
Input-Aware Expert Pruning for Efficient MoE Deployment

Anonymous ACL submission

Abstract001

Mixture-of-Experts (MoE) models, a primary002
method for scaling parameters to boost perfor-003
mance in large language models (LLMs), re-004
quire substantial memory when deployed in005
downstream systems. To mitigate this, exist-006
ing methods often prune or compress parame-007
ters before inference to reduce memory usage.008
Yet, such static optimizations conflict with009
the MoE design philosophy: expert activa-010
tion is input-dependent. To resolve this issue,011
we introduce inPut-awaRe Expert Pruning012
(PREP), a method that dynamically identi-013
fies and retains only the most critical experts014
for each input, substantially lowering memory015
overhead while preserving model performance.016
Specifically, after derivation of expert im-017
portance, PREP deploys an input-dependent018
lightweight linear approximation of expert im-019
portance through efficient search in CPU. In-020
corporating a hardware-optimized mechanism021
of layer-by-layer loading of the experts, PREP022
achieves a minimal memory usage of 37.5%023
compared with the base model. Experiments024
across diverse benchmarks demonstrate that025
our method outperforms prior compression026
techniques in accuracy while achieving the027
lowest inference latency. Code for repro-028
ducibility is available at https://anonymous.029
4open.science/r/PREP-5375.030

1 Introduction031

Mixture-of-Experts (MoE) architectures have rev-032

olutionized natural language processing (NLP) by033

enabling models to scale parameters efficiently034

while activating only a subset of experts per in-035

put, thus balancing performance and computa-036

tional cost (Antoniak et al., 2025; Li et al., 2025a).037

For example, the DeepSeek v3 (Liu et al., 2024b)038

model leverages MoE to achieve state-of-the-art039

results with 671B parameters, yet activates only040

37B parameters per token, demonstrating MoEs041

capacity for sparse computation. However, deploy-042

ing MoE models remains challenging due to their043

Dataset2

FR Expert 2
Token

Expert 1

Router

Token

Token

Token

(a) Expert Preference on English-French (FR)

DE Expert 2
Token

Expert 1

Router

Token

Token

Token

(b) Expert Preference on English-German (DE)

Expert 2
Router

(c) Static Expert Pruning on Downstream Datasets

Dataset1
Router

(d) Our Proposal on Downstream Datasets

Dataset2
Dataset1

Token Token

TokenToken Expert
Cache

Figure 1: Illustration of expert preference across
datasets and different pruning strategies. Subfigure (a)
and (b) demonstrate the preferences of Expert 1 and Ex-
pert 2 for FR and DE datasets, respectively. Subfigure
(c) illustrates the static pruning method for MoE mod-
els, while (d) presents the core idea of our proposal.

substantial memory demands (Xie et al., 2024b). 044

The 671B-parameter DeepSeek-R1 (Guo et al., 045

2025) model requires over 600GB of GPU mem- 046

ory for inference, even the half-precision Mix- 047

tral 8x7B (Jiang et al., 2024) model still demands 048

significant resources, often exceeding consumer- 049

grade GPU limits. These requirements hinder 050

practical deployment despite MoEs architectural 051

benefits (Eliseev and Mazur, 2023). 052

Previous work has explored optimization strate- 053

gies to address these challenges, such as quanti- 054

zation (e.g., assigning variable bit-widths to ex- 055

perts) (Li et al., 2024) and expert pruning (Xie 056

et al., 2024a). These techniques, such as MC 057

MoE (Huang et al., 2024) and Expert Sparsity (Lu 058

et al., 2024), aim to compress experts by allo- 059

cating lower bit-widths or discarding those con- 060

sidered less important, thereby reducing mem- 061

ory usage. In these methods, expert importance 062

is typically assessed via metrics such as activa- 063

tion frequency or mean squared error between 064

compressed and original outputs on calibration 065

datasets like C4 (Raffel et al., 2020). However, 066

these approaches often lack flexibility and incur 067

significant computational costs (Xue et al., 2024; 068

Gao et al., 2025). In particular, adaptive quantiza- 069

1

https://anonymous.4open.science/r/PREP-5375
https://anonymous.4open.science/r/PREP-5375
https://anonymous.4open.science/r/PREP-5375

