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Abstract

Graph Neural Networks (GNNs) are pivotal in
graph-based learning, particularly excelling in
node classification. However, their scalability is
hindered by the need for multi-hop data during
inference, limiting their application in latency-
sensitive scenarios. Recent efforts to distill GNNs
into multi-layer perceptrons (MLPs) for faster in-
ference often underutilize the layer-level insights
of GNNs. In this paper, we present TINED, a
novel approach that distills GNNs to MLPs on a
layer-by-layer basis using Teacher Injection and
Dirichlet Energy Distillation techniques. We fo-
cus on two key operations in GNN layers: feature
transformation (FT) and graph propagation (GP).
We recognize that FT is computationally equiv-
alent to a fully-connected (FC) layer in MLPs.
Thus, we propose directly transferring teacher pa-
rameters from an FT in a GNN to an FC layer
in the student MLP, enhanced by fine-tuning. In
TINED, the FC layers in an MLP replicate the
sequence of FTs and GPs in the GNN. We also
establish a theoretical bound for GP approxima-
tion. Furthermore, we note that FT and GP op-
erations in GNN layers often exhibit opposing
smoothing effects: GP is aggressive, while FT
is conservative. Using Dirichlet energy, we de-
velop a DE ratio to measure these effects and
propose Dirichlet Energy Distillation to convey
these characteristics from GNN layers to MLP lay-
ers. Extensive experiments show that TINED out-
performs GNNs and leading distillation methods
across various settings and seven datasets. Source
code are available at https://github.com/
scottjiao/TINED_ICML25/.
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1. Introduction
Graph neural networks (GNNs) have delivered impressive
outcomes in important applications (Hamilton et al., 2017;
Kipf and Welling, 2017; Veličković et al., 2018). The power
of GNNs is underpinned by the message passing framework
that assimilates and refines node representations by con-
sidering their (multi-hop) neighborhood over graphs (Wu
et al., 2020; Zhou et al., 2020). Nonetheless, the message
passing is computationally demanding due to numerous
nodes involved, posing significant challenges to deploy
GNNs in latency-sensitive applications that require fast in-
ference (Zhang et al., 2020; 2022a; Jia et al., 2020).

Recent studies attempt to combine the performance advan-
tage of GNNs and the latency advantage of multi-layer per-
ceptrons (MLPs) (Hu et al., 2021; Zhang et al., 2022b; Tian
et al., 2022; Chen et al., 2021). Specifically, GLNN (Zhang
et al., 2022b) distills teacher GNNs into student MLPs via
soft labels. Then the student is deployed for fast inference
to approximate the performance of GNNs without expen-
sive message passing on graphs. NOSMOG (Tian et al.,
2022) further considers graph structures, robustness, and
node relations, while a new graph representation space is
learned in (Yang et al., 2024). Current research often treats
both teacher GNN and student MLP as monolithic model
entities, focusing primarily on soft label outputs of the GNN
for distillation, which overlooks the intrinsic knowledge
contained within fine-grained GNN layers.

In this paper, we conduct an in-depth analysis to reveal
important properties of the key operations in GNN layers
and propose a novel method, TINED, distilling GNNs to
MLPs layer-wise by Teacher INjection and Dirichlet Energy
Distillation. The main ideas are explained below, and the
detailed architecture of TINED is presented later.

Main Idea of Teacher Injection. A typical GNN layer in-
cludes two key operations: feature transformation (FT) and
graph propagation (GP) (Kipf and Welling, 2017; Veličković
et al., 2018; Hamilton et al., 2017; Liu et al., 2020; Zhu et al.,
2021). GP aggregates neighbor representations of a node,
while FT transforms node representations with learnable
parameters. The valuable knowledge of a teacher GNN is
preserved in the well-trained parameters of its FT and GP
operations. Existing studies do not directly utilize these pa-
rameters (Zhang et al., 2022b). In Section 4.1, we recognize
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Figure 1: The DE ratios of FTs and GPs in the layers of GraphSAGE.

that FT operations in GNNs share the same formulation
as fully-connected (FC) layers in MLPs, both transforming
representations using learnable transformation matrices and
activations. Thus, we propose to inject the parameters of an
FT in a teacher GNN layer into an FC layer in student MLP,
followed by fine-tuning for distillation. The GP operation
in the GNN layer is emulated by another FC layer in the
student. This allows TINED to directly transplant teacher
knowledge into the student. Moreover, in TINED, the FC
layers in the MLP mirror the order of their corresponding
FTs and GPs in the GNN teacher, preserving layer-specific
knowledge as much as possible. Theoretically, we prove an
approximation bound between a GP in GNN and its corre-
sponding FC layer in MLP, which depends on the eigenvalue
of graph Laplacian matrix.

Main Idea of Dirichlet Energy Distillation. We further
investigate the smoothing properties of FT and GP opera-
tions within GNN layers, since it is well-recognized that
appropriate smoothing is crucial for GNNs (Chen et al.,
2020a). Importantly, we observe that the FT and GP op-
erations in a GNN layer often exert opposing smoothing
effects: GP aggressively smooths node embeddings, while
FT is more restrained and can even diversify embeddings.
Using Dirichlet energy (Rusch et al., 2023), we propose a
DE ratio measure to quantify whether an operation is con-
servative (large DE ratio) or aggressive (small DE ratio)
in smoothing. Figure 1 shows the DE ratios of FTs and
GPs in a trained 2-layer GNN teacher GraphSAGE on the
experimental datasets. Within the same layer, the DE ratio
of FT (red dot) is often larger than that of GP (blue star),
indicating their opposing smoothing behaviors. Similar ob-
servations are made on other GNNs (see Appendix A.4). To
distill these smoothing patterns from GNN to MLP layers,
we design Dirichlet Energy Distillation in Section 4.2.

We conduct extensive experiments on benchmark datasets
under various settings. Results show that TINED achieves
superior performance and fast inference speed, compared
with existing methods and various teacher GNNs. For exam-
ple, on the Citeseer data, TINED improves a GNN teacher
by 3.94%, MLPs by 15.93%, GLNN by up to 3.21%, and
NOSMOG by 1.54%. TINED is 94× faster than its GNN
teacher for inference. Our contributions are as follows:

• We propose TINED, a novel method to effectively distill
fine-grained layer-wise knowledge from teacher GNNs
into student MLPs.

• We develop a teacher injection technique to transplant the
parameters of key operations from GNNs to MLPs. We
provide a theoretical approximation analysis.

• We observe distinct smoothing effects of FT and GP op-
erations in GNN layers and introduce Dirichlet energy
distillation to impart these effects to student MLPs.

• Extensive experiments demonstrate that TINED achieves
superior performance with various GNN teachers on
widely-adopted benchmark datasets.

2. Related Work
GNNs leverage message-passing to aggregate neighbor-
hood information for learning (Kipf and Welling, 2017;
Veličković et al., 2018; Hamilton et al., 2017; Chen
et al., 2020b; Klicpera et al., 2019). GCN (Kipf
and Welling, 2017) introduces layer-wise propagation,
GAT (Veličković et al., 2018) employs attention mecha-
nisms, and APPNP (Klicpera et al., 2019) uses personalized
PageRank. Chen et al. (2020b) mitigate over-smoothing
with residual connections. Extensions include positional en-
coding (You et al., 2019; Wang et al., 2022; Li et al., 2020),
few-shot learning (Zhou et al., 2023b; Dong et al., 2025a),
and anomaly detection (Dong et al., 2025b; 2024; Ding
et al., 2024). Specialized GNNs, such as heterogeneous
GNNs (Zhou et al., 2023a; Zhang et al., 2019), address
specific graph types. Despite their effectiveness, GNN infer-
ence is computationally expensive.

