
FANTAstic SEquences and Where to Find Them:
Faithful and Efficient API Call Generation

through State-tracked Constrained Decoding and Reranking

Anonymous ACL submission

Abstract
API call generation is the cornerstone of large001
language models’ tool-using ability that pro-002
vides access to the larger world. However, ex-003
isting supervised and in-context learning ap-004
proaches suffer from high training costs, poor005
data efficiency, and generated API calls that can006
be unfaithful to the API documentation and the007
user’s request. To address these limitations, we008
propose an output-side optimization approach009
called FANTASE. Two of the unique contribu-010
tions of FANTASE are its State-Tracked Con-011
strained Decoding (SCD) and Reranking com-012
ponents. SCD dynamically incorporates ap-013
propriate API constraints in the form of To-014
ken Search Trie for efficient and guaranteed015
generation faithfulness with respect to the API016
documentation. The Reranking component effi-017
ciently brings in the supervised signal by lever-018
aging a lightweight model as the discriminator019
to rerank the beam-searched candidate genera-020
tions of the large language model. We demon-021
strate the superior performance of FANTASE022
in API call generation accuracy, inference effi-023
ciency, and context efficiency with DSTC8 and024
API Bank datasets.025

1 Introduction026

In recent year, there has been a surge of interest027

in enabling the automated tool-using capability of028

intelligent systems (Schick et al., 2023; Mialon029

et al., 2023). Specifically, as a bridge to the larger030

world, Application Programming Interface (API)031

calls allow virtual assistants to control smart-home032

devices, retrieve information, make reservations,033

and more on the user’s behalf. Figure 1 shows how034

an API call may improve the user-assistant conver-035

sation and satisfy the user’s needs. Generating such036

an API call requires advanced capabilities in un-037

derstanding the requirements of an API (including038

its endpoints, parameters, and expected data for-039

mats) and reasoning over the conversation context040

to translate the user’s needs into the appropriate041

API format.042

Figure 1: Example of an API call that retrieves informa-
tion based on the user’s needs given in the conversation.