tion necessitates retraining or re-quantizing mod-070

els, while static pruning risks discarding experts071

critical for diverse inputs.072

More critically, existing approaches often com-073

press experts before deployment, overlooking074

the importance of input-dependent expert selec-075

tion (Lv et al., 2025). Some studies on multi-076

lingual translation models reveal that expert util-077

ity varies significantly across languages (Li et al.,078

2023b). As illustrated in Figure 1, distinct ex-079

perts exhibit pronounced performance preferences080

across different language translation datasets. This081

variability highlights a critical limitation: eval-082

uating experts using static calibration data (e.g.,083

a fixed validation set) may degrade performance084

on downstream tasks with diverse or distribution-085

shifted inputs.086

To address these limitations, we present PREP,087

the first training-free, input-aware expert pruning088

method for MoE models. PREP dynamically iden-089

tifies critical experts per input during inference, re-090

tains them in GPU memory, and offloads redun-091

dant experts to system memory. This approach re-092

duces peak GPU memory usage and accelerates093

inference speed without retraining. Specifically,094

PREP comprises two key procedures: (1) Ef-095

ficient Layer-Wise Expert Evaluation: After096

quantifying expert’s layer-wise influence, we pro-097

pose an input-aware expert importance metric to098

measure each expert’s contribution. We then ap-099

proximate these importance scores using a linear100

method, effectively transforming the problem into101

finding the maximum value given an input query.102

Thereafter, we implement a fast CPU-based search103

to efficiently identify the most important experts.104

(2) Adaptive Layer-wise Expert Loading: Then,105

we analyze the importance of different layers and106

find that earlier (shallow) layers significantly in-107

fluence the final decoding process. Consequently,108

we allocate a layer-specific number of experts to109

retain. Additionally, we employ a layer-wise load-110

ing strategy: the selected experts are loaded into111

memory, while the remaining ones are offloaded112

to system memory using a scheduled approach.113

This balances memory efficiency and inference la-114

tency. By combining input-aware evaluation and115

layer-wise loading, PREP optimizes MoE models116

for diverse inputs while maintaining performance.117

Overall, the main contribution of this work is:118

• We propose an input-aware expert evaluation119

strategy that efficiently identifies the most impor-120

tant experts for a given input without requiring 121

additional training. 122

• We introduce a hardware-friendly adaptive layer- 123

wise loading, enabling efficient MoE deploy- 124

ment and achieving approximately 1.4× infer- 125

ence speedup compared to the original model. 126

• Extensive experiments conducted on multiple 127

benchmark datasets reveal that the proposed 128

PREP achieves state-of-the-art performance. 129

2 Related Works 130

2.1 Mixture-of-Experts in LLMs 131

The Mixture of Experts paradigm, which uses spe- 132

cialized sub-models (experts) and a gating mech- 133

anism to dynamically select and activate a sub- 134

set of these experts based on the input, has be- 135

come a key architecture for scaling large lan- 136

guage models (LLMs) while maintaining compu- 137

tational efficiency. Building on classical sparse ex- 138

pert systems (Jacobs et al., 1991), modern MoE 139

LLMs employ dynamic token-based expert rout- 140

ing, where each input selectively activates the top- 141

k experts per layer through learned gating mecha- 142

nisms (Shazeer et al., 2017; Lepikhin et al., 2020). 143

This sparse activation reduces FLOPs by 60-70% 144

compared to dense models with the same parame- 145

ter count. The Switch Transformer (Fedus et al., 146

2022) was a pioneer in this area, replacing dense 147

feed-forward layers with expert layers and achiev- 148

ing 7× faster pre-training than T5-Large. Subse- 149

quent work, Mixtral 8×7B (Jiang et al., 2024), ex- 150

tended this paradigm with a sparse decoder-only 151

architecture, achieving LLaMA 2-70B level per- 152

formance at 40% of the inference cost. The most 153

recent breakthrough, DeepSeek-V3 (Liu et al., 154

2024b), leverages an innovative MoE architec- 155

ture to match the performance of state-of-the-art 156

proprietary models (e.g., GPT-4o and Claude-3.5- 157

Sonnet) on human-aligned evaluation frameworks. 158

Our work complements these innovations by fo- 159

cusing on memory-efficient inference, integrating 160

seamlessly into existing MoE models without re- 161

training. This orthogonal contribution addresses a 162

critical gap in deployment scalability. 163

2.2 Expert Purning for MoE LLMs 164

While traditional MoE models activate only a sub- 165

set of experts per input, their memory footprint re- 166

mains large because all experts are stored in GPU 167

2

memory (Zhao et al., 2025). To address this is-168

sue, recent work has explored two main strategies:169

static expert pruning and dynamic expert skipping.170

Static methods, such as EEP (Liu et al., 2024c)171

and MoE-I2 (Yang et al., 2024), prune experts172

based on activation frequency from calibration173

datasets. However, these approaches ignore input-174

dependent variations in expert importance (Cheng175

et al., 2024; Lv et al., 2025). Dynamic meth-176

ods like MoE++ (Jin et al., 2025) skip experts177

adaptively introducing zero-experts, but they pro-178

vide only incremental computational gains with-179

out addressing the memory bottleneck caused by180

retaining all experts in GPU memory (Abnar et al.,181

2025). In this paper, we introduce an input-aware182

expert pruning strategy that dynamically offloads183

deactivated experts to system memory, thereby im-184

proving the efficiency of MoE deployment.185

2.3 Expert Approximation for MoE LLMs186

Expert approximation techniques aim to reduce187

computational costs by decomposing or adaptively188

assigning quantization bit-widths to experts while189

retaining all experts. Methods like MC-SMoE (Li190

et al., 2023a) and MoE-SVD (Li et al., 2025b)191

use Singular Value Decomposition (Abdi, 2007)192

for low-rank factorization of each experts param-193

eters. Techniques such as BSP (Li et al., 2024)194

and MC-MoE (Huang et al., 2024) assign different195

bit-widths based on activation frequency and re-196

construction loss from calibration datasets. How-197

ever, these approaches ignore input-specific vari-198

ations (Lv et al., 2025) and require re-quantizing199

and decomposing the entire model, which can be200

cumbersome (Sharma et al., 2025). Our proposed201

method only requires building a linear expert pa-202

rameters index, enabling plug-and-play MoE de-203

ployment in downstream applications.204

3 Preliminary205

This section provides background on MoE archi-206

tectures and formally defines the task of memory-207

efficient expert pruning.208

MoE in LLMs In decoder-based MoE-LLMs209

with L transformer layers, the traditional Feed-210

Forward Network (FFN) is replaced with the MoE211

layer. Each MoE layer consists of K expert mod-212

ules and a gating layer. Each expert module is213

a FFN with three linear layers separated by acti-214

vation functions. Let X ∈ Rn×d denote the in-215

put embedding matrix, where n is the token count216

and d is the feature dimension. Additionally, let 217

Hl ∈ Rn×d represent the hidden state of the l-th 218

MoE layer. The output of the l-th MoE layer is 219

expressed as: 220

Yl =

K∑
k=1

[Gl(Hl)]k ⊙ El,k(Hl). (1) 221

Here, [Gl(Hl)]k ∈ Rn denotes the routing 222

weights for the k-th expert across all tokens, and 223

El,k(Hl) ∈ Rn×d is the output of k-th expert. 224

Memory Efficient MoE The goal of memory- 225

efficient MoE LLMs is to retain a subset of ex- 226

perts to reduce memory usage while preserving 227

the original next-token prediction distribution, de- 228

noted as pori. Specifically, given a retention thresh- 229

old τ ∈ [0,K × L], we aim to identify a subset 230

of expert modules S with size |S| = τ . This sub- 231

set should ensure that the output distribution of the 232

pruned model, pS , closely matches the original dis- 233

tribution. Formally, this can be expressed as: 234

arg min
|S|=τ

EX∼D [DKL (pori(X)∥pS(X))] , 235

where X is sampled from a specific data distribu- 236

tion D, DKL represents the KL divergence. 237

However, it poses two challenges: 1) Combina- 238

torial complexity: the search space grows combi- 239

natorially with
(
N×L
τ

)
, rendering exhaustive evalu- 240

ation intractable. 2) Input-dependent dynamics: 241

expert importance varies dynamically with input 242

patterns, causing the search space to scale with the 243

dataset size. These issues motivate our proposed 244

input-aware expert pruning approach, which dy- 245

namically selects the most critical experts per in- 246

put, enabling efficient and adaptive pruning. 247

4 Input-Aware Expert Pruning 248

This section introduces the framework of PREP. 249

Specifically, we first evaluate the layer-wise influ- 250

ence of experts by approximating the output varia- 251

tion induced by each expert. Based on this, we de- 252

fine the expert importance metric and linearize it, 253

facilitating the efficient evaluation of each expert. 254

Next, we analyze across-layer importance to as- 255

sign layer-specific pruning thresholds, paired with 256

a dynamic loading strategy to balance computa- 257

tional efficiency and memory usage. An overview 258

of our method is illustrated in Figure 2. 259

4.1 Efficient Layer-wise Expert Evaluation 260

Layer-wise Expert Influence Analysis In MoE 261

layers, the hidden state evolves dynamically across 262

3

El,k
El,k(x0)x0

CPU

max-pool(H1) x0

Query

Router

E1,2 E1,4

H1

Score

Faiss1,1

E1,1 E1,3

＋

E1,2 E1,4

＋ ＋ ＋

(b) Layer-wise Expert Evaluation

(c) Layer-wise Expert Loading

Expert
Cache

(a) Preparation for Linearized Expert Importance

Search
Faiss1,2 Faiss1,3 Faiss1,4

Faissl,k

1-th Layer

Router

EL,1

L-th Layer

Expert
Cache

Output

Figure 2: The overview of the proposed PREP. Subfigure (a) illustrates the process of collecting the output and
Jacobian matrix of each expert at the expansion point during the offline stage. Subfigure (b) and (c) show each
layer selects the most critical experts on the CPU for the given input and loads them into the Expert Cache.

layers, making it challenging to determine layer-263

specific pruning strategies based solely on input264

token embeddings. Instead, we select a subset of265

experts per layer to minimize output variation.266

Formally, for the l-th MoE layer with retention267

threshold τl ∈ [0,K], we identify the optimal ex-268

pert subset Sl to minimize the output variation269

∆Yl. Assume the pruned output of l-th layer as:270

Ŷl =

|Sl|∑
k∈Sl

[G′
l(Hl)]k ⊙ El,k(Hl), (2)271

where G′
l(Hl)k denotes the adjusted routing272

weights after pruning. Then, the output variation273

∆Yl = Yl − Ŷl is decomposes into:274

∆Yl = Yl − Ŷl

=

K−|Sl|∑
k/∈Sl

[Gl(Hl)]k ⊙ El,k(Hl)

+

|Sl|∑
k∈Sl

([Gl(Hl)]k − [G′
l(Hl)]k)⊙ El,k(Hl)

≈
K−|Sl|∑
k/∈Sl

[Gl(Hl)]k ⊙ El,k(Hl).