Knowledge Distillation has been applied in GNNs to ac-
celerate inference while preserving effectiveness (Lee and
Song, 2019; Yang et al., 2020; 2021; Tian et al., 2023; Feng
et al., 2022). Previous studies have trained smaller student
GNNs with fewer parameters than the large teacher GNNs,
such as LSP (Yang et al., 2020), FreeKD (Feng et al., 2022)
and TinyGNN (Yan et al., 2020) which still rely on time-
intensive message passing. GFKD (Deng and Zhang, 2021)
performs distillation at graph-level instances, while we tar-
get nodes within a single graph. Recent studies (Tian et al.,
2022; Yang et al., 2024; Zhang et al., 2022b; Hu et al., 2021;
Zheng et al., 2022; Wu et al., 2023a;b) develop MLP-based
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Figure 2: (a) TINED with Teacher Injection and Dirichlet Energy Distillation; (b) Inference settings

student models without message passing. GLNN (Zhang
et al., 2022b) trains an MLP student using node features
as input and soft labels from a GNN teacher as targets.
NOSMOG (Tian et al., 2022) incorporates graph structure,
adversarial feature augmentation, and node similarity rela-
tions into distillation. VQGraph learns a structure-aware
tokenizer to encode node substructures (Yang et al., 2024),
during which teacher is also trained. As mentioned, the
intrinsic knowledge in well-trained GNN layers is insuffi-
ciently utilized by existing studies.

There exist works in other orthogonal domains, also observ-
ing the benefits of distilling layer-wise teacher structures,
such as language models (Liang et al., 2023), natural lan-
guage processing (Liang et al., 2023; Chang et al., 2022;
Jiao et al., 2020) and computer vision (Li et al., 2019; Hinton
et al., 2015). In this work, we fill the gap to develop layer-
wise distillation method for GNNs. In addition, Han et al.
(2023) work on a different problem that uses pre-trained
MLPs for GNN training acceleration.

3. Preliminaries
Notations. A graph G = (V, E ,X) consists of a node
set V with n nodes, i.e., |V| = n, an edge set E of size
|E| = m, and X ∈ Rn×dc for dc-dimensional features
of all nodes. Let A be the adjacency matrix of G, where
Au,v = 1 if edge (u, v) ∈ E , and 0 otherwise. A node
v has a neighbor set N (v) = {u|(u, v) ∈ E}, and the
degree of node v is |N (v)|. Degree matrix D is a diagonal
matrix with Dv,v = |N (v)|. In node classification task, the
prediction targets are Y ∈ Rn×K , where K is the number
of classes, and row yv is a K-dim one-hot vector indicating
the ground-truth class of node v. A model predicts the class
probabilities of node v. In G, we use superscript L to mark
the labeled nodes (i.e., VL, XL, and YL), and superscript
U to mark the unlabeled nodes (i.e., VU , XU , and YU ).

GNNs. Let H(l) ∈ Rn×dl be the output node embedding
matrix of the l-th GNN layer, with each row h

(l)
v being

the representation of node v in V . Most GNNs fit under
the message-passing framework with feature transformation
(FT) and graph propagation (GP) operations (Zhu et al.,
2021). The l-th layer usually comprises operations FT(l)

and GP(l) to get H(l) in Eq. (1). GP(l) aggregates the
(l − 1)-th layer representations H(l−1) over G, and FT(l)

transforms representations to get H(l). Different GNNs may
vary in how they composite FT(l) and GP(l).

H(l) = FT(l)
(
GP(l)

(
H(l−1),G

))
(1)

MLPs. An MLP is composed of multiple fully-connected
(FC) layers. The l-th FC layer converts an embedding h(l−1)

to h(l) via a transformation matrix W(l)
M in Eq. (2).

h(l) = σ(h(l−1)W(l)
M + b(l)), (2)

where σ is an activation and b(l) is bias.

GNNs-to-MLPs Distillation. Given a pre-trained GNN
teacher, the goal is to train a cost-effective student MLP to
predict ŷv for node v, utilizing ground-truth labels yv of
labeled nodes v ∈ VL and soft labels zv produced by teacher
GNN for all v ∈ V . The training objective is formulated
below (Zhang et al., 2022b). Note that the student is trained
by both ground truth and soft labels from the teacher.

L =
∑

v∈VL LCE(ŷv,yv) + λ
∑

v∈V LKL(ŷv, zv), (3)

where LCE is the cross-entropy loss by comparing the stu-
dent MLP predictions ŷv with the ground truth yv , and LKL

is the KL-divergence loss between the student MLP predic-
tions ŷv and the soft labels zv from teacher, and weight λ
balances the two losses.

4. The TINED Method
In Eq. (3), existing studies primarily use GNN soft labels
and ground truth labels for distillation. Our approach TINED
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expands this to include model parameters and layer-specific
properties of teacher GNNs for distilling knowledge into
MLPs, as illustrated in Figure 2. As shown in Figure 2(a),
for the Teacher Injection technique, we identify that the
FT(l) operation of the l-th GNN layer essentially conducts
the same computation as an FC layer in an MLP, and thus,
we inject the parameters of FT(l) into an FC layer FCl,2

of the student MLP. The injected parameters are fine-tuned
during the distillation to ensure controlled adaption. To
emulate the GP(l) operation in the l-th GNN layer, we
employ another FC layer FCl,1 in the student MLP. We
establish a theoretical approximation bound between GP(l)

and FCl,1. Then as in Figure 2(a), we use Dirichlet energy
to develop DE ratios RGP(l) and RFT(l) to quantify the
smoothing effects of GP(l) and FT(l) in the l-th GNN layer,
and design Dirichlet Energy Distillation with a LDED loss
to ensure the DE ratios RFCl,2 and RFCl,1 of the student
MLP’s FC layers FCl,1 and FCl,2 preserve the smoothing
effects of GP(l) and FT(l) from the teacher GNN.

There are two typical inference deployment settings as de-
picted in Figure 2(b). TINED can operate without graph
dependency for inference (Zhang et al., 2022b), which is
useful when the graph structure is unavailable or when new
unseen nodes lack graph connections; TINED can also work
with graph structures when allowed (Tian et al., 2022). Fol-
lowing (Zhang et al., 2022b; Tian et al., 2022), we use
GraphSAGE (Hamilton et al., 2017) with GCN aggregation
as the teacher GNN to explain TINED. Our experiments
include results over different teacher GNNs. In Appendix
A.3, we explain how to use TINED for various GNNs.

4.1. Teacher Injection

The idea is to inject the parameters of certain operations of
GNNs into MLPs, thereby directly transferring the teacher’s
knowledge to the student. The GNN operations to be in-
jected should be compatible with MLP in Eq. (2), i.e., with
the same formulation. As shown in Eq. (1), a GNN layer
consists of GP and FT operations. In what follows, we show
that the FT operations of GNNs can be injected into student
MLPs. We use GraphSAGE as an example, while the analy-
sis on other GNNs as teacher is in Appendix A.3. The l-th
layer of GraphSAGE with GP(l) and FT(l) operations is

GP(l): h̃(l)
v = CAT

(
h(l−1)
v ,AGG(l)

(
{h(l−1)

u , ∀u ∈ N (v)}
))

,

FT(l): h(l)
v = σ

(
h̃(l)
v · W(l) + b(l)

)
.

(4)
In Eq. (4), GP(l) operation has an aggregator AGG(l) to
combine the (l − 1)-th representations h(l−1)

u of v’s neigh-
bors and then concatenates (CAT) them with h

(l−1)
v to get

h̃
(l)
v . In FT(l) operation, a learnable transformation matrix

W(l) is applied to h̃
(l)
v , followed by an activation function

to yield the l-th layer representation h
(l)
v of v.

Observe that (i) FT(l) operates independently of the graph,
whereas GP(l) requires the graph; (ii) FT(l) in Eq. (4) has
the same formulation as an FC layer of an MLP in Eq. (2).
Therefore, to approximate the l-th GNN layer, we employ
two FC layers FCl,1 and FCl,2 in the student MLP. In Eq.
(5), the FCl,1 layer of the student MLP is to approximate
GP(l) in Eq. (4), while the FCl,2 layer approximates FT(l)

in Eq. (4), with teacher injection to set Wl,2
M = W(l) and

bl,2
M = b(l), transferring the parameters of FT(l) to FCl,2.

s
(l)
v is the embedding of node v generated by the student.

FCl,1 for GP(l) : ŝ(l)v = σ
(
s′vWl,1

M + bl,1
M

)
,

FCl,2 for FT(l) : s(l)v = σ
(
ŝvWl,2

M + bl,2
M

)
,

(5)

where Wl,2
M = W(l) and bl,2

M = b(l), and W(l) and b(l) are
from Eq. (4).

