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Abstract

Mixture-of-Experts (MoE) models, a primary
method for scaling parameters to boost perfor-
mance in large language models (LLMs), re-
quire substantial memory when deployed in
downstream systems. To mitigate this, exist-
ing methods often prune or compress parame-
ters before inference to reduce memory usage.
Yet, such static optimizations conflict with
the MoE design philosophy: expert activa-
tion is input-dependent. To resolve this issue,
we introduce inPut-awaRe Expert Pruning
(PREP), a method that dynamically identi-
fies and retains only the most critical experts
for each input, substantially lowering memory
overhead while preserving model performance.
Specifically, after derivation of expert im-
portance, PREP deploys an input-dependent
lightweight linear approximation of expert im-
portance through efficient search in CPU. In-
corporating a hardware-optimized mechanism
of layer-by-layer loading of the experts, PREP
achieves a minimal memory usage of 37.5%
compared with the base model. Experiments
across diverse benchmarks demonstrate that
our method outperforms prior compression
techniques in accuracy while achieving the
lowest inference latency. Code for repro-
ducibility is available at https://anonymous.
4open.science/r/PREP-5375.

1 Introduction

Mixture-of-Experts (MoE) architectures have rev-
olutionized natural language processing (NLP) by
enabling models to scale parameters efficiently
while activating only a subset of experts per in-
put, thus balancing performance and computa-
tional cost (Antoniak et al., 2025; Li et al., 2025a).
For example, the DeepSeek v3 (Liu et al., 2024b)
model leverages MoE to achieve state-of-the-art
results with 671B parameters, yet activates only
37B parameters per token, demonstrating MoEs
capacity for sparse computation. However, deploy-
ing MoE models remains challenging due to their

(a) Expert Preference on English-French (FR)

Epern\ % \I
’& |

|

.ac>m it I |
|

J

%l Q’.ﬂ-l-

(c) Static Expert Pruning on Downstream Datasets

Expert N ] ,

f

| @

l—— I ||
(oo (] |c>
|l % (Token] [T > 1!

n

Figure 1: Illustration of expert preference across
datasets and different pruning strategies. Subfigure (a)
and (b) demonstrate the preferences of Expert 1 and Ex-
pert 2 for FR and DE datasets, respectively. Subfigure
(c) illustrates the static pruning method for MoE mod-
els, while (d) presents the core idea of our proposal.

substantial memory demands (Xie et al., 2024b).
The 671B-parameter DeepSeek-R1 (Guo et al.,
2025) model requires over 600GB of GPU mem-
ory for inference, even the half-precision Mix-
tral 8x7B (Jiang et al., 2024) model still demands
significant resources, often exceeding consumer-
grade GPU limits. These requirements hinder
practical deployment despite MoEs architectural
benefits (Eliseev and Mazur, 2023).

Previous work has explored optimization strate-
gies to address these challenges, such as quanti-
zation (e.g., assigning variable bit-widths to ex-
perts) (Li et al., 2024) and expert pruning (Xie
et al., 2024a). These techniques, such as MC
MoE (Huang et al., 2024) and Expert Sparsity (Lu
et al., 2024), aim to compress experts by allo-
cating lower bit-widths or discarding those con-
sidered less important, thereby reducing mem-
ory usage. In these methods, expert importance
is typically assessed via metrics such as activa-
tion frequency or mean squared error between
compressed and original outputs on calibration
datasets like C4 (Raffel et al., 2020). However,
these approaches often lack flexibility and incur
significant computational costs (Xue et al., 2024;
Gao et al., 2025). In particular, adaptive quantiza-
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tion necessitates retraining or re-quantizing mod-
els, while static pruning risks discarding experts
critical for diverse inputs.

More critically, existing approaches often com-
press experts before deployment, overlooking
the importance of input-dependent expert selec-
tion (Lv et al., 2025). Some studies on multi-
lingual translation models reveal that expert util-
ity varies significantly across languages (Li et al.,
2023b). As illustrated in Figure 1, distinct ex-
perts exhibit pronounced performance preferences
across different language translation datasets. This
variability highlights a critical limitation: eval-
uating experts using static calibration data (e.g.,
a fixed validation set) may degrade performance
on downstream tasks with diverse or distribution-
shifted inputs.

To address these limitations, we present PREP,
the first training-free, input-aware expert pruning
method for MoE models. PREP dynamically iden-
tifies critical experts per input during inference, re-
tains them in GPU memory, and offloads redun-
dant experts to system memory. This approach re-
duces peak GPU memory usage and accelerates
inference speed without retraining. Specifically,
PREP comprises two key procedures: (1) Ef-
ficient Layer-Wise Expert Evaluation: After
quantifying expert’s layer-wise influence, we pro-
pose an input-aware expert importance metric to
measure each expert’s contribution. We then ap-
proximate these importance scores using a linear
method, effectively transforming the problem into
finding the maximum value given an input query.
Thereafter, we implement a fast CPU-based search
to efficiently identify the most important experts.
(2) Adaptive Layer-wise Expert Loading: Then,
we analyze the importance of different layers and
find that earlier (shallow) layers significantly in-
fluence the final decoding process. Consequently,
we allocate a layer-specific number of experts to
retain. Additionally, we employ a layer-wise load-
ing strategy: the selected experts are loaded into
memory, while the remaining ones are offloaded
to system memory using a scheduled approach.
This balances memory efficiency and inference la-
tency. By combining input-aware evaluation and
layer-wise loading, PREP optimizes MoE models
for diverse inputs while maintaining performance.
Overall, the main contribution of this work is:

* We propose an input-aware expert evaluation
strategy that efficiently identifies the most impor-

tant experts for a given input without requiring
additional training.

