0.3 04 0.5 0.6

Accuracy 76.6% 76.6% 7637% T76.8% 16.0% 76.1% 74.1%

5.2 PERFORMANCE IMPROVEMENT WITH CPNG

Although x is employed as a statistical indicator, tabldI|demonstrates that increasing the batch size
does not always result in better performance of CPNG. This is because there is no strict positive
correlation between neural network performance and batch size. We don’t need to increase batch
size excessively to increase the sample size of x. Besides, as we mentioned in[4.2] using CPNG
once per batch does not guarantee performance improvement, it may bring more overhead and worse
performance. Then we compared the impact of different jimir on CPNG, table] shows that we may
don’t need to focus too much on Xjimit, 0.05 — 0.2 might be suitable. In our experiments, we set
X1imit=0.2 uniformly.

Additionally, we tested the applicability of CPNG to various surrogate gradient functions. For surro-
gate gradients with non-zero gradient everywhere, such as arctan, we directly use [v — 1/8,v + 1/0]
as the integration interval to calculate the indicator x, then use Algo[I|to solve new 3. Considering
the case of using triangle-like surrogate gradient, we control the percentage of membrane potentials
with non-zero gradients, which can also be explained as: under the current surrogate gradient, find a
representative interval related to 3, and make the calculated X in this interval equal to the X{areei- In the

Under review as a conference paper at ICLR 2023

Table 3: Examine CPNG on various surrogate gradients.

Dataset Method Architecture Time Step Accuracy
Triangular ResNet18 10 75.6%
Triangular+CPNG ResNet18 10 76.37£1.02 %
Rectangular ResNet18 10 74.7%
Rectangular+CPNG ResNet18 10 75.3%

CIFARIO-DVS 1 Tan ResNet18 10 67.2%
ArcTan+CPNG ResNet18 10 67.5%
Triangular+TET ResNet18 10 79.9%
Triangular+ TET+CPNG ResNet18 10 82.3%

Table 4: Result of training spiking neural network.

Dataset Method Architecture Time Step Accuracy
STBP-tdBN (Zheng et al.|2020) ResNet19 6 93.16%

CIFAR10 ANN-to-SNN (Li et al./[2021a) ResNet20 3264128 94.78% 95.30% 95.42%
ANN-to-SNN (Bu et al.[[2021) ResNet20 81632 89.55% 91.62% 92.24%
CPNG ResNet19 6 94.024+0.05%
Diet-SNN (Rathi & Roy![2020) VGG16 5 69.67%

CIFAR100 ANN-to-SNN (Li et al.[2021a) VGGI16 3264128 73.55% 76.64% 77.40%
ANN-to-SNN (Bu et al.[[2021) VGG16 81632 73.96% 76.24% 77.01%
CPNG VGG16 5 71.324+0.20%
Dspike (Li et al.|[2021b) ResNetl8 10 75.40%
TET(Deng et al.|[2022) VGG11 10 83.17%

CIFARIO-DVS * cpnG ResNet18 10 76.37%+0.26
CPNG + TET VGGl11 10 83.83+0.02%
ANN-to-SNN (Li et al.||2021a) ~ ResNet34 3264 128 64.54% 71.12% 73.45%
ANN-to-SNN (Bu et al.|[2021) ResNet34 163264 59.35% 69.37% 72.35%

ImageNet Sew-ResNet (Fang et al.||2021) Sew-ResNet34 4 67.04%

& TET (Deng et al.| 2022) Spiking-Sew-ResNet34 6 64.79%

TET (Deng et al.|[2022) Sew-ResNet34 4 68.00%
CPNG Sew-ResNet34 4 69.09%

case of using surrogate gradients with infinite non-zero gradient interval, the representative interval
for calculating the indicator is [v — 1/8,v + 1/4], if we need a smaller interval [v — 71, v + 7]
with the current mean and standard deviation, just set the new 3 to 1/r1. The experimental results in
tablg3|also demonstrate the effectiveness of our approach (More results are shown in Appendix [A.6).

Finally, we verify the compatibility of CPNG with existing direct training methods TET (Deng et al.|
2022))(tablef3), we got a 2.4% improvement on the ResNet18+CIFAR-DVS experiment.