With recent breakthroughs in generative Large 043

Language Models (LLMs) such as GPT-X (Ouyang 044

et al., 2022; OpenAI, 2023) and LLaMA (Touvron 045

et al., 2023a,b), researchers have started to investi- 046

gate their competence in complex reasoning tasks 047

such as utilizing appropriate API tools (Li et al., 048

2023; Qin et al., 2023; Wang et al., 2023a). Their 049

attempts focus on methods that can generally be 050

grouped into those based on supervised fine-tuning 051

for task-specific usage and those based on aug- 052

menting input-side context information (such as 053

API shortlisting and exemplar selection) and op- 054

timizing prompts for in-context learning (Brown 055

et al., 2020; Wei et al., 2022). Despite the strong su- 056

pervision or extensive context, these methods still 057

cannot ensure the generation’s faithfulness with re- 058

spect to the API documentation and suffer data and 059

compute inefficiency. In contrast to previous works, 060

we focus on how decoding strategies improve the 061

generation’s faithfulness, which is complementary 062

to supervised fine-tuning and in-context learning 063

methods. As a result, we present FANTASE (FAN- 064

TAstic SEquences and Where to Find Them), a 065

framework that employs State-tracked Constrained 066

Decoding (SCD) and Reranking components, for 067

faithful and efficient API call generation. 068

The SCD tracks the states of the generation 069

and retrieves appropriate API documentation con- 070

1

straints in the form of Constrained Token Search071

Trie (CTST) used at each decoding step. SCD072

is guaranteed to generate API calls that are faith-073

ful with respect to the API documentation (§ 4.1),074

and provides inference efficiency (§ 6.2) with075

CTST that eliminates unnecessary forward infer-076

ence passes. Compared to supervised fine-tuning077

methods, SCD brings considerable improvements078

(§ 6.1) without the data labeling and model training079

related hefty costs of labor, time, and computing080

that become increasingly expensive as the size of081

the LLM grows (Yang et al., 2023). SCD also082

reduces the in-context learning’s reliance on the re-083

peated supply of extensive contextual information084

for the inference of each instance (§ 6.3) by effec-085

tively incorporating API documentation constraints086

and guaranteeing the associated faithfulness at the087

decoding stage.088

The Reranking component of FANTASE lever-089

ages models that are significantly smaller than090

LLMs for efficient incorporation of supervised sig-091

nals (§ 4.2). As the correct API generation may092

not always have the highest sequence probability093

among beam-searched candidate sequences (§ 3),094

we train lightweight models to discriminate and095

rerank LLMs’ candidate generations and demon-096

strate their effectiveness in digging out those cor-097

rect sequences (§ 6.1). Compared to the supervised098

fine-tuning of LLMs, the Reranking component099

features extremely low training costs as it employs100

lightweight models. Compared to input-side op-101

timized in-context learning methods, the Rerank-102

ing component can address the severe performance103

issue associated with the absence of valuable su-104

pervised signals. Notably, FANTASE is a highly105

adaptable approach that suits the evolving and vast106

nature of real-world APIs. With the update of API107

documentation or the application to the new do-108

main, LLMs fine-tuned with old data would require109

re-tuning with new data (Kumar et al., 2022). For110

FANTASE, SCD can easily adapt by constraining111

the decoding with a new set of constraints elicited112

from the new API documentation, while re-tuning113

the lightweight Reranking models has lower time114

and compute cost.115

In summary, we make the following novel contri-116

butions:117

• We propose State-tracked Constrained Decod-118

ing that can effectively enforce constraints119

elicited from API Documentation, which120

yields faithful generation and context effi-121

ciency. 122

• We leverage Constrained Token Search Trie to 123

reduce unnecessary forward inference passes, 124

which yields faster generation speed. 125

• We demonstrate the effectiveness of incorpo- 126

rating supervised signals with a small model 127

to discriminate and rerank the beam-searched 128

candidate generations of LLMs. 129

2 Related Work 130

Constrained Decoding offers controllable text 131

generation by enforcing certain constraints at the 132

decoding stage. Early research (Hokamp and Liu, 133

2017; Post and Vilar, 2018) concentrated on lexical 134

constraints that enforce the inclusion of specific 135

words or phrases in the outputs, which often ne- 136

glects broader syntactic or semantic relationships. 137

Later on, Lu et al. 2021 introduced NeuroLogic 138

Decoding that handles more complex lexical con- 139

straints expressed by predicate logic. The sub- 140

sequent extension, NeuroLogic A*esque Decod- 141

ing (Lu et al., 2022), incorporated a lookahead 142

heuristic to estimate future lexical constraint satis- 143

faction. More recently, Chen et al. 2022 and Bas- 144

tan et al. 2023 proposed parsing-based constrained 145

decoding algorithms that tackle the challenge of 146

ensuring correct syntactic relationships between 147

word pairs. 148

Specific to structured text generation, Scholak 149

et al. 2021 targeted Text-to-SQL generation and in- 150

troduced PICARD that checks the validity at each 151

decoding step for SQL lexical and grammar correct- 152

ness with incremental parsing. The latest advance- 153

ment was made by Geng et al. 2023 who demon- 154

strated that an incremental parser can be used with 155

formal grammar on a much wider range of struc- 156

tured NLP tasks without finetuning. While the 157

results are encouraging, existing methods require 158

post-hoc constraint satisfaction checking or rely 159

on dependency parsing at inference time, or both, 160

which compromises the efficiency. The most recent 161

and closest work to ours is API-aware Constrained 162

Decoding (Wang et al., 2023a) that imposes func- 163

tion and argument token constraints based on API 164

documentation. However, despite limited improve- 165

ments, its decoding strategy results in a 20% slow- 166

down of the generation. In contrast to aforemen- 167

tioned methods, we achieve faster generation speed 168

and guaranteed faithfulness with a novel State- 169

tracked Constrained Decoding approach that dy- 170

namically incorporates appropriate constraints in 171

2

Related
Conversation

Human: I want to find a burger joint. Assistant: In which city?.
Human: In Mountain View. Assistant: Eureka! restaurant is in Mountain View.
...... Human: Are there any other restaurants in the moderate price range?

Related
API Documentation

...... Restaurants_1.FindRestaurants("cuisine" : Required, "city" : Required, "price_range" : Optional,
"has_live_music" : Optional, "serves_alcohol" : Optional) the possible values for "cuisine" include
["Mexican", "Chinese", "Indian", "American", "Italian"]

Expected API Call Restaurants_1.FindRestaurants(city="Mountain View", cuisine="American", price_range="moderate")

Top Candidates

1. Restaurants_1.FindRestaurants(price_range="moderate", city="MountainView") missing cuisine

2. Restaurants_1.FindRestaurants(cuisine="Burgers", city="MountainView") missing price_range

3. Restaurants_1.FindRestaurants(cuisine="American", city="MountainView") missing price_range

4. Restaurants_1.FindRestaurants(price_range="moderate") missing cuisine and city

5. Restaurants_1.FindRestaurants(cuisine="American", city="MountainView", price_range="moderate")

Table 1: Preliminary analysis sample. With regular beam search decoding, the correct generation is only ranked the
5th, and other higher ranked generations exhibit various errors highlighted in red.

the form of a retrieved token search trie.172

Discriminator Guided Generation utilizes small173

discriminative models or external tools to guide the174

generation of LLMs. Dathathri et al. 2020 proposed175

the Plug and Play Language Model concept that176

guides the generation of pretrained models with177

a lightweight attribute classifiers’ gradient. How-178

ever, it increases compute costs due to the extra for-179

ward and backward passes required for sampling180

and using the gradients from the attribute classi-181

fiers to push the pretrained model’s hidden activa-182

tions. Following works including GeDi (Krause183

et al., 2021), FUDGE (Yang and Klein, 2021),184

and BeamR (Landsman et al., 2022) used differ-185

ent lightweight discriminators that classify the at-186

tribute of possible next tokens or partial sequence187

and reweigh token-level or beam-level probabilities188

at each decoding step towards the desired direction189

of attributes like sentiment, topic, formality, and190

so on. More recently, Ni et al. 2023 leveraged the191

execution results of a SQL executor to steer SQL192

generation, which achieved new state-of-the-art re-193

sults. Nevertheless, the method is bounded by the194

prerequisite of the external executor. In our work,195

we employ a lightweight model to discriminate API196

call generation by the given context and perform197

a one-pass reranking of the beam-searched results,198

which brings in supervised signals effectively with199

little compute and time costs to the overall genera-200

tion framework.201

3 Preliminary Analysis202

To better understand the capabilities and limitations203

of existing LLMs on the task of API call genera-204

tion, we conduct a preliminary inference analysis205

on one hundred DSTC8 (Kim et al., 2019)1 samples206

with an Alpaca (Taori et al., 2023) model that had207

been tuned with GPT-generated self-instruct (Wang208

1Details will be given in Section 5.1

et al., 2023b) data for better instruction following 209

and in-context learning capabilities. We prompt 210

the model with the DSTC8 data that contains task 211

instruction, documentation of related APIs, two 212

related exemplars, and conversation history. We 213

use beam search with beam size 10 as the decod- 214

ing algorithm, and we consider the top-10 high 215

probability sequences as the candidate generations. 216

Our quantitative analysis shows that for 73% of 217

the cases, the correct API calls are generated within 218

those high probability sequences. However, within 219

these cases, almost half of the correct sequences 220

were not ranked as the highest, which yields a top- 221

1 API call generation accuracy of 41%. Table 1 222

presents an example where the user wants to find a 223

burger joint with a moderate price range in Moun- 224

tain View. The supplied API documentation spec- 225

ified that the Restaurants_1.FindRestaurants 226

function has cuisine and city as the required ar- 227

guments, and the cuisine argument has five pos- 228

sible values. However, the correct sequence was 229

only ranked the 5th for the given example. All 230

the other 4 candidates that have higher sequence 231

probabilities missed some required arguments, and 232

the second one also wrongly generated Burgers in- 233

stead of one of the five possible values for the argu- 234

ment cuisine. Note that the model demonstrates 235

some reasoning capability that can correctly map 236

Burgers into American as shown in the second 237

and the fifth sequences. Nevertheless, the overall 238

sequence probability favors the problematic gener- 239

ation of Burgers, which may be attributed to the 240

explicit mention of the word in the given conversa- 241

tion history. 242

We conduct a further qualitative analysis to cate- 243

gorize the error types and possible mitigation for 244

these cases. For the highest-ranked error cases, 245

we find 33% argument value error, 24% missing 246

required arguments, 19% missing optional argu- 247

ments, 14% hallucination, and 10% argument name 248

3

Figure 2: Illustration of the Concepts of Constrained Decoding and Reranking. (Upper half) Constrained Decoding
enforces API documentation constraints and would only consider the five possible values of cuisine. (Lower half)
A lightweight RoBERTa model is used to discriminate and rerank the beam searched candidate generations.