* We introduce a hardware-friendly adaptive layer-
wise loading, enabling efficient MoE deploy-
ment and achieving approximately 1.4x infer-
ence speedup compared to the original model.

» Extensive experiments conducted on multiple
benchmark datasets reveal that the proposed
PREP achieves state-of-the-art performance.

2 Related Works

2.1 Mixture-of-Experts in LLMs

The Mixture of Experts paradigm, which uses spe-
cialized sub-models (experts) and a gating mech-
anism to dynamically select and activate a sub-
set of these experts based on the input, has be-
come a key architecture for scaling large lan-
guage models (LLMs) while maintaining compu-
tational efficiency. Building on classical sparse ex-
pert systems (Jacobs et al., 1991), modern MoE
LLMs employ dynamic token-based expert rout-
ing, where each input selectively activates the top-
k experts per layer through learned gating mecha-
nisms (Shazeer et al., 2017; Lepikhin et al., 2020).
This sparse activation reduces FLOPs by 60-70%
compared to dense models with the same parame-
ter count. The Switch Transformer (Fedus et al.,
2022) was a pioneer in this area, replacing dense
feed-forward layers with expert layers and achiev-
ing 7x faster pre-training than T5-Large. Subse-
quent work, Mixtral 8 x7B (Jiang et al., 2024), ex-
tended this paradigm with a sparse decoder-only
architecture, achieving LLaMA 2-70B level per-
formance at 40% of the inference cost. The most
recent breakthrough, DeepSeek-V3 (Liu et al.,
2024b), leverages an innovative MoE architec-
ture to match the performance of state-of-the-art
proprietary models (e.g., GPT-40 and Claude-3.5-
Sonnet) on human-aligned evaluation frameworks.
Our work complements these innovations by fo-
cusing on memory-efficient inference, integrating
seamlessly into existing MoE models without re-
training. This orthogonal contribution addresses a
critical gap in deployment scalability.

2.2 Expert Purning for MoE LLMs

While traditional MoE models activate only a sub-
set of experts per input, their memory footprint re-
mains large because all experts are stored in GPU



memory (Zhao et al., 2025). To address this is-
sue, recent work has explored two main strategies:
static expert pruning and dynamic expert skipping.
Static methods, such as EEP (Liu et al., 2024c)
and MoE-1? (Yang et al., 2024), prune experts
based on activation frequency from calibration
datasets. However, these approaches ignore input-
dependent variations in expert importance (Cheng
et al., 2024; Lv et al., 2025). Dynamic meth-
ods like MoE++ (Jin et al., 2025) skip experts
adaptively introducing zero-experts, but they pro-
vide only incremental computational gains with-
out addressing the memory bottleneck caused by
retaining all experts in GPU memory (Abnar et al.,
2025). In this paper, we introduce an input-aware
expert pruning strategy that dynamically offloads
deactivated experts to system memory, thereby im-
proving the efficiency of MoE deployment.

2.3 Expert Approximation for MoE LLMs

Expert approximation techniques aim to reduce
computational costs by decomposing or adaptively
assigning quantization bit-widths to experts while
retaining all experts. Methods like MC-SMoE (Li
et al., 2023a) and MoE-SVD (Li et al., 2025b)
use Singular Value Decomposition (Abdi, 2007)
for low-rank factorization of each experts param-
eters. Techniques such as BSP (Li et al., 2024)
and MC-MoE (Huang et al., 2024) assign different
bit-widths based on activation frequency and re-
construction loss from calibration datasets. How-
ever, these approaches ignore input-specific vari-
ations (Lv et al., 2025) and require re-quantizing
and decomposing the entire model, which can be
cumbersome (Sharma et al., 2025). Our proposed
method only requires building a linear expert pa-
rameters index, enabling plug-and-play MoE de-
ployment in downstream applications.

3 Preliminary

This section provides background on MoE archi-
tectures and formally defines the task of memory-
efficient expert pruning.

MoE in LLMs In decoder-based MoE-LLMs
with L transformer layers, the traditional Feed-
Forward Network (FFN) is replaced with the MoE
layer. Each MoE layer consists of K expert mod-
ules and a gating layer. Each expert module is
a FFN with three linear layers separated by acti-
vation functions. Let X € R™*¢ denote the in-
put embedding matrix, where n is the token count

and d is the feature dimension. Additionally, let
H; ¢ R™*? represent the hidden state of the [-th
MoE layer. The output of the [-th MoE layer is
expressed as:

K
Y, :Z[GZ(HZ)]k@EZ,k(HZ)~ )]
k=1
Here, [Gi(H;)]; € R"™ denotes the routing
weights for the k-th expert across all tokens, and
E,1.(H,;) € R"*? s the output of k-th expert.

Memory Efficient MoE The goal of memory-
efficient MoE LLMs is to retain a subset of ex-
perts to reduce memory usage while preserving
the original next-token prediction distribution, de-
noted as pori. Specifically, given a retention thresh-
old 7 € [0, K x L], we aim to identify a subset
of expert modules S with size |S| = 7. This sub-
set should ensure that the output distribution of the
pruned model, pg, closely matches the original dis-
tribution. Formally, this can be expressed as:

arg lgﬁn Ex~p [DkL (pori (X)[|ps(X))] s

where X is sampled from a specific data distribu-
tion D, Dk represents the KL divergence.