(3)275

The approximation in the last equation holds276

because the routing weights [Gl(Hl)]k and277

[G′
l(Hl)]k differ only in normalization, making278

their values similar for retained experts (More279

proof details are provided in Appendix A).280

Approximated Expert Importance Following281

the derivation of Equation (3), we can upper bound282

the output variation (measured by its second norm) 283

caused by pruning the k-th expert in the l-th layer 284

(i.e., when k /∈ Sl) as: 285

||[Gl(Hl)]k ⊙El,k(Hl)||2 ≤ ||[Gl(Hl)]k · σl,k · d||2, (4) 286

where σl,k = maxi,j [El,k(Hl)]i,j denotes the 287

maximum activation value of the output of k-th ex- 288

pert in the l-th MoE layer across all n tokens, d rep- 289

resents the feature dimension of the hidden state. 290

To minimize computational overhead, we assess 291

the importance of the k-th expert in the l-th MoE 292

layer using σl,k, which measures the maximum 293

output perturbation caused by pruning the expert. 294

However, directly evaluating this metric is compu- 295

tationally intensive for long sequences (large n), 296

as it requires processing all n tokens. 297

To address this, we propose an efficient alterna- 298

tive: We first apply max-pooling to the input, ex- 299

tracting the maximum value in each feature dimen- 300

sion across all tokens, and then compute the final 301

maximum value over the resulting vector. This re- 302

duces the computational complexity of evaluating 303

each expert from O(n) to O(1), as follows: 304

σ̃l,k = max
j

[El,k (hl,max)]j , (5) 305

where hl,max = max-pool(Hl) is the max-pooling 306

over Hl on feature dimension. This approach 307

retains critical input features while enabling fast 308

evaluation of expert importance based on a com- 309

pressed input representation. We evaluate alter- 310

native expert evaluation strategies, e.g., Predictor- 311

based evaluation, in Section 5.3.1. 312

4

Linearized Expert Importance To enable ef-313

ficient evaluation of expert importance without314

heavy GPU computation, we propose a linear ap-315

proximation of expert importance using a first-316

order Taylor expansion. For an expert module El,k,317

let x0 ∈ Rd denote the expansion point. The ap-318

proximated importance score σ̃l,k is derived as:319

σ̃l,k ≈ max
j

[
El,k(x0) +

(
∂El,k(x)

∂x
|x=x0

)⊤
(hl,max − x0)

]
j

320

where El,k(x0) is the output of the k-th expert at321

the expansion point x0, and ∂El,k(x0)
∂x0

⊤
is the first-322

order gradient (i.e., Jacobian matrix) at x0.323

To determine the expansion point x0, we com-324

pute the mean of the hidden states from each MoE325

layer on the RedPajama dataset (Computer, 2023),326

using this value as the Taylor expansion point for327

each layer. We evaluate the different expansion328

points in Appendix D.329

Fast Search of Important Expert Building on330

linearized expert importance, we propose a search-331

based method that replaces matrix multiplication332

for calculating expert importance on the CPU. In333

the indexing stage, we compute the Jacobian ma-334

trix ∂El,k(x0)
∂x0

⊤
for each expert at x0 and construct335

a Faiss index (Johnson et al., 2019). During in-336

ference, we treat (hl,max − x0) as a query vector337

and perform a rapid search of the Faiss index to re-338

trieve the top-k maximum inner product and their339

corresponding indices. We use these indices to ob-340

tain the values of El,k(x0) at the corresponding po-341

sitions, add them to the retrieved results, and select342

the maximum value as the importance of expert.343

4.2 Adaptive Layer-wise Expert Loading344

A keen reader might wonder how to select τl for345

different layers. Therefore, this section further ex-346

plores across-layer importance to determine the347

optimal τl and introduces layer-wise expert load-348

ing, enabling efficient dynamic expert pruning.349

Across-Layer Importance Analysis Prior work350

has established that distinct layers in LLMs serve351

specialized functional roles (Fan et al., 2024;352

Zhang et al., 2024). To enable efficient layer-wise353

MoE deployment, we conduct an analysis to deter-354

mine the importance of each MoE layer and assign355

layer-specific thresholds τl accordingly. Inspired356

by (Chuang et al., 2024), we propose an intuitive357

metric Il for the l-th layer importance: the Jensen-358

Shannon divergence (Fuglede and Topsoe, 2004)359

between the model’s original output distribution 360

pori and its modified distribution pl when exclud- 361

ing the l-th layer as: 362

Il = EX∼D

[
1

2
DKL(pori(X)||pm(X)) +

1

2
DKL(pl(X)||pm(X))

]
, 363

where pm = 1
2(pori+pl), X is sampled from a spe- 364

cific data distribution D, DKL represents the KL 365

divergence. 366

Accordingly, we distribute the τl for different 367

layers, guided by the layer importance distribution. 368

The layer importance results and specific τl for dif- 369

ferent MoE LLMs are presented in Section 5.3.2. 370

Layer-wise Loading of Experts Previous stud- 371

ies have demonstrated that, with careful schedul- 372

ing and design, communication delays between 373

the CPU and GPU do not become a bottle- 374

neck for inference latency (Kwon et al., 2023; 375

He et al., 2024). Drawing from this insight, we 376

adopt a layer-wise expert loading strategy to im- 377

plement input-aware expert pruning under limited 378

computational resources. During decoding, each 379

layer dynamically selects the most important ex- 380

perts based on the input, loading them into GPU 381

memory while offloading others to system mem- 382

ory. This reduces GPU memory usage signifi- 383

cantly. Additionally, we employ a fixed-size buffer 384

per layer with a Least Recently Used (LRU) pol- 385

icy (Eliseev and Mazur, 2023) to retain recently 386

active experts, minimizing delays from frequent 387

swaps and enhancing inference efficiency. 388

5 Experiments 389

5.1 Experimental Settings 390

Dataset To evaluate the effectiveness of var- 391

ious expert compression methods, we con- 392

duct extensive experiments on several gen- 393

eral benchmarks, including ARC-easy, ARC- 394

challenge (Clark et al., 2018), BoolQ (Clark 395

et al., 2019), HellaSwag(Zellers et al., 2019), 396

MMLU (Hendrycks et al., 2021) and Wino- 397

Grande (Sakaguchi et al., 2021). The evaluation 398

metrics and prompts follow the settings of Open- 399

Compass (Contributors, 2023). Furthermore, we 400

supplement our evaluation with perplexity anal- 401

ysis on the WikiText2 (Merity et al., 2016) and 402

C4 (Raffel et al., 2020) datasets to assess the 403

model’s language modeling capability. The details 404

of the datasets are reported in Appendix B. 405

5

Model Params↓ Method ARC-e ARC-c BoolQ HellaSwag MMLU Winogrande Average

Mixtral
Instruct

25.0%

BSP 83.09 50.52 59.72 42.72 46.46 52.09 55.77
EEP 86.94 73.67 83.43 63.99 49.25 60.24 69.59

MC MoE 84.74 72.19 82.39 56.38 55.01 58.56 68.21
Expert Sparsity 84.21 72.36 85.35 63.83 51.14 59.83 69.45

PREP 90.19 78.63 80.85 71.76 57.92 61.56 73.48

40.0%

EEP 81.36 68.62 72.04 58.23 43.15 55.36 63.13
MC MoE 75.73 64.38 73.21 44.57 44.77 53.67 59.39

Expert Sparsity 79.32 64.29 79.94 59.33 45.13 58.09 64.35
PREP 87.99 73.73 77.55 67.17 54.74 57.70 69.81

Mixtral

25.0%

BSP 76.87 55.49 59.39 34.77 36.32 48.30 51.86
EEP 79.53 64.27 71.84 42.62 50.41 54.23 60.48

MC MoE 78.22 64.72 62.32 42.60 53.80 54.85 59.42
Expert Sparsity 76.79 61.03 68.62 41.68 53.36 54.22 58.28

PREP 85.71 70.82 73.73 46.67 64.09 55.88 66.15

40.0%

EEP 70.36 60.64 65.04 34.62 43.52 51.75 54.32
MC MoE 64.71 56.64 60.06 26.31 41.74 50.52 50.00

Expert Sparsity 68.67 55.19 62.35 31.63 46.67 50.75 52.54
PREP 82.66 69.27 69.66 42.11 58.23 54.22 62.69

Table 1: Zero-shot performance comparison of different methods under varying expert parameter compression
ratios. "Params↓" represents the reduction radio in expert parameters. “Average” is calculated among six bench-
marks. The best results are shown in bold.

