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ABSTRACT

Omni-modal language models (OLMs) aim to integrate and reason over diverse in-
put modalities—such as text, images, video, and audio—while maintaining strong
language capabilities. Despite recent advancements, existing models, especially
open-source ones, remain far from true omni-modality, struggling to generalize
beyond the specific modality pairs they are trained on or to achieve strong per-
formance when processing multi-modal inputs. We study the effect of extend-
ing modality, the dominant technique for training multimodal models, where an
off-the-shelf language model is fine-tuned on target-domain and language data.
Specifically, we investigate three key questions: (1) Does modality extension com-
promise core language abilities? (2) Can model merging effectively integrate in-
dependently fine-tuned modality-specific models to achieve omni-modality? (3)
Does omni-modality extension lead to better knowledge sharing and generaliza-
tion compared to sequential extension? Through extensive experiments, we an-
alyze these trade-offs and provide insights into the feasibility of achieving true
omni-modality using current approaches.

1 INTRODUCTION

Omni-modal language models (OLMs) refer to models that can accept and understand various input
modalities—text, images, video, audio, etc.—and engage with users with language in a seamless,
natural manner. Ideal OLMs are able to combine inputs from different modalities into a unified
perception of real-world scenarios, enabling deeper contextual comprehension and more compre-
hensive reasoning. This capability would empower embodied (Ma et al., 2024) and virtual (Deng
et al., 2023) agents to perceive their environment.
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Figure 1: Overview of modality-specific language
models and Omni-modal language models.

OLMs belong to the broader category of
multimodal models. While recent advance-
ments have made substantial progress in this
field (OpenAI, 2024; Li et al., 2024), current
models still lack true omni-modality—the abil-
ity to handle arbitrary modality combinations
while maintaining robust reasoning and inter-
action abilities, evidenced by their inability to
generalize beyond the specific modality pairs
they were trained on. For example, models
trained on text-image tasks (Liu et al., 2023a; Li
et al., 2023) struggle with video understanding,
and models optimized for text-video tasks (Fu
et al., 2024; Zhang et al., 2024c) often fail to in-
corporate spatial reasoning from static images.
Additionally, open-source OLMs (Wu et al.,
2024b) following often exhibit weaker perfor-
mance on benchmarks specifically designed for
fewer modality evaluation, such as text-image tasks, compared to modality-specific models.

Notably, almost all existing multimodal models rely on a common strategy: extending modality.
As shown in Figure 1, this technique fine-tunes an off-the-shelf large language model (LLM) on
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data that pairs language with target modalities, enabling rapid adaptation to multimodal tasks (Li
et al., 2024; Wu et al., 2024b). However, the extent to which extending modality contributes to
the limitations of current multimodal models remains unclear (e.g., its impact on fundamental lan-
guage capabilities). Since LLMs serve as the backbone for most multimodal models, an important
question is RQ1: whether modality extension compromises their core language abilities in favor of
a stronger performance on modality-specific benchmarks. Do models retain their original reason-
ing and linguistic proficiency, or does the introduction of additional modalities interfere with their
generalization across language tasks?

With the abundance of modality-extended models in the open-source community, another open ques-
tion is: RQ2: Can we preserve their abilities while extending multimodal capabilities using existing
models? Model merging strategies (Wortsman et al., 2022) have been explored in various applica-
tions to combine knowledge from different models, often improving performance on downstream
tasks. However, it remains unclear whether such techniques can be leveraged to create an effective
OLM by merging multiple modality-extended models trained on different modalities. Would merg-
ing independently fine-tuned models allow them to integrate cross-modal knowledge effectively, or
would inconsistencies between separate modality-extended models hinder the fusion process?