However, it poses two challenges: 1) Combina-
torial complexity: the search space grows combi-
natorially with (N :L ), rendering exhaustive evalu-
ation intractable. 2) Input-dependent dynamics:
expert importance varies dynamically with input
patterns, causing the search space to scale with the
dataset size. These issues motivate our proposed
input-aware expert pruning approach, which dy-
namically selects the most critical experts per in-
put, enabling efficient and adaptive pruning.

4 Input-Aware Expert Pruning

This section introduces the framework of PREP.
Specifically, we first evaluate the layer-wise influ-
ence of experts by approximating the output varia-
tion induced by each expert. Based on this, we de-
fine the expert importance metric and linearize it,
facilitating the efficient evaluation of each expert.
Next, we analyze across-layer importance to as-
sign layer-specific pruning thresholds, paired with
a dynamic loading strategy to balance computa-
tional efficiency and memory usage. An overview
of our method is illustrated in Figure 2.

4.1 Efficient Layer-wise Expert Evaluation

Layer-wise Expert Influence Analysis In MoE
layers, the hidden state evolves dynamically across
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Figure 2: The overview of the proposed PREP. Subfigure (a) illustrates the process of collecting the output and
Jacobian matrix of each expert at the expansion point during the offline stage. Subfigure (b) and (c) show each
layer selects the most critical experts on the CPU for the given input and loads them into the Expert Cache.

layers, making it challenging to determine layer-
specific pruning strategies based solely on input
token embeddings. Instead, we select a subset of
experts per layer to minimize output variation.
Formally, for the [-th MoE layer with retention
threshold 7; € [0, K], we identify the optimal ex-
pert subset .S; to minimize the output variation
AY]. Assume the pruned output of /-th layer as:

|51

Y= > [GI(H)k © Evx(Hy), 2
keS;

where Gj(H;);, denotes the adjusted routing
weights after pruning. Then, the output variation
AY; =Y, — Y] is decomposes into:

AY, =Y, - Y,

K—|5|

Z [Gi(H)]k © Eyx(H))
k¢S,

[Sy] 3)
+ > ((Gi(H) — [GI(H)]k) © Evp(Hy)

keS,

K—|5]

Z [Gi(H))|x © Epp(Hy).
kgs,

Q

The approximation in the last equation holds
because the routing weights [G;(H;)]; and
|G}(H;)), differ only in normalization, making
their values similar for retained experts (More
proof details are provided in Appendix A).

Approximated Expert Importance Following
the derivation of Equation (3), we can upper bound

the output variation (measured by its second norm)
caused by pruning the k-th expert in the [-th layer
(i.e., when k ¢ S)) as:

[[Gi(H)]k © Bk (Hi)|2 < [|[GU(H)k - o1, - d |2, (4)

where 0, = max; ;[E;,(H))];; denotes the
maximum activation value of the output of k-th ex-
pert in the [-th MoE layer across all n tokens, d rep-
resents the feature dimension of the hidden state.
To minimize computational overhead, we assess
the importance of the k-th expert in the [-th MoE
layer using oy j, which measures the maximum
output perturbation caused by pruning the expert.
However, directly evaluating this metric is compu-
tationally intensive for long sequences (large n),
as it requires processing all n tokens.

To address this, we propose an efficient alterna-
tive: We first apply max-pooling to the input, ex-
tracting the maximum value in each feature dimen-
sion across all tokens, and then compute the final
maximum value over the resulting vector. This re-
duces the computational complexity of evaluating
each expert from O(n) to O(1), as follows:

GLi = m?X[El,k (himax)] 5 Q)

where b ;max = max-pool(H;) is the max-pooling
over H; on feature dimension. This approach
retains critical input features while enabling fast
evaluation of expert importance based on a com-
pressed input representation. We evaluate alter-
native expert evaluation strategies, e.g., Predictor-
based evaluation, in Section 5.3.1.



Linearized Expert Importance To enable ef-
ficient evaluation of expert importance without
heavy GPU computation, we propose a linear ap-
proximation of expert importance using a first-
order Taylor expansion. For an expert module £ ;,
let zy € R? denote the expansion point. The ap-
proximated importance score 07y, is derived as:

-
01,k ~ max [El,k(wo) + (8El,k(m) ‘m:m0> (hz,max - wo):|

J ox ;
where Ej i(x) is the output of the k-th expert at

. . E .
the expansion point x, and 9 g’;(owo) is the first-

order gradient (i.e., Jacobian matrix) at xg.

To determine the expansion point &g, we com-
pute the mean of the hidden states from each MoE
layer on the RedPajama dataset (Computer, 2023),
using this value as the Taylor expansion point for
each layer. We evaluate the different expansion
points in Appendix D.

Fast Search of Important Expert Building on
linearized expert importance, we propose a search-
based method that replaces matrix multiplication
for calculating expert importance on the CPU. In

the indexing stage, we compute the Jacobian ma-

. OF, T
trix % for each expert at g and construct

a Faiss index (Johnson et al., 2019). During in-
ference, we treat (hmax — o) as a query vector
and perform a rapid search of the Faiss index to re-
trieve the top-k maximum inner product and their
corresponding indices. We use these indices to ob-
tain the values of E (o) at the corresponding po-
sitions, add them to the retrieved results, and select
the maximum value as the importance of expert.

4.2 Adaptive Layer-wise Expert Loading

A keen reader might wonder how to select 7; for
different layers. Therefore, this section further ex-
plores across-layer importance to determine the
optimal 7; and introduces layer-wise expert load-
ing, enabling efficient dynamic expert pruning.