error. Furthermore, 42% of the error cases can be249

mitigated by enforcing the constraints described in250

the API documentation, 29% of the cases require251

the better understanding of the conversation, and252

the remaining 29% of the cases need a combination253

of the aforementioned two improvements.254

4 The FANTASE Framework255

In Section 3, we demonstrate that there are "FAN-256

TAstic SEquences" in the beam-searched candi-257

date generations, and the question is where to find258

them. To dig out those "FANTAstic SEquences"259

with the data efficiency and compute efficiency in260

mind, we propose the FANTASE framework that261

consists of two major compotents – State-tracked262

Constrained Decoding (§4.1) and Reranking (§4.2),263

which aims at enforcing API constraints with guar-264

anteed faithfulness to the API documentation and265

incorporating supervised signals at low compute266

costs respectively.267

4.1 State-tracked Constrained Decoding268

In Figure 2, we illustrate the concept of State-269

tracked Constrained Decoding (SCD). For a regular270

decoding step, the consideration of the entire vo-271

cabulary space would lead to the high probability of272

the word Burgers overshadowing the correct word 273

of American. To ensure the faithfulness to the API 274

documentation, our SCD approach enforces the 275

model to only consider the probabilities of the five 276

possible values as documented in the API docu- 277

mentation. 278

Different from conventional token-occurrence- 279

based constrained decoding approaches as de- 280

scribed in Section 2, our approach takes the re- 281

lation between package, function, argument, and 282

argument values into consideration. SCD allows 283

precise and dynamic enforcement of constraints 284

based on the API documentation and generated 285

units, which avoids the look-ahead decoding and 286

pruning as other constrained decoding algorithms 287

would normally require. The implementation of 288

SCD consists of three major parts: 1) extraction 289

of constraints from API documentation, 2) state 290

tracking of the generation for constraints retrieval, 291

and 3) constrained decoding with token search trie. 292

As API documentation is usually well-structured, 293

it is feasible to extract constraints with simple rules. 294

As a preprocessing step, we use regular expres- 295

sions to extract five types of constraints including 296

1) available packages, 2) functions of each package, 297

3) required arguments of each function, 4) optional 298

4

Figure 3: State-tracked Constrained Generation of API Call (showing the step of generating the value of parameter
cuisine that has possible values of American, Chinese, Indian, Italian, and Mexican).

Structural Token Generation State Actions

S (psudo) Start of the generation
- Retrieve all package names
- Constrained generation of package name

.
DOT

End of package name
Start of function name

- Record decoded package name
- Retrieve possible function names by using package name
- Constrained generation of function name

(
LEFT_BRACKET

End of function name
Start of argument name

- Record decoded function name
- Retrieve possible argument names by using package and function names
- Constrained generation of argument name

=
EQUAL

End of argument name
Start of argument value

- Record decoded argument name
- Retrieve possible argument values by using package, function, and argument names
- Check if the argument only takes certain possible values
– If so, constrained generation of argument value
– If not, perform normal unconstrained generation

,
COMMA

End of argument value
Start of argument name

- Reuse previously retrieved possible argument names
- Constrained generation of argument name

)
RIGHT_BRACKET

End of the generation
- Check if the list of decoded argument name contains all the required arguments
– If so, conclude the generation
– If not, replace RIGHT_BRACKET with COMMA and enforce continued generation

Table 2: State Tracking with Structural Tokens and Associated Actions.

arguments of each function, and 5) possible values299

of each argument. We store these constraints in a300

lookup table with package name, function name,301

and argument name as the query keys. At the infer-302

ence stage, we query the lookup table to fetch cor-303

responding constraints by decoded package name,304

function name, and/or argument name. If the API is305

evolved with changing constraints such as new re-306

quired/optional arguments, changing names, chang-307

ing possible values, etc., new constraints can be308

enforced effortlessly at the inference stage by re-309

parsing the updated API documentation, which is310

less expensive than re-tuning the model with up-311

dated labeled data.312

In Figure 3, we illustrate the SCD at the infer-313

ence stage. To ensure appropriate constraints can314

be retrieved and enforced at the precise inference315

step of the generation, the state of the generation is316

determined by tracking the model-generated struc-317

tural tokens. The structured nature of the API call318

results in signature tokens that indicate the end or319

start of different units of the API call as we speci- 320

fied in Table 2. Specifically, for the constrained gen- 321

eration of an API call unit, we enforce the model 322

to decode along the Constrained Token Search Trie 323

(CTST) as illustrated in Figure 4. The tokenizer 324

of LLMs performs WordPiece tokenization, which 325

breaks down the word into smaller subword tokens 326

for various benefits (Devlin et al., 2019). Accord- 327

ingly, the package name Restaurants_1 would 328

be autoregressively generated by the LLM piece 329

by piece with five forward-pass inference steps as 330

shown in the upper half of Figure 4. At the prepro- 331

cessing step, we build the extracted constraints into 332

CTST. When conducting constrained generation, 333

the forward inference pass is only necessary for 334

nodes that have multiple branches. In such a case, 335

only the probabilities of the possible next tokens as 336

indicated by the CTST would be considered. For 337

nodes that only have one child, the subsequent to- 338

ken is directly appended, which saves the time and 339

compute costs of a forward inference pass. 340

5

Figure 4: Comparison of the Generation of
Restaurants_1 with Normal Decoding and Decoding
with Constrained Token Search Trie.