Furthermore, RQ3: Does omni-modality fine-tuning lead to a more effective OLM? While some
multimodal models have been trained to handle multiple modalities simultaneously, there has been
no systematic comparison of different strategies for extending multiple modalities. Most current
approaches add one modality at a time through sequential fine-tuning (Zhang et al., 2024c), yet it
remains unclear whether this stepwise process is more effective than omni-modality fine-tuning.
Would joint training across multiple modalities improve knowledge sharing and downstream perfor-
mance, or is task-specific fine-tuning a more efficient approach?

Our findings highlight the impact of modality fine-tuning and the limitations it presents in the pur-
suit of OLMs. First, we identify a trade-off between extending modalities and preserving the core
language capabilities. While modality fine-tuning can enhance certain LLM abilities, especially in
areas like knowledge extension where visual modalities (e.g., images and videos) provide signifi-
cant improvements, it tends to degrade crucial functions such as reasoning and instruction-following.
Second, we introduce and compare weighted average model merging with standard average merging.
Our results show that weighted model merging achieves the best performance across both textual and
multimodal tasks, successfully preserving the most critical attributes of the original LLM, with pa-
rameter shifts acting as indicators of importance. We also demonstrate that each attention head in
modality fine-tuned models is integral to completing modality-specific tasks. Third, we compare
omni-modality fine-tuning with modality-specific fine-tuning, revealing that, while omni-modality
fine-tuning holds conceptual appeal, it is less effective and efficient than models fine-tuned for spe-
cific modalities. Moreover, we experiment the small-step fine-tuning (Cohere et al., 2025) on the
weighted merged model. The results show that although small-step fine-tuning works on merged
language models, it fails in omni-modal models.

2 RELATED WORK

Multimodal Large Language Models. Multimodal large language models (MLLMs; (OpenAI,
2024; Zhang et al., 2024a)) have gained significant attention due to their ability to process and reason
across different modalities, including text, images, video, and audio. Recent approaches (Alayrac
et al., 2022; Li et al., 2022) have explored fine-tuning language models with modality-specific
data to enable them to handle multimodal inputs directly. For instance, BLIP-2 (Li et al., 2023)
and LLaVA (Liu et al., 2023a) focus on extending image understanding capabilities, while Video-
LLaMA (Zhang et al., 2023) extends video understanding. However, these models still suffer from
modality issues, such as hallucinations (Huang et al., 2025; 2024) and knowledge conflicts (Zhu
et al., 2024). Furthermore, the impact of applying fine-tuning using modality-specific data on the
original LLM remains unclear.

Omni-Modal Language Models. Omni-modal language models (OLMs; (Hurst et al., 2024)) aim
to create a unified framework that can simultaneously process and reason about various modalities
without the need of separate models for each type of input. Recent studies, such as NextGPT (Wu
et al., 2024b) and OLA (Liu et al., 2025), have attempted fine-tuning with multiple modality-specific
data, integrating text, image, and video understanding into a single LLM. These models leverage
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shared latent spaces to enhance cross-modal understanding (Lu et al., 2022), enabling more coherent
understanding across heterogeneous data. However, the effectiveness and efficiency of extending
multiple modalities from the base LLM remains unclear, leaving the effective training pattern of
OLMs indefinitive.

Continual Learning. Continual learning for large language models (Wu et al., 2024c; Yang et al.,
2025) focuses on teaching LLMs from a continuous data stream over time, enabling knowledge
expansion (Kowalczyk et al., 2024; Wang et al., 2025) and conflict dissolving (Du et al., 2024).
Continual learning can be categorized into: continual pre-training (Qin et al., 2023; Yu & Ji, 2024),
continual fine-tuning (Wu et al., 2024a; Minixhofer et al., 2024), and continual alignment (Yao et al.,
2023; Zhang et al., 2024b). Recent study has revealed several drawbacks of continual learning,
including general performance deterioration and weakened safety (Li et al., 2025). However, the
impact of extending modality, which can be viewed as continual fine-tuning, is still under-explored.

Table 1: Overview of base LLMs and their corresponding multimodal models (MLLMs), including
the modalities they support and the associated modality extension data used for training.

