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Abstract
API call generation is the cornerstone of large001
language models’ tool-using ability that pro-002
vides access to the larger world. However, ex-003
isting supervised and in-context learning ap-004
proaches suffer from high training costs, poor005
data efficiency, and generated API calls that can006
be unfaithful to the API documentation and the007
user’s request. To address these limitations, we008
propose an output-side optimization approach009
called FANTASE. Two of the unique contribu-010
tions of FANTASE are its State-Tracked Con-011
strained Decoding (SCD) and Reranking com-012
ponents. SCD dynamically incorporates ap-013
propriate API constraints in the form of To-014
ken Search Trie for efficient and guaranteed015
generation faithfulness with respect to the API016
documentation. The Reranking component effi-017
ciently brings in the supervised signal by lever-018
aging a lightweight model as the discriminator019
to rerank the beam-searched candidate genera-020
tions of the large language model. We demon-021
strate the superior performance of FANTASE022
in API call generation accuracy, inference effi-023
ciency, and context efficiency with DSTC8 and024
API Bank datasets.025

1 Introduction026

In recent year, there has been a surge of interest027

in enabling the automated tool-using capability of028

intelligent systems (Schick et al., 2023; Mialon029

et al., 2023). Specifically, as a bridge to the larger030

world, Application Programming Interface (API)031

calls allow virtual assistants to control smart-home032

devices, retrieve information, make reservations,033

and more on the user’s behalf. Figure 1 shows how034

an API call may improve the user-assistant conver-035

sation and satisfy the user’s needs. Generating such036

an API call requires advanced capabilities in un-037

derstanding the requirements of an API (including038

its endpoints, parameters, and expected data for-039

mats) and reasoning over the conversation context040

to translate the user’s needs into the appropriate041

API format.042

Figure 1: Example of an API call that retrieves informa-
tion based on the user’s needs given in the conversation.

With recent breakthroughs in generative Large 043

Language Models (LLMs) such as GPT-X (Ouyang 044

et al., 2022; OpenAI, 2023) and LLaMA (Touvron 045

et al., 2023a,b), researchers have started to investi- 046

gate their competence in complex reasoning tasks 047

such as utilizing appropriate API tools (Li et al., 048

2023; Qin et al., 2023; Wang et al., 2023a). Their 049

attempts focus on methods that can generally be 050

grouped into those based on supervised fine-tuning 051

for task-specific usage and those based on aug- 052

menting input-side context information (such as 053

API shortlisting and exemplar selection) and op- 054

timizing prompts for in-context learning (Brown 055

et al., 2020; Wei et al., 2022). Despite the strong su- 056

pervision or extensive context, these methods still 057

cannot ensure the generation’s faithfulness with re- 058

spect to the API documentation and suffer data and 059

compute inefficiency. In contrast to previous works, 060

we focus on how decoding strategies improve the 061

generation’s faithfulness, which is complementary 062

to supervised fine-tuning and in-context learning 063

methods. As a result, we present FANTASE (FAN- 064

TAstic SEquences and Where to Find Them), a 065

framework that employs State-tracked Constrained 066

Decoding (SCD) and Reranking components, for 067

faithful and efficient API call generation. 068

The SCD tracks the states of the generation 069

and retrieves appropriate API documentation con- 070
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straints in the form of Constrained Token Search071