5.3 COMPARISON TO EXISTING WORKS

In this section, the experimental results we report all use triangle-like surrogate gradient. On some
datasets, the current SOTA conversion method performs better than direct training, but they need
lengthy simulation time steps, especially on the ImageNet dataset. In addition, the conversion-based
method cannot be applied to neuromorphic datasets such as CIFAR10-DVS. Hence, it’s also necessary
to design a surrogate gradient search method to optimize the direct training.

VGG16 + CIFAR100. We train the SNN for 300 epochs on 1 TITAN, with the batch size of 256
and the time step of 5. As shown in Table [6| CPNG manages to improve 2.24% accuracy. To show
that CPNG effectively controls the rise of x, we report the x during training in Fig. [3| The result of
ResNet20+CIFAR100 is also shown in Table [6

ResNet19 + CIFAR10. We use ResNet19 (Zheng et al., 2020) in accordance with tdBN layers, the
batch size of 256 and the time step of 6. Then we train the SNN for 200 epochs on 4 TITAN, CPNG
achieves an increase in test accuracy to 94.02%, while its counterpart is 93.26% (Table [6)).

ResNet18 + CIFAR10-DVS. We train the model for 200 epochs on 2 TITAN Xp cards, with the
time step of 10 and the batch size of 72. The CPNG obtains a higher test accuracy of 76.37% while

Under review as a conference paper at ICLR 2023

— layerl — layer6 — layer1l
0.7 layer2 layer7 layer12
— layer3 — layers — layer13
061 — layerd layerg — layerld
— layer3 — layer10 — layerls

[

Indicator k
o o o
)

w

— layerl — layers — layerll
02 layer2 layer7 layer12
— layer3 — layer8 — layerl3
01] — layerd layer9 — layerl4
—— layer —— layer10 —— layerls

)
Y

°
o

o
)
o
o

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch

Figure 3: In the experiment of VGG16, the proportion of non-zero gradient membrane potentials of
neurons in different layers without CPNG (left) and with CPNG (right).

w
o
~
w
|
1
|
1
|
|
1
|
1

N
n
|
v
o
|
|
1
|
}
!
1
|
|

N
o

Final beta
J
#
H
H
}.
H
Final beta
&
Y
¥
{

o
-
o

|

o

o
o
[

00 ——7 7171 T T T 0.0 T T T T v v v v
1 2 3 4 5 6 7 8 9 101112131415 0 E 10 15 20 25 30 35

Figure 4: Left: Final § of each layer in VGG16 experiment, the initial 8 is 1.0. Right: Final § of
each layer in Sew-ResNet34 experiment, the initial 3 is 1.0..

consuming significantly less overhead than Dspike (Li et al.|[2021b). In addition, the combination of
CPNG and TET can achieve an average test accuracy of 8§3.83%, which is a new SOTA.

Sew-ResNet34 + ImageNet. We use the same structure and membrane decay rate, etc. as Sew-
ResNet (Fang et al.| [2021). We train the model for 160 epochs on 8 GTX 3090 cards with a time step
of 4 and the batch size of 544. Using only CPNG can achieve an accuracy of 69.04%, surpassing the
current direct training SOTA.

5.4 SURROGATE GRADIENT SHAPES OF DIFFERENT LAYERS

We show the final 8 of some experiments in Fig4] and all experimental results are presented in the
appendix [A.3] Various layers’ (3 are different, which demonstrates that various layers match distinct
surrogate gradient shapes as a result of their varying membrane potential distributions.

CPNG eventually increases the 8 of most layers. Compare to CPNG, randomly increasing the (3
can make the network difficult to train (Fig. left)). Even with (3 set to 1.5, which most of the
neuron layers shown in Fig. {left) can approach or reach, the network is still difficult to train. This
demonstrates that it is safe to increase § using CPNG, while it is unsafe to increase 3 arbitrarily.