Different from existing methods, TINED distills knowledge
from GNNs to MLPs on a per-layer basis. Directly injecting
GNN parameters into the MLP is anticipated to improve
the effectiveness. For layer-wise GNNs with T layers, the
resulting MLP will have 2T FC layers. Typically, T is
small, e.g., 2 or 3, and the efficiency impact on inference
between MLPs with 2 and 4 layers is minimal (1.45ms
vs. 1.63ms, as reported in (Zhang et al., 2022b), compared
to 153ms by GraphSAGE). Furthermore, our experiments
show that TINED can achieve a favorable tradeoff between
effectiveness and efficiency for inference. For decoupled
GNNs, e.g., APPNP (Klicpera et al., 2019), with FTs and
GPs decoupled, the teacher injection is also applicable with
a small number of FC layers (see Appendix A.3).

In Theorem 4.1, we provide a theoretical approximation
bound between GP(l) in the l-th layer of teacher GNN and
its corresponding FCl,1 in student MLP, serving as an at-
tempt to establish the relationship between GNNs and MLPs
for knowledge distillation. The proof is in Appendix A.2.

Theorem 4.1. For a sparse matrix L ∈ Rn×n and a fea-
ture matrix H ∈ Rn×d with rank(H) = d, there exists a
transformation matrix W∗ to approximate LH by HW∗

with relative error

||LH−HW∗||F
||H||F

≤ λmax(L),

where || · ||F is the Frobenius norm and λmax(L) is the
largest eigenvalue of laplacian L.

Specifically, Laplacian matrix L represents graph topology
used in GP(l), LH represents the output of GP(l), while
HW∗ represents the output of FCl,1 and HW∗ approx-
imates LH. The relative error is upper-bounded by the
largest eigenvalue λmax(L) of L, regardless of graph size.

The parameters of FC layers FCl,2 in Eq. (5) are sourced
from the FT(l) operations of teacher GNN. To ensure these
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FC layers contribute to the student MLP’s training in a
regulated manner, we introduce a gradient modifier η to fine-
tune the injected parameters when updating the gradients,

∇̂Wl,2
M =η∇Wl,2

M

∇̂bl,2
M =η∇bl,2

M ,
(6)

where η is a hyperparameter to control fine-tuning, while ∇
represents gradient.

In other words, during training, the update of the parameters
in FCl,2 based on gradient optimization after backward
propagation is adjusted by η parameter.

4.2. Dirichlet Energy Distillation

It is widely recognized that an appropriate degree of smooth-
ing is crucial for the efficacy of GNNs. Here we make an in-
teresting observation that, within the l-th GNN layers, GP(l)

operations tend to aggressively smooth node embeddings,
while FT(l) operations often apply conservative smoothing
or even diversify embeddings. These distinct layer-level
smoothing behaviors in teacher GNNs should be captured
in the student MLPs.

To achieve this, we introduce Dirichlet Energy Distillation.
Dirichlet energy (Rusch et al., 2023) is a measure commonly
used to quantify the degree of smoothing in embeddings by
evaluating node pair distances. Definition 4.2 defines the
Dirichlet energy E(H) of a node embedding matrix H.

Definition 4.2. Given a node embedding matrix H ∈ Rn×d,
learned from either the GNN teacher or the MLP student at
a certain layer, the Dirichlet energy of H is

E(H) =
1

n
· tr(H⊤LH), (7)

where tr(·) is the trace of a matrix, and L = D−A is the
Laplacian matrix of graph G.

A lower Dirichlet energy value E(H) suggests that the em-
beddings in H are smooth, whereas a higher value indicates
diversity among the embeddings. For an operation op that
processes H to output op(H), if E(op(H)) < E(H), then
the operation op is smoothing the embeddings; on the other
hand, if E(op(H)) > E(H), op diversifies them.

We define Dirichlet energy ratio Rop (DE ratio) as follows.

Definition 4.3 (DE ratio). The DE ratio Rop of an operation
op is the Dirichlet energy of its output E(op(H)) over the
Dirichlet energy of its input E(H), Rop = E(op(H))

E(H) .

On a trained teacher GraphSAGE with 2 layers, in each
layer, we calculate the DE ratios RFT(l) and RGP(l) of FT(l)

and GP(l) operations respectively. We repeat 10 times and
report the average DE ratios in Figure 1, over the benchmark
datasets used in experiments.

While the overall Dirichlet energy of embeddings is de-
creasing in GraphSAGE, in a specific l-th layer shown in
Figure 1, we make the following two consistent observa-
tions about DE ratio. (i) Within the same layer for l = 1, 2,
the DE ratio RFT(l) of FT(l) consistently exceeds the DE
ratio RGP(l) of GP(l), demonstrating that GP(l) operation
actively smooths embeddings, whereas FT(l) operation is
relatively conservative for smoothing. (ii) At l = 2, DE ratio
RFT(l) even surpasses 1, indicating that in this layer, FT(l)

acts to diversify embeddings rather than smoothing them.
These trends are consistently observed across layer-wise
GNNs, including GCN and GAT in Appendix A.4.

Figure 1 reveals that FTs and GPs can have opposing ef-
fects on smoothing. Recall that we associate FT(l) and
GP(l) of the l-th GNN layer with FCl,2 and FCl,1 layers
in the student MLP in Eq. (5). The proposed Dirichlet
Energy Distillation technique aims to encapsulate the dis-
tinct smoothing behaviors of FT(l) and GP(l) into FCl,2

and FCl,1 respectively, thereby transferring teacher GNN’s
knowledge of smoothing effects to student MLP.

Specifically, the loss of the l-th GNN layer for Dirichlet
Energy Distillation, L(l)

DED, is the sum of the squares of the
difference between DE ratios RGP(l) of GP(l) and RFCl,1

of the FCl,1 layer, and the difference between RFT(l) of
FT(l) and RFCl,2 of the FCl,2 layer. The total DED loss
LDED is the sum of L(l)

DED for all GNN layers l = 1, .., T .

L(l)
DED = (RGP(l) −RFCl,1)

2 + (RFT(l) −RFCl,2)
2

LDED =

T∑
l=1

L(l)
DED.

(8)

The final objective function L of our method TINED is the
weighted combination of ground truth cross-entropy loss
LCE , soft label distillation loss LKL, and Dirichlet Energy
Distillation loss LDED:

L =
∑

v∈VL

LCE(ŷv,yv) + λ
∑
v∈V

LKL(ŷv, zv) + β

T∑
l=1

L(l)
DED,

(9)
where λ and β are weights for balancing the loss functions.

5. Experiments
5.1. Experiment Settings

Datasets. We use 7 widely used public benchmark
datasets, including Cora, Citeseer, Pubmed, A-computer, A-
photo (Zhang et al., 2022b; Yang et al., 2021), and Arxiv and
Products (Hu et al., 2020) that are two large OGB datasets,
to evaluate our method and baselines. Table 10 in Appendix
A.1 provides the data statistics and splits.

Teacher Architectures. Following (Zhang et al., 2022b;
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Table 1: Under the transductive(tran) setting, the accuracy results of the teacher and all methods without or with graph
dependency for inference on VU (higher is better). The best in each category is in bold. OOM means out-of-memory.

