
Under review as a conference paper at ICLR 2021

WEIGHTED BELLMAN BACKUPS FOR IMPROVED
SIGNAL-TO-NOISE IN Q-UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Off-policy deep reinforcement learning (RL) has been successful in a range of
challenging domains. However, standard off-policy RL algorithms can suffer from
low signal and even instability in Q-learning because target values are derived
from current Q-estimates, which are often noisy. To mitigate the issue, we pro-
pose ensemble-based weighted Bellman backups, which re-weight target Q-values
based on uncertainty estimates from a Q-ensemble. We empirically observe that
the proposed method stabilizes and improves learning on both continuous and dis-
crete control benchmarks. We also specifically investigate the signal-to-noise as-
pect by studying environments with noisy rewards, and find that weighted Bellman
backups significantly outperform standard Bellman backups. Furthermore, since
our weighted Bellman backups rely on maintaining an ensemble, we investigate
how weighted Bellman backups interact with UCB Exploration. By enforcing
the diversity between agents using Bootstrap, we show that these different ideas
are largely orthogonal and can be fruitfully integrated, together further improving
the performance of existing off-policy RL algorithms, such as Soft Actor-Critic
and Rainbow DQN, for both continuous and discrete control tasks on both low-
dimensional and high-dimensional environments.

1 INTRODUCTION

Model-free reinforcement learning (RL), with high-capacity function approximators, such as deep
neural networks (DNNs), has been used to solve a variety of sequential decision-making problems,
including board games (Silver et al., 2017; 2018), video games (Mnih et al., 2015; Vinyals et al.,
2019), and robotic manipulation (Kalashnikov et al., 2018). It has been well established that the
above successes are highly sample inefficient (Kaiser et al., 2020). Recently, a lot of progress has
been made in more sample-efficient model-free RL algorithms through improvements in off-policy
learning both in discrete and continuous domains (Fujimoto et al., 2018; Haarnoja et al., 2018;
Hessel et al., 2018; Amos et al., 2020). However, standard off-policy RL algorithms can suffer from
instability in Q-learning due to error propagation in the Bellman backup, i.e., the errors induced in
the target value can lead to an increase in overall error in the Q-function (Kumar et al., 2019; 2020).

One way to address the error propagation issue is to use ensemble methods, which combine multiple
models of the value function (Hasselt, 2010; Van Hasselt et al., 2016; Fujimoto et al., 2018). For dis-
crete control tasks, double Q-learning (Hasselt, 2010; Van Hasselt et al., 2016) addressed the value
overestimation by maintaining two independent estimators of the action values and later extended
to continuous control tasks in TD3 (Fujimoto et al., 2018). While most prior work has improved the
stability by taking the minimum over Q-functions, this also needlessly loses signal, and we propose
an alternative way that utilizes ensembles to estimate uncertainty and provide more stable backups.

In this paper, we propose ensemble-based weighted Bellman backups that can be applied to most
modern off-policy RL algorithms, such as Q-learning and actor-critic algorithms. Our main idea is to
reweight sample transitions based on uncertainty estimates from a Q-ensemble. Because prediction
errors can be characterized by uncertainty estimates from ensembles (i.e., variance of predictions) as
shown in Figure 1(b), we find that the proposed method significantly improves the signal-to-noise in
the Q-updates and stabilizes the learning process. Finally, we present a unified framework, coined
SUNRISE, that combines our weighted Bellman backups with an inference method that selects
actions using highest upper-confidence bounds (UCB) for efficient exploration (Chen et al., 2017).

1

Under review as a conference paper at ICLR 2021

We find that these different ideas can be fruitfully integrated, and they are largely complementary
(see Figure 1(a)).

We demonstrate the effectiveness of the proposed method using Soft Actor-Critic (SAC; Haarnoja
et al. 2018) for continuous control benchmarks (specifically, OpenAI Gym (Brockman et al., 2016)
and DeepMind Control Suite (Tassa et al., 2018)) and Rainbow DQN (Hessel et al., 2018) for dis-
crete control benchmarks (specifically, Atari games (Bellemare et al., 2013)). In our experiments,
SUNRISE consistently improves the performance of existing off-policy RL methods. Furthermore,
we find that the proposed weighted Bellman backups yield improvements in environments with
noisy reward, which have a low signal-to-noise ratio.

2 RELATED WORK

Off-policy RL algorithms. Recently, various off-policy RL algorithms have provided large gains
in sample-efficiency by reusing past experiences (Fujimoto et al., 2018; Haarnoja et al., 2018;
Hessel et al., 2018). Rainbow DQN (Hessel et al., 2018) achieved state-of-the-art performance
on the Atari games (Bellemare et al., 2013) by combining several techniques, such as double Q-
learning (Van Hasselt et al., 2016) and distributional DQN (Bellemare et al., 2017). For continuous
control tasks, SAC (Haarnoja et al., 2018) achieved state-of-the-art sample-efficiency results by in-
corporating the maximum entropy framework. Our ensemble method brings orthogonal benefits and
is complementary and compatible with these existing state-of-the-art algorithms.

Stabilizing Q-learning. It has been empirically observed that instability in Q-learning can be caused
by applying the Bellman backup on the learned value function (Hasselt, 2010; Van Hasselt et al.,
2016; Fujimoto et al., 2018; Song et al., 2019; Kim et al., 2019; Kumar et al., 2019; 2020). By fol-
lowing the principle of double Q-learning (Hasselt, 2010; Van Hasselt et al., 2016), twin-Q trick (Fu-
jimoto et al., 2018) was proposed to handle the overestimation of value functions for continuous
control tasks. Song et al. (2019) and Kim et al. (2019) proposed to replace the max operator with
Softmax and Mellowmax, respectively, to reduce the overestimation error. Recently, Kumar et al.
(2020) handled the error propagation issue by reweighting the Bellman backup based on cumulative
Bellman errors. However, our method is different in that we propose an alternative way that also
utilizes ensembles to estimate uncertainty and provide more stable, higher-signal-to-noise backups.

Ensemble methods in RL. Ensemble methods have been studied for different purposes in RL (Wier-
ing & Van Hasselt, 2008; Osband et al., 2016a; Anschel et al., 2017; Agarwal et al., 2020; Lan et al.,
2020). Chua et al. (2018) showed that modeling errors in model-based RL can be reduced using an
ensemble of dynamics models, and Kurutach et al. (2018) accelerated policy learning by generating
imagined experiences from the ensemble of dynamics models. For efficient exploration, Osband
et al. (2016a) and Chen et al. (2017) also leveraged the ensemble of Q-functions. However, most
prior works have studied the various axes of improvements from ensemble methods in isolation,
while we propose a unified framework that handles various issues in off-policy RL algorithms.

Exploration in RL. To balance exploration and exploitation, several methods, such as the maximum
entropy frameworks (Ziebart, 2010; Haarnoja et al., 2018), exploration bonus rewards (Bellemare
et al., 2016; Houthooft et al., 2016; Pathak et al., 2017; Choi et al., 2019) and randomization (Osband
et al., 2016a;b), have been proposed. Despite the success of these exploration methods, a potential
drawback is that agents can focus on irrelevant aspects of the environment because these methods do
not depend on the rewards. To handle this issue, Chen et al. (2017) proposed an exploration strategy
that considers both best estimates (i.e., mean) and uncertainty (i.e., variance) of Q-functions for
discrete control tasks. We further extend this strategy to continuous control tasks and show that it
can be combined with other techniques.

3 BACKGROUND

Reinforcement learning. We consider a standard RL framework where an agent interacts with
an environment in discrete time. Formally, at each timestep t, the agent receives a state st from the
environment and chooses an action at based on its policy π. The environment returns a reward rt and
the agent transitions to the next state st+1. The return Rt =

∑∞
k=0 γ

krt+k is the total accumulated
rewards from timestep t with a discount factor γ ∈ [0, 1). RL then maximizes the expected return.