For SCD, we implement it with four different341

sampling strategies including greedy search, top-k342

sampling, top-p sampling, and beam search.343

4.2 Reranking344

Although the SCD approach we introduced in Sec-345

tion 4.1 can guarantee the generated API call’s346

faithfulness to the API documentation, the faithful-347

ness to the user’s request is solely dependent on348

the LLM’s zero-shot or few-shot in-context learn-349

ing and reasoning capabilities. Also, the valuable350

labeled training data hasn’t been exploited yet with351

SCD. Fine-tuning the LLM might be a straightfor-352

ward solution, but the huge compute costs asso-353

ciated with the growing parameter size of LLM354

motivates us to seek alternative solutions.355

Inspired by the studies of discriminator-guided356

generation, we propose the supervised training of357

a lightweight scorer for the reranking of beam-358

searched candidate generations. To train the scorer,359

we generate data as follows: we prompt the Alpaca-360

13B model with training set samples and obtain361

associated beam-searched candidate generations362

for each sample. For each candidate generation,363

the matching score with respect to the ground truth364

is calculated as the target of the scorer. Such data is365

used for the tuning of a RoBERTa-base(Liu et al.,366

2019) model that has 125M parameters to predict367

the matching score based on the input of conversa-368

tion and API Documentation context and the can-369

didate generation. Specifically, we train the model370

with sample-wise batching that groups candidate371

generations of the same context into one mini-batch372

and use the MSE Loss and Spearman Soft Rank-373

ing Correlation Loss (Blondel et al., 2020) as the 374

training objective for optimal performance. 375

Instead of returning the beam-searched candi- 376

date generation that has the highest sequence prob- 377

ability as the final generated API call, we use the 378

trained scorer to discriminate each of the candi- 379

date generations and rerank them accordingly. This 380

reranking strategy allows low-cost incorporation of 381

task and domain-specific context reasoning capa- 382

bility learned from the valuable labeled data and 383

compliments the SCD approach and LLM’s zero- 384

shot or few-shot in-context learning and reasoning 385

capabilities. 386

5 Experiment Setup 387

5.1 Datasets 388

We use the data from DSTC8 (Kim et al., 2019) 389

and API Bank (Li et al., 2023) to conduct the 390

experiments and evaluation of our proposed FAN- 391

TASE framework. Both datasets support the task of 392

API call generation that requires understanding and 393

reasoning of multi-turn human-assistant dialogues. 394

Short-listed APIs and associated Documentation 395

are accompanied by each sample. One major dif- 396

ference is that each DSTC8 sample has two related 397

exemplars while API Bank does not ship with the 398

exemplars. Accordingly, we experiment with the 399

few-shot in-context learning setting with DSTC8 400

and the zero-shot in-context learning setting with 401

API Bank. In Appendix A, we provide detailed 402

statistics of DSTC8 and API Bank. 403

5.2 Baseline and Backbone Models 404

For in-context learning settings, we include strong 405

baselines GPT3.5-turbo and GPT4 developed by 406

OpenAI, which represents the most recent break- 407

through in LLMs with a track record of leading 408

zero-shot and few-shot learning and reasoning ca- 409

pabilities. FANTASE is a plug-and-play model- 410

agnostic approach that can be used in conjunction 411

with any LLM that has an autoregressive decoder 412

producing next-token probabilities. However, the 413

API access of OpenAI models only allows greedy 414

search and does not provide the logits. In con- 415

sideration of the license, resource constraints, ef- 416

ficiency, and zero-shot/few-shot learning and rea- 417

soning capabilities, we opt to use Alpaca-13B as 418

the backbone of our proposed methods. As for 419

baselines of supervised learning settings, we fine- 420

tune the Alpaca-7B model with DSTC8 training 421

set samples (denoted as AlpDSTC-7B), and we di- 422

6

Dataset DSTC8 (Two Examplars) API Bank (No Examplars)
In-context Learning Methods

Baselines
GPT4 (est. 1.76T) 37.22 63.66*

GPT3.5-turbo (est. 175B) 49.28 59.40*
Alpaca-13B Greedy Search 37.63 24.06
Alpaca-13B Beam Search 40.49 24.31

FANTASE with Alpaca-13B as the Base Model
SCD Greedy Search 42.33 56.64
SCD Beam Search 44.17 62.66

Supervised Learning Methods
Baselines

AlpDSTC-7B / Lynx-7B Greedy Search 46.63 48.62
AlpDSTC-7B / Lynx-7B Beam Search 47.44 50.53

FANTASE with Alpaca-13B as the Base Model (In-context) and RoBERTa-Base Reranker (Supervised)
Reranking 46.42 33.33

SCD Beam Search + Reranking 48.88 64.41
FANTASE with AlpDSTC-7B / Lynx-7B as the Base Model

SCD Greedy Search 59.30 65.66
SCD Beam Search 62.78 67.17

Table 3: API Call Generation Accuracy Evaluation On DSTC8 and API Bank. For settings involving beam search,
we set the beam size to 4. For reproducible results, we set temperature to 0 for all settings. (* denotes results
reported by Li et al. 2023. Best performed In-context and Supervised Learning Methods are bolded).