Baselines We compare our method with the fol-406

lowing two categories of expert compression:407

• Weight Quantization Methods aim to retain408

all experts while assigning quantization weights409

based on each expert’s importance. 1) BSP (Li410

et al., 2024) calculates each expert’s importance411

score using a lightweight predictor to determine412

bit allocation. 2) MC MoE (Huang et al., 2024)413

formulates adaptive bit-width allocation as a linear414

programming problem, where the objective func-415

tion balances multiple factors reflecting the impor-416

tance of each expert.417

• Expert Pruning Methods remove less impor-418

tant experts while applying the same quantization419

weight to all experts. 1) Expert Sparsity (Lu et al.,420

2024) enumerates all possible expert combinations421

at the layer level and retains the optimal combi-422

nation by minimizing MSE loss. 2) EEP (Liu423

et al., 2024c) employs a gradient-free evolutionary424

search method, optimizing the pruning of experts425

within an efficient parameter space.426

Experimental Protocols We employ Mixtral427

8x7B and Mixtral 8x7B Instruct (Jiang et al., 2024)428

as our backbone for main evaluation. DeepSeek-429

V2-Lite-Chat (Liu et al., 2024a) serves as an ad-430

ditional backbone to further analyze the perfor-431

mance of our method, as detailed in Section 5.4.432

Both Mixtral 8x7B and Mixtral 8x7B Instruct con-433

sist of 32 transformer layers, each containing MoE434

blocks with 8 experts and employing a top-2 rout-435

ing strategy. In contrast to traditional MoE ar- 436

chitectures, DeepSeek-V2-Lite-Chat has 27 trans- 437

former layers, with the first layer utilizing a dense 438

FNN, and the remaining layers incorporating MoE 439

blocks. Each MoE block in DeepSeek-V2-Lite- 440

Chat consists of two shared experts and 64 inde- 441

pendent experts, using a top-6 routing strategy. To 442

evaluate the model’s performance, we use Accu- 443

racy and Perplexity as metrics. For inference 444

speed, we measure Latency, defined as the time 445

taken to generate each token. Additional experi- 446

mental details are provided in Appendix C.3. 447

Model Params↓ Method Wiki C4

Mixtral
Instruct

25.0%

BSP 8.76 16.71
EEP 5.82 8.99
MC MoE 5.02 7.89
Expert Sparsity 5.01 8.78
PREP 4.76 7.47

40.0%

EEP 6.37 13.79
MC MoE 5.84 11.27
Expert Sparsity 5.64 9.35
PREP 5.03 11.02

Mixtral

25.0%

EEP 5.82 8.99
BSP 6.43 17.40
MC MoE 4.59 8.44
Expert Sparsity 4.81 8.79
PREP 4.52 8.14

40.0%

EEP 7.37 15.79
MC MoE 6.18 15.46
Expert Sparsity 5.62 13.90
PREP 5.72 12.23

Table 2: The perplexity for language modeling on Wiki-
Text2 and C4. The best results are shown in bold.

6

5.2 Main Results448

This subsection presents models’ performance on449

standard benchmarks (Table 1), their perplexity450

on language modeling (Table 2), and inference451

latency across varying input lengths (Figure 3).452

From the results, we have following observations:453

1) PREP achieves the best performance, out-454

performing all baselines across all benchmarks.455

Table 1 shows that PREP significant improve-456

ments over MC MoE and Expert Sparsity. These457

gains can be attributed to the reliance of MC MoE458

and Expert Sparsity on the C4 calibration dataset459

for pruning, which limits their generalization on460

downstream tasks. In contrast, EEP leverages task-461

specific pruning by directly optimizing configura-462

tions on subsets of each benchmark. However, this463

strategy yields suboptimal results and necessitates464

task-aware adjustments, rendering the method im-465

practical for real-world deployment.466

2) PREP achieves the best performance in natu-467

ral language modeling, with the lowest perplex-468

ity across most datasets. We summarize perplex-469

ity results for various methods on WikiText2 and470

C4 in Table 2. Notably, on the C4 dataset, which471

shares distributional similarities with calibration472

data used in MC-MoE and Expert Sparsity, our473

approach outperforms others, highlighting the ro-474

bustness of input-aware pruning under in-domain475

conditions. In contrast, EEP significantly under-476

performs, which is likely because EEP’s pruning477

results are derived from narrow data subsets.478

3) PREP exhibits the lowest latency when mod-479

eling inputs of varying lengths. As shown in Fig-480

ure 3, our method delivers a 1.2× speedup over481

the fastest baselines (Expert Sparsity and EEP).482

This efficiency gain stems from two key innova-483

tions: 1) a carefully designed expert load strategy484

that minimizes redundant overhead, and 2) cus-485

tom CUDA kernel optimizations that reduce inter-486

device communication latency. Finally, we evalu-487

ate the search time of PREP, which requires only488

0.03 seconds per sample —a negligible cost ac-489

counting for less than 0.5% of total inference time.490

5.3 Analysis Experiments491

5.3.1 Validity of Expert Evaluation Strategy492

This experiment evaluates the effectiveness of493

layer-wise expert evaluation strategy. In partic-494

ular, we modify the proposed expert evaluation495

strategy with the following variants: 1) Random496

Scoring: Experts are randomly scored for reten-497

128 512
Input Length

0.0

0.5

1.0

1.5

La
te

nc
y

128 512
Input Length

0.0

1.0

2.0

La
te

nc
y

PREP
Search Time of PREP

MC MoE
Expert Sparse

BSP
EEP

Figure 3: Inference speed comparison for different in-
put lengths.

Params↓ Evaluation Strategy MMLU HellaSwag

50.0%

Random 40.14 47.51
Routing weight 41.76 44.12

Predictor 40.45 42.37
Input-Aware (Ours) 48.93 58.15

56.7%

Random 37.13 41.09
Routing weight 39.41 32.84

Predictor 37.18 35.85
Input-Aware (Ours) 46.23 54.29

67.7%

Random 34.41 32.34
Routing weight 36.27 27.66

Predictor 35.73 30.82
Input-Aware (Ours) 42.29 47.05

Table 3: Performance comparison of different expert
evaluation strategies for dynamic pruning. The best re-
sults are marked bold.

tion; 2) Routing Weight-based evaluation: Experts 498

are evaluated based on their cumulative routing 499

weight contributions; 3) Predictor-based evalua- 500

tion: Experts are evaluated by a trained predictor 501

(Details are provided in the Appendix C.2). We 502

report the performance on the MMLU and Hel- 503

laSwag benchmarks, with expert parameters re- 504

duced by 50.0%, 56.7%, and 67.7%, respectively, 505

demonstrating the efficiency of our strategy. 506

We summarize the results in Table 3. Our obser- 507

vations are as follows: 1) Determining the impor- 508

tance of each expert through routing weights 509

and a trained predictor is challenging, some- 510

times resulting in worse performance than Ran- 511

dom Scoring. 2) Performance gaps between 512

baseline methods and our strategy increases 513

as parameter compression intensifies, exposing 514

fundamental limitations in these variants: their 515

inability to dynamically identify input-critical ex- 516

perts and inherent robustness deficiencies. 517

5.3.2 Analysis of Across-Layer Importance 518

Following the definition in Section 4.2, we analyze 519

the layer importance for Mixtral-8×7B Instruct 520

and DeepSeek-V2-Lite-Chat on the RedPajama 521

dataset, as shown in Figure 4. It can be observed 522

7

Model Method Params↓ ARC-e ARC-c BoolQ HellaSwag MMLU Winogrande Average

DeepSeek
Base 0 80.88 68.24 73.57 65.15 50.20 57.77 65.97

PREP 12.5% 75.59 62.23 64.31 54.41 44.64 55.32 59.42
25.0% 73.11 59.48 61.76 50.65 41.27 53.59 56.64

Table 4: Zero-shot performance comparison between Base and our method under varying expert parameter com-
pression ratios, with Base serving as the upper limit.

Model Method Params↓ Latency128 Latency512

DeepSeek
Base 0 0.71 0.82

PREP 12.5% 0.54 0.63
25.0% 0.49 0.61

Table 5: Inference speed comparison for different in-
put lengths. ’Latency128’ and ’Latency512’ represent
the latency for input lengths of 128 and 512, respec-
tively. The best results are marked bold.