Base LLM MLLM Modality Modality Extension Data

Qwen2-7B-Instruct
Qwen2-VL-7B-Instruct Image & Video >1.4 trillion mutlimodal tokens
LLaVA-OneVision-Qwen2-7B-SI Image 8.5m image data
LLaVA-Video-7B-Qwen2 Video 8.5m image data + 1.6m image & video data

Qwen-7B-Instruct Qwen2-Audio-7B-Instruct Audio 520k audio instruction pairs
Vicuna-7B-V1.5 LLaVA-1.5-7B Image 600k image insturction pairs
Qwen2-72B-Instruct Qwen2-VL-72B-Instruct Image >1.4 trillion multimodal tokens

3 PRELIMINARY

3.1 MODALITY EXTENSION

Before discussing how MLLMs extend modalities based on LLMs, we first formalize the key com-
ponents of MLLMs and the process of modality fine-tuning.

MLLM Architecture. Contemporary MLLMs (Liu et al., 2023a; Li et al., 2023) adopt a general
architecture which consists of a base LLM, modality encoders E = {Em1

, Em2
, ..., Emn

}, and
modality projectors P = {Pm1

, Pm2
, ..., Pmn

}, where each mi, i ∈ [1, 2, ..., n] is a modality except
the textual one. Given a multimodal input X = {xm0

, xm1
, xm2

, ..., xmn
}, where m0 is the textual

modality, for each modality mi, the MLLM first encode the modality input xmi
using F . Then,

a projector Pmi projects the encoded input to the textual modality as tmi . In the meantime, the
language tokenizer tokenizes the textual input xm0 into a token sequence tm0 . The LLM takes the
encoded multimodal input T = {tm0 , tm1 , tm2 , ..., tmn} and generates the output by the probability
pLLM(y|T ). As mi covers all the modalities, MLLM becomes OLM.

Modality Fine-Tuning. Modality fine-tuning is a common way to extend modalities on LLMs.
Specifically, modality fine-tuning leverages modality-specific instruction data—including various
tasks on a certain modality—to fine-tune a LLM to capture the inputs encoded by modality encoders
and modality projectors. There are two popular ways to achieve this: to freeze the LLM and only
train the modality encoder and projector or to fine-tune the LLM with modality instruction data.
Recent studies have pointed out that unfreezing the LLM for modality fine-tuning is essential for
keeping the most desirable attributes of LLMs, such as in-context learning (Lin et al., 2024). Thus,
in this paper, we discuss modality fine-tuning in the context of unfreezing the LLM.

3.2 GENERAL EXPERIMENTAL SETUP

For all the experiments, we adopt the default generation parameters. For multiple-choices datasets,
we adopt greedy decoding to generate the options. For datasets that require sampling, we set the
temperature to 1.0.

4 ON THE IMPACT OF MODALITY FINE-TUNING ON BASE LLM
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Table 3: Performance of the base LLMs across all evaluated domains of textual abilities.

Model MMLU MMLU-Pro IFEval PR ZeroScrolls GPQA MATH HumanEval+ MMMLU HarmBench

Acc Acc Avg Acc Acc Acc Acc Pass@1 Pass@5 Pass@10 Acc ASR@100↓
Qwen2-7B based

Qwen2-7B-Instruct 66.2 35.1 58.2 100.0 85.7 13.6 60.0 54.2 82.8 93.4 51.4 15.9
Qwen2-VL-7B-Instruct 66.5↑ 40.0↑ 48.6↓ 100.0= 90.5↑ 10.6↓ 49.8↓ 37.6↓ 75.4↓ 92.1↓ 51.4= 11.4↑
LLaVA-Video-7B-Qwen2 66.6↑ 37.7↑ 48.8↓ 100.0= 76.2↓ 8.6↓ 47.2↓ 41.8↓ 80.2↓ 92.1↓ 48.9↓ 36.0↓
LLaVA-OneVision-Qwen2-7B-SI 65.4↓ 37.9↑ 28.6↓ 100.0= 76.2↓ 4.6↓ 14.6↓ 0.0↓ 0.0↓ 0.0↓ 48.2↓ 34.1↓
Qwen-7B based