rectly use the Lynx-7B model, an API Bank data423

tuned Alpaca-7B model, released by Li et al. 2023.424

We supply detailed information of the aforemen-425

tioned models in Appendix B.426

5.3 Evaluation Settings427

To verify the effectiveness of FANTASE, we run428

experiments with the following three evaluation429

settings that focus on different perspectives:430

API Call Generation Accuracy measures if the431

generated API calls fully match their associated432

ground truth. It is the main metric that reflects433

if the generation faithfully followed the user’s re-434

quest and the requirements specified in the API435

documentation. As the order of arguments does436

not matter for both datasets, we calculate unit-wise437

order-insensitive set matches.438

Inference Efficiency measures the time cost of the439

API call generation. Previous works on constrained440

decoding often vaguely report that the decoding441

speed is slower than regular decoding algorithms442

without quantitative measurements. To quantify443

the speed up brought by FANTASE’s State-tracked444

Constrained Decoding that utilizes CTST (§4.1),445

we compare the time costs of the API call genera-446

tion with regular/constrained greedy/beam search447

algorithms using the Alpaca-13B model under the448

in-context learning setting.449

Context Efficiency measures the effectiveness of450

our approach in incorporating the API documenta-451

tion without the reliance on the repeated supply of452

the lengthy API documentation in the prompt for453

in-context learning.454

6 Results and Analysis 455

6.1 API Call Generation Accuracy 456

In Table 3, we report the results of API call genera- 457

tion accuracy. The SCD component of FANTASE 458

consistently brings substantial improvements over 459

the base models for both in-context learning set- 460

tings and supervised learning settings on DSTC8 461

and API Bank, which demonstrates complementary 462

benefits. 463

Specifically, for few-shot in-context learning set- 464

tings evaluated with DSTC8, SCD Greedy Search 465

and SCD Beam Search improve the accuracy by 466

+4.7 and +3.68 over the respective counterparts. 467

For zero-shot in-context learning settings evalu- 468

ated with API Bank, SCD Greedy Search and SCD 469

Beam Search boost the accuracy by +32.33 and 470

+34.34 respectively, which makes the 13B model’s 471

zero-shot generation performance comparable to 472

the GPT3.5-turbo model that has an estimated pa- 473

rameter size of 175B and surpasses the accuracy of 474

fine-tuned 7B model by a large margin. The larger 475

performance gap signifies the value of SCD when 476

labeled data is not available at all. 477

For supervised learning settings, SCD can 478

still greatly improve the performance of corre- 479

sponding settings of fine-tuned models and yields 480

+17.04/+16.64 performance gain on API Bank and 481

+12.67/+15.34 performance gain on DSTC8 with 482

greedy/beam search, which leads to the 7B mod- 483

els outperforming GPT models that are 25x~250x 484

times larger in terms of parameter size. Also, we 485

find that GPT4 model’s performance on DSTC8 is 486

7

much worse than the GPT3.5-turbo model. Our di-487

agnosis on the generation reveals that GPT4 model488

tends to hallucinate the year as 2023 for date-489

related parameters even if the context year is 2019.490

GPT4 model also made more formatting errors than491

GPT3.5-turbo on DSTC8.492

The Reranking component of FANTASE also493

brings considerable improvements over the base494

model by supervised training of a lightweight dis-495

criminator. The Reranking component alone im-496

proves the regular beam search results by +6.15497

and +9.02 respectively on DSTC8 and API Bank.498

The FANTASE framework, with both the SCD499

component and Reranking component activated,500

achieves the best overall accuracy showing comple-501

mentary benefits of the two components. Specifi-502

cally, for DSTC8, the accuracy of 48.88 is close503

to the performance of GPT3.5-turbo and better504

than the supervised fine-tuned model AlpDSTC-7B.505

For API Bank, the accuracy of 64.41 is better than506

GPT4 and supervised fine-tuned model Lynx-7B.507

6.2 Inference Efficiency508

Decoding
Strategy

DSTC8 API Bank
Inference

Speed
(sec/sample)

Speed
Up

Inference
Speed

(sec/sample)

Speed
Up

GS 5.32 - 5.85 -
SCD GS 3.42 x1.56 3.33 x1.76

BS 15.12 - 23.15 -
SCD BS 6.33 x2.39 10.27 x2.25

Table 4: Generation Speed of Regular Greedy Search
(GS) and Beam Search (BS) Decoding versus FAN-
TASE’s State-tracked Constrained Decoding (SCD)
Counterparts.

In Table 4, we quantitatively measure the infer-509

ence time savings of the State-Tracked Constrained510

Decoding that leverages the CTST as we have in-511

troduced in Section 4.1 and illustrated in Figure 4.512

Compared to regular greedy and beam search, SCD513

has the capability of speeding up the API call gen-514

eration by approximately 1.5x~2.4x times. When515

looking together with generation accuracy, it is516

quite encouraging that SCD greedy search can517

achieve regular beam search level’s performance518

with significantly less amount of time and SCD519

Beam Search can achieve much better performance520

at regular greedy search level’s time cost. For API521

Bank, SCD Greedy search can even outperform522

regular bream search with significantly less time523

cost.524

6.3 Context Efficiency 525

Dataset Setting w. API Doc w.o. API Doc ∆

DSTC8

GS 37.63 33.74 -3.89
SCD GS 42.33 40.70 -1.63

BS 40.49 38.24 -2.25
SCD BS 44.17 42.54 -1.63

API Bank

GS 24.06 4.76 -19.3
SCD GS 56.64 22.81 -33.83

BS 24.31 4.51 -19.8
SCD BS 58.65 23.05 -35.6

Table 5: Generation Accuracy of Regular Greedy Search
(GS) and Beam Search (BS) Decoding with / without
API Documentation versus FANTASE’s State-tracked
Constrained Decoding (SCD) Counterparts.