Across-Layer Importance Analysis Prior work
has established that distinct layers in LLMs serve
specialized functional roles (Fan et al., 2024;
Zhang et al., 2024). To enable efficient layer-wise
MoE deployment, we conduct an analysis to deter-
mine the importance of each MoE layer and assign
layer-specific thresholds 7; accordingly. Inspired
by (Chuang et al., 2024), we propose an intuitive
metric ; for the [-th layer importance: the Jensen-
Shannon divergence (Fuglede and Topsoe, 2004)

between the model’s original output distribution
Pori and its modified distribution p; when exclud-
ing the [-th layer as:

= Exep [ 5 Dxa oK) 19 (X)) + 3 D1 (Ol (X))

where p,,, = %(pori +p1), X is sampled from a spe-
cific data distribution D, Dgp represents the KL
divergence.

Accordingly, we distribute the 7; for different
layers, guided by the layer importance distribution.
The layer importance results and specific 7; for dif-
ferent MoE LLMs are presented in Section 5.3.2.

Layer-wise Loading of Experts Previous stud-
ies have demonstrated that, with careful schedul-
ing and design, communication delays between
the CPU and GPU do not become a bottle-
neck for inference latency (Kwon et al., 2023;
He et al., 2024). Drawing from this insight, we
adopt a layer-wise expert loading strategy to im-
plement input-aware expert pruning under limited
computational resources. During decoding, each
layer dynamically selects the most important ex-
perts based on the input, loading them into GPU
memory while offloading others to system mem-
ory. This reduces GPU memory usage signifi-
cantly. Additionally, we employ a fixed-size buffer
per layer with a Least Recently Used (LRU) pol-
icy (Eliseev and Mazur, 2023) to retain recently
active experts, minimizing delays from frequent
swaps and enhancing inference efficiency.

S Experiments

5.1 Experimental Settings

Dataset To evaluate the effectiveness of var-
ious expert compression methods, we con-
duct extensive experiments on several gen-
eral benchmarks, including ARC-easy, ARC-
challenge (Clark et al., 2018), BoolQ (Clark
et al., 2019), HellaSwag(Zellers et al., 2019),
MMLU (Hendrycks et al., 2021) and Wino-
Grande (Sakaguchi et al., 2021). The evaluation
metrics and prompts follow the settings of Open-
Compass (Contributors, 2023). Furthermore, we
supplement our evaluation with perplexity anal-
ysis on the WikiText2 (Merity et al., 2016) and
C4 (Raffel et al., 2020) datasets to assess the
model’s language modeling capability. The details
of the datasets are reported in Appendix B.



Model Params] Method ARC-e ARC-c BoolQ HellaSwag MMLU Winogrande Average
BSP 83.09 50.52 59.72 42.72 46.46 52.09 55.77
EEP 86.94  73.67 83.43 63.99 49.25 60.24 69.59
25.0% MC MoE 84.74  72.19  82.39 56.38 55.01 58.56 68.21
. Expert Sparsity  84.21 7236  85.35 63.83 51.14 59.83 69.45
i\ﬁi’t‘g‘i PREP 90.19 78.63 8085 7176 57.92 61.56 73.48
EEP 8136 68.62 72.04 58.23 43.15 55.36 63.13
40.0% MC MoE 7573 6438  73.21 44.57 44.77 53.67 59.39
) Expert Sparsity  79.32 6429  79.94 59.33 45.13 58.09 64.35
PREP 87.99 7373 7755 67.17 54.74 57.70 69.81
BSP 76.87 5549  59.39 34.77 36.32 48.30 51.86
EEP 79.53 6427 71.84 42.62 50.41 54.23 60.48
25.0% MC MoE 7822 6472 6232 42.60 53.80 54.85 59.42
Expert Sparsity  76.79  61.03  68.62 41.68 53.36 54.22 58.28
Mixtral PREP 85.71 70.82 73.73 46.67 64.09 55.88 66.15
EEP 7036 60.64  65.04 34.62 43.52 51.75 54.32
40.0% MC MoE 64.71  56.64  60.06 26.31 41.74 50.52 50.00
) Expert Sparsity  68.67  55.19  62.35 31.63 46.67 50.75 52.54
PREP 82.66 69.27 69.66 42.11 58.23 54.22 62.69

Table 1: Zero-shot performance comparison of different methods under varying expert parameter compression
ratios. "Params]" represents the reduction radio in expert parameters. “Average” is calculated among six bench-

marks. The best results are shown in bold.

Baselines We compare our method with the fol-
lowing two categories of expert compression:

* Weight Quantization Methods aim to retain
all experts while assigning quantization weights
based on each expert’s importance. 1) BSP (Li
et al., 2024) calculates each expert’s importance
score using a lightweight predictor to determine
bit allocation. 2) MC MoE (Huang et al., 2024)
formulates adaptive bit-width allocation as a linear
programming problem, where the objective func-
tion balances multiple factors reflecting the impor-
tance of each expert.

Expert Pruning Methods remove less impor-
tant experts while applying the same quantization
weight to all experts. 1) Expert Sparsity (Lu et al.,
2024) enumerates all possible expert combinations
at the layer level and retains the optimal combi-
nation by minimizing MSE loss. 2) EEP (Liu
et al., 2024c) employs a gradient-free evolutionary
search method, optimizing the pruning of experts
within an efficient parameter space.