6 CONCLUSION

This work proposes a new perspective for directing the shape change of the surrogate gradient, we
propose a statistical indicator that guides the shape change of the surrogate gradient, and propose the
CPNG method for modifying the shape of the surrogate gradient during training while guaranteeing
the proportion of membrane potential with non-zero gradients. It’s possible that the failure to produce
satisfactory results when pulling surrogate gradient directly to §-function is due to a failure to meet
the premise that the network can be trained normally. In other words, there may exists a trade-off
between the approximation to the J-function and the effective domain of gradients under the given
dataset, and CPNG helps us approach the equilibrium point.

Under review as a conference paper at ICLR 2023

REFERENCES

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang
Maass. Long short-term memory and learning-to-learn in networks of spiking neurons.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
c203d8alblelz2acfl2457e4d67635a95-Paper.pdfl

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-snn
conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations, 2021.

Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng Li, and
Yuan Xie. Rethinking the performance comparison between snns and anns. Neural Networks, 121:
294-307, 2020.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In International Conference on Learning Representations, 2020.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Peter U. Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, and Shih Chii Liu. Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing. In Neural Networks
(IJCNN), 2015 International Joint Conference on, 2015.

Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre Neftci. Conversion
of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic
hardware. In 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1-8.
IEEE, 2016.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. arXiv preprint arXiv:2102.04159, 2021.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13558-13567,
2020.

Yunzhe Hao, Xuhui Huang, Meng Dong, and Bo Xu. A biologically plausible supervised learning
method for spiking neural networks using the symmetric stdp rule. Neural Networks, 121:387-395,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630-645. Springer, 2016.

Luca Herranz-Celotti and Jean Rouat. Surrogate gradients design. arXiv preprint arXiv:2202.00282,
2022.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448-456.
PMLR, 2015.

Yingyezhe Jin, Wenrui Zhang, and Peng Li. Hybrid macro/micro level backpropagation for training
deep spiking neural networks. arXiv preprint arXiv:1805.07866, 2018.

Chankyu Lee, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy. Training deep
spiking convolutional neural networks with stdp-based unsupervised pre-training followed by
supervised fine-tuning. Frontiers in neuroscience, 12:435, 2018.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. arXiv preprint arXiv:1712.09913, 2017.

10

https://proceedings.neurips.cc/paper/2018/file/c203d8a151612acf12457e4d67635a95-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c203d8a151612acf12457e4d67635a95-Paper.pdf

Under review as a conference paper at ICLR 2023

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. arXiv preprint arXiv:2106.06984, 2021a.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differentiable
spike: Rethinking gradient-descent for training spiking neural networks. Advances in Neural
Information Processing Systems, 34, 2021b.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51-63, 2019.

Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimization
in deep spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

Bodo Rueckauer, Tulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory and tools for the
conversion of analog to spiking convolutional neural networks. arXiv preprint arXiv:1612.04052,
2016.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-
sion of continuous-valued deep networks to efficient event-driven networks for image classification.
Frontiers in neuroscience, 11:682, 2017.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Amar Shrestha, Khadeer Ahmed, Yanzhi Wang, and Qinru Qiu. Stable spike-timing dependent
plasticity rule for multilayer unsupervised and supervised learning. In 2017 international joint
conference on neural networks (IJCNN), pp. 1999-2006. IEEE, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Kazuma Suetake, Shin-ichi Ikegawa, Ryuji Saiin, and Yoshihide Sawada. S™2 nn: Time step reduction
of spiking surrogate gradients for training energy efficient single-step neural networks. arXiv
preprint arXiv:2201.10879, 2022.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1311-1318, 2019.

Yukun Yang, Wenrui Zhang, and Peng Li. Backpropagated neighborhood aggregation for accurate
training of spiking neural networks. In International Conference on Machine Learning, pp.
11852-11862. PMLR, 2021.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514-1541, 2018.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural computation, 33(4):899-925, 2021.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
neural networks. arXiv preprint arXiv:2002.10085, 2020.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guogqi Li. Going deeper with directly-trained larger
spiking neural networks. arXiv preprint arXiv:2011.05280, 2020.

11

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 DATA PROCESSING

CIFAR. For the training set, we randomly crop the image to (32,32) and apply a random horizontal
flip. Then all the images will be normalized to a standard normal distribution.