2

Under review as a conference paper at ICLR 2021

Weighted Bellman
backup

Replay buffer

UCB
exploration Action Actor N

Actor 2

Actor 1
Critic 1

Critic 2

Critic N

Bootstrap with
random

initialization

(a) SUNRISE: actor-critic version (b) Uncertainty estimates

Figure 1: (a) Illustration of our framework. We consider N independent agents (i.e., no shared
parameters between agents) with one replay buffer. (b) Uncertainty estimates from an ensemble of
neural networks on a toy regression task (see Appendix C for more experimental details). The black
line is the ground truth curve, and the red dots are training samples. The blue lines show the mean
and variance of predictions over ten ensemble models. The ensemble can produce well-calibrated
uncertainty estimates (i.e., variance) on unseen samples.

Soft Actor-Critic. SAC (Haarnoja et al., 2018) is an off-policy actor-critic method based on the
maximum entropy RL framework (Ziebart, 2010), which encourages the robustness to noise and ex-
ploration by maximizing a weighted objective of the reward and the policy entropy (see Appendix A
for further details). To update the parameters, SAC alternates between a soft policy evaluation and a
soft policy improvement. At the soft policy evaluation step, a soft Q-function, which is modeled as
a neural network with parameters θ, is updated by minimizing the following soft Bellman residual:

LSACcritic(θ) = Eτt∼B[LQ(τt, θ)], (1)

LQ(τt, θ) =
(
Qθ(st, at)− rt − γEat+1∼πφ

[
Qθ̄(st+1, at+1)− α log πφ(at+1|st+1)

])2
, (2)

where τt = (st, at, rt, st+1) is a transition, B is a replay buffer, θ̄ are the delayed parameters, and α
is a temperature parameter. At the soft policy improvement step, the policy π with its parameter φ
is updated by minimizing the following objective:

LSACactor(φ) = Est∼B
[
Lπ(st, φ)

]
, where Lπ(st, φ) = Eat∼πφ

[
α log πφ(at|st)−Qθ(st, at)

]
. (3)

Here, the policy is modeled as a Gaussian with mean and covariance given by neural networks to
handle continuous action spaces.

4 SUNRISE

In this section, we propose the ensemble-based weighted Bellman backups, and then introduce SUN-
RISE: Simple UNified framework for ReInforcement learning using enSEmbles, which combines
various ensemble methods. In principle, our method can be used in conjunction with most modern
off-policy RL algorithms, such as SAC (Haarnoja et al., 2018) and Rainbow DQN (Hessel et al.,
2018). For the exposition, we describe only the SAC version in the main body. The Rainbow DQN
version follows the same principles and is fully described in Appendix B.

4.1 WEIGHTED BELLMAN BACKUPS TO IMPROVE SIGNAL-TO-NOISE IN Q-UPDATES

Formally, we consider an ensemble of N SAC agents, i.e., {Qθi , πφi}Ni=1, where θi and φi denote
the parameters of the i-th soft Q-function and policy.1 Since conventional Q-learning is based on
the Bellman backup in (2), it can be affected by error propagation. I.e., error in the target Q-function
Qθ̄(st+1, at+1) gets propagated into the Q-function Qθ(st, at) at the current state. In other words,
errors in the previous Q-function induce the “noise” to the learning “signal” (i.e., true Q-value) of
the current Q-function. Recently, Kumar et al. (2020) showed that this error propagation can cause
inconsistency and unstable convergence. To mitigate this issue, for each agent i, we consider a
weighted Bellman backup as follows:

LWQ (τt, θi)

= w (st+1, at+1)
(
Qθi(st, at)− rt − γ

(
Qθ̄i(st+1, at+1)− α log πφ(at+1|st+1)

))2
, (4)

1We remark that each Q-function Qθi(s, a) has a unique target Q-function Qθ̄i
(s, a).

3

Under review as a conference paper at ICLR 2021

where τt = (st, at, rt, st+1) is a transition, at+1 ∼ πφ(a|st), and w(s, a) is a confidence weight
based on ensemble of target Q-functions:

w(s, a) = σ
(
−Q̄std(s, a) ∗ T

)
+ 0.5, (5)

where T > 0 is a temperature, σ is the sigmoid function, and Q̄std(s, a) is the empirical standard
deviation of all target Q-functions {Qθ̄i}

N
i=1. Note that the confidence weight is bounded in [0.5, 1.0]

because standard deviation is always positive.2 The proposed objective LWQ down-weights the
sample transitions with high variance across target Q-functions, resulting in a loss function for the
Q-updates that has a better signal-to-noise ratio.

4.2 COMBINATION WITH ADDITIONAL TECHNIQUES THAT LEVERAGE ENSEMBLES

We integrate the proposed weighted Bellman backup with UCB exploration into a single framework
by utilizing the bootstrap with random initialization.

Bootstrap with random initialization. To train the ensemble of agents, we use the bootstrap with
random initialization (Efron, 1982; Osband et al., 2016a), which enforces the diversity between
agents through two simple ideas: First, we initialize the model parameters of all agents with random
parameter values for inducing an initial diversity in the models. Second, we apply different samples
to train each agent. Specifically, for each SAC agent i in each timestep t, we draw the binary masks
mt,i from the Bernoulli distribution with parameter β ∈ (0, 1], and store them in the replay buffer.
Then, when updating the model parameters of agents, we multiply the bootstrap mask to each objec-
tive function, such as: mt,iLπ (st, φi) and mt,iLWQ(τt, θi) in (3) and (4), respectively. We remark
that Osband et al. (2016a) applied this simple technique to train an ensemble of DQN (Mnih et al.,
2015) only for discrete control tasks, while we apply to SAC (Haarnoja et al., 2018) and Rainbow
DQN (Hessel et al., 2018) for both continuous and discrete tasks with additional techniques.

UCB exploration. The ensemble can also be leveraged for efficient exploration (Chen et al., 2017;
Osband et al., 2016a) because it can express higher uncertainty on unseen samples. Motivated by
this, by following the idea of Chen et al. (2017), we consider an optimism-based exploration that
chooses the action that maximizes

at = max
a
{Qmean(st, a) + λQstd(st, a)}, (6)

where Qmean(s, a) and Qstd(s, a) are the empirical mean and standard deviation of all Q-functions
{Qθi}Ni=1, and the λ > 0 is a hyperparameter. This inference method can encourage exploration
by adding an exploration bonus (i.e., standard deviation Qstd) for visiting unseen state-action pairs
similar to the UCB algorithm (Auer et al., 2002). We remark that this inference method was origi-
nally proposed in Chen et al. (2017) for efficient exploration in discrete action spaces. However, in
continuous action spaces, finding the action that maximizes the UCB is not straightforward. To han-
dle this issue, we propose a simple approximation scheme, which first generates N candidate action
set from ensemble policies {πφi}Ni=1, and then chooses the action that maximizes the UCB (Line 4
in Algorithm 1). For evaluation, we approximate the maximum a posterior action by averaging the
mean of Gaussian distributions modeled by each ensemble policy.

The full procedure of our unified framework, coined SUNRISE, is summarized in Algorithm 1.

5 EXPERIMENTAL RESULTS

We designed our experiments to answer the following questions:

• Can SUNRISE improve off-policy RL algorithms, such as SAC (Haarnoja et al., 2018) and
Rainbow DQN (Hessel et al., 2018), for both continuous (see Table 1 and Table 2) and discrete
(see Table 3) control tasks?
• How crucial is the proposed weighted Bellman backups in (4) for improving the signal-to-noise

in Q-updates (see Figure 2)?
• Can UCB exploration be useful for solving tasks with sparse rewards (see Figure 3(b))?
• Is SUNRISE better than a single agent with more updates and parameters (see Figure 3(c))?
• How does ensemble size affect the performance (see Figure 3(d))?
2We find that it is empirically stable to set minimum value of weight w(s, a) as 0.5.