0 10 20 30
Layer Index

0

1

2

3

Im
po

rta
nc

e

1e 6 Mixtral

0 10 20
Layer Index

0

1

2

Im
po

rta
nc

e

1e 6 Deepseek

Figure 4: Layer importance for Mixtral-8×7B Instruct
and DeepSeek-V2-Lite-Chat.

that both models exhibit greater importance in523

the shallower layers. Notably, DeepSeek-V2-524

Lite-Chat shows significantly higher importance525

in the last two layers, whereas the Mixtral-8×7B526

Instruct exhibits the opposite pattern. Based on527

the importance scores for each MoE layer on the528

calibration set, we assign layer-wise expert reten-529

tion thresholds under a pre-defined expert parame-530

ter compression ratio. For the Mixtral model, we531

divide the 32 MoE layers into four groups. The532

number of experts retained between groups is dis-533

tributed in a 2:2:1:1 ratio, with each group hav-534

ing an equal distribution of retention thresholds535

across its layers. For the DeepSeek model, we di-536

vide the first 24 MoE layers into four groups, with537

the remaining two layers assigned to a separate538

group. The number of experts retained between539

groups is allocated in a 2:2:1:1:1 ratio, with reten-540

tion thresholds evenly distributed across the layers541

within each group.542

5.4 More Analysis on DeepSeek543

In this subsection, we apply our hardware-friendly544

input-aware pruning method to DeepSeek-V2-545

Lite-Chat to evaluate its generalizability. It is546

important to note that existing pruning meth-547

ods for MoE LLMs either do not support the 548

DeepSeek model or have not released corre- 549

sponding code. For a baseline comparison, we 550

use a uniform 4-bit quantization strategy for each 551

expert and fully load the expert module via Layer- 552

wise Loading of Experts, preserving lossless per- 553

formance. In our experiments, we restrict each 554

MoE block to retain at most one expert, prioritiz- 555

ing minimal memory usage. 556

Results are reported in Table 4 (zero-shot per- 557

formance) and Table 5 (latency vs. input length). 558

From the results, we have the following observa- 559

tions: 1) Our methods does not exhibit a signifi- 560

cant performance decline compared to the base 561

method. Table 4 shows that pruning 12.5% and 562

25% of expert parameters reduces the models av- 563

erage performance by 6.55% and 9.33%, respec- 564

tively. These declines are acceptable, as dynamic 565

pruning on quantized models inherently intro- 566

duces additional performance trade-offs. 2) The 567

proposal effectively improves inference speed 568

over the base method. In Table 5, pruning 25% of 569

expert parameters reduces latency by 30.14% for 570

an input length of 128. These results demonstrate 571

the method’s effectiveness in balancing computa- 572

tional efficiency and memory constraints. Addi- 573

tionally, inference memory usage is approximately 574

4.5GB under this setting. 575

6 Conclusion 576

This paper introduces an efficient input-aware ex- 577

pert pruning method, PREP, to tackle the mem- 578

ory and computational challenges in deploying 579

MoE-based LLMs. By dynamically evaluating the 580

linearized importance of each layer expert for a 581

given input through a fast CPU-based search, and 582

loading the most critical experts into GPU mem- 583

ory layer by layer with a well-designed schedul- 584

ing strategy, PREP significantly reduces mem- 585

ory overhead and inference latency. Experimen- 586

tal results demonstrate that our approach outper- 587

forms the baseline on almost all benchmarks and 588

achieves the lowest inference latency. 589

8

7 Limitations590

Our proposed framework, PREP, significantly re-591

duces memory usage and accelerates inference,592

making MoE-based LLMs more deployable. How-593

ever, certain limitations persist. First, the input-594

aware expert pruning strategy does not support595

batch inference. This limitation arises because our596

method dynamically loads only the necessary ex-597

perts based on each input’s features, which com-598

plicates batch processing. Second, due to compu-599

tational constraints, we have not evaluated PREP600

on larger MoE models such as Mixtral-8×22B601

(141B) and DeepSeek-V3 (671B). In future work,602

we intend to apply our method to these larger603

models to further assess its scalability and perfor-604

mance.605

References606

Hervé Abdi. 2007. Singular value decomposition607
(svd) and generalized singular value decomposi-608
tion. Encyclopedia of measurement and statistics,609
907(912):44.610

Samira Abnar, Harshay Shah, Dan Busbridge,611
Alaaeldin Mohamed Elnouby Ali, Josh Susskind,612
and Vimal Thilak. 2025. Parameters vs flops: Scal-613
ing laws for optimal sparsity for mixture-of-experts614
language models. arXiv preprint arXiv:2501.12370.615

Szymon Antoniak, Michał Krutul, Maciej Pióro, Jakub616
Krajewski, Jan Ludziejewski, Kamil Ciebiera, Krys-617
tian Król, Tomasz Odrzygóźdź, Marek Cygan, and618
Sebastian Jaszczur. 2025. Mixture of tokens: Con-619
tinuous moe through cross-example aggregation.620
Advances in Neural Information Processing Systems,621
37:103873–103896.622

Hicham Badri and Appu Shaji. 2023. Half-quadratic623
quantization of large machine learning models.624

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.625
2024. A survey on deep neural network pruning:626
Taxonomy, comparison, analysis, and recommenda-627
tions. IEEE Transactions on Pattern Analysis and628
Machine Intelligence.629

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon630
Kim, James R. Glass, and Pengcheng He. 2024.631
Dola: Decoding by contrasting layers improves fac-632
tuality in large language models. In The Twelfth633
International Conference on Learning Representa-634
tions.635

Christopher Clark, Kenton Lee, Ming-Wei Chang,636
Tom Kwiatkowski, Michael Collins, and Kristina637
Toutanova. 2019. BoolQ: Exploring the surprising638
difficulty of natural yes/no questions. In Proceed-639
ings of the 2019 Conference of the North American640

Chapter of the Association for Computational Lin- 641
guistics: Human Language Technologies, Volume 1 642
(Long and Short Papers), pages 2924–2936, Min- 643
neapolis, Minnesota. Association for Computational 644
Linguistics. 645

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 646
Ashish Sabharwal, Carissa Schoenick, and Oyvind 647
Tafjord. 2018. Think you have solved question an- 648
swering? try arc, the ai2 reasoning challenge. arXiv 649
preprint arXiv:1803.05457. 650

Together Computer. 2023. Redpajama: An open 651
source recipe to reproduce llama training dataset. 652

OpenCompass Contributors. 2023. Opencompass: 653
A universal evaluation platform for foundation 654
models. https://github.com/open-compass/ 655
opencompass. 656

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, 657
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel 658
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé 659
Jégou. 2024. The faiss library. arXiv preprint 660
arXiv:2401.08281. 661

Artyom Eliseev and Denis Mazur. 2023. Fast inference 662
of mixture-of-experts language models with offload- 663
ing. arXiv preprint arXiv:2312.17238. 664

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng 665
Han, Shuo Shang, Aixin Sun, Yequan Wang, and 666
Zhongyuan Wang. 2024. Not all layers of llms 667
are necessary during inference. arXiv preprint 668
arXiv:2403.02181. 669

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 670
Switch transformers: Scaling to trillion parameter 671
models with simple and efficient sparsity. Journal 672
of Machine Learning Research, 23(120):1–39. 673

Bent Fuglede and Flemming Topsoe. 2004. Jensen- 674
shannon divergence and hilbert space embedding. 675
In International symposium onInformation theory, 676
2004. ISIT 2004. Proceedings., page 31. IEEE. 677

Shangqian Gao, Ting Hua, Reza Shirkavand, Chi-Heng 678
Lin, Zhen Tang, Zhengao Li, Longge Yuan, Fangyi 679
Li, Zeyu Zhang, Alireza Ganjdanesh, et al. 2025. 680
Tomoe: Converting dense large language models to 681
mixture-of-experts through dynamic structural prun- 682
ing. arXiv preprint arXiv:2501.15316. 683

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 684
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 685
Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. 686
Deepseek-r1: Incentivizing reasoning capability in 687
llms via reinforcement learning. arXiv preprint 688
arXiv:2501.12948. 689

Ying He, Jingcheng Fang, F Richard Yu, and Victor C 690
Leung. 2024. Large language models (llms) infer- 691
ence offloading and resource allocation in cloud- 692
edge computing: An active inference approach. 693
IEEE Transactions on Mobile Computing. 694

9

https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

Dan Hendrycks, Collin Burns, Steven Basart, Andy695
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-696
hardt. 2021. Measuring massive multitask language697
understanding. Proceedings of the International698
Conference on Learning Representations (ICLR).699