Qwen-7B-Chat 38.4 14.9 25.7 35.5 0.0 5.1 8.6 0.0 0.0 0.0 33.9 8.2
Qwen2-Audio-7B-Instruct 41.9↑ 12.1↓ 19.4↓ 30.5↓ 14.3↑ 4.6↓ 2.2↓ 0.0= 0.0= 0.0= 30.0↓ 0.0↑
Vicuna-7B based

Vicuna-7B-V1.5 45.5 17.8 41.8 50.0 0.0 10.1 6.1 8.0 24.3 43.9 30.1 24.6
LLaVA-1.5-7B 48.9↑ 20.9↑ 37.6↓ 50.0= 9.5↑ 8.6↓ 19.6↑ 6.8↓ 22.6↓ 42.0↓ 35.3↑ 44.4↓
Qwen2-72B based

Qwen2-72B-Instruct 79.0 48.7 81.4 100.0 85.7 10.1 70.0 72.5 88.1 93.4 67.0 1.5
Qwen2-VL-72B-Instruct 81.5↑ 50.2↑ 62.9↓ 100.0= 90.5↑ 9.6↓ 64.7↓ 47.7↓ 88.0↓ 96.7↑ 68.7↑ 11.2↓

Table 2: Benchmarks for textual abilities.
Task Dataset Size

Knowledge MMLU 14,079
MMLU-Pro 12,032

Instruction Following IFEval 541

Long Context Passkey Retrieval 400
ZeroScrolls/Quality 21

Reasoning
GPQA 198
MATH 5,000
HumanEval++ 164

Multilingual MMMLU 196,588
Safety Harmbench 200

Supervised fine-tuning on specific modalities
has proven effective in extending LLMs from
purely textual to multimodal capabilities, es-
pecially with the LLM co-training with the
modality encoder and projector. However,
modality fine-tuning without freezing the base
LLM alters its default parameters, potentially
affecting its original performance. While some
studies have discussed preserving the base
LLM’s capabilities, the broader implications of
modality fine-tuning remain largely underex-
plored. In this section, we examine how fine-
tuning on different modalities influences the base language model.

4.1 EXPERIMENTAL SETUP

Datasets. To systematically assess the impact of modality fine-tuning, we evaluate six core LLM
abilities: Knowledge, Instruction Following, Long Context, Reasoning, Multilingual, and Safety.
The statistics of these datasets are listed in Table 2. 1) For Knowledge, we adopt MMLU (Hendrycks
et al., 2020a) and MMLU-Pro (Wang et al., 2024c). 2) For Instruction Following, we adopt IFE-
val (Zhou et al., 2023). We report an average performance across strict prompt, strict instruction,
loose prompt, loose instruction. 3) For Long Context, we adopt Passkey Retrieval (Mohtashami &
Jaggi, 2023) and the Quality subset of ZeroScrolls (Shaham et al., 2023). 4) For Reasoning, we
evaluate three different domains, namely, general reasoning GPQA (Rein et al., 2024), math rea-
soning MATH (Hendrycks et al., 2021), and coding HumanEval-plus (Liu et al., 2023b). 5) For
Multilingual, we adopt MMMLU (Hendrycks et al., 2020b). 6) For Safety, we adopt Harm-
Bench (Mazeika et al., 2024).

Models. Supervised fine-tuning on different modalities can steer LLMs in diverse directions. In-
tuitively, fine-tuning on image data may enrich the model’s contextual understanding, while video
fine-tuning may enhance its ability to process long-range dependencies. To systematically analyze
these effects, we conduct controlled experiments across different modalities and model sizes.