4

Under review as a conference paper at ICLR 2021

Algorithm 1 SUNRISE: SAC version

1: for each iteration do
2: for each timestep t do
3: // UCB EXPLORATION
4: Collect N action samples: At = {at,i ∼ πφi(a|st)|i ∈ {1, . . . , N}}
5: Choose the action that maximizes UCB: at = arg max

at,i∈At
Qmean(st, at,i)+λQstd(st, at,i)

6: Collect state st+1 and reward rt from the environment by taking action at
7: Sample bootstrap masks Mt = {mt,i ∼ Bernoulli (β) — i ∈ {1, . . . , N}}
8: Store transitions τt = (st, at, st+1, rt) and masks in replay buffer B ← B ∪ {(τt,Mt)}
9: end for

10: // UPDATE AGENTS VIA BOOTSTRAP AND WEIGHTED BELLMAN BACKUP
11: for each gradient step do
12: Sample random minibatch {(τj ,Mj)}Bj=1 ∼ B
13: for each agent i do
14: Update the Q-function by minimizing 1

B

∑B
j=1mj,iLWQ (τj , θi) in (4)

15: Update the policy by minimizing 1
B

∑B
j=1mj,iLπ(sj , φi) in (3)

16: end for
17: end for
18: end for

5.1 SETUPS

Continuous control tasks. We evaluate SUNRISE on several continuous control tasks using simu-
lated robots from OpenAI Gym (Brockman et al., 2016) and DeepMind Control Suite (Tassa et al.,
2018). For OpenAI Gym experiments with proprioceptive inputs (e.g., positions and velocities), we
compare to PETS (Chua et al., 2018), a state-of-the-art model-based RL method based on ensem-
bles of dynamics models; POPLIN-P (Wang & Ba, 2020), a state-of-the-art model-based RL method
which uses a policy network to generate actions for planning; POPLIN-A (Wang & Ba, 2020), vari-
ant of POPLIN-P which adds noise in the action space; METRPO (Kurutach et al., 2018), a hybrid
RL method which augments TRPO (Schulman et al., 2015) using ensembles of dynamics models;
and two state-of-the-art model-free RL methods, TD3 (Fujimoto et al., 2018) and SAC (Haarnoja
et al., 2018). For our method, we consider a combination of SAC and SUNRISE, as described in
Algorithm 1. Following the setup in Wang & Ba (2020) and Wang et al. (2019), we report the mean
and standard deviation across ten runs after 200K timesteps on five complex environments: Cheetah,
Walker, Hopper, Ant and SlimHumanoid with early termination (ET). More experimental details and
learning curves with 1M timesteps are in Appendix D.

For DeepMind Control Suite with image inputs, we compare to PlaNet (Hafner et al., 2019), a
model-based RL method which learns a latent dynamics model and uses it for planning; Dreamer
(Hafner et al., 2020), a hybrid RL method which utilizes the latent dynamics model to generate syn-
thetic roll-outs; SLAC (Lee et al., 2020), a hybrid RL method which combines the latent dynamics
model with SAC; and three state-of-the-art model-free RL methods which apply contrastive learning
(CURL; Srinivas et al. 2020) or data augmentation (RAD (Laskin et al., 2020) and DrQ (Kostrikov
et al., 2020)) to SAC. For our method, we consider a combination of RAD (i.e., SAC with ran-
dom crop) and SUNRISE. Following the setup in RAD, we report the mean and standard deviation
across five runs after 100k (i.e., low sample regime) and 500k (i.e., asymptotically optimal regime)
environment steps on six environments: Finger-spin, Cartpole-swing, Reacher-easy, Cheetah-run,
Walker-walk, and Cup-catch. More experimental details and learning curves are in Appendix F.

Discrete control benchmarks. For discrete control tasks, we demonstrate the effectiveness of SUN-
RISE on several Atari games (Bellemare et al., 2013). We compare to SimPLe (Kaiser et al., 2020),
a hybrid RL method which updates the policy only using samples generated by learned dynamics
model; Rainbow DQN (Hessel et al., 2018) with modified hyperparameters for sample-efficiency
(van Hasselt et al., 2019); Random agent (Kaiser et al., 2020); two state-of-the-art model-free RL
methods which apply the contrastive learning (CURL; Srinivas et al. 2020) and data augmentation
(DrQ; Kostrikov et al. 2020) to Rainbow DQN; and Human performances reported in Kaiser et al.
(2020) and van Hasselt et al. (2019). Following the setups in SimPLe, we report the mean across

5

Under review as a conference paper at ICLR 2021

Cheetah Walker Hopper Ant SlimHumanoid-ET

PETS 2288.4 ± 1019.0 282.5 ± 501.6 114.9 ± 621.0 1165.5 ± 226.9 2055.1 ± 771.5
POPLIN-A 1562.8 ± 1136.7 -105.0 ± 249.8 202.5 ± 962.5 1148.4 ± 438.3 -
POPLIN-P 4235.0 ± 1133.0 597.0 ± 478.8 2055.2 ± 613.8 2330.1 ± 320.9 -
METRPO 2283.7 ± 900.4 -1609.3 ± 657.5 1272.5 ± 500.9 282.2 ± 18.0 76.1 ± 8.8
TD3 3015.7 ± 969.8 -516.4 ± 812.2 1816.6 ± 994.8 870.1 ± 283.8 1070.0 ± 168.3

SAC 4474.4 ± 700.9 299.5 ± 921.9 1781.3 ± 737.2 979.5 ± 253.2 1371.8 ± 473.4
SUNRISE 4501.8 ± 443.8 1236.5 ± 1123.9 2643.2 ± 472.3 1502.4 ± 483.5 1926.6 ± 375.0

Table 1: Performance on OpenAI Gym at 200K timesteps. The results show the mean and standard
deviation averaged over ten runs, and the best results are indicated in bold. For baseline methods,
we report the best number in prior works (Wang & Ba, 2020; Wang et al., 2019).

500K step PlaNet Dreamer SLAC CURL DrQ RAD SUNRISE

Finger-spin 561 ± 284 796 ± 183 673 ± 92 926 ± 45 938 ± 103 975 ± 16 983 ±1

Cartpole-swing 475 ± 71 762 ± 27 - 845 ± 45 868 ± 10 873 ± 3 876 ± 4

Reacher-easy 210 ± 44 793 ± 164 - 929 ± 44 942 ± 71 916 ± 49 982 ± 3

Cheetah-run 305 ± 131 570 ± 253 640 ± 19 518 ± 28 660 ± 96 624 ± 10 678 ± 46

Walker-walk 351 ± 58 897 ± 49 842 ± 51 902 ± 43 921 ± 45 938 ± 9 953 ± 13

Cup-catch 460 ± 380 879 ± 87 852 ± 71 959 ± 27 963 ± 9 966 ± 9 969 ± 5

100K step

Finger-spin 136 ± 216 341 ± 70 693 ± 141 767 ± 56 901 ± 104 811 ± 146 905 ± 57

Cartpole-swing 297 ± 39 326 ± 27 - 582 ± 146 759 ± 92 373 ± 90 591 ± 55

Reacher-easy 20 ± 50 314 ± 155 - 538 ± 233 601 ± 213 567 ± 54 722 ± 50

Cheetah-run 138 ± 88 235 ± 137 319 ± 56 299 ± 48 344 ± 67 381 ± 79 413 ± 35

Walker-walk 224 ± 48 277 ± 12 361 ± 73 403 ± 24 612 ± 164 641 ± 89 667 ± 147

Cup-catch 0 ± 0 246 ± 174 512 ± 110 769 ± 43 913± 53 666 ± 181 633 ± 241

Table 2: Performance on DeepMind Control Suite at 100K and 500K environment steps. The results
show the mean and standard deviation averaged five runs, and the best results are indicated in bold.
For baseline methods, we report the best numbers reported in prior works (Kostrikov et al., 2020).

three runs after 100K interactions (i.e., 400K frames with action repeat of 4). For our method, we
consider a combination of sample-efficient versions of Rainbow DQN and SUNRISE (see Algo-
rithm 3 in Appendix B). More experimental details and learning curves are in Appendix G.

For our method, we do not alter any hyperparameters of the original RL algorithms and train five en-
semble agents. There are only three additional hyperparameters β, T , and λ for bootstrap, weighted
Bellman backup, and UCB exploration, where we provide details in Appendix D, F, and G.