Trie (CTST) used at each decoding step. SCD072

is guaranteed to generate API calls that are faith-073

ful with respect to the API documentation (§ 4.1),074

and provides inference efficiency (§ 6.2) with075

CTST that eliminates unnecessary forward infer-076

ence passes. Compared to supervised fine-tuning077

methods, SCD brings considerable improvements078

(§ 6.1) without the data labeling and model training079

related hefty costs of labor, time, and computing080

that become increasingly expensive as the size of081

the LLM grows (Yang et al., 2023). SCD also082

reduces the in-context learning’s reliance on the re-083

peated supply of extensive contextual information084

for the inference of each instance (§ 6.3) by effec-085

tively incorporating API documentation constraints086

and guaranteeing the associated faithfulness at the087

decoding stage.088

The Reranking component of FANTASE lever-089

ages models that are significantly smaller than090

LLMs for efficient incorporation of supervised sig-091

nals (§ 4.2). As the correct API generation may092

not always have the highest sequence probability093

among beam-searched candidate sequences (§ 3),094

we train lightweight models to discriminate and095

rerank LLMs’ candidate generations and demon-096

strate their effectiveness in digging out those cor-097

rect sequences (§ 6.1). Compared to the supervised098

fine-tuning of LLMs, the Reranking component099

features extremely low training costs as it employs100

lightweight models. Compared to input-side op-101

timized in-context learning methods, the Rerank-102

ing component can address the severe performance103

issue associated with the absence of valuable su-104

pervised signals. Notably, FANTASE is a highly105

adaptable approach that suits the evolving and vast106

nature of real-world APIs. With the update of API107

documentation or the application to the new do-108

main, LLMs fine-tuned with old data would require109

re-tuning with new data (Kumar et al., 2022). For110

FANTASE, SCD can easily adapt by constraining111

the decoding with a new set of constraints elicited112

from the new API documentation, while re-tuning113

the lightweight Reranking models has lower time114

and compute cost.115

In summary, we make the following novel contri-116

butions:117

• We propose State-tracked Constrained Decod-118

ing that can effectively enforce constraints119

elicited from API Documentation, which120

yields faithful generation and context effi-121

ciency. 122

• We leverage Constrained Token Search Trie to 123

reduce unnecessary forward inference passes, 124

which yields faster generation speed. 125

• We demonstrate the effectiveness of incorpo- 126

rating supervised signals with a small model 127

to discriminate and rerank the beam-searched 128

candidate generations of LLMs. 129

2 Related Work 130

Constrained Decoding offers controllable text 131

generation by enforcing certain constraints at the 132

decoding stage. Early research (Hokamp and Liu, 133

2017; Post and Vilar, 2018) concentrated on lexical 134

constraints that enforce the inclusion of specific 135

words or phrases in the outputs, which often ne- 136

glects broader syntactic or semantic relationships. 137

Later on, Lu et al. 2021 introduced NeuroLogic 138

Decoding that handles more complex lexical con- 139

straints expressed by predicate logic. The sub- 140

sequent extension, NeuroLogic A*esque Decod- 141

ing (Lu et al., 2022), incorporated a lookahead 142

heuristic to estimate future lexical constraint satis- 143

faction. More recently, Chen et al. 2022 and Bas- 144

tan et al. 2023 proposed parsing-based constrained 145

decoding algorithms that tackle the challenge of 146

ensuring correct syntactic relationships between 147

word pairs. 148

Specific to structured text generation, Scholak 149

et al. 2021 targeted Text-to-SQL generation and in- 150

troduced PICARD that checks the validity at each 151

decoding step for SQL lexical and grammar correct- 152

ness with incremental parsing. The latest advance- 153

ment was made by Geng et al. 2023 who demon- 154

strated that an incremental parser can be used with 155

formal grammar on a much wider range of struc- 156

tured NLP tasks without finetuning. While the 157

results are encouraging, existing methods require 158

post-hoc constraint satisfaction checking or rely 159

on dependency parsing at inference time, or both, 160

which compromises the efficiency. The most recent 161

and closest work to ours is API-aware Constrained 162

Decoding (Wang et al., 2023a) that imposes func- 163

tion and argument token constraints based on API 164

documentation. However, despite limited improve- 165

ments, its decoding strategy results in a 20% slow- 166

down of the generation. In contrast to aforemen- 167

tioned methods, we achieve faster generation speed 168

and guaranteed faithfulness with a novel State- 169

tracked Constrained Decoding approach that dy- 170

namically incorporates appropriate constraints in 171
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Related
Conversation

Human: I want to find a burger joint. Assistant: In which city?.
Human: In Mountain View. Assistant: Eureka! restaurant is in Mountain View.
...... Human: Are there any other restaurants in the moderate price range?

Related
API Documentation

...... Restaurants_1.FindRestaurants("cuisine" : Required, "city" : Required, "price_range" : Optional,
"has_live_music" : Optional, "serves_alcohol" : Optional) ...... the possible values for "cuisine" include
["Mexican", "Chinese", "Indian", "American", "Italian"] ......

Expected API Call Restaurants_1.FindRestaurants(city="Mountain View", cuisine="American", price_range="moderate")

Top Candidates

1. Restaurants_1.FindRestaurants(price_range="moderate", city="MountainView") missing cuisine

2. Restaurants_1.FindRestaurants(cuisine="Burgers", city="MountainView") missing price_range

3. Restaurants_1.FindRestaurants(cuisine="American", city="MountainView") missing price_range

4. Restaurants_1.FindRestaurants(price_range="moderate") missing cuisine and city

5. Restaurants_1.FindRestaurants(cuisine="American", city="MountainView", price_range="moderate")

Table 1: Preliminary analysis sample. With regular beam search decoding, the correct generation is only ranked the
5th, and other higher ranked generations exhibit various errors highlighted in red.