Teacher Without Graph Dependency With Graph Dependency

Datasets SAGE MLP FFG2M KRD GLNN GLNN∗ TINED NOSMOG NOSMOG∗ TINED+

Cora 80.64±1.57 59.18±1.60 82.38±1.41 82.27±1.31 80.26±1.66 81.31±1.62 82.63±1.57 83.04±1.26 82.27±1.75 83.70±1.02
Citeseer 70.49±1.53 58.50±1.86 72.85±1.59 72.84±1.70 71.22±1.50 72.38±1.40 74.43±1.53 73.78±1.54 73.85±2.27 75.39±1.59
Pubmed 75.56±2.06 68.39±3.09 76.56±3.41 77.01±3.11 75.59±2.46 76.95±2.72 77.09±2.14 77.34±2.36 76.79±2.65 77.75±3.14
A-computer 82.82±1.37 67.62±2.21 83.67±1.04 82.87±0.87 82.71±1.18 83.64±1.13 85.18±1.12 84.04±1.01 84.33±1.14 84.82±1.58
A-photo 90.85±0.87 77.29±1.79 93.18±0.87 92.82±0.74 91.95±1.04 92.99±0.63 93.97±0.53 93.36±0.69 93.57±0.48 94.05±0.39
Arxiv 70.73±0.35 55.67±0.24 58.51±0.35 59.26±0.51 63.75±0.48 63.78±0.69 64.44±0.72 71.65±0.29 71.17±0.60 71.52±0.34
Products 77.17±0.32 60.02±0.10 OOM OOM 63.71±0.31 65.56±0.26 69.48±0.25 78.45±0.38 78.47±0.28 78.59±0.28

Tian et al., 2022), for the main results, GraphSAGE (Hamil-
ton et al., 2017) with GCN aggregation is used as the teacher
model. We also conduct experiments of different GNN
teachers, e.g., GCN, GAT and APPNP in Section 5.5. The
details of teachers and hyperparameter settings are in A.7.

Methods. TINED does not require graph dependency for in-
ference, similar to GLNN (Zhang et al., 2022b). When graph
dependency is permissible, we enhance it to create TINED+,
akin to NOSMOG (Tian et al., 2022), to incorporate graph
structural information. Baselines GLNN and NOSMOG use
their original layer and hidden dimension configurations as
per their papers. Additionally, we configure them with the
same layer and hidden dimension settings as ours, dubbed
as GLNN∗ and NOSMOG∗, for evaluation. We further com-
pare with KRD and FFG2M (Wu et al., 2023b;a), as well as
with MLPs and the GraphSAGE teacher.

Transductive and Inductive Settings. Two settings are
considered (Zhang et al., 2022b; Tian et al., 2022): trans-
ductive (tran) setting, and production (prod) setting with
both inductive and transductive evaluations (ind & tran).

tran: A model is trained on G, X , and Y L, and soft labels
zv of all nodes in V are used for knowledge distillation.
Inference evaluation is conducted on the nodes in VU .

prod (ind & tran): we randomly select out 20% of nodes
from the unlabeled nodes VU , dividing VU into disjoint
inductive (unobserved) subset and observed subset, VU =
VU
obs ⊔ VU

ind. Node features and labels are partitioned into
disjoint sets, i.e. X = XL ⊔ XU

obs ⊔ XU
ind, and Y =

Y L ⊔ Y U
obs ⊔ Y U

ind. Let Gobs be the graph induced from
G, with edges connecting nodes in VL ⊔ VU

obs. A model is
trained on Gobs, XL, XU

obs, and Y L. Soft labels in subsets
VL ⊔ VU

obs are used for distillation. In this prod (ind &
tran) setting, inference is evaluated on VU

ind for ind and
VU
obs for tran (which is different from the tran setting over

VU explained above). The overall prod performance is the
weighted sum of ind performance on VU

ind and tran on VU
obs,

with weights proportaional to the size of VU
ind and VU

obs.

Evaluation. Following (Tian et al., 2022; Zhang et al.,
2022b), we present the mean and standard deviation of per-

formance results from 10 trials, each with a unique random
seed. A method is evaluated by accuracy with the best model
chosen on validation data and tested on test data.

5.2. Performance in Transductive Setting

Table 1 reports the results under the transductive setting with
inference on node set VU . Table 1 can be directly compara-
ble to those reported in literature (Tian et al., 2022; Zhang
et al., 2022b; Hu et al., 2020; Yang et al., 2021). In Table 1,
GNNs-to-MLPs methods are in two categories: with or with-
out graph dependency for inference. Baselines GLNN and
NOSMOG use their original student MLP configurations
for layers and hidden dimensions as recommended in their
respective papers. GLNN∗ and NOSMOG∗ (with an aster-
isk ∗) adopt the same configurations as our model for a fair
comparison. TINED surpasses all baselines without graph
dependency, often with a significant margin. For exam-
ple, on the large OGB Products dataset, TINED achieves
gains of 9.42%, 5.77%, and 3.92% over MLP, GLNN,
and GLNN∗, while baselines KRD and FFG2M are OOM.
On Citeseer, TINED achieves 74.43% accuracy, improving
by 15.93%, 3.21%, 2.05%, 1.59%, and 1.58% over MLP,
GLNN, GLNN∗, KRD, and FFG2M. The performance of
TINED validates the power of the proposed techniques to pre-
serve layer-level knowledge into MLPs. Similar to GLNN,
TINED surpasses the teacher on the first five data, while
being effective on the last two. When graph dependency
is allowed, TINED+ excels NOSMOG and NOSMOG∗ on
most datasets, except Arxiv where the performance is com-
parable. On Citeseer, TINED+ achieves 75.39% accuracy,
1.54% higher than NOSMOG∗. Moreover, all methods with
graph dependency, including TINED+ and NOSMOG, per-
form better than those without graph, and TINED+ excels
the teacher model on all datasets, indicating the extensibility
of TINED+ to consider graph structures for inference.

5.3. Performance in Production Setting with ind & tran

We then conduct experiments under the prod (ind & tran)
setting with results in Table 2. Note that the tran results
in Table 2 are over VU

obs, different from the results in Table
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Table 2: In prod (ind & tran) setting, the accuracy results of the teacher and all methods without or with graph dependency
for online inference are presented. ind indicates the results on VU

ind, tran indicates the results on VU
obs, and prod indicates the

weighted sum of the performance of both ind and tran with weights proportional to the size of VU
ind and VU

obs. The best
result in each category is in bold. The teacher’s performance surpassing the best result in at least one category is italicized.

Teacher Without Graph Dependency With Graph Dependency

Datasets Eval SAGE MLP FFG2M KRD GLNN GLNN∗ TINED NOSMOG NOSMOG* TINED+

Cora
prod 79.53 59.18 78.60 75.74 77.82 78.14 78.90 81.02 80.30 80.77
ind 81.03±1.71 59.44±3.36 72.02±1.43 70.26±1.94 73.21±1.50 73.58±1.42 74.38±1.28 81.36±1.53 80.98±2.39 81.50±2.54
tran 79.16±1.60 59.12±1.49 80.01±1.41 77.11±1.44 78.97±1.56 79.65±1.45 80.04±1.50 80.93±1.65 80.13±1.64 80.59±1.45

Citeseer
prod 68.06 58.49 71.89 71.38 69.08 70.91 72.29 70.60 71.33 73.58
ind 69.14±2.99 59.31±4.56 69.75±3.16 69.78±3.04 68.48±2.38 71.10±1.50 72.68±1.97 70.30±2.30 72.35±2.99 74.20±1.67
tran 67.79±2.80 58.29±1.94 72.12±2.69 71.77±2.81 69.23±2.39 70.86±1.66 72.20±1.66 70.67±2.25 71.07±1.85 73.43±1.63

Pubmed
prod 74.77 68.39 73.98 76.00 74.67 75.21 75.79 75.82 75.57 75.90
ind 75.07±2.89 68.28±3.25 73.49±7.91 75.17±3.11 74.52±2.95 74.83±2.83 75.64±3.02 75.87±3.32 75.49±2.96 76.30±2.95
tran 74.70±2.33 68.42±3.06 74.10±7.78 76.20±3.00 74.70±2.75 75.30±2.70 75.83±2.81 75.80±3.06 75.58±2.83 75.80±2.88

A-computer
prod 82.73 67.62 82.69 81.17 82.10 83.23 84.46 83.85 85.02 85.08
ind 82.83±1.51 67.69±2.20 80.52±1.56 79.15±1.82 80.27±2.11 81.10±1.49 82.83±1.45 84.36±1.57 85.23±1.51 85.45±1.60
tran 82.70±1.34 67.60±2.23 83.23±1.36 81.67±1.92 82.56±1.80 83.77±1.36 84.87±1.38 83.72±1.44 84.97±1.44 84.98±1.32

A-photo
prod 90.45 77.29 92.35 91.84 91.34 91.54 93.38 92.47 92.00 93.12
ind 90.56±1.47 77.44±1.50 90.70±0.76 90.04±1.12 89.50±1.12 89.35±0.89 91.96±0.72 92.61±1.09 92.93±0.96 93.27±0.85
tran 90.42±0.68 77.25±1.90 92.77±0.24 92.29±0.63 91.80±0.49 92.09±0.71 93.74±0.51 92.44±0.51 91.77±0.69 93.08±0.68