Wei Huang, Yue Liao, Jianhui Liu, Ruifei He, Haoru700
Tan, Shiming Zhang, Hongsheng Li, Si Liu, and Xi-701
aojuan Qi. 2024. Mc-moe: Mixture compressor for702
mixture-of-experts llms gains more. arXiv preprint703
arXiv:2410.06270.704

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,705
and Geoffrey E Hinton. 1991. Adaptive mixtures of706
local experts. Neural computation, 3(1):79–87.707

Albert Q Jiang, Alexandre Sablayrolles, Antoine708
Roux, Arthur Mensch, Blanche Savary, Chris709
Bamford, Devendra Singh Chaplot, Diego de las710
Casas, Emma Bou Hanna, Florian Bressand, et al.711
2024. Mixtral of experts. arXiv preprint712
arXiv:2401.04088.713

Peng Jin, Bo Zhu, Li Yuan, and Shuicheng YAN. 2025.714
Moe++: Accelerating mixture-of-experts methods715
with zero-computation experts. In The Thirteenth716
International Conference on Learning Representa-717
tions.718

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.719
Billion-scale similarity search with GPUs. IEEE720
Transactions on Big Data, 7(3):535–547.721

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying722
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-723
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient724
memory management for large language model serv-725
ing with pagedattention. In Proceedings of the 29th726
Symposium on Operating Systems Principles, pages727
611–626.728

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,729
Dehao Chen, Orhan Firat, Yanping Huang, Maxim730
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.731
Gshard: Scaling giant models with conditional com-732
putation and automatic sharding. arXiv preprint733
arXiv:2006.16668.734

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang735
Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo,736
Da Chen, Dong Li, et al. 2025a. Minimax-01:737
Scaling foundation models with lightning attention.738
arXiv preprint arXiv:2501.08313.739

Pingzhi Li, Xiaolong Jin, Yu Cheng, and Tianlong740
Chen. 2024. Examining post-training quantiza-741
tion for mixture-of-experts: A benchmark. arXiv742
preprint arXiv:2406.08155.743

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin744
Sung, Yu Cheng, Mohit Bansal, and Tianlong Chen.745
2023a. Merge, then compress: Demystify efficient746
smoe with hints from its routing policy. arXiv747
preprint arXiv:2310.01334.748

Shangjie Li, Xiangpeng Wei, Shaolin Zhu, Jun Xie, 749
Baosong Yang, and Deyi Xiong. 2023b. MMNMT: 750
Modularizing multilingual neural machine transla- 751
tion with flexibly assembled MoE and dense blocks. 752
In Proceedings of the 2023 Conference on Empiri- 753
cal Methods in Natural Language Processing, pages 754
4978–4990, Singapore. Association for Computa- 755
tional Linguistics. 756

Wei Li, Lujun Li, You-Liang Huang, Mark G. Lee, 757
Shengjie Sun, Wei Xue, and Yike Guo. 2025b. 758
Structured mixture-of-experts LLMs compression 759
via singular value decomposition. 760

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, 761
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong 762
Ruan, Damai Dai, Daya Guo, et al. 2024a. 763
Deepseek-v2: A strong, economical, and efficient 764
mixture-of-experts language model. arXiv preprint 765
arXiv:2405.04434. 766

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 767
Bochao Wu, Chengda Lu, Chenggang Zhao, 768
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 769
2024b. Deepseek-v3 technical report. arXiv 770
preprint arXiv:2412.19437. 771

Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning, 772
Matthew B Blaschko, Shengen Yan, Guohao Dai, 773
Huazhong Yang, and Yu Wang. 2024c. Efficient ex- 774
pert pruning for sparse mixture-of-experts language 775
models: Enhancing performance and reducing infer- 776
ence costs. arXiv preprint arXiv:2407.00945. 777

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan 778
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li. 779
2024. Not all experts are equal: Efficient expert 780
pruning and skipping for mixture-of-experts large 781
language models. In Proceedings of the 62nd An- 782
nual Meeting of the Association for Computational 783
Linguistics (Volume 1: Long Papers), pages 6159– 784
6172, Bangkok, Thailand. Association for Computa- 785
tional Linguistics. 786

Ang Lv, Ruobing Xie, Yining Qian, Songhao Wu, 787
Xingwu Sun, Zhanhui Kang, Di Wang, and Rui Yan. 788
2025. Autonomy-of-experts models. arXiv preprint 789
arXiv:2501.13074. 790

Stephen Merity, Caiming Xiong, James Bradbury, and 791
Richard Socher. 2016. Pointer sentinel mixture mod- 792
els. arXiv preprint arXiv:1609.07843. 793

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 794
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 795
Wei Li, and Peter J. Liu. 2020. Exploring the limits 796
of transfer learning with a unified text-to-text trans- 797
former. J. Mach. Learn. Res., 21(1). 798

Ramin Raziperchikolaei and Young-joo Chung. 2024. 799
One-class recommendation systems with the hinge 800
pairwise distance loss and orthogonal representa- 801
tions. In Proceedings of the 18th ACM Conference 802
on Recommender Systems, pages 1033–1038. 803

10

https://openreview.net/forum?id=t7P5BUKcYv
https://openreview.net/forum?id=t7P5BUKcYv
https://openreview.net/forum?id=t7P5BUKcYv
https://doi.org/10.18653/v1/2023.emnlp-main.303
https://doi.org/10.18653/v1/2023.emnlp-main.303
https://doi.org/10.18653/v1/2023.emnlp-main.303
https://doi.org/10.18653/v1/2023.emnlp-main.303
https://doi.org/10.18653/v1/2023.emnlp-main.303
https://openreview.net/forum?id=ho7ZUS1z8A
https://openreview.net/forum?id=ho7ZUS1z8A
https://openreview.net/forum?id=ho7ZUS1z8A
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-804
ula, and Yejin Choi. 2021. Winogrande: an adversar-805
ial winograd schema challenge at scale. Commun.806
ACM, 64(9):99106.807

Manish Sharma, Jamison Heard, Eli Saber, and Panos P808
Markopoulos. 2025. Convolutional neural network809
compression via dynamic parameter rank pruning.810
IEEE Access.811

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,812
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff813
Dean. 2017. Outrageously large neural networks:814
The sparsely-gated mixture-of-experts layer. arXiv815
preprint arXiv:1701.06538.816

Thaddeus Tarpey. 2007. Linear transformations and817
the k-means clustering algorithm: applications818
to clustering curves. the american statistician,819
61(1):34–40.820

A Vaswani. 2017. Attention is all you need. Advances821
in Neural Information Processing Systems.822

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang823
Song, Xin Liu, Yanzhi Wang, Xue Lin, and An Xu.824
2024a. Moe-pruner: Pruning mixture-of-experts825
large language model using the hints from its router.826
arXiv preprint arXiv:2410.12013.827

Zhitian Xie, Yinger Zhang, Chenyi Zhuang, Qitao Shi,828
Zhining Liu, Jinjie Gu, and Guannan Zhang. 2024b.829
Mode: A mixture-of-experts model with mutual dis-830
tillation among the experts. Proceedings of the AAAI831
Conference on Artificial Intelligence, 38(14):16067–832
16075.833

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Ma-834
hesh Marina. 2024. Moe-infinity: Activation-aware835
expert offloading for efficient moe serving. arXiv836
preprint arXiv:2401.14361.837

Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang,838
Yu Gong, Yuanlin Duan, Wenqi Jia, Miao Yin,839
Yu Cheng, and Bo Yuan. 2024. MoE-i2: Com-840
pressing mixture of experts models through inter-841
expert pruning and intra-expert low-rank decompo-842
sition. In Findings of the Association for Compu-843
tational Linguistics: EMNLP 2024, pages 10456–844
10466, Miami, Florida, USA. Association for Com-845
putational Linguistics.846

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali847
Farhadi, and Yejin Choi. 2019. HellaSwag: Can848
a machine really finish your sentence? In Pro-849
ceedings of the 57th Annual Meeting of the Asso-850
ciation for Computational Linguistics, pages 4791–851
4800, Florence, Italy. Association for Computational852
Linguistics.853