ImageNet. For the training set, we randomly crop the image to (224,224) and apply a random
horizontal flip. Then for the test set, we resize the image to (256,256) and center crop the image to
(224,224). Finally, all the images are normalized to a standard normal distribution.

A.2 MORE EXPERIMENT DETAILS

In this section, we provide more experimental details. We use 1/20 of the training epochs for warm-up,
linearly increase learning rate from 0.1lr to Ir, then use cosine decay to reduce learning rate to 0
in the remaining epochs. In the last batch, the mean and variance of the membrane potential are
additionally stored in the forward process, and after the backward process, the stored mean and
variance are used to obtain a new (3 according to Algorithm 1. Hyperparameters are shown in the
table

Table 5: Experiment Setting
Experiment CIFAR100 CIFAR10 CIFAR-DVS ImageNet CPNG + TET

learning rate 0.1 0.1 0.01 0.01 0.001
weight decay le-4 le-4 4e-5 4e-5 4e-5
momentum 0.9 0.9 0.9 0.9 —
optimizer sgd sgd sgd sgd adam
warm-up True True False False False

A.3 EXPERIMENT RESULT

In this section, we display the change of indicator x(Fig. [5] Fig. [6), the final /5 and the test accuracy
of each experiment. Our codes can be found in the supplemental. As shown by Fig. [7} Fig. [8] Fig. [9]
and Fig. [T0] except for the first layer of the Sew-ResNet34+ImageNet experiment, almost all neuron
layers have obtained a steeper surrogate gradient (a larger 3), which illustrates that surrogate gradient
has further optimization space in the SNN training process. However, as we mentioned in Sec. .1]
choosing a surrogate gradient closer to the §—function at beginning will make training the network
difficult, therefore we’ll need tools (such as CPNG) to assist us in finding a better surrogate gradient
during training. In the Sew-ResNet34+ImageNet experiment, CPNG finds a smaller /3 for the first
layer to ensure the proportion of membrane potential with non-zero gradients. This suggests that
when backpropagating with surrogate gradient in deeper networks, the initial few layers may only
have a small proportion of their parameters updated, and we should account for this more.

08 0.8
layerl layer7 layer13
. layer2 layers layer14
Pobreiiet layer3 layer9 layer15

- — layerd layerl0 layerl6

layerS layerll layer17
layer6 s layer12 layerl8

°
<
°
N

o
o o

o
oo

layer7

Indicator k
o o o
e
|
t
¥
Indicator k
o o o
s

layerl layer13
layer2 layer8 layerl4
layer3 layer9 layer1s
layerd layer10 layerl6
layer3 layer11 layer17
layer6 layer12 layer18

w
W

M ANATAN A MAAAD AR

o
N
)
~

°
-
o

o
o
o
°

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

Figure 5: In the experiment of ResNet19, the proportion of non-zero gradient membrane potentials of
neurons in different layers without CPNG (left) and with CPNG (right).

12

Under review as a conference paper at ICLR 2023

08 08
— layerl laye7 — layer13 — layerl —— layer13 — layer2s
07 layer2 — laye'8 — layerla 0./ layer2 — layerl4 — layer26
— layer3 laye-9 — layerls — layer3 — layer15 layer27
061 — layerd —— laye'10 — layerl6 061 — layerd —— layerl6 — layer28
—— layers _ — laye-11 layerl/ — layers layer17 layer29
Y037 — jayer6 == laye12 —— layer18 L 051 — layer6 —— layer18 —— layer30
2 —= layer19 S layer7 layer19 — layer3l
go4 - 804 — payers —— layer20 layer32
o] layerg — layer21 — layer33
£o03 Lo3 X o Y Y
—— layerl0 Shaas layer22 — layer34
02 02 layer11 layer23 layer3s
layer12 — layer24 —— layer36
01 0.1
0.0 0.0
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140 160
Epoch Epoch

Figure 6: The proportion of non-zero gradient membrane potentials of neurons in different layers
with CPNG in the experiment of ResNet18 (left) and Sew-ResNet34 (right).