Arxiv
prod 70.69 55.35 59.60 59.32 63.50 64.17 63.24 70.90 70.95 71.22
ind 70.69±0.58 55.29±0.63 57.02±0.43 57.32±0.31 59.04±0.46 58.73±0.46 59.79±0.46 70.09±0.55 70.12±0.39 70.42±0.35
tran 70.69±0.39 55.36±0.34 60.24±0.23 59.82±0.27 64.61±0.15 65.53±0.30 64.10±0.38 71.10±0.34 71.16±0.15 71.43±0.19

Products
prod 76.93 60.02 OOM OOM 63.47 68.48 69.35 77.33 78.25 78.91
ind 77.23±0.24 60.02±0.09 OOM OOM 63.38±0.33 68.13±0.20 68.68±0.27 77.02±0.19 78.52±0.22 79.31±0.29
tran 76.86±0.27 60.02±0.11 OOM OOM 63.49±0.31 68.57±0.20 69.52±0.27 77.41±0.21 78.18±0.23 78.81±0.29

1 on VU in Section 5.2. In Table 2, TINED and TINED+
can outperform the teacher model and the baseline meth-
ods in categories with or without graph dependency un-
der almost all settings. For instance, without graph depen-
dency for inference, TINED is better than baselines, except
Arxiv and Pubmed where close performance is achieved.
As an example, on A-computer under ind setting, TINED
achieves 82.83% accuracy, significantly improving GLNN∗

by 1.73%. With graph dependency, TINED+ surpasses NOS-
MOG methods on all datasets except prod and tran setting
on Cora, where the performance is comparable. For instance,
on Citeseer under prod, TINED+ achieves performance gain
of 2.98% and 2.25% over NOSMOG and NOSMOG∗ re-
spectively. Moreover, on Arxiv and Products with a signifi-
cant distribution shift between training and test data (Zhang
et al., 2022b), TINED+ outperforms the teacher and NOS-
MOG, showing the capability of our techniques on large
real-world graph datasets. We conclude that TINED and
TINED+ can achieve excellent performance in prod setting
with ind & tran.

5.4. Inference Time

Figure 3 shows the trade-off between accuracy and infer-
ence time on Citeseer. Methods closer to the top-left cor-
ner achieve a better balance of accuracy and speed. Our
methods, TINED and TINED+, achieve the highest accuracy
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Figure 4: Accuracy on Different
Teacher GNNs

(74.43% and 75.39%) while being fast (1.63ms and 1.64ms).
In contrast, GNNs are slower, e.g., 2-layer GraphSAGE
(SAGE-L2) takes 153.14ms, and 3-layer GraphSAGE (SAGE-
L3) takes 1202.45ms. TINED and TINED+ are 94 times faster
than SAGE-L2 and 733 times faster than SAGE-L3. All the
distillation methods (NOSMOG, GLNN∗, TINED, TINED+,
KRD and FFG2M) have similar efficiency in around 1-2ms,
with negligible differences. Compared with SAGE teacher
that needs 153.14ms, the efficiency of distillation techniques
in our design is validated.

5.5. Different Teacher GNN Architectures
Figure 4, we show that TINED and TINED+ can maintain
strong performance with alternative GNN teachers, includ-
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(a) SAGE
(epoch=500)

(b) TINED
(epoch=0)

(c) TINED
(epoch=500)

(d) GLNN*
(epoch=0)

(e) GLNN∗

(epoch=500)

Figure 5: t-SNE of model embeddings at different training stages on Citeseer.

Table 3: Approximation error

l = 1 l = 2

Datasets TINED GLNN∗ TINED GLNN∗

Cora 1.32 1.64 0.90 1.12
Citeseer 0.46 0.86 0.26 0.75
Pubmed 0.88 0.82 0.74 1.02
A-computer 1.89 1.88 2.55 2.65
A-photo 1.21 0.83 1.40 1.54

1 2 3 4
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Figure 6: Learned DE ratios in MLPs v.s. ground truth of 2-layer
GraphSAGE.

Table 4: Ablation study

Datasets TINED-TIN TINED-DED TINED ∆TIN ∆DED

Cora 81.32±1.60 81.64±1.64 82.63±1.57 ↑ 1.31% ↑ 0.99%
Citeseer 71.88±1.27 74.12±1.42 74.43±1.53 ↑ 2.55% ↑ 0.31%
Pubmed 75.93±3.40 76.45±2.68 77.09±2.14 ↑ 1.16% ↑ 0.64%
A-computer 84.59±1.78 84.80±1.67 85.18±1.12 ↑ 0.59% ↑ 0.38%
A-photo 93.90±0.52 93.67±0.69 93.97±0.53 ↑ 0.07% ↑ 0.30%
Arxiv 63.72±0.89 64.39±0.80 64.44±0.72 ↑ 0.72% ↑ 0.05%
Products 69.20±0.25 68.63±0.26 69.48±0.25 ↑ 0.28% ↑ 0.85%

ing GCN, GAT, and APPNP, in addition to GraphSAGE. We
report the average performance of a distillation method with
different teacher GNNs across the five benchmark datasets.
With different teachers, TINED can always learn more effec-
tive student MLPs than GLNN, GLNN∗, KRD, and FFG2M.
With graph dependency, TINED+ can maintain its strong per-
formance with different teachers and surpasses NOSMOG
and NOSMOG∗. When different teacher GNNs are adopted,
Figure 4 illustrates the effectiveness of our methods to pre-
serve layer-level knowledge into MLPs.

5.6. Experimental Analysis

Ablation Study. Denote TINED-TIN as TINED without
Teacher Injection (TIN), and TINED-DED as TINED without
Dirichlet Energy Distillation (DED).The results are in Ta-
ble 4. Both TIN and DED contribute positively, and TINED
achieves the best performance on all datasets, demonstrating
the effectiveness of our techniques in TINED.

Visualization. Based on the visualization of teacher
SAGE’s output embeddings after 500 epochs of training
(Figure 5(a)), we compare the embeddings of TINED and
GLNN∗ both at initialization (epoch 0) and after training
convergence (epoch 500). Figure 5(b) shows TINED initial-
ized (epoch 0) using the proposed teacher injection tech-
nique, resulting in an embedding visualization similar to
that of the teacher in Figure 5(a). In contrast, the visualiza-
tion of GLNN∗ at epoch 0 appears quite random, as seen
in Figure 5(d). Upon reaching training convergence (epoch
500), TINED in Figure 5(c) maintains a visualization closely
resembling the teacher’s in Figure 5(a), whereas the base-
line GLNN∗ displays a noticeably different visualization.
This evaluation confirms the effectiveness of the proposed
teacher injection and Dirichlet energy distillation techniques
employed by TINED. More visualization results are in A.5.

Table 5: Vary η of TINED on transductive setting. Best
results are in bold.

η Cora Citeseer Pubmed A-computer A-photo

1e-09 73.80±2.56 67.20±1.86 73.39±2.10 72.53±2.17 86.06±2.38
1e-06 73.50±2.48 67.19±1.87 73.32±1.88 72.73±1.99 86.35±1.79
0.001 77.12±0.91 67.24±1.83 73.69±1.83 84.13±1.23 87.30±2.08
0.01 79.26±1.30 69.38±1.70 75.12±2.32 85.17±1.21 90.48±1.38
0.1 81.40±1.69 71.52±1.58 76.55±2.81 83.61±1.67 93.97±0.54
0.5 82.01±1.64 74.57±1.42 77.10±2.15 83.23±1.29 93.51±0.60
1.0 82.61±1.58 73.57±1.39 76.65±2.77 82.85±0.91 93.37±0.51
10.0 78.85±1.63 73.56±1.48 75.61±2.73 70.63±4.87 89.53±0.78

DE ratio. Recall that Figure 1 shows the ground-truth DE
ratios of teacher GraphSAGE, and we propose Dirichlet En-
ergy Distillation in Section 4.2 to preserve smoothing effects
into MLPs. Figure 6 reports the learned DE ratios of TINED,
TINED-DED, and GLNN∗. TINED is more closely aligned
to the ground-truth DE ratios, highlighting that TINED ef-
fectively retains the GNN smoothing properties into MLPs.