the form of a retrieved token search trie.172

Discriminator Guided Generation utilizes small173

discriminative models or external tools to guide the174

generation of LLMs. Dathathri et al. 2020 proposed175

the Plug and Play Language Model concept that176

guides the generation of pretrained models with177

a lightweight attribute classifiers’ gradient. How-178

ever, it increases compute costs due to the extra for-179

ward and backward passes required for sampling180

and using the gradients from the attribute classi-181

fiers to push the pretrained model’s hidden activa-182

tions. Following works including GeDi (Krause183

et al., 2021), FUDGE (Yang and Klein, 2021),184

and BeamR (Landsman et al., 2022) used differ-185

ent lightweight discriminators that classify the at-186

tribute of possible next tokens or partial sequence187

and reweigh token-level or beam-level probabilities188

at each decoding step towards the desired direction189

of attributes like sentiment, topic, formality, and190

so on. More recently, Ni et al. 2023 leveraged the191

execution results of a SQL executor to steer SQL192

generation, which achieved new state-of-the-art re-193

sults. Nevertheless, the method is bounded by the194

prerequisite of the external executor. In our work,195

we employ a lightweight model to discriminate API196

call generation by the given context and perform197

a one-pass reranking of the beam-searched results,198

which brings in supervised signals effectively with199

little compute and time costs to the overall genera-200

tion framework.201

3 Preliminary Analysis202

To better understand the capabilities and limitations203

of existing LLMs on the task of API call genera-204

tion, we conduct a preliminary inference analysis205

on one hundred DSTC8 (Kim et al., 2019)1 samples206

with an Alpaca (Taori et al., 2023) model that had207

been tuned with GPT-generated self-instruct (Wang208

1Details will be given in Section 5.1

et al., 2023b) data for better instruction following 209

and in-context learning capabilities. We prompt 210

the model with the DSTC8 data that contains task 211

instruction, documentation of related APIs, two 212

related exemplars, and conversation history. We 213

use beam search with beam size 10 as the decod- 214

ing algorithm, and we consider the top-10 high 215

probability sequences as the candidate generations. 216

Our quantitative analysis shows that for 73% of 217

the cases, the correct API calls are generated within 218

those high probability sequences. However, within 219

these cases, almost half of the correct sequences 220

were not ranked as the highest, which yields a top- 221

1 API call generation accuracy of 41%. Table 1 222

presents an example where the user wants to find a 223

burger joint with a moderate price range in Moun- 224

tain View. The supplied API documentation spec- 225

ified that the Restaurants_1.FindRestaurants 226

function has cuisine and city as the required ar- 227

guments, and the cuisine argument has five pos- 228

sible values. However, the correct sequence was 229

only ranked the 5th for the given example. All 230

the other 4 candidates that have higher sequence 231

probabilities missed some required arguments, and 232

the second one also wrongly generated Burgers in- 233

stead of one of the five possible values for the argu- 234

ment cuisine. Note that the model demonstrates 235

some reasoning capability that can correctly map 236

Burgers into American as shown in the second 237

and the fifth sequences. Nevertheless, the overall 238

sequence probability favors the problematic gener- 239

ation of Burgers, which may be attributed to the 240

explicit mention of the word in the given conversa- 241

tion history. 242

We conduct a further qualitative analysis to cate- 243

gorize the error types and possible mitigation for 244

these cases. For the highest-ranked error cases, 245

we find 33% argument value error, 24% missing 246

required arguments, 19% missing optional argu- 247

ments, 14% hallucination, and 10% argument name 248
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Figure 2: Illustration of the Concepts of Constrained Decoding and Reranking. (Upper half) Constrained Decoding
enforces API documentation constraints and would only consider the five possible values of cuisine. (Lower half)
A lightweight RoBERTa model is used to discriminate and rerank the beam searched candidate generations.