As discussed in Section 4.1, another benefit of SCD 526

is to save the context tokens required in the prompt 527

for supplying the API documentation to the LLM, 528

as SCD is capable of incorporating that informa- 529

tion at the decoding stage. Based on the statis- 530

tics provided in Appendix A, removing API doc- 531

umentation from the input could save an average 532

of 766.28 tokens for DSTC8 and 265.71 tokens for 533

API Bank. In Table 5, we show the performance of 534

SCD when the API documentation is removed from 535

the model’s input. For DSTC8, our constrained de- 536

coding method manages to maintain the accuracy 537

above 40 when the API Documentation is absent 538

from the input while the unconstrained counterparts 539

suffer larger performance drops of -3.89/-2.25 540

that leads to larger performance gaps with our ap- 541

proach. For API Bank, the absence of both exem- 542

plars and API documentation makes it super chal- 543

lenging for the model to generate relevant API calls 544

as shown by the large performance drop. However, 545

our constrained decoding method can still achieve 546

22.81/23.05 accuracy in such a scenario, which 547

is close to the performance of the unconstrained 548

version that has API Documentation access in the 549

prompt. 550

7 Conclusions 551

The FANTASE framework, with its State-Tracked 552

Constrained Decoding (SCD) and Reranking com- 553

ponents, effectively tackles the challenges of gener- 554

ating API calls from complex contexts. By integrat- 555

ing API constraints through a Token Search Trie 556

and employing a lightweight model for reranking, 557

FANTASE not only ensures accurate API call gen- 558

eration but also improves inference and context ef- 559

ficiencies. Its superior performance on the DSTC8 560

and API Bank datasets confirms FANTASE’s sig- 561

nificant advancement in enhancing large language 562

models’ tool-using ability. 563

8

Limitations564

Despite the effort we have made to the best of our565

current ability, we recognize the following limita-566

tions of our work:567

Evaluation with larger language models: Due to568

our resource limitations and the input length of the569

two datasets, the largest models we can fine-tune570

and infer are 7B and 13B respectively. The effect571

of the base model’s parameter size hasn’t been ex-572

tensively studied in this paper, and the impact of573

our approach on larger models’ API call generation574

accuracy and inference efficiency lacks empirical575

evidence. Based on the working mechanism of576

FANTASE, our educated guess is that larger mod-577

els may make fewer errors which our approach is578

targeting, so the improvements would be smaller579

than using relatively small models as the backbone.580

As for the inference efficiency, the absolute time581

savings should be larger as a forward pass through582

a larger model takes longer time. However, the583

relative speed-up would remain at the current level584

as the amount of nodes that only have one child585

depends on the data instead of the models. To ad-586

dress this issue, we intend to release our code upon587

the publication of this paper for the ease of further588

evaluation conducted by other researchers that have589

sufficient resource.590

Adaptation to a broader range of tasks: FAN-591

TASE is specially designed and evaluated for the592

task of our interests - API call generation. Although593

the high-level idea and concepts of our approach594

should be adpatable to other structured text gener-595

ation tasks such as SQL generation, table genera-596

tion, etc., the adaptation may require considerable597

efforts in identifying constraints, signature tokens,598

and appropriate constraint-enforcing steps. For un-599

structured text generation tasks, it remains unclear600

if the identification of signature tokens and appro-601

priate constraint-enforcing steps are feasible.602

Ethics Statement603

Our approach significantly enhances the capability604

of current models to generate API calls. However,605

it’s important to acknowledge that the accuracy of606

these generations remains imperfect. As API calls607

could enable language models to perform tangible608

real-world actions, inaccuracies in API call gener-609

ation would lead to serious consequences. These610

may include but are not limited to: financial losses611

when making wrong purchases and reservations,612

potential harm to the human being or the environ-613

ment when controlling physical objects in unex- 614

pected ways, and the dissemination of false or mis- 615

leading information when retrieving a wrong set 616

of information. Consequently, we urge the users 617

of our methods and the related API call generation 618

models to be aware of such systems’ high like- 619

lihood of generating inaccurate API calls and to 620

remain vigilant about the possible risks associated 621

with such errors. 622

References 623

Mohaddeseh Bastan, Mihai Surdeanu, and Niranjan 624
Balasubramanian. 2023. NEUROSTRUCTURAL 625
DECODING: Neural text generation with structural 626
constraints. In Proceedings of the 61st Annual Meet- 627
ing of the Association for Computational Linguistics 628
(Volume 1: Long Papers), pages 9496–9510, Toronto, 629
Canada. Association for Computational Linguistics. 630

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and 631
Josip Djolonga. 2020. Fast differentiable sorting 632
and ranking. In Proceedings of the 37th Interna- 633
tional Conference on Machine Learning, ICML’20. 634
JMLR.org. 635

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 636
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 637
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 638
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 639
Gretchen Krueger, Tom Henighan, Rewon Child, 640
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 641
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 642
teusz Litwin, Scott Gray, Benjamin Chess, Jack 643
Clark, Christopher Berner, Sam McCandlish, Alec 644
Radford, Ilya Sutskever, and Dario Amodei. 2020. 645
Language models are few-shot learners. In Ad- 646
vances in Neural Information Processing Systems, 647
volume 33, pages 1877–1901. Curran Associates, 648
Inc. 649

Xiang Chen, Zhixian Yang, and Xiaojun Wan. 2022. 650
Relation-constrained decoding for text generation. In 651
Advances in Neural Information Processing Systems, 652
volume 35, pages 26804–26819. Curran Associates, 653
Inc. 654

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane 655
Hung, Eric Frank, Piero Molino, Jason Yosinski, and 656
Rosanne Liu. 2020. Plug and play language models: 657
A simple approach to controlled text generation. In 658
8th International Conference on Learning Represen- 659
tations, ICLR 2020, Addis Ababa, Ethiopia, April 660
26-30, 2020. OpenReview.net. 661

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 662
Kristina Toutanova. 2019. BERT: Pre-training of 663
deep bidirectional transformers for language under- 664
standing. In Proceedings of the 2019 Conference of 665
the North American Chapter of the Association for 666
Computational Linguistics: Human Language Tech- 667
nologies, Volume 1 (Long and Short Papers), pages 668

9

https://doi.org/10.18653/v1/2023.acl-long.528
https://doi.org/10.18653/v1/2023.acl-long.528
https://doi.org/10.18653/v1/2023.acl-long.528
https://doi.org/10.18653/v1/2023.acl-long.528
https://doi.org/10.18653/v1/2023.acl-long.528
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ab63a1a325670278ba9b87fbc3e95e33-Paper-Conference.pdf
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

4171–4186, Minneapolis, Minnesota. Association for669
Computational Linguistics.670

Saibo Geng, Martin Josifoski, Maxime Peyrard, and671
Robert West. 2023. Grammar-constrained decoding672
for structured NLP tasks without finetuning. In Pro-673
ceedings of the 2023 Conference on Empirical Meth-674
ods in Natural Language Processing, pages 10932–675
10952, Singapore. Association for Computational676
Linguistics.677