5.2 COMPARATIVE EVALUATION

OpenAI Gym. Table 1 shows the average returns of evaluation roll-outs for all methods. SUN-
RISE consistently improves the performance of SAC across all environments and outperforms the
model-based RL methods, such as POPLIN-P and PETS, on all environments except Ant and
SlimHumanoid-ET. Even though we focus on performance after small samples because of the re-
cent emphasis on making RL more sample efficient, we find that the gain from SUNRISE becomes
even more significant when training longer (see Figure 3(c) and Appendix D). We remark that SUN-
RISE is more compute-efficient than modern model-based RL methods, such as POPLIN and PETS,
because they also utilize ensembles (of dynamics models) and perform planning to select actions.
Namely, SUNRISE is simple to implement, computationally efficient, and readily parallelizable.

DeepMind Control Suite. As shown in Table 2, SUNRISE also consistently improves the perfor-
mance of RAD (i.e., SAC with random crop) on all environments from DeepMind Control Suite.
This implies that the proposed method can be useful for high-dimensional and complex input obser-
vations. Moreover, our method outperforms existing pixel-based RL methods in almost all environ-
ments. We remark that SUNRISE can also be combined with DrQ, and expect that it can achieve
better performances on Cartpole-swing and Cup-catch at 100K environment steps.

6

Under review as a conference paper at ICLR 2021

Game Human Random SimPLe CURL DrQ Rainbow SUNRISE

Alien 7127.7 227.8 616.9 558.2 761.4 789.0 872.0
Amidar 1719.5 5.8 88.0 142.1 97.3 118.5 122.6
Assault 742.0 222.4 527.2 600.6 489.1 413.0 594.8
Asterix 8503.3 210.0 1128.3 734.5 637.5 533.3 755.0
BankHeist 753.1 14.2 34.2 131.6 196.6 97.7 266.7
BattleZone 37187.5 2360.0 5184.4 14870.0 13520.6 7833.3 15700.0
Boxing 12.1 0.1 9.1 1.2 6.9 0.6 6.7
Breakout 30.5 1.7 16.4 4.9 14.5 2.3 1.8
ChopperCommand 7387.8 811.0 1246.9 1058.5 646.6 590.0 1040.0
CrazyClimber 35829.4 10780.5 62583.6 12146.5 19694.1 25426.7 22230.0
DemonAttack 1971.0 152.1 208.1 817.6 1222.2 688.2 919.8
Freeway 29.6 0.0 20.3 26.7 15.4 28.7 30.2
Frostbite 4334.7 65.2 254.7 1181.3 449.7 1478.3 2026.7
Gopher 2412.5 257.6 771.0 669.3 598.4 348.7 654.7
Hero 30826.4 1027.0 2656.6 6279.3 4001.6 3675.7 8072.5
Jamesbond 302.8 29.0 125.3 471.0 272.3 300.0 390.0
Kangaroo 3035.0 52.0 323.1 872.5 1052.4 1060.0 2000.0
Krull 2665.5 1598.0 4539.9 4229.6 4002.3 2592.1 3087.2
KungFuMaster 22736.3 258.5 17257.2 14307.8 7106.4 8600.0 10306.7
MsPacman 6951.6 307.3 1480.0 1465.5 1065.6 1118.7 1482.3
Pong 14.6 -20.7 12.8 -16.5 -11.4 -19.0 -19.3
PrivateEye 69571.3 24.9 58.3 218.4 49.2 97.8 100.0
Qbert 13455.0 163.9 1288.8 1042.4 1100.9 646.7 1830.8
RoadRunner 7845.0 11.5 5640.6 5661.0 8069.8 9923.3 11913.3
Seaquest 42054.7 68.4 683.3 384.5 321.8 396.0 570.7
UpNDown 11693.2 533.4 3350.3 2955.2 3924.9 3816.0 5074.0

Table 3: Performance on Atari games at 100K interactions. The results show the scores averaged
three runs, and the best results are indicated in bold. For baseline methods, we report the best
numbers reported in prior works (Kaiser et al., 2020; van Hasselt et al., 2019).

Av
er

ag
e

re
tu

rn

0

5,000

10,000

15,000

Timesteps
0 2.5×105 5.0×105

SlimHumanoid-ET

Av
er

ag
e

re
tu

rn

−3000

−2000

−1000

0

1000

2000

3000

Timesteps
0 1×105 2×105

Hopper

Av
er

ag
e

re
tu

rn

−3000

−2000

−1000

0

1000

2000

3000

Timesteps
0 1×105 2×105

Walker

Av
er

ag
e

re
tu

rn

0

1000

2000

3000

4000

5000

6000

7000

Timesteps
0 1×105 2×105

Cheetah
Av

er
ag

e
re

tu
rn

0

500

1000

1500

2000

Timesteps
0 1×105 2×105

Ant

SAC DisCor SUNRISE (without WBB) SUNRISE (with WBB)

Figure 2: Learning curves on OpenAI Gym with noisy rewards. To verify the effects of the weighted
Bellman backups (WBB), we consider SUNRISE with WBB and without WBB. The solid line and
shaded regions represent the mean and standard deviation, respectively, across four runs.

Atari games. We also evaluate SUNRISE on discrete control tasks from the Atari benchmark using
Rainbow DQN. Table 3 shows that SUNRISE improves the performance of Rainbow in almost all
environments, and outperforms the state-of-the-art CURL and SimPLe on 11 out of 26 Atari games.
Here, we remark that SUNRISE is also compatible with CURL, which could enable even better
performance. These results demonstrate that SUNRISE is a general approach.

5.3 ABLATION STUDY

Effects of weighted Bellman backups. To verify the effectiveness of the proposed weighted Bell-
man backup (4) in improving signal-to-noise in Q-updates, we evaluate on a modified OpenAI Gym
environments with noisy rewards. Following Kumar et al. (2019), we add Gaussian noise to the
reward function: r′(s, a) = r(s, a) + z, where z ∼ N (0, 1) only during training, and report the
deterministic ground-truth reward during evaluation. For our method, we also consider a variant of
SUNRISE, which updates Q-functions without the proposed weighted Bellman backup to isolate
its effect. We compare to DisCor (Kumar et al., 2020), which improves SAC by reweighting the
Bellman backup based on estimated cumulative Bellman errors (see Appendix E for more details).

7

Under review as a conference paper at ICLR 2021

SAC
DisCor
SUNRISE (with RW & UCB)
SUNRISE (with UCB)
SUNRISE (with WBB & UCB)
SUNRISE (with WBB)

Av
er

ag
e

re
tu

rn

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Timesteps
0 1×105 2×105 3×105 4×105 5×105

(a) Large noise

RAD
SUNRISE (without UCB)
SUNRISE (with UCB)

S
co

re

0

200

400

600

800

1000

Environment steps
0 2×105 4×105 6×105 8×105 10×105

(b) Sparse reward

SAC (h=256, update=1)
SAC (h=256, update=5)
SAC (h=1024, update=5)
SUNRISE (h=256, 5 models)

Av
er

ag
e

re
tu

rn

0

10,000

20,000

30,000

40,000

Timesteps
0 2×105 4×105 6×105 8×105 10×105

(c) Gradient update

SAC
SUNRISE (N=2)
SUNRISE (N=5)
SUNRISE (N=10)

Av
er

ag
e

re
tu

rn

0

500

1000

1500

2000

Timesteps
0 5×104 10×104 15×104 20×104

(d) Ensemble size

Figure 3: (a) Learning curves of SUNRISE with random weight (RW) and the proposed weighted
Bellman backups (WBB) on the SlimHumanoid-ET environment with noisy rewards. (b) Effects of
UCB exploration on the Cartpole environment with sparse reward. (c) Learning curves of SUN-
RISE and single agent with h hidden units and five gradient updates per each timestep on the
SlimHumanoid-ET environment. (d) Learning curves of SUNRISE with varying values of ensemble
size N on the Ant environment.

Figure 2 shows the learning curves of all methods on OpenAI Gym with noisy rewards. The pro-
posed weighted Bellman backup significantly improves both sample-efficiency and asymptotic per-
formance of SUNRISE, and outperforms baselines such as SAC and DisCor. One can note the
performance gain due to our weighted Bellman backup becomes more significant in complex envi-
ronments, such as SlimHumanoid-ET. We remark that DisCor still suffers from error propagation
issues in complex environments like SlimHumanoid-ET and Ant because there are some approxima-
tion errors in estimating cumulative Bellman errors (see Section 6.1 for more detailed discussion).
These results imply that errors in the target Q-function can be characterized by the proposed confi-
dent weight in equation 5 effectively.