Our primary analyses adopts the Qwen2-7B-Instruct model family (Yang et al., 2024), as the fol-
lowing multimodal extensions of Qwen2-7B-Instruct easily supports a comprehensive comparison
across modalities and Table 1 shows the detailed model statistics. 1) Image modality: Qwen2-VL-
7B-Instruct (Wang et al., 2024b) and LLaVA-OneVision-Qwen2-7B-SI (Li et al., 2024). 2) Video
modality: LLaVA-Video-7B-Qwen2 (Zhang et al., 2024c). 3) Audio modality: Qwen2-Audio-
7B-Instruct (Chu et al., 2024). To evaluate whether these findings generalize across different base
LLMs, we also test Vicuna-7B-V1.5 (Chiang et al., 2023), alongside its image extension LLaVA-
1.5-7B (Liu et al., 2023a). Also, we assess the impact of model size by analyzing Qwen2-72B-
Instruct (Wang et al., 2024b) and its visual extension, Qwen2-VL-72B-Instruct (Yang et al., 2024).

4.2 RESULTS

The evaluation results are presented in Table 3, from which we derive several key observations.

4
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Visual modality extends the scope of parametric knowledge, with gains scaling directly with
the quantity of training data. Results from MMLU and MMLU-Pro show that visual exten-
sion of Qwen2 improve performance by at least 2.5%. Specifically, Qwen2-VL, trained on over
1.4T multimodal tokens, achieves an approximately 5% improvement, compared to a 2.5% gain
for LLaVA-Video-7B-Qwen2, trained on 10M instruction data. This supports the hypothesis that
visual fine-tuning effectively injects new visual knowledge into the base model. Conversely, the
audio modality provides minimal knowledge expansion, improving Qwen2’s performance by only
0.4%. This disparity arises because audio primarily acts as an extension of natural language, unlike
vision which introduces novel knowledge forms. This implies that fine-tuning paradigms must be
modality-specific: audio should prioritize alignment with text, while vision should focus on syner-
gizing multimodal representations to integrate new knowledge effectively.

Modality fine-tuning harms instruction following, reasoning, and safety. Modality fine-tuning
significantly degrades instruction-following capabilities, with all extended models showing perfor-
mance declines on the IFEval dataset. This suggests current fine-tuning methods act only as modality
extensions and fail to preserve this core skill, indicating a need to co-train with instruction-following
data to mitigate the issue (Jindal et al., 2024). Reasoning performance is also severely impacted
across different domains: 3.0% on GPQA, 10.2% on MATH, and declines in both Pass@1 and
Pass@5 on HumanEval+ with the best-performing model Qwen2-VL. While 7B-scale models ex-
hibit substantial drops, this degradation is less pronounced in larger models; the 72B Qwen2-VL’s
accuracy drop on MATH was only 5.3%, possibly because idle parameters in larger models absorb
the fine-tuning impact. Nevertheless, a significant overall decline in reasoning ability remains. On
the HarmBench dataset, nearly all multimodal models exhibit a higher attack success rate, indicating
reduced safety compliance. This aligns with previous findings that modality fine-tuning disrupts the
model’s existing RLHF alignment (Lee et al., 2025).

Video modality may enhance the long context ability. From the results of the ZeroScrolls dataset,
we can observe that those models trained on large amounts of video data, except for those base
LLMs do not have the long context ability, show an increase in the performance, i.e. the Qwen2-VL-
7B-Instruct and Qwen2-VL-72B-Instruct. On the contrary, the LLaVA-OneVision model, which is
trained on single image data, shows a decrease in the long context performance. Intuitively, video is
a visual version of the long-context document. A typical video fine-tuning sample contains roughly
4k tokens (Zhang et al., 2024c), mostly visual tokens. Thus, training on video data could inherently
enhance the long context understanding ability of the base LLM.