Chris Hokamp and Qun Liu. 2017. Lexically con-678
strained decoding for sequence generation using grid679
beam search. In Proceedings of the 55th Annual680
Meeting of the Association for Computational Lin-681
guistics (Volume 1: Long Papers), pages 1535–1546,682
Vancouver, Canada. Association for Computational683
Linguistics.684

Seokhwan Kim, Michel Galley, Chulaka Gunasekara,685
Sungjin Lee, Adam Atkinson, Baolin Peng, Hannes686
Schulz, Jianfeng Gao, Jinchao Li, Mahmoud Adada,687
Minlie Huang, Luis Lastras, Jonathan K. Kummer-688
feld, Walter S. Lasecki, Chiori Hori, Anoop Cherian,689
Tim K. Marks, Abhinav Rastogi, Xiaoxue Zang,690
Srinivas Sunkara, and Raghav Gupta. 2019. The691
eighth dialog system technology challenge.692

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,693
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,694
and Nazneen Fatema Rajani. 2021. GeDi: Gener-695
ative discriminator guided sequence generation. In696
Findings of the Association for Computational Lin-697
guistics: EMNLP 2021, pages 4929–4952, Punta698
Cana, Dominican Republic. Association for Compu-699
tational Linguistics.700

Ananya Kumar, Aditi Raghunathan, Robbie Matthew701
Jones, Tengyu Ma, and Percy Liang. 2022. Fine-702
tuning can distort pretrained features and underper-703
form out-of-distribution. In International Conference704
on Learning Representations.705

David Landsman, Jerry Zikun Chen, and Hussain Zaidi.706
2022. BeamR: Beam reweighing with attribute dis-707
criminators for controllable text generation. In Find-708
ings of the Association for Computational Linguis-709
tics: AACL-IJCNLP 2022, pages 422–437, Online710
only. Association for Computational Linguistics.711

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,712
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,713
and Yongbin Li. 2023. Api-bank: A comprehensive714
benchmark for tool-augmented llms.715

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-716
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,717
Luke Zettlemoyer, and Veselin Stoyanov. 2019.718
Roberta: A robustly optimized BERT pretraining719
approach. CoRR, abs/1907.11692.720

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,721
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-722
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,723
and Yejin Choi. 2022. NeuroLogic a*esque decoding:724

Constrained text generation with lookahead heuris- 725
tics. In Proceedings of the 2022 Conference of the 726
North American Chapter of the Association for Com- 727
putational Linguistics: Human Language Technolo- 728
gies, pages 780–799, Seattle, United States. Associa- 729
tion for Computational Linguistics. 730

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, 731
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro- 732
Logic decoding: (un)supervised neural text genera- 733
tion with predicate logic constraints. In Proceedings 734
of the 2021 Conference of the North American Chap- 735
ter of the Association for Computational Linguistics: 736
Human Language Technologies, pages 4288–4299, 737
Online. Association for Computational Linguistics. 738

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo- 739
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu, 740
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, 741
Asli Celikyilmaz, et al. 2023. Augmented language 742
models: a survey. arXiv preprint arXiv:2302.07842. 743

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, 744
Wen-tau Yih, Sida I Wang, and Xi Victoria Lin. 745
2023. Lever: Learning to verify language-to-code 746
generation with execution. In Proceedings of the 747
40th International Conference on Machine Learning 748
(ICML’23). 749

OpenAI. 2023. GPT-4 technical report. CoRR, 750
abs/2303.08774. 751

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 752
Carroll L. Wainwright, Pamela Mishkin, Chong 753
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, 754
John Schulman, Jacob Hilton, Fraser Kelton, Luke 755
Miller, Maddie Simens, Amanda Askell, Peter Welin- 756
der, Paul F. Christiano, Jan Leike, and Ryan Lowe. 757
2022. Training language models to follow instruc- 758
tions with human feedback. In NeurIPS. 759

Matt Post and David Vilar. 2018. Fast lexically con- 760
strained decoding with dynamic beam allocation for 761
neural machine translation. In Proceedings of the 762
2018 Conference of the North American Chapter of 763
the Association for Computational Linguistics: Hu- 764
man Language Technologies, Volume 1 (Long Pa- 765
pers), pages 1314–1324, New Orleans, Louisiana. 766
Association for Computational Linguistics. 767

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 768
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 769
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, 770
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, 771
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa- 772
cilitating large language models to master 16000+ 773
real-world apis. 774

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 775
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 776
Cancedda, and Thomas Scialom. 2023. Toolformer: 777
Language models can teach themselves to use tools. 778
ArXiv, abs/2302.04761. 779

10

https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
http://arxiv.org/abs/1911.06394
http://arxiv.org/abs/1911.06394
http://arxiv.org/abs/1911.06394
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://aclanthology.org/2022.findings-aacl.40
https://aclanthology.org/2022.findings-aacl.40
https://aclanthology.org/2022.findings-aacl.40
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-780
danau. 2021. PICARD: Parsing incrementally for781
constrained auto-regressive decoding from language782
models. In Proceedings of the 2021 Conference on783
Empirical Methods in Natural Language Processing,784
pages 9895–9901, Online and Punta Cana, Domini-785
can Republic. Association for Computational Lin-786
guistics.787

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann788
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,789
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:790
An instruction-following llama model. https://791
github.com/tatsu-lab/stanford_alpaca.792

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier793
Martinet, Marie-Anne Lachaux, Timothée Lacroix,794
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal795
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard796
Grave, and Guillaume Lample. 2023a. Llama: Open797
and efficient foundation language models.798

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-799
bert, Amjad Almahairi, Yasmine Babaei, Nikolay800
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti801
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton802
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,803
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,804
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-805
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan806
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,807
Isabel Kloumann, Artem Korenev, Punit Singh Koura,808
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-809
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-810
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-811
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-812
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,813
Ruan Silva, Eric Michael Smith, Ranjan Subrama-814
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-815
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,816
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,817
Melanie Kambadur, Sharan Narang, Aurelien Ro-818
driguez, Robert Stojnic, Sergey Edunov, and Thomas819
Scialom. 2023b. Llama 2: Open foundation and820
fine-tuned chat models.821