We also consider another variant of SUNRISE, which updates Q-functions with random weights
sampled from [0.5, 1.0] uniformly at random. In order to evaluate the performance of SUNRISE,
we increase the noise rate by adding Gaussian noise with a large standard deviation to the reward
function: r′(s, a) = r(s, a) + z, where z ∼ N (0, 5). Figure 3(a) shows the learning curves of
all methods on the SlimHumanoid-ET environment over 10 random seeds. First, one can not that
SUNRISE with random weights (red curve) is worse than SUNRISE with the proposed weighted
Bellman backups (blue curve). Additionally, even without UCB exploration, SUNRISE with the
proposed weighted Bellman backups (purple curve) outperforms all baselines. This implies that the
proposed weighted Bellman backups can handle the error propagation effectively even though there
is a large noise in reward function.

Effects of UCB exploration. To verify the advantage of UCB exploration in (6), we evaluate
on Cartpole-swing with sparse-reward from DeepMind Control Suite. For our method, we con-
sider a variant of SUNRISE, which selects action without UCB exploration. As shown in Fig 3(b),
SUNRISE with UCB exploration (blue curve) significantly improves the sample-efficiency on the
environment with sparse rewards.

Comparison with a single agent with more updates/parameters. One concern in utilizing the
ensemble method is that its gains may come from more gradient updates and parameters. To clarify
this concern, we compare SUNRISE (5 ensembles using 2-layer MLPs with 256 hidden units each)
to a single agent, which consists of 2-layer MLPs with 1024 (and 256) hidden units with 5 updates
using different random minibatches. Figure 3(c) shows that the learning curves on SlimHumanoid-
ET, where SUNRISE outperforms all baselines. This implies that the gains from SUNRISE can not
be achieved by simply increasing the number of updates/parameters. More experimental results on
other environments are also available in Appendix D.

Effects of ensemble size. We analyze the effects of ensemble size N on the Ant environment from
OpenAI Gym. Figure 3(d) shows that the performance can be improved by increasing the ensemble
size, but the improvement is saturated around N = 5. Thus, we use five ensemble agents for all
experiments. More experimental results on other environments are also available in Appendix D,
where the overall trend is similar.

8

Under review as a conference paper at ICLR 2021

6 DISCUSSION

6.1 CONNECTION WITH DISCOR

Kumar et al. (2020) show that naive Bellman backups can suffer from slow learning in certain envi-
ronments, requiring exponentially many updates. To handle this problem, they propose the weighted
Bellman backups, which make steady learning progress by inducing some optimal data distribution
(see (Kumar et al., 2020) for more details). Specifically, in addition to a standard Q-learning, DisCor
trains an error model ∆ψ(s, a), which approximates the cumulative sum of discounted Bellman er-
rors over the past iterations of training. Then, using the error model, DisCor reweights the Bellman
backups based on a confidence weight defined as follows: w(s, a) ∝ exp

(
−γ∆ψ(s,a)

T

)
, where γ is

a discount factor and T is a temperature.

However, we remark that DisCor can still suffer from the error propagation issues because there
is also an approximation error in estimating cumulative Bellman errors. Therefore, we consider
an alternative approach that utilizes the uncertainty from ensembles. Because it has been observed
that the ensemble can produce well-calibrated uncertainty estimates (i.e., variance) on unseen sam-
ples (Lakshminarayanan et al., 2017), we expect that the weighted Bellman backups based on en-
sembles can handle error propagation more effectively. Indeed, in our experiments, we find that
ensemble-based weighted Bellman backups can give rise to more stable training and improve the
data-efficiency of various off-policy RL algorithms.

6.2 COMPUTATION OVERHEAD

One can expect that there is an additional computation overhead by introducing ensembles. When
we have N ensemble agents, our method requires N× inferences for weighted Bellman backups
and 2N× inferences (N for actors and N for critics). However, we remark that our method can be
more computationally efficient because it is parallelizable. Also, as shown in Figure 3(c), the gains
from SUNRISE can not be achieved by simply increasing the number of updates/parameters.

7 CONCLUSION

In this paper, we present the ensemble-based weighted Bellman backups, which is compatible with
various off-policy RL algorithms. By re-weighting target Q-values based on uncertainty estimates,
we stabilize and improve the learning process on both continuous and discrete control benchmarks.
Additionally, we introduce SUNRISE, a simple unified ensemble method, which integrates the pro-
posed weighted Bellman backups with bootstrap with random initialization, and UCB exploration
to handle various issues in off-policy RL algorithms. Our experiments show that SUNRISE con-
sistently improves the performances of existing off-policy RL algorithms, such as Soft Actor-Critic
and Rainbow DQN, and outperforms state-of-the-art RL algorithms for both continuous and dis-
crete control tasks on both low-dimensional and high-dimensional environments. We hope that
SUNRISE could be useful to other relevant topics such as sim-to-real transfer (Tobin et al., 2017),
imitation learning (Torabi et al., 2018), understanding the connection between on-policy and off-
policy RL (Schulman et al., 2017), offline RL (Agarwal et al., 2020), and planning (Srinivas et al.,
2018; Tamar et al., 2016).

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, 2020.

Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson. On the model-
based stochastic value gradient for continuous reinforcement learning. arXiv preprint
arXiv:2008.12775, 2020.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International Conference on Machine Learning, 2017.

9

Under review as a conference paper at ICLR 2021

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Richard Y Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. Ucb exploration via q-
ensembles. arXiv preprint arXiv:1706.01502, 2017.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, and
Honglak Lee. Contingency-aware exploration in reinforcement learning. In International Con-
ference on Learning Representations, 2019.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems, 2018.

Bradley Efron. The jackknife, the bootstrap, and other resampling plans, volume 38. Siam, 1982.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Hado V Hasselt. Double q-learning. In Advances in Neural Information Processing Systems, 2010.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, 2016.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. In International Conference on Learning Representations, 2020.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. In Conference on Robot Learning,
2018.

10

Under review as a conference paper at ICLR 2021

Seungchan Kim, Kavosh Asadi, Michael Littman, and George Konidaris. Deepmellow: removing
the need for a target network in deep q-learning. In International Joint Conference on Artificial
Intelligence, 2019.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, 2019.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. In Advances in Neural Information Processing Systems, 2020.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In International Conference on Learning Representations, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, 2017.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling the
estimation bias of q-learning. In International Conference on Learning Representations, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. In Advances in Neural Information Processing Systems,
2020.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. In Advances in Neural Information
Processing Systems, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in Neural Information Processing Systems, 2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, 2016b.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, 2017.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
International Conference on Learning Representations, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-
learning. arXiv preprint arXiv:1704.06440, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Artfhur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Zhao Song, Ron Parr, and Lawrence Carin. Revisiting the softmax bellman operator: New benefits
and new perspective. In International Conference on Machine Learning, 2019.

11

Under review as a conference paper at ICLR 2021

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks. In International Conference on Machine Learning, 2018.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, 2020.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In Advances in Neural Information Processing Systems, 2016.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
International Conference on Intelligent Robots and Systems, 2017.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Interna-
tional Joint Conferences on Artificial Intelligence Organization, 2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI Conference on Artificial Intelligence, 2016.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in rein-
forcement learning? In Advances in Neural Information Processing Systems, 2019.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michael Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. In Interna-
tional Conference on Learning Representations, 2020.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

Marco A Wiering and Hado Van Hasselt. Ensemble algorithms in reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, 38(4):930–936, 2008.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

12

Under review as a conference paper at ICLR 2021

Appendix

A SUNRISE: SOFT ACTOR-CRITIC

Background. SAC (Haarnoja et al., 2018) is a state-of-the-art off-policy algorithm for continuous
control problems. SAC learns a policy, πφ(a|s), and a critic, Qθ(s, a), and aims to maximize a
weighted objective of the reward and the policy entropy, Est,at∼π

[∑
t γ

t−1rt + αH(πφ(·|st))
]
. To

update the parameters, SAC alternates between a soft policy evaluation and a soft policy improve-
ment. At the soft policy evaluation step, a soft Q-function, which is modeled as a neural network
with parameters θ, is updated by minimizing the following soft Bellman residual:

LSACcritic(θ) = Eτt∼B[LQ(τt, θ)],

LQ(τt, θ) =
(
Qθ(st, at)− rt − γEat+1∼πφ

[
Qθ̄(st+1, at+1)− α log πφ(at+1|st+1)

])2
,

where τt = (st, at, rt, st+1) is a transition, B is a replay buffer, θ̄ are the delayed parameters, and α
is a temperature parameter. At the soft policy improvement step, the policy π with its parameter φ
is updated by minimizing the following objective:

LSACactor(φ) = Est∼B
[
Lπ(st, φ)

]
, where Lπ(st, φ) = Eat∼πφ

[
α log πφ(at|st)−Qθ(st, at)

]
.