Approximation Bound. Theorem 4.1 shows a bound be-
tween GP(l) in GNNs and its counterpart FCl,1 in MLPs.
Table 3 reports the errors of TINED and GLNN∗ using FCl,1

to approximate GP(l), ||GP(l)(H)− FCl,1(H)||F /||H||F ,
for l = 1, 2. When l = 2, the errors of TINED are lower
than GLNN∗, while the errors for l = 1 are comparable,
showing TINED effectively approximates GP(l).

Parameter Sensitivity Analysis. In our method, the param-
eter η controls the degree of fine-tuning in Eq. 6, while β
controls the importance of Dirichlet Energy Distillation in
Eq. 9. Tables 5 and 7 present the accuracy results of varying
η and β of TINED across multiple datasets. In Table 5, as η
increases, TINED demonstrates a clear trend where perfor-
mance initially improves and then declines, with the best
results highlighted in bold. A similar pattern is observed for

8



TINED: GNNs-to-MLPs by Teacher Injection and Dirichlet Energy Distillation

Table 6: Experiment result under prod (ind & tran) setting on heterophilic datasets. The best result in each category is in
bold.

Teacher Without Graph Dependency With Graph Dependency

Datasets Eval SAGE FFG2M KRD GLNN GLNN∗ TINED NOSMOG NOSMOG* TINED+

Squirrel
prod 35.47 38.34 37.16 39.90 39.70 41.95 38.17 39.43 40.89
ind 41.44±4.66 42.00±4.78 42.11±4.77 44.89±5.67 45.00±4.56 46.89±5.23 45.44±4.75 44.33±3.24 46.78±3.80
tran 33.98±1.66 37.43±3.34 35.93±3.36 38.65±1.09 38.37±1.02 40.72±1.36 36.35±1.69 38.20±1.59 39.42±1.05

Amazon-ratings
prod 47.55 50.33 49.56 49.87 49.41 50.70 47.86 48.80 50.42
ind 47.45±1.48 47.55±0.97 47.68±1.00 47.72±1.00 47.71±1.14 49.02±1.02 47.47±1.45 48.46±1.37 49.51±1.54
tran 47.58±0.48 51.03±1.73 50.03±1.50 50.41±0.45 49.84±0.39 51.12±0.44 47.96±0.31 48.88±0.56 50.65±0.56

Table 7: Vary β of TINED on transductive setting. Best
results are in bold.

β Cora Citeseer Pubmed A-computer A-photo

1e-09 81.33±1.49 73.39±1.28 76.63±2.42 84.70±1.15 93.41±0.61
1e-06 81.64±1.71 73.39±1.30 76.28±2.76 85.17±1.21 93.48±0.65
0.001 81.64±1.57 73.39±1.31 76.51±2.64 84.80±1.21 93.65±0.68
0.1 81.71±1.59 73.65±1.38 77.10±2.15 84.70±0.99 93.97±0.58
1.0 82.61±1.58 73.81±1.29 75.84±2.66 84.29±1.08 86.59±5.66
10.0 80.92±2.15 74.57±1.42 71.57±2.76 71.35±6.30 78.00±3.19

β in Table 7, emphasizing the trade-off controlled by these
parameters. Note that hyperparameter tuning is essential
in machine learning research. Appendix A.7 of the paper
details the search space for our parameters.

Heterophilic Datasets We conducted experiments on repre-
sentative heterophilic datasets, Squirrel and Amazon-ratings,
under the production setting. Squirrel (Rozemberczki et al.,
2021) is a web page dataset collected from Wikipedia, while
Amazon-ratings (Platonov et al., 2023) is a product co-
purchasing network based on data from SNAP Datasets.
In Table 6, our methods, TINED and TINED+, consistently
outperform existing approaches across all settings, often by
a significant margin. For instance, on the Squirrel dataset
without graph dependency, TINED achieves a prod perfor-
mance of 41.95%, surpassing the best competitor GLNN,
which achieves 39.90%. Similarly, on the Amazon-ratings
dataset with graph dependency, TINED+ achieves a prod
accuracy of 50.42%, representing a 1.62% improvement
over the best competitor NOSMOG∗. These results high-
light the effectiveness of our proposed methods in handling
heterophilic datasets.

Comparison with Vanilla MLP with Additional Layers.
In addition to the vanilla MLP with 2 layers, we also evalu-
ate a 4-layer MLP, denoted as MLP*. Tables 8 and 9 present
the results under both transductive and production settings.
Our method, TINED, consistently outperforms MLP* across
all datasets. Interestingly, MLP* demonstrates degraded
performance compared to the 2-layer MLP, suggesting that
additional layers lead to overfitting on these datasets. For
instance, on the Pubmed dataset, MLP* achieves 67.61%,
which is inferior to the 69.41% achieved by the 2-layer

Table 8: Compare with MLP* with 4 layers under transduc-
tive setting.

Cora Citeseer Pubmed A-computer A-photo

MLP 60.84±1.08 63.41±1.96 69.41±2.88 70.07±1.77 80.19±1.48
MLP* 58.20±3.16 60.81±3.48 67.61±1.51 66.84±3.03 78.66±2.48
TINED 82.63±1.57 74.43±1.53 77.09±2.14 85.18±1.12 93.97±0.53

Table 9: Comparison with MLP* with 4 layers under
prod(ind&tran) setting

Eval Cora Citeseer Pubmed A-computer A-photo

MLP ind 61.31±2.16 63.95±2.95 69.66±2.68 70.36±2.48 79.76±2.00
tran 60.88±1.41 62.99±2.39 69.67±2.61 69.92±2.03 79.53±2.05

MLP* ind 58.67±2.42 62.15±3.50 67.76±1.88 68.09±2.60 77.27±2.17
tran 58.12±1.81 61.46±2.46 68.07±1.87 67.90±2.41 77.05±2.48

TINED ind 74.38±1.28 72.68±1.97 75.64±3.02 82.83±1.45 91.96±0.72
tran 80.04±1.50 72.20±1.66 75.83±2.81 84.87±1.38 93.74±0.51

MLP. In contrast, TINED significantly improves upon MLP*,
achieving a notable accuracy of 77.09%, highlighting its
robustness and effectiveness.

6. Conclusion
We introduce TINED, a novel method for distilling GNN
knowledge into MLPs. Our approach includes Teacher Injec-
tion, which directly transfers well-trained parameters from
GNNs to MLPs, and Dirichlet Energy Distillation, which
preserves the unique smoothing effects of key GNN oper-
ations within MLPs. Comprehensive experiments demon-
strate that TINED outperforms existing methods across var-
ious settings and seven datasets. Currently, the number of
layers in the student MLP is dependent on the number of
layers in the GNN teacher. In future work, we aim to de-
velop new techniques to accelerate the process and allow for
a flexible number of fully connected layers by considering
the intrinsic properties of GNNs and MLPs. Moreover, we
will explore the potential of TINED in other types of grpahs,
including heterogeneous graphs and dynamic graphs, to
further enhance its applicability and effectiveness.
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Günnemann. Predict then propagate: Graph neural net-
works meet personalized pagerank. In ICLR, 2019.

Seunghyun Lee and Byung Cheol Song. Graph-based knowl-
edge distillation by multi-head attention network. arXiv
preprint arXiv:1907.02226, 2019.

10



TINED: GNNs-to-MLPs by Teacher Injection and Dirichlet Energy Distillation

Hao-Ting Li, Shih-Chieh Lin, Cheng-Yeh Chen, and Chen-
Kuo Chiang. Layer-level knowledge distillation for deep
neural network learning. Applied Sciences, 9(10):1966,
2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec.
Distance encoding: Design provably more powerful
neural networks for graph representation learning. In
NeurIPS, 2020.