Modality fine-tuning has a mixed effect on multilingual performance. The results on the
MMMLU dataset reveal varying effects of modality fine-tuning across different models and model
sizes. In vicuna-based models, the image extension enhances multilingual performance by 5.2%,
whereas in Qwen2-based models, performance either declines or remains unchanged. However, in
larger models, multilingual performance improves by 1.7%.

5 ON MODEL MERGING TOWARDS AN OMNI-MODAL LANGUAGE MODEL

Having gained a clearer insight into the impact of modality fine-tuning, demonstrating both its ben-
efits and drawbacks on the textual modality, we now explore a potential path towards omni-modal
language models. Specifically, we ask: Is it possible to preserve the positive effects and extend
multimodal capabilities without further training the existing models?

A promising and lightweight approach to addressing this question is model merging, which involves
integrating the parameters of models with different training corpus and paradigms but the same ar-
chitecture. Model merging has been shown to be effective in various contexts, including knowledge
editing (Lu et al., 2025) and cross-modal knowledge transfer (Ahmed et al., 2022). In the following
sections, we explore different model merging strategies and evaluate their effectiveness in preserving
textual capabilities while enabling multimodal capability.

5.1 MERGING METHODS

We employ two widely used model merging techniques: average merging and weighted average
merging, both of which are task- and modality-agnostic. Average merging computes the element-
wise average of the weights across all candidate models, while weighted average merging assigns a
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Figure 2: Heat map for masking each attention head. We report accuracy, accuracy calculated
by probability, and KL divergence. The accuracy and probability accuracy should be as high as
possible, while the KL divergence should have small absolute value.

heuristic weight to each model’s parameters. Formally, average merging is defined as:

θmerge =

n∑
i=1

θi, (1)

where θi represents the parameters of the ith candidate model. For weighted average merging, the
merged parameters are computed as:

θmerge =

n∑
i=1

αiθi, (2)

where αi denotes the weight assigned to the parameters of the ith model. To ensure the merging
process remains both task- and modality-agnostic, the weight αi is designed to be independent
of specific tasks or modalities. This guarantees that newly extended multimodal models can be
seamlessly merged without adaptation to modality-specific tasks.

5.2 EXAMINATION OF MODEL PARAMETERS

To determine the appropriate design for parameter weights in model merging, we must first answer a
fundamental question: What is the largest unit to which model merging can be applied? If modality
fine-tuning affects only a subset of parameters, merging should ideally be constrained to these altered
parameters while preserving the original ones.

To investigate this, we analyze head-level modality salience, which quantifies the contribution of
individual attention heads to modality-specific tasks. Specifically, we iteratively mask each single
attention head and evaluate the resulting impact on model performance, allowing us to assess the
relative importance of each head in processing multimodal information. We conduct this analysis
using the Qwen2-VL-7B-Instruct model on the MMMU dataset (Yue et al., 2024). We employ three
metrics to examine head-level modality salience:

• Accuracy. The model is prompted to generate an answer choice directly, and accuracy is com-
puted based on correct predictions. The baseline accuracy of Qwen2-VL-7B-Instruct is 49.44%.

• Probability Accuracy. To mitigate the impact of potential degradation in generation quality
caused by masking a single attention head, we analyze the logits of the first generated token,
expected to correspond to the answer choice. Specifically, we extract the logits of the options
(i.e., A, B, C, and D), apply softmax normalization, and compute accuracy.

• KL Divergence. To quantify distributional shifts, we compute the Kullback-Leibler (KL) diver-
gence between the option logits of the original model and those after masking.