We remark that this corresponds to minimizing the Kullback-Leibler divergence between the policy
and a Boltzmann distribution induced by the current soft Q-function.

SUNRISE without UCB exploration. For SUNRISE without UCB exploration, we use random
inference proposed in Bootstrapped DQN (Osband et al., 2016a), which randomly selects an index
of policy uniformly at random and generates the action from the selected actor for the duration of
that episode (see Line 3 in Algorithm 2).

Algorithm 2 SUNRISE: SAC version (random inference)

1: for each iteration do
2: // RANDOM INFERENCE
3: Select an index of policy using î ∼ Uniform{1, · · · , N}
4: for each timestep t do
5: Get the action from selected policy: at ∼ πφî(a|st)
6: Collect state st+1 and reward rt from the environment by taking action at
7: Sample bootstrap masks Mt = {mt,i ∼ Bernoulli (β) — i ∈ {1, . . . , N}}
8: Store transitions τt = (st, at, st+1, rt) and masks in replay buffer B ← B ∪ {(τt,Mt)}
9: end for

10: // UPDATE AGENTS VIA BOOTSTRAP AND WEIGHTED BELLMAN BACKUP
11: for each gradient step do
12: Sample random minibatch {(τj ,Mj)}Bj=1 ∼ B
13: for each agent i do
14: Update the Q-function by minimizing 1

B

∑B
j=1mj,iLWQ (τj , θi)

15: Update the policy by minimizing 1
B

∑B
j=1mj,iLπ(sj , φi)

16: end for
17: end for
18: end for

B EXTENSION TO RAINBOW DQN

B.1 PRELIMINARIES: RAINBOW DQN

Background. DQN algorithm (Mnih et al., 2015) learns a Q-function, which is modeled as a neural
network with parameters θ, by minimizing the following Bellman residual:

LDQN(θ) = Eτt∼B

[(
Qθ(st, at)− rt − γmax

a
Qθ̄(st+1, a)

)2
]
, (7)

13

Under review as a conference paper at ICLR 2021

where τt = (st, at, rt, st+1) is a transition, B is a replay buffer, and θ̄ are the delayed parameters.
Even though Rainbow DQN integrates several techniques, such as double Q-learning (Van Hasselt
et al., 2016) and distributional DQN (Bellemare et al., 2017), applying SUNRISE to Rainbow DQN
can be described based on the standard DQN algorithm. For exposition, we refer the reader to Hessel
et al. (2018) for more detailed explanations of Rainbow DQN.

Algorithm 3 SUNRISE: Rainbow version

1: for each iteration do
2: for each timestep t do
3: // UCB EXPLORATION
4: Choose the action that maximizes UCB: at = arg max

at,i∈A
Qmean(st, at,i)+λQstd(st, at,i)

5: Collect state st+1 and reward rt from the environment by taking action at
6: Sample bootstrap masks Mt = {mt,i ∼ Bernoulli (β) — i ∈ {1, . . . , N}}
7: Store transitions τt = (st, at, st+1, rt) and masks in replay buffer B ← B ∪ {(τt,Mt)}
8: end for
9: // UPDATE Q-FUNCTIONS VIA BOOTSTRAP AND WEIGHTED BELLMAN BACKUP

10: for each gradient step do
11: Sample random minibatch {(τj ,Mj)}Bj=1 ∼ B
12: for each agent i do
13: Update the Q-function by minimizing 1

B

∑B
j=1mj,iLDQNWQ (τj , θi)

14: end for
15: end for
16: end for

B.2 SUNRISE: RAINBOW DQN

Bootstrap with random initialization. Formally, we consider an ensemble of N Q-functions,
i.e., {Qθi}Ni=1, where θi denotes the parameters of the i-th Q-function.3 To train the ensemble of
Q-functions, we use the bootstrap with random initialization (Efron, 1982; Osband et al., 2016a),
which enforces the diversity between Q-functions through two simple ideas: First, we initialize the
model parameters of all Q-functions with random parameter values for inducing an initial diversity
in the models. Second, we apply different samples to train each Q-function. Specifically, for each
Q-function i in each timestep t, we draw the binary masks mt,i from the Bernoulli distribution with
parameter β ∈ (0, 1], and store them in the replay buffer. Then, when updating the model parameters
of Q-functions, we multiply the bootstrap mask to each objective function.

Weighted Bellman backup. Since conventional Q-learning is based on the Bellman backup in
equation 7, it can be affected by error propagation. I.e., error in the target Q-functionQθ̄(st+1, at+1)
gets propagated into the Q-function Qθ(st, at) at the current state. Recently, Kumar et al. (2020)
showed that this error propagation can cause inconsistency and unstable convergence. To mitigate
this issue, for each Q-function i, we consider a weighted Bellman backup as follows:

LDQNWQ (τt, θi) = w (st+1)
(
Qθi(st, at)− rt − γmax

a
Qθ̄i(st+1, a)

)2

,

where τt = (st, at, rt, st+1) is a transition, and w(s) is a confidence weight based on ensemble of
target Q-functions:

w(s) = σ
(
−Q̄std(s) ∗ T

)
+ 0.5, (8)

where T > 0 is a temperature, σ is the sigmoid function, and Q̄std(s) is the empirical standard de-
viation of all target Q-functions {maxaQθ̄i(s, a)}Ni=1. Note that the confidence weight is bounded
in [0.5, 1.0] because standard deviation is always positive.4 The proposed objective LDQNWQ down-
weights the sample transitions with high variance across target Q-functions, resulting in a loss func-
tion for the Q-updates that has a better signal-to-noise ratio. Note that we combine the proposed

3Here, we remark that each Q-function has a unique target Q-function.
4We find that it is empirically stable to set minimum value of weight w(s, a) as 0.5.

14

Under review as a conference paper at ICLR 2021

weighted Bellman backup with prioritized replay (Schaul et al., 2016) by multiplying both weights
to Bellman backups.

UCB exploration. The ensemble can also be leveraged for efficient exploration (Chen et al., 2017;
Osband et al., 2016a) because it can express higher uncertainty on unseen samples. Motivated by
this, by following the idea of Chen et al. (2017), we consider an optimism-based exploration that
chooses the action that maximizes

at = max
a
{Qmean(st, a) + λQstd(st, a)}, (9)

where Qmean(s, a) and Qstd(s, a) are the empirical mean and standard deviation of all Q-functions
{Qθi}Ni=1, and the λ > 0 is a hyperparameter. This inference method can encourage exploration
by adding an exploration bonus (i.e., standard deviation Qstd) for visiting unseen state-action pairs
similar to the UCB algorithm (Auer et al., 2002). This inference method was originally proposed
in Chen et al. (2017) for efficient exploration in DQN, but we further extend it to Rainbow DQN.
For evaluation, we approximate the maximum a posterior action by choosing the action maximizes
the mean of Q-functions, i.e., at = maxa{Qmean(st, a)}. The full procedure is summarized in
Algorithm 3.