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He,
Weizhu Chen, and Tuo Zhao. Less is more: Task-aware
layer-wise distillation for language model compression.
In ICML, pages 20852–20867. PMLR, 2023.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards
deeper graph neural networks. In KDD, pages 338–348,
2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem
Babenko, and Liudmila Prokhorenkova. A critical look at
the evaluation of gnns under heterophily: Are we really
making progress? ICLR, 2023.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-
scale attributed node embedding. Journal of Complex
Networks, 9(2):cnab014, 2021.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha
Mishra. A survey on oversmoothing in graph neural
networks. arXiv preprint arXiv:2303.10993, 2023.

Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang,
and Nitesh Chawla. Learning mlps on graphs: A unified
view of effectiveness, robustness, and efficiency. In ICLR,
2022.

Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang,
and Nitesh V Chawla. Knowledge distillation on graphs:
A survey. arXiv preprint arXiv:2302.00219, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
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A. Appendix
A.1. Datasets

In Table 10, we provide the statistics of the datasets in ex-
periments. For all datasets, we follow the setting in (Zhang
et al., 2022b; Yang et al., 2021) to split the data. Specifi-
cally, for the first five datasets, we use the splitting in (Yang
et al., 2021) and each random seed corresponds to a dif-
ferent split. For the OGB datasets Arxiv and Products, we
follow the OGB official splits based on time and popularity
respectively.

A.2. Proof of Theorem 4.1

Proof. We denote the H† as the pseudo-inverse of ma-
trix H. Since rank(H) = d, H has linearly indepen-
dent columns, its pseudo-inverse could be represented as
H† = (H⊤H)−1H⊤. Moreover, given the SVD factoriza-

tion of matrix H = U

(
S
0

)
V⊤, where U ∈ RN×N and

V ∈ Rd×d are unitary, and S ∈ Rd×d is invertible diagonal
matrix, we have H† = V

(
S−1 0

)
U⊤.

Denote H̄ = LH, then we have

||H̄−HW||2F =

d∑
i=1

||H̄:,i −HW:,i||22 (10)

Let W∗ = H†H̄ , we have W∗
:,i = H†H̄:,i. Then

HW∗
:,i =HH†H̄:,i

=U

(
Id 0
0 0n−d

)
U⊤H̄:,i

(11)

Then

||H̄:,i −HW∗
:,i||2 =||H̄:,i −HH†H̄:,i||2

≤||In −HH†||2||H̄:,i||2
≤||H̄:,i||2
=||LH:,i||2
≤||L||2||H:,i||2
=λmax(L)||H:,i||2

(12)

Thus we have

||H̄−HW||2F =

d∑
i=1

||H̄:,i −HW:,i||22

≤λ2
max(L)

d∑
i=1

||H:,i||22

=λ2
max(L)||H||2F .

(13)

Finally we get

||LH−HW∗||F
||H||F

≤ λmax(L) (14)

A.3. Implementing Other GNNs as Teacher

Here we explain how to implement other GNNs as teacher
in TINED, especially on how to apply teacher injection in
The Proposed Model section to different GNNs.

GCN. The message passing of GCN in the l-th layer is

GP(l): h̃(l)
v = L̂H(l−1),

FT(l): h(l)
v = σ

(
h̃(l)
v · W(l) + b(l)

)
.

(15)

where L̂ = D̂− 1
2 ÂD̂− 1

2 is the normalized Laplacian of
the graph, Â = A + In is the adjacency matrix with self
loops, D̂ii =

∑
j Âij is the degree matrix, W(l) is the

transformation matrix of l-th layer, and H(l) is the output
of l-th layer.

For the l-th layer of the GCN teacher, we directly inject W(l)

and b(l) of the teacher in Equation (15) into the student
FC layer FCl,2 in Equation (5), i.e., Wl,2

M = W(l) and
bl,2
M = b(l), while using FCl,1 in Equation (5) to simulate

GP(l) in Equation (15).

GAT. The message passing of GAT in the l-th layer with
single head attention is

GP(l): h̃(l)
v = Π(l)H(l−1),

FT(l): h(l)
v = σ

(
h̃(l)
v · W(l) + b(l)

)
.

(16)

where Π(l) is the attention matrix defined as Π
(l)
ij =

LeakyReLU([H
(l−1)
i W(l)||H(l−1)

j W(l)]⊤a(l)) if (i, j) is

an edge in G, i.e., (i, j) ∈ E , and Π
(l)
ij = 0 otherwise,

|| denotes the concatenation operation, and a(l) ∈ R2dl is a
learnable attention vector.

For the l-th layer of the GAT teacher, we directly inject W(l)

and b(l) of the teacher in Equation (16) into the student,
i.e., Wl,2

M = W(l) and bl,2
M = b(l), while using FCl,1 in

Equation (5) to simulate GP(l) in Equation (16).

APPNP. APPNP decouples feature transformation and
graph propagation into two stages. APPNP first performs
FTs for T1 times in Equation (17) to get H(T1) (usually
T1 = 2), and then propagates H(T1) over the graph for T2

hops in Equation (18) by approximate Personalized PageR-
ank.

FT(l): H(l) = H(l−1)W(l), l = 1, 2, ..., T1, (17)

GP: H(l) = (1−α)L̂H(l)+αH(T1), l = T1+1, T1+2, ..., T1+T2,
(18)

where α is a hyperparameter and L̂ is the normalized Lapla-
cian mentioned before.
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Table 10: Dataset Statistics and Splits.

Dataset # Nodes # Edges # Features # Classes # Train # Val # Test

Cora 2,485 5,069 1,433 7 140 210 2135
Citeseer 2,110 3,668 3,703 6 120 180 1810
Pubmed 19,717 44,324 500 3 60 90 19567
A-computer 13,381 245,778 767 10 200 300 12881
A-photo 7,487 119,043 745 8 160 240 7087
Arxiv 169,343 1,166,243 128 40 90941 29799 48603
Products 2,449,029 61,859,140 100 47 196615 39323 2213091
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Figure 7: The layer-wise DE ratio of trained GCN, GraphSAGE and GAT, with 2 layers architecture on different datasets.
The x-axis is the layer number, and the y-axis is the DE ratio value.

For each of FT(l) in APPNP, we inject it into a FCl layer
in the student MLP. In other words, we have T1 FC layers
to mimic the FT layers in APPNP. Then for the T2 steps of
propagation in Equation (18), we use one FC layer FCT1+1

to mimic all of them, since T2 can be large. In total, there are
T1 + 1 FC layers in MLP to approximate the teacher GNN.
The DED loss of APPNP is LDED =

∑T1

l=1(RFT(l) −
RFCl)2 + (RGP −RFCT1+1)2

A.4. DE Ratios of other GNN architectures

To show the pattern of DE ratios in different GNN teachers,
we plot the layer-wise DE ratios of GCN, GraphSAGE and
GAT, in addition to GraphSAGE, with 2 layers architecture
on the five benchmarks in Figure 7. From Figure 7 we can
observe that all GNNs share very similar patterns across
datasets: within a specific layer, in Figure 7, we observe

the following nearly consistent patterns about DE-ratio: (i)
within the same layer for l = 1, 2, most DE ratio RFT(l) for
FT(l) is larger than RGP(l) of GP(l), suggesting that GP(l)

actively smooths embeddings, whereas FT(l) is relatively
conservative for smoothing; (ii) at l = 2, DE ratio RFT(l)

even surpasses 1, indicating that in this layer, FT(l) acts
to diversify embeddings rather than smoothing them. Fur-
thermore, to investigate the smoothing behavior on deeper
layer cases, we plot Figure 8 showing layer-wise DE ratios
of 5-layer trained GNNs, and from Figure 8 we can observe
that the trained 5-layer GNNs have similar patterns to the
2-layer GNNs: the DE ratios of FT(l) is generally higher
than that of GP(l), indicating that GP(l) is aggressive while
FT(l) is relatively conservative for smoothing.
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Figure 8: The layer-wise DE ratio of trained GCN, GraphSAGE and GAT, with 5 layers architecture on different datasets.
The x-axis is the layer number, and the y-axis is the DE ratio value.