error. Furthermore, 42% of the error cases can be249

mitigated by enforcing the constraints described in250

the API documentation, 29% of the cases require251

the better understanding of the conversation, and252

the remaining 29% of the cases need a combination253

of the aforementioned two improvements.254

4 The FANTASE Framework255

In Section 3, we demonstrate that there are "FAN-256

TAstic SEquences" in the beam-searched candi-257

date generations, and the question is where to find258

them. To dig out those "FANTAstic SEquences"259

with the data efficiency and compute efficiency in260

mind, we propose the FANTASE framework that261

consists of two major compotents – State-tracked262

Constrained Decoding (§4.1) and Reranking (§4.2),263

which aims at enforcing API constraints with guar-264

anteed faithfulness to the API documentation and265

incorporating supervised signals at low compute266

costs respectively.267

4.1 State-tracked Constrained Decoding268

In Figure 2, we illustrate the concept of State-269

tracked Constrained Decoding (SCD). For a regular270

decoding step, the consideration of the entire vo-271

cabulary space would lead to the high probability of272

the word Burgers overshadowing the correct word 273

of American. To ensure the faithfulness to the API 274

documentation, our SCD approach enforces the 275

model to only consider the probabilities of the five 276

possible values as documented in the API docu- 277

mentation. 278

Different from conventional token-occurrence- 279

based constrained decoding approaches as de- 280

scribed in Section 2, our approach takes the re- 281

lation between package, function, argument, and 282

argument values into consideration. SCD allows 283

precise and dynamic enforcement of constraints 284

based on the API documentation and generated 285

units, which avoids the look-ahead decoding and 286

pruning as other constrained decoding algorithms 287

would normally require. The implementation of 288

SCD consists of three major parts: 1) extraction 289

of constraints from API documentation, 2) state 290

tracking of the generation for constraints retrieval, 291

and 3) constrained decoding with token search trie. 292

As API documentation is usually well-structured, 293

it is feasible to extract constraints with simple rules. 294

As a preprocessing step, we use regular expres- 295

sions to extract five types of constraints including 296

1) available packages, 2) functions of each package, 297

3) required arguments of each function, 4) optional 298
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Figure 3: State-tracked Constrained Generation of API Call (showing the step of generating the value of parameter
cuisine that has possible values of American, Chinese, Indian, Italian, and Mexican).

Structural Token Generation State Actions

S (psudo) Start of the generation
- Retrieve all package names
- Constrained generation of package name

.
DOT

End of package name
Start of function name

- Record decoded package name
- Retrieve possible function names by using package name
- Constrained generation of function name

(
LEFT_BRACKET

End of function name
Start of argument name

- Record decoded function name
- Retrieve possible argument names by using package and function names
- Constrained generation of argument name

=
EQUAL

End of argument name
Start of argument value

- Record decoded argument name
- Retrieve possible argument values by using package, function, and argument names
- Check if the argument only takes certain possible values
– If so, constrained generation of argument value
– If not, perform normal unconstrained generation

,
COMMA

End of argument value
Start of argument name

- Reuse previously retrieved possible argument names
- Constrained generation of argument name

)
RIGHT_BRACKET

End of the generation
- Check if the list of decoded argument name contains all the required arguments
– If so, conclude the generation
– If not, replace RIGHT_BRACKET with COMMA and enforce continued generation

Table 2: State Tracking with Structural Tokens and Associated Actions.

arguments of each function, and 5) possible values299

of each argument. We store these constraints in a300

lookup table with package name, function name,301

and argument name as the query keys. At the infer-302

ence stage, we query the lookup table to fetch cor-303

responding constraints by decoded package name,304

function name, and/or argument name. If the API is305

evolved with changing constraints such as new re-306

quired/optional arguments, changing names, chang-307

ing possible values, etc., new constraints can be308

enforced effortlessly at the inference stage by re-309

parsing the updated API documentation, which is310

less expensive than re-tuning the model with up-311

dated labeled data.312

In Figure 3, we illustrate the SCD at the infer-313

ence stage. To ensure appropriate constraints can314

be retrieved and enforced at the precise inference315

step of the generation, the state of the generation is316

determined by tracking the model-generated struc-317

tural tokens. The structured nature of the API call318

results in signature tokens that indicate the end or319

start of different units of the API call as we speci- 320

fied in Table 2. Specifically, for the constrained gen- 321

eration of an API call unit, we enforce the model 322

to decode along the Constrained Token Search Trie 323

(CTST) as illustrated in Figure 4. The tokenizer 324

of LLMs performs WordPiece tokenization, which 325

breaks down the word into smaller subword tokens 326

for various benefits (Devlin et al., 2019). Accord- 327

ingly, the package name Restaurants_1 would 328

be autoregressively generated by the LLM piece 329

by piece with five forward-pass inference steps as 330

shown in the upper half of Figure 4. At the prepro- 331

cessing step, we build the extracted constraints into 332

CTST. When conducting constrained generation, 333

the forward inference pass is only necessary for 334

nodes that have multiple branches. In such a case, 335

only the probabilities of the possible next tokens as 336

indicated by the CTST would be considered. For 337

nodes that only have one child, the subsequent to- 338

ken is directly appended, which saves the time and 339

compute costs of a forward inference pass. 340
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Figure 4: Comparison of the Generation of
Restaurants_1 with Normal Decoding and Decoding
with Constrained Token Search Trie.