C IMPLEMENTATION DETAILS FOR TOY REGRESSION TASKS

We evaluate the quality of uncertainty estimates from an ensemble of neural networks on a toy
regression task. To this end, we generate twenty training samples drawn as y = x3 + ε, where
ε ∼ N (0, 32), and train ten ensembles of regression networks using bootstrap with random ini-
tialization. The regression network is as fully-connected neural networks with 2 hidden layers and
50 rectified linear units in each layer. For bootstrap, we draw the binary masks from the Bernoulli
distribution with mean β = 0.3. As uncertainty estimates, we measure the empirical variance of the
networks’ predictions. As shown in Figure 1(b), the ensemble can produce well-calibrated uncer-
tainty estimates (i.e., variance) on unseen samples.

D EXPERIMENTAL SETUPS AND RESULTS: OPENAI GYM

Environments. We evaluate the performance of SUNRISE on four complex environments based on
the standard bench-marking environments5 from OpenAI Gym (Brockman et al., 2016). Note that
we do not use a modified Cheetah environments from PETS (Chua et al., 2018) (dented as Cheetah
in POPLIN (Wang & Ba, 2020)) because it includes additional information in observations.

Training details. We consider a combination of SAC and SUNRISE using the publicly released
implementation repository (https://github.com/vitchyr/rlkit) without any modifica-
tions on hyperparameters and architectures. For our method, the temperature for weighted Bellman
backups is chosen from T ∈ {10, 20, 50}, the mean of the Bernoulli distribution is chosen from
β ∈ {0.5, 1.0}, the penalty parameter is chosen from λ ∈ {1, 5, 10}, and we train five ensemble
agents. The optimal parameters are chosen to achieve the best performance on training environ-
ments. Here, we remark that training ensemble agents using same training samples but with dif-
ferent initialization (i.e., β = 1) usually achieves the best performance in most cases similar to
Osband et al. (2016a) and Chen et al. (2017). We expect that this is because splitting samples can
reduce the sample-efficiency. Also, initial diversity from random initialization can be enough be-
cause each Q-function has a unique target Q-function, i.e., target value is also different according to
initialization.

Learning curves. Figure 4 shows the learning curves on all environments. One can note that
SUNRISE consistently improves the performance of SAC by a large margin.

Effects of ensembles. Figure 5 shows the learning curves of SUNRISE with varying values of
ensemble size on all environments. The performance can be improved by increasing the ensemble
size, but the improvement is saturated around N = 5.

5We used the reference implementation at https://github.com/WilsonWangTHU/mbbl (Wang
et al., 2019).

15

https://github.com/vitchyr/rlkit
https://github.com/WilsonWangTHU/mbbl

Under review as a conference paper at ICLR 2021

Av
er

ag
e

re
tu

rn

0

10,000

20,000

30,000

40,000

Timesteps
0 5×105 10×105

SlimHumanoid-ET

Av
er

ag
e

re
tu

rn

−2000

−1000

0

1000

2000

3000

Timesteps
0 5×105 10×105

Hopper

Av
er

ag
e

re
tu

rn

−2000

−1000

0

1000

2000

3000

4000

5000

Timesteps
0 5×105 10×105

Walker

Av
er

ag
e

re
tu

rn

0

1500

3000

4500

6000

7500

9000

Timesteps
0 5×105 10×105

Cheetah

Av
er

ag
e

re
tu

rn

0

1000

2000

3000

4000

5000

Timesteps
0 5×105 10×105

Ant

SAC (h=256, update=1) SAC (h=256, update=5) SAC (h=1024, update=5) SUNRISE (h=256, 5 models)

Figure 4: Learning curves of SUNRISE and single agent with h hidden units and five gradient
updates per each timestep on OpenAI Gym. The solid line and shaded regions represent the mean
and standard deviation, respectively, across four runs.

Av
er

ag
e

re
tu

rn

0

10,000

20,000

30,000

40,000

Timesteps
0 5×105 10×105

SlimHumanoid-ET

Av
er

ag
e

re
tu

rn

−2000

−1000

0

1000

2000

3000

Timesteps
0 5×104 10×10415×10420×104

Hopper

Av
er

ag
e

re
tu

rn

−3000

−2000

−1000

0

1000

2000

Timesteps
0 5×104 10×10415×10420×104

Walker

Av
er

ag
e

re
tu

rn

0

1500

3000

4500

6000

Timesteps
0 5×104 10×10415×10420×104

Cheetah

Av
er

ag
e

re
tu

rn

0

500

1000

1500

2000

Timesteps
0 5×104 10×10415×10420×104

Ant

SAC SUNRISE (N=2) SUNRISE (N=5) SUNRISE (N=10)

Figure 5: Learning curves of SUNRISE with varying values of ensemble size N . The solid line and
shaded regions represent the mean and standard deviation, respectively, across four runs.

E EXPERIMENTAL SETUPS AND RESULTS: NOISY REWARD

DisCor. DisCor (Kumar et al., 2020) was proposed to prevent the error propagation issue in Q-
learning. In addition to a standard Q-learning, DisCor trains an error model ∆ψ(s, a), which ap-
proximates the cumulative sum of discounted Bellman errors over the past iterations of training.
Then, using the error model, DisCor reweights the Bellman backups based on a confidence weight
defined as follows:

w(s, a) ∝ exp

(
−γ∆ψ(s, a)

T

)
,

where γ is a discount factor and T is a temperature. By following the setups in Kumar et al. (2020),
we take a network with 1 extra hidden layer than the corresponding Q-network as an error model,
and chose T = 10 for all experiments. We update the temperature via a moving average and use
the learning rate of 0.0003. We use the SAC algorithm as the RL objective coupled with DisCor
and build on top of the publicly released implementation repository (https://github.com/
vitchyr/rlkit).

16

https://github.com/vitchyr/rlkit
https://github.com/vitchyr/rlkit

Under review as a conference paper at ICLR 2021

Hyperparameter Value Hyperparameter Value
Random crop True Initial temperature 0.1
Observation rendering (100, 100) Learning rate (fθ, πψ, Qφ) 2e− 4 cheetah, run
Observation downsampling (84, 84) 1e− 3 otherwise
Replay buffer size 100000 Learning rate (α) 1e− 4
Initial steps 1000 Batch Size 512 (cheetah), 256 (rest)
Stacked frames 3 Q function EMA τ 0.01
Action repeat 2 finger, spin; walker, walk Critic target update freq 2

8 cartpole, swingup Convolutional layers 4
4 otherwise Number of filters 32

Hidden units (MLP) 1024 Non-linearity ReLU
Evaluation episodes 10 Encoder EMA τ 0.05
Optimizer Adam Latent dimension 50
(β1, β2)→ (fθ, πψ, Qφ) (.9, .999) Discount γ .99
(β1, β2)→ (α) (.5, .999)

Table 4: Hyperparameters used for DeepMind Control Suite experiments. Most hyperparameters
values are unchanged across environments with the exception for action repeat, learning rate, and
batch size.

F EXPERIMENTAL SETUPS AND RESULTS: DEEPMIND CONTROL SUITE

Training details. We consider a combination of RAD and SUNRISE using the publicly released
implementation repository (https://github.com/MishaLaskin/rad) with a full list of
hyperparameters in Table 4. Similar to Laskin et al. (2020), we use the same encoder architecture as
in (Yarats et al., 2019), and the actor and critic share the same encoder to embed image observations.6
For our method, the temperature for weighted Bellman backups is chosen from T ∈ {10, 100}, the
mean of the Bernoulli distribution is chosen from β ∈ {0.5, 1.0}, the penalty parameter is chosen
from λ ∈ {1, 5, 10}, and we train five ensemble agents. The optimal parameters are chosen to
achieve the best performance on training environments. Here, we remark that training ensemble
agents using same training samples but with different initialization (i.e., β = 1) usually achieves the
best performance in most cases similar to Osband et al. (2016a) and Chen et al. (2017). We expect
that this is because training samples can reduce the sample-efficiency. Also, initial diversity from
random initialization can be enough because each Q-function has a unique target Q-function, i.e.,
target value is also different according to initialization.

Learning curves. Figure 6(g), 6(h), 6(i), 6(j), 6(k), and 6(l) show the learning curves on all environ-
ments. Since RAD already achieves the near optimal performances and the room for improvement is
small, we can see a small but consistent gains from SUNRISE. To verify the effectiveness of SUN-
RISE more clearly, we consider a combination of SAC and SUNRISE in Figure 6(a), 6(b), 6(c),
6(d), 6(e), and 6(f), where the gain from SUNRISE is more significant.