70 W
3.0
60
R 25
> 50 —
o)
e 2
8 40) 2.0
o Qo II =
=30 © - =k
] c 15 e — —
@ = —
20
—— CPNG_roundl 1.0
10 CPNG_round2
—— CPNG_round3 0.5
0
0 50 100 150 200 250 300 0.0
Epoch 123456 7 8 9101112131415

Figure 7: Left: Test accuracy of triplicate VGG16+CIFAR100 experiments using CPNG. Right: Final
B of each layer in CIFAR100 experiment, the initial 5 is 1.0

A.4 USING BETA OBTAINED FROM CPNG TO TRAIN FROM SCRATCH

We fix each layer’s 3 the same as it in Figure 4 (left), the final accuracy is 71.02%, which is 0.3%
lower than using CPNG directly and 1.94% higher than the baseline. We keep 8 = 1 during the
first 1/10 epochs for warm-up, otherwise the accuracy will stay at 1%. This demonstrates that the
optimal SG shape discovered by CPNG for all layers is valid, but the result under the case that directly
changes the (to the optimal value is not as excellent as the case using the CPNG method due to
non-stationary transitions.

A.5 MEMBRANE POTENTIAL DISTRIBUTION

In this section, we show the membrane potential distribution of each layer of neurons in all experi-
ments(Fig. [T1] Fig.[12] Fig. [I3). The layer after BN is more consistent with the normal distribution
than the layer after FC. But for the convenience of calculation, we approximate the membrane
potential distribution of all neurons to the normal distribution.

A.6 ADJUST OTHER SURROGATE GRADIENTS

The results we report are based on triangle-like surrogate gradient, a surrogate gradient with finite
non-zero gradient interval, but this does not mean that our method can only be used in this case. All
results are shown in Tab.

13

Under review as a conference paper at ICLR 2023

90 3.0 e
80 25 -
> =
8 70 2.0
© © 2.0 —
S o . "
© 60 < 1.5 B = = B
i g = —_ S
< 50 =
—— CPNG_round1 1.0
40 CPNG_round2
—— CPNG_round3 0.5
30
0 25 50 75 100 125 150 175 200 0.0
Epoch 1234567 8 9101112131415161718

Figure 8: Left: Test accuracy of triplicate ResNet19+CIFAR10 experiments using CPNG. Right:
Final 3 of each layer in CIFAR10 experiment, the initial 3 is 1.0

2.00 —
70 1.75 l —
60 1.50 — T—
>
9 T T —
g © e ALALJ;J‘J;If‘Lf - J—
> 50 o 125 - == ———
] [ra o
(v} o
© —
3 40 g 1.00
o <
= 075
30 —— CPNG_round1l
CPNG_round2 0.50
20
CPNG_round3 0.25
0 25 50 75 100 125 150 175 200 0.00
Epoch ’ 12345678 910111213141516171819

Figure 9: Left: Test accuracy of triplicate ResNet18+CIFAR10-DVS experiments using CPNG. Right:
Final g of each layer in CIFAR10-DVS experiment, the initial 3 is 1.0

A.7 SALIENCY MAP

The gradient noise generated by surrogate gradient may affect the network’s attention location,
resulting in a more blurred saliency map. And there’s no doubt that a more appropriate surrogate
gradient will produce fewer gradient noises. Thus, the saliency map’s clarity may be utilized to
determine the fitness of surrogate gradient. We used SmoothGrad (Smilkov et al., 2017), which
reduces the effect of visually noise. The results of CIFAR100+VGG16 experiments are shown in
Fig. [[4] We discovered that CPNG can assist the model to identify clearer contour information.
For example, in the boys category, the saliency map obtained by using CPNG is more accurately
positioned on the person’s face, whereas traditional surrogate gradient also pays much attention to
the surrounding background; in the elephants category, the use of CPNG can clearly see the trunk as
well as the elephant’s outline, whereas traditional surrogate gradient can only obtain blurred borders.