For SCD, we implement it with four different341

sampling strategies including greedy search, top-k342

sampling, top-p sampling, and beam search.343

4.2 Reranking344

Although the SCD approach we introduced in Sec-345

tion 4.1 can guarantee the generated API call’s346

faithfulness to the API documentation, the faithful-347

ness to the user’s request is solely dependent on348

the LLM’s zero-shot or few-shot in-context learn-349

ing and reasoning capabilities. Also, the valuable350

labeled training data hasn’t been exploited yet with351

SCD. Fine-tuning the LLM might be a straightfor-352

ward solution, but the huge compute costs asso-353

ciated with the growing parameter size of LLM354

motivates us to seek alternative solutions.355

Inspired by the studies of discriminator-guided356

generation, we propose the supervised training of357

a lightweight scorer for the reranking of beam-358

searched candidate generations. To train the scorer,359

we generate data as follows: we prompt the Alpaca-360

13B model with training set samples and obtain361

associated beam-searched candidate generations362

for each sample. For each candidate generation,363

the matching score with respect to the ground truth364

is calculated as the target of the scorer. Such data is365

used for the tuning of a RoBERTa-base(Liu et al.,366

2019) model that has 125M parameters to predict367

the matching score based on the input of conversa-368

tion and API Documentation context and the can-369

didate generation. Specifically, we train the model370

with sample-wise batching that groups candidate371

generations of the same context into one mini-batch372

and use the MSE Loss and Spearman Soft Rank-373

ing Correlation Loss (Blondel et al., 2020) as the 374

training objective for optimal performance. 375

Instead of returning the beam-searched candi- 376

date generation that has the highest sequence prob- 377

ability as the final generated API call, we use the 378

trained scorer to discriminate each of the candi- 379

date generations and rerank them accordingly. This 380

reranking strategy allows low-cost incorporation of 381

task and domain-specific context reasoning capa- 382

bility learned from the valuable labeled data and 383

compliments the SCD approach and LLM’s zero- 384

shot or few-shot in-context learning and reasoning 385

capabilities. 386

5 Experiment Setup 387

5.1 Datasets 388

We use the data from DSTC8 (Kim et al., 2019) 389

and API Bank (Li et al., 2023) to conduct the 390

experiments and evaluation of our proposed FAN- 391

TASE framework. Both datasets support the task of 392

API call generation that requires understanding and 393

reasoning of multi-turn human-assistant dialogues. 394

Short-listed APIs and associated Documentation 395

are accompanied by each sample. One major dif- 396

ference is that each DSTC8 sample has two related 397

exemplars while API Bank does not ship with the 398

exemplars. Accordingly, we experiment with the 399

few-shot in-context learning setting with DSTC8 400

and the zero-shot in-context learning setting with 401

API Bank. In Appendix A, we provide detailed 402

statistics of DSTC8 and API Bank. 403

5.2 Baseline and Backbone Models 404

For in-context learning settings, we include strong 405

baselines GPT3.5-turbo and GPT4 developed by 406

OpenAI, which represents the most recent break- 407

through in LLMs with a track record of leading 408

zero-shot and few-shot learning and reasoning ca- 409

pabilities. FANTASE is a plug-and-play model- 410

agnostic approach that can be used in conjunction 411

with any LLM that has an autoregressive decoder 412

producing next-token probabilities. However, the 413

API access of OpenAI models only allows greedy 414

search and does not provide the logits. In con- 415

sideration of the license, resource constraints, ef- 416

ficiency, and zero-shot/few-shot learning and rea- 417

soning capabilities, we opt to use Alpaca-13B as 418

the backbone of our proposed methods. As for 419

baselines of supervised learning settings, we fine- 420

tune the Alpaca-7B model with DSTC8 training 421

set samples (denoted as AlpDSTC-7B), and we di- 422
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Dataset DSTC8 (Two Examplars) API Bank (No Examplars)
In-context Learning Methods

Baselines
GPT4 (est. 1.76T) 37.22 63.66*

GPT3.5-turbo (est. 175B) 49.28 59.40*
Alpaca-13B Greedy Search 37.63 24.06
Alpaca-13B Beam Search 40.49 24.31

FANTASE with Alpaca-13B as the Base Model
SCD Greedy Search 42.33 56.64
SCD Beam Search 44.17 62.66

Supervised Learning Methods
Baselines

AlpDSTC-7B / Lynx-7B Greedy Search 46.63 48.62
AlpDSTC-7B / Lynx-7B Beam Search 47.44 50.53

FANTASE with Alpaca-13B as the Base Model (In-context) and RoBERTa-Base Reranker (Supervised)
Reranking 46.42 33.33

SCD Beam Search + Reranking 48.88 64.41
FANTASE with AlpDSTC-7B / Lynx-7B as the Base Model

SCD Greedy Search 59.30 65.66
SCD Beam Search 62.78 67.17

Table 3: API Call Generation Accuracy Evaluation On DSTC8 and API Bank. For settings involving beam search,
we set the beam size to 4. For reproducible results, we set temperature to 0 for all settings. (* denotes results
reported by Li et al. 2023. Best performed In-context and Supervised Learning Methods are bolded).