G EXPERIMENTAL SETUPS AND RESULTS: ATARI GAMES

Training details. We consider a combination of sample-efficient versions of Rainbow DQN
and SUNRISE using the publicly released implementation repository (https://github.com/
Kaixhin/Rainbow) without any modifications on hyperparameters and architectures. For our
method, the temperature for weighted Bellman backups is chosen from T ∈ {10, 40}, the mean
of the Bernoulli distribution is chosen from β ∈ {0.5, 1.0}, the penalty parameter is chosen from
λ ∈ {1, 10}, and we train five ensemble agents. The optimal parameters are chosen to achieve the
best performance on training environments. Here, we remark that training ensemble agents using
same training samples but with different initialization (i.e., β = 1) usually achieves the best perfor-
mance in most cases similar to Osband et al. (2016a) and Chen et al. (2017). We expect that this is
because splitting samples can reduce the sample-efficiency. Also, initial diversity from random ini-
tialization can be enough because each Q-function has a unique target Q-function, i.e., target value
is also different according to initialization.

6However, we remark that each agent does not share the encoders unlike Bootstrapped DQN (Osband et al.,
2016a).

17

https://github.com/MishaLaskin/rad
https://github.com/Kaixhin/Rainbow
https://github.com/Kaixhin/Rainbow

Under review as a conference paper at ICLR 2021

SAC
SUNRISE

S
co

re

0

300

600

900

Environment steps
0 100 200 300 400 500

(a) Finger-spin

SAC
SUNRISE

S
co

re

200

300

400

500

600

700

800

Environment steps (K)
0 100 200 300 400 500

(b) Cartpole-swing

SAC
SUNRISE

S
co

re

0

100

200

300

400

500

600

Environment steps (K)
0 100 200 300 400 500

(c) Reacher-easy

SAC
SUNRISE

S
co

re

0

100

200

300

400

Environment steps (K)
0 100 200 300 400 500

(d) Cheetah-run

SAC
SUNRISE

S
co

re

0

100

200

300

400

500

600

Environment steps (K)
0 100 200 300 400 500

(e) Walker-walk

SAC
SUNRISE

S
co

re

0
100
200
300
400
500
600
700
800

Environment steps (K)
0 100 200 300 400 500

(f) Cup-catch

RAD
SUNRISE

S
co

re

700

800

900

1000

Environment steps
0 100 200 300 400 500

(g) Finger-spin

RAD
SUNRISE

S
co

re

200
300
400
500
600
700
800
900

Environment steps (K)
0 100 200 300 400 500

(h) Cartpole-swing

RAD
SUNRISE

S
co

re

500

600

700

800

900

1000

Environment steps (K)
0 100 200 300 400 500

(i) Reacher-easy

RAD
SUNRISE

S
co

re

300

400

500

600

700

800

Environment steps (K)
0 100 200 300 400 500

(j) Cheetah-run

RAD
SUNRISE

S
co

re

600

700

800

900

1000

Environment steps (K)
0 100 200 300 400 500

(k) Walker-walk

RAD
SUNRISE

S
co

re

300
400
500
600
700
800
900

1000

Environment steps (K)
0 100 200 300 400 500

(l) Cup-catch

Figure 6: Learning curves of (a-f) SAC and (g-I) RAD on DeepMind Control Suite. The solid line
and shaded regions represent the mean and standard deviation, respectively, across five runs.

Learning curves. Figure 7, Figure 8 and Figure 9 show the learning curves on all environments.

18

Under review as a conference paper at ICLR 2021

Rainbow
SUNRISE

S
co

re

200

400

600

800

1000

Environment steps (K)
100 200 300 400 500

(a) Seaquest

Rainbow
SUNRISE

S
co

re

0

300

600

900

1200

Environment steps (K)
100 200 300 400 500

(b) BankHeist

Rainbow
SUNRISE

S
co

re

300

400

500

600

700

Environment steps (K)
100 200 300 400 500

(c) Assualt

Rainbow
SUNRISE

S
co

re

0

10,000

20,000

30,000

40,000

50,000

Environment steps (K)
100 200 300 400 500

(d) CrazyClimber

Rainbow
SUNRISE

S
co

re

0

500

1000

1500

2000

2500

Environment steps (K)
100 200 300 400 500

(e) DemonAttack

Rainbow
SUNRISE

S
co

re

0

500

1000

1500

Environment steps (K)
100 200 300

(f) ChopperCommand

Rainbow
SUNRISE

S
co

re

0

5,000

10,000

15,000

20,000

25,000

Environment steps (K)
100 200 300 400 500

(g) KungFuMaster

Rainbow
SUNRISE

S
co

re

0

2,000

4,000

6,000

8,000

10,000

Environment steps (K)
100 200 300 400 500

(h) Kangaroo

Rainbow
SUNRISE

S
co

re

0

2,000

4,000

6,000

8,000

10,000

Environment steps (K)
100 200 300 400 500

(i) UpNDown

Figure 7: Learning curves on Atari games. The solid line and shaded regions represent the mean
and standard deviation, respectively, across three runs.

19

Under review as a conference paper at ICLR 2021

Rainbow
SUNRISE

S
co

re

0

100

200

300

400

500

Environment steps (K)
100 200 300 400 500

(a) Amidar

Rainbow
SUNRISE

S
co

re

400

800

1200

1600

2000

Environment steps (K)
100 200 300 400 500

(b) Alien

Rainbow
SUNRISE

S
co

re

−20

−10

0

10

20

Environment steps (K)
100 200 300 400 500

(c) Pong

Rainbow
SUNRISE

S
co

re

0
500

1000
1500
2000
2500
3000
3500

Environment steps (K)
100 200 300

(d) Frostbite

Rainbow
SUNRISE

S
co

re

400

800

1200

1600

2000

Environment steps (K)
100 200 300 400 500

(e) MsPacman

Rainbow
SUNRISE

S
co

re

−20
−15
−10
−5

0
5

10
15
20

Environment steps (K)
100 200 300

(f) Boxing

Rainbow
SUNRISE

S
co

re

0

200

400

600

800

Environment steps (K)
100 200 300 400 500

(g) Jamesbond

Rainbow
SUNRISE

S
co

re

1000

2000

3000

4000

Environment steps (K)
100 200 300

(h) Krull

Rainbow
SUNRISE

S
co

re

0

5,000

10,000

15,000

20,000

25,000

Environment steps (K)
20 40 60 80 100

(i) BattleZone

Rainbow
SUNRISE

S
co

re

0

3,000

6,000

9,000

12,000

15,000

Environment steps (K)
20 40 60 80 100

(j) RoadRunner

Rainbow
SUNRISE

S
co

re

0

2,000

4,000

6,000

8,000

10,000

12,000

Environment steps (K)
20 40 60 80 100

(k) Hero

Rainbow
SUNRISE

S
co

re

0

200

400

600

800

1000

Environment steps (K)
20 40 60 80 100

(l) Asterix

Figure 8: Learning curves on Atari games. The solid line and shaded regions represent the mean
and standard deviation, respectively, across three runs.

20

Under review as a conference paper at ICLR 2021

Rainbow
SUNRISE

S
co

re

−2000

0

2000

4000

6000

8000

Environment steps (K)
20 40 60 80 100

(a) PrivateEye

Rainbow
SUNRISE

S
co

re

0

1000

2000

3000

Environment steps (K)
20 40 60 80 100

(b) Qbert

Rainbow
SUNRISE

S
co

re

0

1

2

3

4

5

Environment steps (K)
20 40 60 80 100

(c) Breakout

Rainbow
SUNRISE

S
co

re

20

25

30

Environment steps (K)
20 40 60 80 100

(d) Freeway

Rainbow
SUNRISE

S
co

re

0

200

400

600

800

Environment steps (K)
20 40 60 80 100

(e) Gopher

Figure 9: Learning curves on Atari games. The solid line and shaded regions represent the mean
and standard deviation, respectively, across three runs.

21