Experimental Protocols We employ Mixtral
8x7B and Mixtral 8x7B Instruct (Jiang et al., 2024)
as our backbone for main evaluation. DeepSeek-
V2-Lite-Chat (Liu et al., 2024a) serves as an ad-
ditional backbone to further analyze the perfor-
mance of our method, as detailed in Section 5.4.
Both Mixtral 8x7B and Mixtral 8x7B Instruct con-
sist of 32 transformer layers, each containing MoE
blocks with 8 experts and employing a top-2 rout-

ing strategy. In contrast to traditional MoE ar-
chitectures, DeepSeek-V2-Lite-Chat has 27 trans-
former layers, with the first layer utilizing a dense
FNN, and the remaining layers incorporating MoE
blocks. Each MoE block in DeepSeek-V2-Lite-
Chat consists of two shared experts and 64 inde-
pendent experts, using a top-6 routing strategy. To
evaluate the model’s performance, we use Accu-
racy and Perplexity as metrics. For inference
speed, we measure Latency, defined as the time
taken to generate each token. Additional experi-
mental details are provided in Appendix C.3.

Model Params| Method Wiki C4
BSP 8.76  16.71
EEP 582  8.99
25.0% MC MoE 5.02 17.89
) Expert Sparsity  5.01  8.78
Mixtral PREP 476 747
Instruct
EEP 6.37 13.79
MC MoE 5.84  11.27
40.0% Expert Sparsity  5.64  9.35
PREP 503 11.02
EEP 5.82 8.99
BSP 6.43  17.40
25.0% MC MoE 4.59 8.44
Expert Sparsity  4.81  8.79
Mixtral PREP 452 8.14
EEP 737 1579
MC MoE 6.18 1546
400%  Eypert Sparsity 562 13.90
PREP 572 12.23

Table 2: The perplexity for language modeling on Wiki-
Text2 and C4. The best results are shown in bold.



5.2 Main Results

This subsection presents models’ performance on
standard benchmarks (Table 1), their perplexity
on language modeling (Table 2), and inference
latency across varying input lengths (Figure 3).
From the results, we have following observations:
1) PREP achieves the best performance, out-
performing all baselines across all benchmarks.
Table 1 shows that PREP significant improve-
ments over MC MoE and Expert Sparsity. These
gains can be attributed to the reliance of MC MoE
and Expert Sparsity on the C4 calibration dataset
for pruning, which limits their generalization on
downstream tasks. In contrast, EEP leverages task-
specific pruning by directly optimizing configura-
tions on subsets of each benchmark. However, this
strategy yields suboptimal results and necessitates
task-aware adjustments, rendering the method im-
practical for real-world deployment.

2) PREP achieves the best performance in natu-
ral language modeling, with the lowest perplex-
ity across most datasets. We summarize perplex-
ity results for various methods on WikiText2 and
C4 in Table 2. Notably, on the C4 dataset, which
shares distributional similarities with calibration
data used in MC-MoE and Expert Sparsity, our
approach outperforms others, highlighting the ro-
bustness of input-aware pruning under in-domain
conditions. In contrast, EEP significantly under-
performs, which is likely because EEP’s pruning
results are derived from narrow data subsets.

3) PREP exhibits the lowest latency when mod-
eling inputs of varying lengths. As shown in Fig-
ure 3, our method delivers a 1.2x speedup over
the fastest baselines (Expert Sparsity and EEP).
This efficiency gain stems from two key innova-
tions: 1) a carefully designed expert load strategy
that minimizes redundant overhead, and 2) cus-
tom CUDA kernel optimizations that reduce inter-
device communication latency. Finally, we evalu-
ate the search time of PREP, which requires only
0.03 seconds per sample —a negligible cost ac-
counting for less than 0.5% of total inference time.

5.3 Analysis Experiments
5.3.1 Validity of Expert Evaluation Strategy

This experiment evaluates the effectiveness of
layer-wise expert evaluation strategy. In partic-
ular, we modify the proposed expert evaluation
strategy with the following variants: 1) Random
Scoring: Experts are randomly scored for reten-

1 PREP [ MC MoE 1 BSP
Search Time of PREP [ Expert Sparse [ EEP
15 20
21.0 oy
5 510
3 3
0.5
00728 512 0071328 512
Input Length Input Length

Figure 3: Inference speed comparison for different in-
put lengths.

Params|  Evaluation Strategy = MMLU HellaSwag
Random 40.14 47.51
Routing weight 41.76 44.12
30.0% Predictor 40.45 42.37
Input-Aware (Ours) 48.93 58.15
Random 37.13 41.09
Routing weight 39.41 32.84
26.7% Predictor 37.18 35.85
Input-Aware (Ours) 46.23 54.29
Random 34.41 32.34
Routing weight 36.27 27.66
67.7% Predictor 3573 30.82
Input-Aware (Ours) 42.29 47.05

Table 3: Performance comparison of different expert
evaluation strategies for dynamic pruning. The best re-
sults are marked bold.

tion; 2) Routing Weight-based evaluation: Experts
are evaluated based on their cumulative routing
weight contributions; 3) Predictor-based evalua-
tion: Experts are evaluated by a trained predictor
(Details are provided in the Appendix C.2). We
report the performance on the MMLU and Hel-
laSwag benchmarks, with expert parameters re-
duced by 50.0%, 56.7%, and 67.7%, respectively,
demonstrating the efficiency of our strategy.

We summarize the results in Table 3. Our obser-
vations are as follows: 1) Determining the impor-
tance of each expert through routing weights
and a trained predictor is challenging, some-
times resulting in worse performance than Ran-
dom Scoring. 2) Performance gaps between
baseline methods and our strategy increases
as parameter compression intensifies, exposing
fundamental limitations in these variants: their
inability to dynamically identify input-critical ex-
perts and inherent robustness deficiencies.