rectly use the Lynx-7B model, an API Bank data423

tuned Alpaca-7B model, released by Li et al. 2023.424

We supply detailed information of the aforemen-425

tioned models in Appendix B.426

5.3 Evaluation Settings427

To verify the effectiveness of FANTASE, we run428

experiments with the following three evaluation429

settings that focus on different perspectives:430

API Call Generation Accuracy measures if the431

generated API calls fully match their associated432

ground truth. It is the main metric that reflects433

if the generation faithfully followed the user’s re-434

quest and the requirements specified in the API435

documentation. As the order of arguments does436

not matter for both datasets, we calculate unit-wise437

order-insensitive set matches.438

Inference Efficiency measures the time cost of the439

API call generation. Previous works on constrained440

decoding often vaguely report that the decoding441

speed is slower than regular decoding algorithms442

without quantitative measurements. To quantify443

the speed up brought by FANTASE’s State-tracked444

Constrained Decoding that utilizes CTST (§4.1),445

we compare the time costs of the API call genera-446

tion with regular/constrained greedy/beam search447

algorithms using the Alpaca-13B model under the448

in-context learning setting.449

Context Efficiency measures the effectiveness of450

our approach in incorporating the API documenta-451

tion without the reliance on the repeated supply of452

the lengthy API documentation in the prompt for453

in-context learning.454

6 Results and Analysis 455

6.1 API Call Generation Accuracy 456

In Table 3, we report the results of API call genera- 457

tion accuracy. The SCD component of FANTASE 458

consistently brings substantial improvements over 459

the base models for both in-context learning set- 460

tings and supervised learning settings on DSTC8 461

and API Bank, which demonstrates complementary 462

benefits. 463

Specifically, for few-shot in-context learning set- 464

tings evaluated with DSTC8, SCD Greedy Search 465

and SCD Beam Search improve the accuracy by 466

+4.7 and +3.68 over the respective counterparts. 467

For zero-shot in-context learning settings evalu- 468

ated with API Bank, SCD Greedy Search and SCD 469

Beam Search boost the accuracy by +32.33 and 470

+34.34 respectively, which makes the 13B model’s 471

zero-shot generation performance comparable to 472

the GPT3.5-turbo model that has an estimated pa- 473

rameter size of 175B and surpasses the accuracy of 474

fine-tuned 7B model by a large margin. The larger 475

performance gap signifies the value of SCD when 476

labeled data is not available at all. 477

For supervised learning settings, SCD can 478

still greatly improve the performance of corre- 479

sponding settings of fine-tuned models and yields 480

+17.04/+16.64 performance gain on API Bank and 481

+12.67/+15.34 performance gain on DSTC8 with 482

greedy/beam search, which leads to the 7B mod- 483

els outperforming GPT models that are 25x~250x 484

times larger in terms of parameter size. Also, we 485

find that GPT4 model’s performance on DSTC8 is 486
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much worse than the GPT3.5-turbo model. Our di-487

agnosis on the generation reveals that GPT4 model488

tends to hallucinate the year as 2023 for date-489

related parameters even if the context year is 2019.490

GPT4 model also made more formatting errors than491

GPT3.5-turbo on DSTC8.492

The Reranking component of FANTASE also493

brings considerable improvements over the base494

model by supervised training of a lightweight dis-495

criminator. The Reranking component alone im-496

proves the regular beam search results by +6.15497

and +9.02 respectively on DSTC8 and API Bank.498

The FANTASE framework, with both the SCD499

component and Reranking component activated,500

achieves the best overall accuracy showing comple-501

mentary benefits of the two components. Specifi-502

cally, for DSTC8, the accuracy of 48.88 is close503

to the performance of GPT3.5-turbo and better504

than the supervised fine-tuned model AlpDSTC-7B.505

For API Bank, the accuracy of 64.41 is better than506

GPT4 and supervised fine-tuned model Lynx-7B.507

6.2 Inference Efficiency508

Decoding
Strategy

DSTC8 API Bank
Inference

Speed
(sec/sample)

Speed
Up

Inference
Speed

(sec/sample)

Speed
Up

GS 5.32 - 5.85 -
SCD GS 3.42 x1.56 3.33 x1.76

BS 15.12 - 23.15 -
SCD BS 6.33 x2.39 10.27 x2.25

Table 4: Generation Speed of Regular Greedy Search
(GS) and Beam Search (BS) Decoding versus FAN-
TASE’s State-tracked Constrained Decoding (SCD)
Counterparts.