Jianyi Zhang, Da-Cheng Juan, Cyrus Rashtchian,854
Chun-Sung Ferng, Heinrich Jiang, and Yiran Chen.855
2024. Sled: Self logits evolution decoding for im-856
proving factuality in large language models. In Ad-857
vances in Neural Information Processing Systems,858
volume 37, pages 5188–5209. Curran Associates,859
Inc.860

Changyuan Zhao, Hongyang Du, Dusit Niyato, Jiawen 861
Kang, Zehui Xiong, Dong In Kim, Xuemin Sherman 862
Shen, and Khaled B Letaief. 2025. Enhancing physi- 863
cal layer communication security through generative 864
ai with mixture of experts. IEEE Wireless Commu- 865
nications. 866

11

https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1609/aaai.v38i14.29539
https://doi.org/10.1609/aaai.v38i14.29539
https://doi.org/10.1609/aaai.v38i14.29539
https://doi.org/10.18653/v1/2024.findings-emnlp.612
https://doi.org/10.18653/v1/2024.findings-emnlp.612
https://doi.org/10.18653/v1/2024.findings-emnlp.612
https://doi.org/10.18653/v1/2024.findings-emnlp.612
https://doi.org/10.18653/v1/2024.findings-emnlp.612
https://doi.org/10.18653/v1/2024.findings-emnlp.612
https://doi.org/10.18653/v1/2024.findings-emnlp.612
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://proceedings.neurips.cc/paper_files/paper/2024/file/0939f13ffce3ff487509d902ddba4571-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0939f13ffce3ff487509d902ddba4571-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0939f13ffce3ff487509d902ddba4571-Paper-Conference.pdf

A A Proof of Output Variation867

Approximation868

This section provides the proof for the approxima-869

tion of the output variation resulting from retain-870

ing the expert set Sl in the l-th MoE layer, as de-871

scribed in Equation (3).872

The pruned routing weights are re-normalized873

based on the original weights. Formally, this can874

be expressed as:875

[G′
l(Hl)]i =

[Gl(Hl)]i∑|Sl|
j∈Sl

[Gl(Hl)]j
, ∀i ∈ Sl (6)876

We now expand the second term in Equation 3:877

|Sl|∑
k∈Sl

(
[Gl(Hl)]k − [G′

l(Hl)]k
)
⊙ El,k(Hl)

=

|Sl|∑
k∈Sl

[Gl(Hl)]k

(
1− 1∑|Sl|

j∈Sl
[Gl(Hl)]j

)
⊙ El,k(Hl)

(7)878

Since our pruning strategy effectively identifies879

critical experts and allocates a relatively uniform880

pruning threshold across layers, we approximate881 ∑|Sl|
j∈Sl

[Gl(Hl)]j ≈ 1. This simplifies the term to:882 1− 1∑|Sl|
j∈Sl

[Gl(Hl)]j

 ≈ 0 (8)883

Thus, we can conclude that884

[Gl(Hl)]k

(
1− 1∑|Sl|

j∈Sl
[Gl(Hl)]j

)
≈ 0, implying885

that [Gl(Hl)]k ≈ [G′
l(Hl)]k.886

B Details of Benchmark Evaluations887

We conduct extensive comparative experiments to888

evaluate our proposed dynamic pruning approach889

against baseline models. The evaluation is per-890

formed on multiple popular benchmarks using the891

OpenCompass LLM evaluation framework. The892

benchmarks used for evaluation include:893

• ARC-e is a dataset consisting of 3,000 elementary-894

level science questions in a multiple-choice for-895

mat. We report the zero-shot accuracy on ARC-896

e and use the prompt "Question: {question} A:897

{textA} B: {textB} C: {textC} D: {textD}. Answer:".898

• ARC-c includes challenging science questions899

compared to ARC-e, designed to assess common-900

sense reasoning and factual knowledge. We report901

zero-shot accuracy on ARC-c and use the same 902

prompt as ARC-e. 903

• BoolQ is a dataset 15,942 contains yes/no ques- 904

tions based on passages from various sources. We 905

report zero-shot accuracy on BoolQ and use "Pas- 906

sage: {passage} Question: {question}? A. Yes B. 907

No. Answer:" as the prompt. 908

• HellaSwag is a challenging benchmark designed 909

for evaluating commonsense reasoning. Given an 910

incomplete context, the model must predict the 911

most plausible ending. We report accuracy on Hel- 912

laSwag and use "{ctx} Question: Which ending 913

makes the most sense? A. {A} B. {B} C. {C} D. {D} 914

You may choose from ’A’, ’B’, ’C’, ’D’. Answer:" 915

as the prompt. 916

• MMLU is a benchmark designed to evaluate the 917

general knowledge of models, consisting of 57 918

tasks across various domains, including mathemat- 919

ics, professional law, and sociology. We report the 920

accuracy on multiple tasks within MMLU and em- 921

ploy task-specific prompts for each evaluation. 922

• WinoGrande is a dataset designed to assess a 923

model’s ability to resolve coreference in complex 924

sentences, consisting of 44,000 problems. We re- 925

port accuracy on WinoGrande and use "Which of 926

the following is a good sentence: A. {opt1} B. 927

{opt2} Answer:" as the prompt. 928

C More Experimental Details 929

C.1 More Experimental Results 930

This section presents additional comparative re- 931

sults between our method and the baselines un- 932

der the configuration where expert parameters are 933

compressed by 33.3%. Tables 6 and 7 extend Ta- 934

bles 1 and 2, respectively. 935

From Table 6, we observe similar trends to 936

those in Section 5.2: when the expert parame- 937

ter is reduced by 33%, our method achieves the 938

best performance across most benchmarks. How- 939

ever, due to significant distributional differences 940

between the upstream calibration dataset and the 941

benchmarks, methods such as BSP, MC MoE, and 942

Expert Sparsity exhibit considerable performance 943

discrepancies on some datasets compared to our 944

approach. For example, using Mixtral 8×7B In- 945

struct as the backbone, MC MoE performs only 946

1.62% worse than our method on BoolQ, while 947

12

Model Params↓ Method ARC-e ARC-c BoolQ HellaSwag MMLU Winogrande Average

Mixtral
Instruct

33.3%

BSP 70.32 46.70 54.46 36.96 34.92 48.93 48.72
EEP 83.53 70.38 78.32 61.83 47.46 59.62 67.19

MC MoE 78.27 65.49 76.70 53.80 47.03 56.99 63.05
Expert Sparsity 83.09 68.15 79.79 62.99 48.31 58.49 66.80

PREP 88.54 77.25 78.32 68.93 56.52 57.54 71.18

Mixtral 33.3%

BSP 63.68 45.49 56.88 25.19 29.28 34.27 42.47
EEP 74.81 61.83 70.32 37.13 45.16 52.72 57.00

MC MoE 72.11 61.04 64.40 38.23 47.31 51.78 55.81
Expert Sparsity 72.67 58.11 63.98 34.71 48.82 51.38 54.95

PREP 83.25 70.38 71.82 44.49 60.22 56.21 64.40

Table 6: Zero-shot performance comparison of different methods under varying expert parameter compression
ratios. "Params↓" represents the reduction radio in expert parameters. “Average” is calculated among six bench-
marks. The best results are shown in bold.