5.3.2 Analysis of Across-Layer Importance

Following the definition in Section 4.2, we analyze
the layer importance for Mixtral-8 x7B Instruct
and DeepSeek-V2-Lite-Chat on the RedPajama
dataset, as shown in Figure 4. It can be observed



Model Method  Params| ARC-e ARC-c  BoolQ HellaSwag MMLU  Winogrande  Average
Base 0 80.88 68.24 73.57 65.15 50.20 57.77 65.97
DeepSeck prEp  125% 7559 6223 6431 54.41 44.64 55.32 59.42
25.0% 73.11 59.48 61.76 50.65 41.27 53.59 56.64

Table 4: Zero-shot performance comparison between Base and our method under varying expert parameter com-

pression ratios, with Base serving as the upper limit.

Model  Method Params| Latencyi2s Latencysiz
Base 0 0.71 0.82
DeepSeek prREP 125% 0.54 0.63
25.0% 0.49 0.61

Table 5: Inference speed comparison for different in-
put lengths. ’Latency;ss’ and ’Latencysqo’ represent
the latency for input lengths of 128 and 512, respec-
tively. The best results are marked bold.
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Figure 4: Layer importance for Mixtral-8 x 7B Instruct
and DeepSeek-V2-Lite-Chat.

that both models exhibit greater importance in
the shallower layers. Notably, DeepSeek-V2-
Lite-Chat shows significantly higher importance
in the last two layers, whereas the Mixtral-8 x7B
Instruct exhibits the opposite pattern. Based on
the importance scores for each MoE layer on the
calibration set, we assign layer-wise expert reten-
tion thresholds under a pre-defined expert parame-
ter compression ratio. For the Mixtral model, we
divide the 32 MoE layers into four groups. The
number of experts retained between groups is dis-
tributed in a 2:2:1:1 ratio, with each group hav-
ing an equal distribution of retention thresholds
across its layers. For the DeepSeek model, we di-
vide the first 24 MoE layers into four groups, with
the remaining two layers assigned to a separate
group. The number of experts retained between
groups is allocated in a 2:2:1:1:1 ratio, with reten-
tion thresholds evenly distributed across the layers
within each group.

5.4 More Analysis on DeepSeek

In this subsection, we apply our hardware-friendly
input-aware pruning method to DeepSeek-V2-
Lite-Chat to evaluate its generalizability. It is
important to note that existing pruning meth-

ods for MoE LLMs either do not support the
DeepSeek model or have not released corre-
sponding code. For a baseline comparison, we
use a uniform 4-bit quantization strategy for each
expert and fully load the expert module via Layer-
wise Loading of Experts, preserving lossless per-
formance. In our experiments, we restrict each
MoE block to retain at most one expert, prioritiz-
ing minimal memory usage.

Results are reported in Table 4 (zero-shot per-
formance) and Table 5 (latency vs. input length).
From the results, we have the following observa-
tions: 1) Our methods does not exhibit a signifi-
cant performance decline compared to the base
method. Table 4 shows that pruning 12.5% and
25% of expert parameters reduces the models av-
erage performance by 6.55% and 9.33%, respec-
tively. These declines are acceptable, as dynamic
pruning on quantized models inherently intro-
duces additional performance trade-offs. 2) The
proposal effectively improves inference speed
over the base method. In Table 5, pruning 25% of
expert parameters reduces latency by 30.14% for
an input length of 128. These results demonstrate
the method’s effectiveness in balancing computa-
tional efficiency and memory constraints. Addi-
tionally, inference memory usage is approximately
4.5GB under this setting.

6 Conclusion

This paper introduces an efficient input-aware ex-
pert pruning method, PREP, to tackle the mem-
ory and computational challenges in deploying
MokE-based LLMs. By dynamically evaluating the
linearized importance of each layer expert for a
given input through a fast CPU-based search, and
loading the most critical experts into GPU mem-
ory layer by layer with a well-designed schedul-
ing strategy, PREP significantly reduces mem-
ory overhead and inference latency. Experimen-
tal results demonstrate that our approach outper-
forms the baseline on almost all benchmarks and
achieves the lowest inference latency.



7 Limitations

Our proposed framework, PREP, significantly re-
duces memory usage and accelerates inference,
making MoE-based LLMs more deployable. How-
ever, certain limitations persist. First, the input-
aware expert pruning strategy does not support
batch inference. This limitation arises because our
method dynamically loads only the necessary ex-
perts based on each input’s features, which com-
plicates batch processing. Second, due to compu-
tational constraints, we have not evaluated PREP
on larger MoE models such as Mixtral-8x22B
(141B) and DeepSeek-V3 (671B). In future work,
we intend to apply our method to these larger
models to further assess its scalability and perfor-
mance.
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A A Proof of Output Variation
Approximation

This section provides the proof for the approxima-
tion of the output variation resulting from retain-
ing the expert set .S; in the [-th MoE layer, as de-
scribed in Equation (3).

The pruned routing weights are re-normalized
based on the original weights. Formally, this can
be expressed as:

(G1(H))];
YL G,

We now expand the second term in Equation 3:
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Since our pruning strategy effectively identifies
critical experts and allocates a relatively uniform
pruning threshold across layers, we approximate

ZLSG’ L’z [Gi(H;)]; ~ 1. This simplifies the term to:

(1 I S
Sk [Gi(HY);

1
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Thus, we can conclude that
Gi(H 1— ——L—— | ~ 0, implyin
[Gi1(H))]k SHNET) plying

that [G,(H))], ~ [G}(H)]x-
B Details of Benchmark Evaluations

We conduct extensive comparative experiments to
evaluate our proposed dynamic pruning approach
against baseline models. The evaluation is per-
formed on multiple popular benchmarks using the
OpenCompass LLLM evaluation framework. The
benchmarks used for evaluation include:

ARC-e is a dataset consisting of 3,000 elementary-
level science questions in a multiple-choice for-
mat. We report the zero-shot accuracy on ARC-
e and use the prompt "Question: {question} A:
{textA} B: {textB} C: {textC} D: {textD}. Answer:".