A.8 Lo0SS LANDSCAPE

In order to illustrate the trainability of the model after using CPNG, we use the loss landscape to show
the change of loss after changing the model parameters. If the loss landscape does not reveal more
non-convex regions than the traditional surrogate gradient, it means that using CPNG will not make
convergence more difficult. If the same weight offset is applied for various networks when displaying
the loss landscape, the networks with bigger weight will exhibit more stationarity. However, due to
the existence of batch normalization, the weight scaling of the network has no effect on the inference
results, so the sharpness of loss landscape of different networks may only be due to the weight scaling.
To explain the model performance between the traditional surrogate gradient and CPNG, we use

14

Under review as a conference paper at ICLR 2023

251 _____ =
2.0 ¥ T
154 ___ T __—_— i
10 —
—— CPNG 051

0 20 40 60 80 100 120 140 160 0.0
Epoch ' 0 5 10 15 20 25 30 35

Test accuracy
B wn o ~
o o o o

Final beta

w
o

N
o

-
o

Figure 10: Left: Test accuracy of Sew-ResNet34+ImageNet experiments using CPNG. Right: Final
[of each layer in ImageNet experiment, the initial 3 is 1.0

L4 1A
L -

Figure 11: Membrane distribution of each layer in experiment training VGG16 on CIFAR100

1T T L iy

the loss landscape demonstration with filter-wise normalization that mitigates the
effect of weight scaling and correlates the model’s generalization ability to the flatness of the loss
landscape. As shown in Fig. [I3] in the experiment of ResNet19+CIFAR10, utilizing CPNG can
obtain a smoother minimum and a wider locally convex region, implying that CPNG has no negative
effect on network’s convergence difficulty.

Under review as a conference paper at ICLR 2023

A
A

LA 4 dd
LA 4l
Lo

Figure 12: Membrane distribution of each layer in experiment training ResNet19 on CIFAR10

A
A
A

ar . \
AAAA
AAAA
AAd A A

Figure 13: Membrane distribution of each layer in experiment training ResNet18 on CIFAR-DVS

16

Under review as a conference paper at ICLR 2023

Table 6: Examine CPNG on various surrogate gradients.

Dataset Method Architecture Time Step Accuracy
Triangular ResNet19 6 93.26%
Triangular+CPNG ResNet19 6 94.02£0.05%
Rectangular ResNet19 6 90.5%

CIFARIO Rectangular+CPNG ResNet19 6 93.07--0.04%
ArcTan ResNet19 6 93.24%
ArcTan+CPNG ResNet19 6 93.95%
Triangular VGG16 5 69.08%
Triangular+CPNG VGG16 5 71.32£0.20%
Rectangular VGG16 5 65.54%

CIFAR100 Rectangular+CPNG VGGl16 5 67.74+1.02%
ArcTan VGG16 5 68.15%
ArcTan+CPNG VGG16 5 69.4940.20%
Triangular+CPNG ResNet20 6 76.09%
ArcTan ResNet18 10 67.2%
ArcTan+CPNG ResNet18 10 67.5%
Triangular+TET ResNet18 10 79.9%

CIFARIO-DVS 1o noular+ TET+CPNG ResNetl8 10 82.3%
Triangular ResNet18 10 75.6%
Triangular+CPNG ResNet18 10 76.37£1.02 %

train keyboard sunflower elephant boy willowTree

pineTree

rose cockroach sea wolf telephone

Figure 14: Saliency map. Three photos are a group, the top is the original image, the middle is the
salilency map given by the model trained by traditional surrogate gradient, and the bottom is the
saliency map given by the model trained with CPNG.

17

Under review as a conference paper at ICLR 2023

-1.00 .00
-100 =075 -050 =025 000 025 050 075 100 -100 -075 -050 -025 000 025 0530 075 100

traditional SG CPNG

Figure 15: Loss landscape of traditional surrogate gradient and CPNG.

18

	Introduction
	Related Work
	Preliminary
	Method
	Shape Parameters and Effective Domain Indicator
	CPNG Method
	The Cost of CPNG Method

	Experiment
	Implementation Details
	Performance improvement with CPNG
	Comparison to Existing Works
	Surrogate Gradient Shapes of Different Layers

	Conclusion
	Appendix
	Data Processing
	More Experiment Details
	Experiment Result
	Using beta obtained from CPNG to train from scratch
	Membrane Potential Distribution
	Adjust Other Surrogate Gradients
	Saliency Map
	Loss Landscape