In Table 4, we quantitatively measure the infer-509

ence time savings of the State-Tracked Constrained510

Decoding that leverages the CTST as we have in-511

troduced in Section 4.1 and illustrated in Figure 4.512

Compared to regular greedy and beam search, SCD513

has the capability of speeding up the API call gen-514

eration by approximately 1.5x~2.4x times. When515

looking together with generation accuracy, it is516

quite encouraging that SCD greedy search can517

achieve regular beam search level’s performance518

with significantly less amount of time and SCD519

Beam Search can achieve much better performance520

at regular greedy search level’s time cost. For API521

Bank, SCD Greedy search can even outperform522

regular bream search with significantly less time523

cost.524

6.3 Context Efficiency 525

Dataset Setting w. API Doc w.o. API Doc ∆

DSTC8

GS 37.63 33.74 -3.89
SCD GS 42.33 40.70 -1.63

BS 40.49 38.24 -2.25
SCD BS 44.17 42.54 -1.63

API Bank

GS 24.06 4.76 -19.3
SCD GS 56.64 22.81 -33.83

BS 24.31 4.51 -19.8
SCD BS 58.65 23.05 -35.6

Table 5: Generation Accuracy of Regular Greedy Search
(GS) and Beam Search (BS) Decoding with / without
API Documentation versus FANTASE’s State-tracked
Constrained Decoding (SCD) Counterparts.

As discussed in Section 4.1, another benefit of SCD 526

is to save the context tokens required in the prompt 527

for supplying the API documentation to the LLM, 528

as SCD is capable of incorporating that informa- 529

tion at the decoding stage. Based on the statis- 530

tics provided in Appendix A, removing API doc- 531

umentation from the input could save an average 532

of 766.28 tokens for DSTC8 and 265.71 tokens for 533

API Bank. In Table 5, we show the performance of 534

SCD when the API documentation is removed from 535

the model’s input. For DSTC8, our constrained de- 536

coding method manages to maintain the accuracy 537

above 40 when the API Documentation is absent 538

from the input while the unconstrained counterparts 539

suffer larger performance drops of -3.89/-2.25 540

that leads to larger performance gaps with our ap- 541

proach. For API Bank, the absence of both exem- 542

plars and API documentation makes it super chal- 543

lenging for the model to generate relevant API calls 544

as shown by the large performance drop. However, 545

our constrained decoding method can still achieve 546

22.81/23.05 accuracy in such a scenario, which 547

is close to the performance of the unconstrained 548

version that has API Documentation access in the 549

prompt. 550

7 Conclusions 551

The FANTASE framework, with its State-Tracked 552

Constrained Decoding (SCD) and Reranking com- 553

ponents, effectively tackles the challenges of gener- 554

ating API calls from complex contexts. By integrat- 555

ing API constraints through a Token Search Trie 556

and employing a lightweight model for reranking, 557

FANTASE not only ensures accurate API call gen- 558

eration but also improves inference and context ef- 559

ficiencies. Its superior performance on the DSTC8 560

and API Bank datasets confirms FANTASE’s sig- 561

nificant advancement in enhancing large language 562

models’ tool-using ability. 563
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Limitations564