ARC-c includes challenging science questions
compared to ARC-e, designed to assess common-
sense reasoning and factual knowledge. We report
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zero-shot accuracy on ARC-c and use the same
prompt as ARC-e.

BoolQ is a dataset 15,942 contains yes/no ques-
tions based on passages from various sources. We
report zero-shot accuracy on BoolQ and use "Pas-
sage: {passage} Question: {question}? A. Yes B.
No. Answer:" as the prompt.

HellaSwag is a challenging benchmark designed
for evaluating commonsense reasoning. Given an
incomplete context, the model must predict the
most plausible ending. We report accuracy on Hel-
laSwag and use "{ctx} Question: Which ending
makes the most sense? A. {A} B. {B} C. {C} D. {D}
You may choose from 'A’, 'B’, 'C’, 'D’. Answer:"
as the prompt.

MMLU is a benchmark designed to evaluate the
general knowledge of models, consisting of 57
tasks across various domains, including mathemat-
ics, professional law, and sociology. We report the
accuracy on multiple tasks within MMLU and em-
ploy task-specific prompts for each evaluation.

WinoGrande is a dataset designed to assess a
model’s ability to resolve coreference in complex
sentences, consisting of 44,000 problems. We re-
port accuracy on WinoGrande and use "Which of
the following is a good sentence: A. {optl} B.
{opt2} Answer:" as the prompt.

C More Experimental Details

C.1 More Experimental Results

This section presents additional comparative re-
sults between our method and the baselines un-
der the configuration where expert parameters are
compressed by 33.3%. Tables 6 and 7 extend Ta-
bles 1 and 2, respectively.

From Table 6, we observe similar trends to
those in Section 5.2: when the expert parame-
ter is reduced by 33%, our method achieves the
best performance across most benchmarks. How-
ever, due to significant distributional differences
between the upstream calibration dataset and the
benchmarks, methods such as BSP, MC MoE, and
Expert Sparsity exhibit considerable performance
discrepancies on some datasets compared to our
approach. For example, using Mixtral 8 x7B In-
struct as the backbone, MC MoE performs only
1.62% worse than our method on BoolQ, while



Model Params, Method ARC-e ARC-c BoolQ HellaSwag MMLU Winogrande Average
BSP 7032 4670  54.46 36.96 34.92 48.93 48.72
. EEP 83.53 7038  78.32 61.83 47 46 59.62 67.19
Mixtral 33.3% MC MoE 7827 6549  76.70 53.80 47.03 56.99 63.05
Instruct Expert Sparsity  83.09  68.15  79.79 62.99 48.31 58.49 66.80
PREP 88.54 7725 78.32 68.93 56.52 57.54 71.18
BSP 63.68 4549 56.88 25.19 29.28 34.27 42.47
EEP 7481 61.83  70.32 37.13 45.16 52.72 57.00
Mixtral 33.3% MC MoE 72.11  61.04 64.40 38.23 4731 51.78 55.81
Expert Sparsity  72.67  58.11  63.98 34.71 48.82 51.38 54.95
PREP 8325 7038 71.82 44.49 60.22 56.21 64.40

Table 6: Zero-shot performance comparison of different methods under varying expert parameter compression
ratios. "Params]" represents the reduction radio in expert parameters. “Average” is calculated among six bench-

marks. The best results are shown in bold.

Model Params| Method Wiki C4
BSP 9.71 1945
. EEP 6.04 10.25
Mixtral = 33 3¢, MC MoE 554 9.05
Instruct Expert Sparsity 546 8.98
PREP 491 949
BSP 821 21.85
EEP 7.14  13.39
Mixtral 33.3% MC MoE 5.65 1192
Expert Sparsity  5.53  10.88
PREP 547 10.22

Table 7: Perplexity evaluation on WikiText2 and C4.
The best results are shown in bold.

it exhibits a 15.13% performance gap on the Hel-
laSwag benchmark.

Table 7 demonstrates that our method consis-
tently achieves the lowest perplexity, confirming
its retention of the original language modeling ca-
pabilities. Thanks to the pruning strategy based
on the C4 training set, both MC MoE and Expert
Sparsity methods exhibit similar performance to
ours.

C.2 Implementation Details for Expert
Predictor

In this section, we illustrate the implementation de-
tails of the expert predictor, which is a compara-
tive variant for expert evaluation strategy in Sec-
tion 5.3.1.

Training Data Collection As detailed in Sec-
tion 5.3.1, the goal of the expert predictor is to
effectively predict the relative importance of each
expert for each sample, such that the difference
between the modified output and the original dis-
tribution is minimized. However, the computa-
tional cost of enumerating all possible expert com-
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binations is prohibitively high. To address this,
we first assess the importance of each expert for
the current sample using the method proposed in
(Yang et al., 2024). Subsequently, we rank the ex-
perts based on their scores and use their rank and
scores as labels. Intuitively, we choose the atten-
tion weights, hidden states, routing weights, and
layer indices from each layer as the input to the
predictor.