Model Params↓ Method Wiki C4

Mixtral
Instruct

33.3%

BSP 9.71 19.45
EEP 6.04 10.25
MC MoE 5.54 9.05
Expert Sparsity 5.46 8.98
PREP 4.91 9.49

Mixtral 33.3%

BSP 8.21 21.85
EEP 7.14 13.39
MC MoE 5.65 11.92
Expert Sparsity 5.53 10.88
PREP 5.47 10.22

Table 7: Perplexity evaluation on WikiText2 and C4.
The best results are shown in bold.

it exhibits a 15.13% performance gap on the Hel-948

laSwag benchmark.949

Table 7 demonstrates that our method consis-950

tently achieves the lowest perplexity, confirming951

its retention of the original language modeling ca-952

pabilities. Thanks to the pruning strategy based953

on the C4 training set, both MC MoE and Expert954

Sparsity methods exhibit similar performance to955

ours.956

C.2 Implementation Details for Expert957

Predictor958

In this section, we illustrate the implementation de-959

tails of the expert predictor, which is a compara-960

tive variant for expert evaluation strategy in Sec-961

tion 5.3.1.962

Training Data Collection As detailed in Sec-963

tion 5.3.1, the goal of the expert predictor is to964

effectively predict the relative importance of each965

expert for each sample, such that the difference966

between the modified output and the original dis-967

tribution is minimized. However, the computa-968

tional cost of enumerating all possible expert com-969

binations is prohibitively high. To address this, 970

we first assess the importance of each expert for 971

the current sample using the method proposed in 972

(Yang et al., 2024). Subsequently, we rank the ex- 973

perts based on their scores and use their rank and 974

scores as labels. Intuitively, we choose the atten- 975

tion weights, hidden states, routing weights, and 976

layer indices from each layer as the input to the 977

predictor. 978

Details of Expert Predictor (a) Network Archi- 979

tecture: (i) Layer Idx embedding: An embedding 980

layer with 32 embedding units (corresponding to 981

the number of layers) and an embedding dimen- 982

sion of 128 for the layer index; (ii) Attention Gate 983

layer: A linear layer with an input size of 1 and a 984

hidden size of 128 for attention weights; (iii) Rout- 985

ing Weight Gate layer: A linear layer with an in- 986

put size of 8 (representing the number of local ex- 987

perts) and a hidden size of 128 for routing weights; 988

(iv) Input Layer: a linear with an input size of 989

4096 and a hidden size of 128 for hidden state; (v) 990

CLS Embedding: A randomly initialized parame- 991

ter with a hidden dimension of 128 for the CLS to- 992

ken; (vi) Encoder: A Transformer (Vaswani, 2017) 993

comprising two layers, each with 2 attention heads 994

and a hidden size of 128; (vii) Output layer: A lin- 995

ear layer with an input size of 4096 and a hidden 996

size of 8 (representing the number of local experts) 997

for the CLS token. (b) Training Process: Due to 998

the limited size of the collected dataset, we aug- 999

ment the data using a pairwise approach (Raziper- 1000

chikolaei and Chung, 2024) to maximize its utility 1001

while reducing the risk of overfitting. Specifically, 1002

pairs of samples are formed within each batch, and 1003

the model is trained using hinge loss as the objec- 1004

tive function to optimize the overall predictions; 1005

(iii) Hyperparameters: We use the Adam optimizer 1006

13

0 20 40
Epoch

800

600

400

200

0
Lo

ss
Training Loss

0 20 40
Epoch

0.21

0.22

0.23

0.24

0.25

R
ec

al
l@

16

Recall@16 Score

0 20 40
Epoch

0.61

0.62

0.63

0.64

R
ec

al
l@

64

Recall@64 Score

Figure 5: Training loss of the expert predictor and re-
call score on the validation set during training.

Params↓ Expansion Point MMLU HellaSwag

25.0%

Constant 56.72 67.33
Gaussian Noise 46.71 50.06
Cluster Center 57.24 67.38

Mean State (Ours) 57.92 71.76

33.3%

Constant 54.64 64.74
Gaussian Noise 42.35 24.67
Cluster Center 56.13 66.39

Mean State (Ours) 56.52 68.93

40.0%

Constant 52.02 61.46
Gaussian Noise 40.73% 24.96
Cluster Center 54.51 61.71

Mean State (Ours) 54.74 67.17

Table 8: Evaluation results of different Taylor expan-
sion points for linearized expert importance. The best
results are shown in bold.

with a learning rate of 0.001, trained for 50 epochs,1007

and apply a decay rate of 0.95 every 1000 steps.1008

The collected dataset is split into a training set and1009

a validation set in a 7:3 ratio. (c) Training Results:1010

Figure 5 reports the loss on the training set, as well1011

as the recall@16 and recall@64 on the validation1012

set during the training process of the expert predic-1013

tor. It can be observed that the recall@16 and re-1014

call@64 on the validation set converge to approxi-1015

mately 25% and 64%, respectively, which is below1016

the desired performance. This suggests that cap-1017

turing the relative importance of experts based on1018

input using a simple lightweight trainable module1019

is challenging.1020

C.3 More Experiment Settings1021

In this section, we provide additional experimen-1022

tal settings to facilitate the reproduction of our re-1023

sults.1024

Hardware Setup The hardware platform used1025

in this experiment consists of 8 NVIDIA RTX1026

3090 GPUs and 1 NVIDIA L20 GPU. The CPU is1027

an AMD Ryzen Threadripper 3960X 24-core Pro-1028

cessor, featuring 48 logical CPU cores, with each1029

core supporting 2 threads.1030

Model Quantization Settings We apply Half-1031

Quadratic Quantization (Badri and Shaji, 2023) to1032

Params↓ Faiss Index MMLU HellaSwag

25.0% IndexFlatIP 58.37 71.84
IndexIVFFlat (Ours) 57.92 71.76

33.3% IndexFlatIP 56.55 69.07
IndexIVFFlat (Ours) 56.52 68.93

40.0% IndexFlatIP 55.60 67.67
IndexIVFFlat (Ours) 54.74 67.17

Table 9: Ablation results on different Index methods.

quantize the backbone model. Specifically, for 1033

Mixtral 8×7B and Mixtral 8×7B Instruct, we 1034

quantize the transformer attention block parame- 1035

ters to 4 bits with a group size of 64 and the ex- 1036

perts in the MoE layer to 3 bits with a group size 1037

of 64. For DeepSeek-V2-Lite-Chat, we quantize 1038

both the transformer attention block and the MoE 1039

block, including shared and independent experts, 1040

to 4 bits, with a group size of 64. 1041

D Influence of Taylor Expansion Point 1042

In this subsection, we investigate how the choice 1043

of the Taylor expansion point for the linearized 1044

expert importance affects overall performance. 1045

Specifically, we explore several variants for select- 1046

ing different Taylor expansion points: 1) Constant: 1047

The expansion point is a constant vector of all 1048

ones; 2) Gaussian Noise: The expansion point is a 1049

random vector drawn from a Gaussian distribution; 1050

3) Cluster Center: The expansion point is the clus- 1051

ter center (k=3) of the hidden states collected from 1052

each layer of the RedPajama dataset, obtained us- 1053

ing the K-means algorithm (Tarpey, 2007). 1054

Table 8 shows how different Taylor expansion 1055

points affect model performance across various ex- 1056

pert parameter compression ratios on the MMLU 1057

and HellaSwag benchmarks. The results reveal 1058

that the mean of the hidden state as the expan- 1059

sion point yields superior overall performance. 1060

Notably, using the cluster center as the expansion 1061

point leads to suboptimal results. We attribute this 1062

to the fact that the cluster center tends to overfit the 1063

calibration set distribution, leading to poor gener- 1064

alization in downstream benchmarks. 1065

E Effects of Faiss Index 1066

To boost search efficiency, we replace the basic 1067

IndexFlatIP method, which does exact searches 1068

when building the index, with the faster but ap- 1069

proximate IndexIVFFlat method (Douze et al., 1070

14

2024). We show how both methods perform in Ta-1071

ble 9 and also check how quickly they work.1072

The results demonstrate that the use of the ac-1073

celerated index does not significantly impact over-1074

all model performance compared to the exact in-1075

dex, confirming its viability as an alternative in1076

our approach. Furthermore, constructing a more1077

efficient Faiss index reduces the search time to1078

approximately 1.3 × 10−3 seconds, compared to1079

1.04 × 10−2 seconds for the exact search, result-1080

ing in an 8.0× speedup.1081

15

	Introduction
	Related Works
	Mixture-of-Experts in LLMs
	Expert Purning for MoE LLMs
	Expert Approximation for MoE LLMs

	Preliminary
	Input-Aware Expert Pruning
	Efficient Layer-wise Expert Evaluation
	Adaptive Layer-wise Expert Loading

	Experiments
	Experimental Settings
	Main Results
	Analysis Experiments
	Validity of Expert Evaluation Strategy
	Analysis of Across-Layer Importance

	More Analysis on DeepSeek

	Conclusion
	Limitations
	A Proof of Output Variation Approximation
	Details of Benchmark Evaluations
	More Experimental Details
	More Experimental Results
	Implementation Details for Expert Predictor
	More Experiment Settings

	Influence of Taylor Expansion Point
	Effects of Faiss Index