A.5. Layer-wise t-SNE Visualization

In Figure 9, we present a detailed layer-wise t-SNE visu-
alization of the embeddings for various models and stages.
Figure 9(a) (1st row) shows the 2-layer GraphSAGE teacher
model. Figure 9(b) (2nd row) illustrates TINED at initial-
ization before training (epoch 0), while Figure 9(c) (3rd
row) displays TINED after training convergence (epoch 500).
Figure 9(d) (4th row) and Figure 9(e) (5th row) depict the
baseline GLNN∗ at initialization (epoch 0) and after train-
ing convergence (epoch 500), respectively. For the 2-layer
GraphSAGE in Figure 9(a), the 1st row visualizes the em-
beddings from left to right: after the FT(1) operation in the
first layer, the GP(1) operation in the first layer, FT(2) in
the second layer, and GP(2) in the second layer. For each
distillation method in Figures 9(b-e), each row contains
four plots representing the embeddings of the four fully-
connected (FC) layers in the methods, corresponding to the
four operations in the first row of the teacher. Compared to
the teacher model in Figure 9(a), TINED at initialization in
Figure 9(b) already exhibits quite similar embedding pat-
terns, thanks to the proposed teacher injection technique.
In contrast, the baseline GLNN∗ shows a random visual
pattern at epoch 0 in Figure 9(d), which is radically differ-
ent from the teacher model. After training convergence at
500 epochs, TINED’s visualized embeddings in Figure 9(c)
closely resemble those of the teacher in Figure 9(a), whereas

the baseline GLNN∗ in Figure 9(e) produces embeddings
that are visually distinct. These observations demonstrate
the effectiveness of the teacher injection and Dirichlet en-
ergy distillation techniques in TINED.

A.6. Computer Resource Details

The experiments on both baselines and our approach are
implemented using PyTorch, the DGL (Wang et al., 2019)
library for GNN algorithms, and Adam (Kingma and Ba,
2015) for optimization. We run all experiments on Intel(R)
Xeon(R) Platinum 8338C CPU @ 2.60GHz CPU, and a
Nvidia Geforce 3090 Cards with Cuda version 11.7. Source
codes of all competitors are obtained from respective au-
thors. The totally training time cost for one set of hyper-
parameters varies among datasets, from Cora costing 10
minutes to Products costing 13 hours.

A.7. Teacher details and hyperparameter search space

The hyperparameters of GNN models on each dataset are
taken from the best hyperparameters provided by previ-
ous studies (Tian et al., 2022; Zhang et al., 2022b). For
APPNP teacher model, we found that the suggested hyper-
parameter in previous literature (Zhang et al., 2022b; Tian
et al., 2022) produces relatively poor results, thus we search
it in following space, achieving a better APPNP teacher: #
layers from [2, 3], learning rate from [0.0001, 0.001, 0.01],
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Figure 9: Layer-wise t-SNE visualization of the embeddings for various models (GraphSAGE, TINED, GLNN∗) and stages
(epoch 0 at initialization and epoch 500 after training convergence) on Citeseer.

weight decay from [0.0001, 0.001, 0.01], dropout from
[0, 0.5, 0.8], hidden dim from [128, 256], power iteration
K from [5, 10, 15]. For the students MLP, GLNN and
NOSMOG, we set the number of layers and the hidden
dimension of each layer to be the same as the teacher
GNN, so their total number of parameters stays the same
as the teacher GNN. For TINED, TINED+, GLNN∗ and
NOSMOG∗, given a layer-wise GNN teacher with T layers
(including, GraphSAGE, GCN, and GAT), in the student
MLP we set the same hidden dimension as teachers, and
2T layers, while for APPNP, we set the student MLP to
have T1 + 1 layers as explained in Appendix A.3. Other

hyper-parameter searching spaces are listed here: Learning
rate from [0.0001, 0.0005, 0.001, 0.005, 0.01], weight de-
cay from [0.0, 0.0001, 0.0005, 0.001, 0.005, 0.01], weight
of distillation λ from [0.1, 0.4, 0.5, 0.6, 1], nornamlization
type from [batch normalization, layer normalization, none],
dropout from [0, 0.1, 0.3, 0.5, 0.8]. Batch size for two large
OGB datasets from [512, 1024, 4096]. Weight of DED
β from [1e−6, 5e−5, 1e−5, 0.05, 0.1, 0.5, 1, 5, 10]. Fine
tuning weight η for injected teacher FT layers from
[0.01, 0.1, 0.5, 1, 3, 10], For the hyperparamrter space of
TINED+ from NOSMOG, the search space is the same as
(Tian et al., 2022). In large OGB datasets, the direct com-
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Table 11: Hyperparameters for GNNs on five datasets from
(Zhang et al., 2022b; Tian et al., 2022).

Dataset GraphSAGE GCN GAT

# layers 2 2 2
hidden dim 128 64 64
learning rate 0.01 0.01 0.01
weight decay 0.0005 0.001 0.01
dropout 0 0.8 0.6
fan out 5,5 - -
attention heads - - 8

Table 12: Vary ζ for TINED on large graph ogbn-arxiv under
transductive setting.

ζ 0.1 0.3 0.5 0.7 >0.8

Arxiv 64.31±0.71 64.32±0.91 64.38±0.75 64.44±0.80 OOM

putation of DE values will run out of GPU memory 24GB.
Thus, we propose a sampling ratio ζ to compute approxi-
mate DE values in DED process. This is done by inducing a
subgraph based on random sampling of edges, then approxi-
mate the DE ratio of input and output feature matrix on this
sampled subgraph. We also search this sampling proportion
ζ from [0.001, 0.005, 0.1, 0.4, 1]. Moreover, empirically we
found that applying smoothing term on the DE ratio in MSE
loss could benefit optimization, thus we propose a smooth-
ing function technique µ on DE ratio Rop, i.e. µ(Rop),
when computing the DED loss, where µ is searched from
[sqrt(·), log(·), Identity(·)] (Jadon et al., 2022).

A.8. Impact of ζ on Large Datasets

The parameter ζ controls the subgraph sampling ratio used
to estimate the DE ratio, helping to avoid memory overflow
on large datasets. We vary ζ and report the results on the
large ogbn-arxiv dataset in Table 12. The results show
that TINED maintains stable performance across different
ζ values. Notably, ζ values larger than 0.8 are unnecessary,
as they increase computational overhead without improving
distillation quality.

A.9. Comparison with VQGraph

In this section, we include a comparison with VQ-
Graph (Yang et al., 2024) with GraphSAGE teacher. We
thoroughly searched all the hyperparameter spaces speci-
fied in the original VQGraph paper (Table 12 of its paper).
Specifically, VQGraph has the following hyperparameter
search space for the teacher GraphSAGE with codebook:
max epoch ∈ [100, 200, 500], hidden dim = 128, dropout
ratio ∈ [0, 0.2, 0.4, 0.6, 0.8], learning rate ∈ [0.01, 1e-3, 1e-
4], weight decay ∈ [1e-3, 5e-4, 0], codebook size ∈ [8192,
16384], lamb node ∈ [0, 0.01, 0.001, 1e-4], and lamb edge
∈ [0, 1e-1, 0.03, 0.01, 1e-3]. For distillation, the hyperpa-

Table 13: Results of VQGraph and our TINED+ with Graph-
SAGE as teacher on transductive setting. The best result is
in bold.

Cora Citeseer Pubmed A-computer A-photo

VQGraph 78.66±1.21 74.66±1.23 73.02±3.51 80.16±2.02 92.32±1.74
TINED+ 83.70±1.02 75.39±1.59 77.75±3.14 84.82±1.58 94.05±0.39

rameter search space of VQGraph is: max epoch ∈ [200,
500], norm type ∈ [“batch”, “layer”, “none”], hidden dim
= 128, dropout ratio ∈ [0, 0.1, 0.4, 0.5, 0.6], learning rate
∈ [0.01, 5e-3, 3e-3, 1e-3], weight decay ∈ [5e-3, 1e-3, 1e-4,
0], lamb soft labels ∈ [0.5, 1], and lamb soft tokens ∈ [1e-8,
1e-3, 1e-1, 1]. The table below reports the results of VQ-
Graph and our method TINED+. Observe that our method
outperforms VQGraph on the datasets, which validates the
effectiveness of TINED.

Since VQGraph involves re-training the teacher, whereas
all other competitors, including KRD, FF-G2M, GLNN,
NOSMOG, and TINED, use a fixed teacher for distillation,
we believe VQGraph belongs to a different category and
have therefore excluded it from the main result.
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