Shufan Wang, Sébastien Jean, Sailik Sengupta, James822
Gung, Nikolaos Pappas, and Yi Zhang. 2023a. Mea-823
suring and mitigating constraint violations of in-824
context learning for utterance-to-API semantic pars-825
ing. In Findings of the Association for Computa-826
tional Linguistics: EMNLP 2023, pages 7196–7207,827
Singapore. Association for Computational Linguis-828
tics.829

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa830
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh831
Hajishirzi. 2023b. Self-instruct: Aligning language832
models with self-generated instructions. In Proceed-833
ings of the 61st Annual Meeting of the Association for834
Computational Linguistics (Volume 1: Long Papers),835
pages 13484–13508, Toronto, Canada. Association836
for Computational Linguistics.837

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 838
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, 839
and Denny Zhou. 2022. Chain-of-thought prompt- 840
ing elicits reasoning in large language models. In 841
Advances in Neural Information Processing Systems, 842
volume 35, pages 24824–24837. Curran Associates, 843
Inc. 844

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian 845
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and 846
Xia Hu. 2023. Harnessing the power of llms in prac- 847
tice: A survey on chatgpt and beyond. 848

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled 849
text generation with future discriminators. In Pro- 850
ceedings of the 2021 Conference of the North Amer- 851
ican Chapter of the Association for Computational 852
Linguistics: Human Language Technologies, pages 853
3511–3535, Online. Association for Computational 854
Linguistics. 855

Appendix 856

A Datasets 857

Dataset
DSTC8

median / mean
API Bank

median / mean
Total Input

Length (Tokens)
1,683

1,644.28
492

542.86
API Documentation

Length (Tokens)
735

766.28
244

265.71
Examplars

Length (Tokens)
580

558.00
N/A

Conversation
Length (Tokens)

200.5
221.08

138
175.15

Conversation
Turns

6
6.31

3
3.21

Target API Call
Length (Tokens)

46
45.70

27
35.17

Target API Call
Arguments Amount

3
3.42

2
2.27

Table 6: Statistics of DSTC8 and API Bank Data.

In Table 6, we provide the detailed statistics of 858

DSTC8 and API Bank. The inputs and outputs 859

of DSTC8 are longer than API Bank counterparts. 860

DSTC8 also has more turns of conversation and 861

API call arguments than API Bank, which makes 862

DSTC8 a more challenging dataset in terms of rea- 863

soning the context and generating appropriate API 864

calls even if two exemplars are provided for each 865

sample. 866

Our experiments and evaluation of the FAN- 867

TASE framework are based on the test split of 868

DSTC8 and API Bank that has 490 and 399 sam- 869

ples respectively. For DSTC8, we remove the 870

longest one out of the 490 samples as it causes 871

CUDA out of memory error on our server. 872

11

https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.findings-emnlp.478
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
http://arxiv.org/abs/2304.13712
http://arxiv.org/abs/2304.13712
http://arxiv.org/abs/2304.13712
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276

B Models873

Alpaca-13B is a LLaMA-based instruction follow-874

ing model that has 40 layers, a hidden size of 5120,875

40 self-attention heads and 13 billion parameters.876

For our experiments, we use Huggingface check-877

point chavinlo/gpt4-x-alpaca.878

AlpDSTC-7B and Lynx-7B are the Alpaca-7B-879

based model that has 32 layers, a hidden size of880

4096, 32 self-attention heads and 7 billion parame-881

ters. Lynx-7B is the training set fine-tuned model882

released by API Bank authors (Huggingface check-883

point: liminghao1630/Lynx-7b). The model was884

tuned for 3 epochs with a learning rate of 2e-5885

and an effective batch size of 256. We follow the886

same setting of Lynx-7B to tune a Alpaca-7B with887

DSTC8 training set samples.888

RoBERTa-base is a BERT-based model that has 12889

layers, a hidden size of 768, 12 self-attention heads,890

and 125 million parameters. For our experiments,891

we use Huggingface checkpoint roberta-base892

and tune the model with training set candiate gen-893

erations for 5 epochs with a learning rate of 5e-5894

and an effective batch size of 256.895

GPT3.5 and GPT4 are only accessible via API896

or web interface. Details of these two models897

have not been officially released by OpenAI, but a898

broadly accepted latency-based parameter size es-899

timation is 175 billion parameters for GPT3.5 and900

1.76 trillion parameters for GPT4. For our experi-901

ments, we use checkpoints gpt-3.5-turbo-0613902

and gpt-4-0613.903

License information of Alpaca can be904

found at https://github.com/tatsu-lab/905

stanford_alpaca/blob/main/LICENSE and906

https://github.com/tatsu-lab/stanford_907

alpaca/blob/main/DATA_LICENSE.908

License information of LLaMA can be found909

at https://docs.google.com/forms/d/e/910

1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_911

fBxjY_OjhJILlKGA/viewform.912

License information of Lynx-7B and API Bank913

data can be found at https://github.com/914

AlibabaResearch/DAMO-ConvAI/blob/main/915

api-bank/LICENSE.916

License information of DSTC8 data917

can be found at https://github.918

com/google-research-datasets/919

dstc8-schema-guided-dialogue/blob/920

master/LICENSE.txt.921

License information of RoBERTa can be found922

at https://github.com/facebookresearch/923

fairseq/blob/main/LICENSE. 924

License information of GPT-X models can 925

be found at https://openai.com/policies/ 926

terms-of-use. 927

12

https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE
https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE
https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE
https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE
https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE
https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE
https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE
https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE
https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE
https://github.com/AlibabaResearch/DAMO-ConvAI/blob/main/api-bank/LICENSE
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/blob/master/LICENSE.txt
https://github.com/facebookresearch/fairseq/blob/main/LICENSE
https://github.com/facebookresearch/fairseq/blob/main/LICENSE
https://github.com/facebookresearch/fairseq/blob/main/LICENSE
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use