Despite the effort we have made to the best of our565

current ability, we recognize the following limita-566

tions of our work:567

Evaluation with larger language models: Due to568

our resource limitations and the input length of the569

two datasets, the largest models we can fine-tune570

and infer are 7B and 13B respectively. The effect571

of the base model’s parameter size hasn’t been ex-572

tensively studied in this paper, and the impact of573

our approach on larger models’ API call generation574

accuracy and inference efficiency lacks empirical575

evidence. Based on the working mechanism of576

FANTASE, our educated guess is that larger mod-577

els may make fewer errors which our approach is578

targeting, so the improvements would be smaller579

than using relatively small models as the backbone.580

As for the inference efficiency, the absolute time581

savings should be larger as a forward pass through582

a larger model takes longer time. However, the583

relative speed-up would remain at the current level584

as the amount of nodes that only have one child585

depends on the data instead of the models. To ad-586

dress this issue, we intend to release our code upon587

the publication of this paper for the ease of further588

evaluation conducted by other researchers that have589

sufficient resource.590

Adaptation to a broader range of tasks: FAN-591

TASE is specially designed and evaluated for the592

task of our interests - API call generation. Although593

the high-level idea and concepts of our approach594

should be adpatable to other structured text gener-595

ation tasks such as SQL generation, table genera-596

tion, etc., the adaptation may require considerable597

efforts in identifying constraints, signature tokens,598

and appropriate constraint-enforcing steps. For un-599

structured text generation tasks, it remains unclear600

if the identification of signature tokens and appro-601

priate constraint-enforcing steps are feasible.602

Ethics Statement603

Our approach significantly enhances the capability604

of current models to generate API calls. However,605

it’s important to acknowledge that the accuracy of606

these generations remains imperfect. As API calls607

could enable language models to perform tangible608

real-world actions, inaccuracies in API call gener-609

ation would lead to serious consequences. These610

may include but are not limited to: financial losses611

when making wrong purchases and reservations,612

potential harm to the human being or the environ-613

ment when controlling physical objects in unex- 614

pected ways, and the dissemination of false or mis- 615

leading information when retrieving a wrong set 616

of information. Consequently, we urge the users 617

of our methods and the related API call generation 618

models to be aware of such systems’ high like- 619

lihood of generating inaccurate API calls and to 620

remain vigilant about the possible risks associated 621

with such errors. 622
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Appendix 856

A Datasets 857

Dataset
DSTC8

median / mean
API Bank

median / mean
Total Input

Length (Tokens)
1,683

1,644.28
492

542.86
API Documentation

Length (Tokens)
735

766.28
244

265.71
Examplars

Length (Tokens)
580

558.00
N/A

Conversation
Length (Tokens)

200.5
221.08

138
175.15

Conversation
Turns

6
6.31

3
3.21

Target API Call
Length (Tokens)

46
45.70

27
35.17

Target API Call
Arguments Amount

3
3.42

2
2.27

Table 6: Statistics of DSTC8 and API Bank Data.

In Table 6, we provide the detailed statistics of 858

DSTC8 and API Bank. The inputs and outputs 859

of DSTC8 are longer than API Bank counterparts. 860

DSTC8 also has more turns of conversation and 861

API call arguments than API Bank, which makes 862

DSTC8 a more challenging dataset in terms of rea- 863

soning the context and generating appropriate API 864

calls even if two exemplars are provided for each 865

sample. 866

Our experiments and evaluation of the FAN- 867

TASE framework are based on the test split of 868

DSTC8 and API Bank that has 490 and 399 sam- 869

ples respectively. For DSTC8, we remove the 870

longest one out of the 490 samples as it causes 871

CUDA out of memory error on our server. 872
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B Models873

Alpaca-13B is a LLaMA-based instruction follow-874

ing model that has 40 layers, a hidden size of 5120,875

40 self-attention heads and 13 billion parameters.876

For our experiments, we use Huggingface check-877

point chavinlo/gpt4-x-alpaca.878

AlpDSTC-7B and Lynx-7B are the Alpaca-7B-879

based model that has 32 layers, a hidden size of880

4096, 32 self-attention heads and 7 billion parame-881

ters. Lynx-7B is the training set fine-tuned model882

released by API Bank authors (Huggingface check-883

point: liminghao1630/Lynx-7b). The model was884

tuned for 3 epochs with a learning rate of 2e-5885

and an effective batch size of 256. We follow the886

same setting of Lynx-7B to tune a Alpaca-7B with887

DSTC8 training set samples.888

RoBERTa-base is a BERT-based model that has 12889

layers, a hidden size of 768, 12 self-attention heads,890

and 125 million parameters. For our experiments,891

we use Huggingface checkpoint roberta-base892

and tune the model with training set candiate gen-893

erations for 5 epochs with a learning rate of 5e-5894

and an effective batch size of 256.895

GPT3.5 and GPT4 are only accessible via API896

or web interface. Details of these two models897

have not been officially released by OpenAI, but a898

broadly accepted latency-based parameter size es-899

timation is 175 billion parameters for GPT3.5 and900

1.76 trillion parameters for GPT4. For our experi-901

ments, we use checkpoints gpt-3.5-turbo-0613902

and gpt-4-0613.903

License information of Alpaca can be904

found at https://github.com/tatsu-lab/905

stanford_alpaca/blob/main/LICENSE and906

https://github.com/tatsu-lab/stanford_907

alpaca/blob/main/DATA_LICENSE.908

License information of LLaMA can be found909

at https://docs.google.com/forms/d/e/910

1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_911

fBxjY_OjhJILlKGA/viewform.912

License information of Lynx-7B and API Bank913

data can be found at https://github.com/914

AlibabaResearch/DAMO-ConvAI/blob/main/915

api-bank/LICENSE.916

License information of DSTC8 data917

can be found at https://github.918

com/google-research-datasets/919

dstc8-schema-guided-dialogue/blob/920

master/LICENSE.txt.921

License information of RoBERTa can be found922

at https://github.com/facebookresearch/923

fairseq/blob/main/LICENSE. 924

License information of GPT-X models can 925

be found at https://openai.com/policies/ 926

terms-of-use. 927
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