Details of Expert Predictor (a) Network Archi-
tecture: (i) Layer Idx embedding: An embedding
layer with 32 embedding units (corresponding to
the number of layers) and an embedding dimen-
sion of 128 for the layer index; (ii) Attention Gate
layer: A linear layer with an input size of 1 and a
hidden size of 128 for attention weights; (iii) Rout-
ing Weight Gate layer: A linear layer with an in-
put size of 8 (representing the number of local ex-
perts) and a hidden size of 128 for routing weights;
(iv) Input Layer: a linear with an input size of
4096 and a hidden size of 128 for hidden state; (v)
CLS Embedding: A randomly initialized parame-
ter with a hidden dimension of 128 for the CLS to-
ken; (vi) Encoder: A Transformer (Vaswani, 2017)
comprising two layers, each with 2 attention heads
and a hidden size of 128; (vii) Output layer: A lin-
ear layer with an input size of 4096 and a hidden
size of 8 (representing the number of local experts)
for the CLS token. (b) Training Process: Due to
the limited size of the collected dataset, we aug-
ment the data using a pairwise approach (Raziper-
chikolaei and Chung, 2024) to maximize its utility
while reducing the risk of overfitting. Specifically,
pairs of samples are formed within each batch, and
the model is trained using hinge loss as the objec-
tive function to optimize the overall predictions;
(ii1) Hyperparameters: We use the Adam optimizer
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Figure 5: Training loss of the expert predictor and re-
call score on the validation set during training.

Params, Expansion Point MMLU  HellaSwag
Constant 56.72 67.33
25.0% Gaussian Noise 46.71 50.06
S Cluster Center 57.24 67.38
Mean State (Ours) 57.92 71.76
Constant 54.64 64.74
3339 Gaussian Noise 42.35 24.67
=7 Cluster Center 56.13 66.39
Mean State (Ours) 56.52 68.93
Constant 52.02 61.46
40.0% Gaussian Noise 40.73% 24.96
7 Cluster Center 5451 61.71
Mean State (Ours) 54.74 67.17

Table 8: Evaluation results of different Taylor expan-
sion points for linearized expert importance. The best
results are shown in bold.

with a learning rate of 0.001, trained for 50 epochs,
and apply a decay rate of 0.95 every 1000 steps.
The collected dataset is split into a training set and
a validation set in a 7:3 ratio. (¢) Training Results:
Figure 5 reports the loss on the training set, as well
as the recall@16 and recall@64 on the validation
set during the training process of the expert predic-
tor. It can be observed that the recall@16 and re-
call@64 on the validation set converge to approxi-
mately 25% and 64%, respectively, which is below
the desired performance. This suggests that cap-
turing the relative importance of experts based on
input using a simple lightweight trainable module
is challenging.

C.3 More Experiment Settings

In this section, we provide additional experimen-
tal settings to facilitate the reproduction of our re-
sults.

Hardware Setup The hardware platform used
in this experiment consists of 8§ NVIDIA RTX
3090 GPUs and 1 NVIDIA L20 GPU. The CPU is
an AMD Ryzen Threadripper 3960X 24-core Pro-
cessor, featuring 48 logical CPU cores, with each
core supporting 2 threads.

Model Quantization Settings We apply Half-
Quadratic Quantization (Badri and Shaji, 2023) to
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Params, Faiss Index MMLU HellaSwag

25.0% IndexFlatIP 58.37 71.84
v IndexIVFFlat (Ours) 57.92 71.76
33,39 IndexFlatIP 56.55 69.07
27 IndexIVFFlat (Ours)  56.52 68.93
40.0% IndexFlatIP 55.60 67.67
7% IndexIVFFlat (Ours)  54.74 67.17

Table 9: Ablation results on different Index methods.

quantize the backbone model. Specifically, for
Mixtral 8x7B and Mixtral 8x7B Instruct, we
quantize the transformer attention block parame-
ters to 4 bits with a group size of 64 and the ex-
perts in the MoE layer to 3 bits with a group size
of 64. For DeepSeek-V2-Lite-Chat, we quantize
both the transformer attention block and the MoE
block, including shared and independent experts,
to 4 bits, with a group size of 64.

D Influence of Taylor Expansion Point

In this subsection, we investigate how the choice
of the Taylor expansion point for the linearized
expert importance affects overall performance.
Specifically, we explore several variants for select-
ing different Taylor expansion points: 1) Constant:
The expansion point is a constant vector of all
ones; 2) Gaussian Noise: The expansion point is a
random vector drawn from a Gaussian distribution;
3) Cluster Center: The expansion point is the clus-
ter center (k=3) of the hidden states collected from
each layer of the RedPajama dataset, obtained us-
ing the K-means algorithm (Tarpey, 2007).

Table 8 shows how different Taylor expansion
points affect model performance across various ex-
pert parameter compression ratios on the MMLU
and HellaSwag benchmarks. The results reveal
that the mean of the hidden state as the expan-
sion point yields superior overall performance.
Notably, using the cluster center as the expansion
point leads to suboptimal results. We attribute this
to the fact that the cluster center tends to overfit the
calibration set distribution, leading to poor gener-
alization in downstream benchmarks.

E Effects of Faiss Index

To boost search efficiency, we replace the basic
IndexFlatIP method, which does exact searches
when building the index, with the faster but ap-
proximate IndexIVFFlat method (Douze et al.,



2024). We show how both methods perform in Ta-
ble 9 and also check how quickly they work.

The results demonstrate that the use of the ac-
celerated index does not significantly impact over-
all model performance compared to the exact in-
dex, confirming its viability as an alternative in
our approach. Furthermore, constructing a more
efficient Faiss index reduces the search time to
approximately 1.3 x 10~3 seconds, compared to
1.04 x 102 seconds for the exact search, result-
ing in an 8.0x speedup.
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