The results are presented in Figure 2, from which several key observations can be made. Across all
three evaluation metrics, masking any attention head results in a substantial performance drop,
indicating that no single head is dispensable for specific modality processing, unlike retrieval or long
context abilities (Wu et al., 2025). This suggests that modality fine-tuning modifies the entire pa-
rameter set rather than only specific attention heads, implying that the model merging weight design
should account for all parameters rather than a subset of them. Additionally, a notable trend emerges:
attention heads in shallower layers exert a greater influence on multimodal performance. This
observation aligns with the established role of transformer layers, where shallow layers primarily fo-
cus on semantic understanding, while deeper layers perform integration and reasoning (Wang et al.,
2024a). These findings underscore the importance of preserving early-layer representations when
designing model merging strategies for multimodal extensions.
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Table 4: Performance of merged LLMs across all evaluated domains of textual abilities.

Model MMLU MMLU-Pro IFEval PR ZeroScrolls GPQA MATH HumanEval+ MMMLU HarmBench

Acc Acc Avg Acc Acc Acc Acc Pass@1 Pass@5 Pass@10 Acc ASR@100↓
Qwen2-7B-Instruct 66.2 35.1 58.2 100.0 85.7 13.6 60.0 54.2 82.8 93.4 51.4 15.9
Average

Qwen2-Text/VL/Video 68.7 31.0 58.0 100.0 81.0 10.1 55.9 49.6 83.2 94.5 52.7 18.2
Qwen2-Text/VL/Video/SI 68.5 37.4 58.2 100.0 85.7 11.1 56.1 49.5 83.3 94.0 52.6 20.4
Qwen2-VL/Video 68.7 36.0 54.8 100.0 85.7 9.6 52.9 46.0 82.2 93.2 52.5 19.4
Qwen2-VL/Vide/SI 68.4 40.0 53.6 100.0 85.7 9.6 53.9 47.8 82.9 94.2 52.3 23.7
Weighted Average

Qwen2-Text/VL/Video/SI 68.6 36.3 58.1 100.0 81.0 9.1 57.0 50.0 82.2 93.8 52.8 15.4

5.3 WEIGHTED MODEL MERGING

Since attention heads are too coarse-grained for effective model merging, we refine our approach by
considering parameter matrices. To quantify the extent of parameter modifications due to modality
fine-tuning, we compute ∆avg for each tensor, defined as:

∆avg = avg|θori − θmft|, (3)

where θori represents the parameters of the original LLM, and θmft denotes those of the modality
fine-tuned LLM. This metric captures the average parameter shifts after modality fine-tuning.

Our analysis reveals that Qwen2-VL-7B-Instruct, which undergoes the most extensive modality fine-
tuning, exhibits the largest parameter shift from its base LLM, showing 10 times larger parameter
shifts than others This observation supports the hypothesis that greater specialization in a modality
results in more substantial parameter deviations. Motivated by this insight, we incorporate ∆avg into
the weight design for model merging. Specifically, for each model parameter θi, we first compute
∆i

avg using Equation (3). We then apply softmax to the set {∆1
avg,∆

2
avg, ...,∆

n
avg}, transforming the

values into a probability distribution {α1, α2, ..., αn}. To preserve the capabilities of the original
LLM, we introduce a manually assigned weight α0 for its parameters. The remaining weights are
rescaled by multiplying each αi by 1 − α0, ensuring a controlled balance between the original and
fine-tuned models. The final weighted-averaged parameter is thus formulated as:

θmerge = α0θ0 + (1− α0)

n∑
i=1

αiθi. (4)

5.4 RESULTS

We experiment model merging on the Qwen2-7B-Instruct based models, i.e., Qwen2-VL-7B-
Instruct, LLaVA-Video-7B-Qwen2, and LLaVA-OneVision-Qwen2-7B-SI. For the evaluation the
original textual modality, we follow the setup from Section 4. For the evaluation on other modali-
ties, we adopt the image and video dataset, using MMMU (Yue et al., 2024) and Video-MME (Fu
et al., 2024). For generation configuration, we follow the same setup in Section 3.

Table 5: Performance of OLMs based on merged
LLMs across all evaluated multimodal domains.

Model MMMU Video-MME

Qwen2-VL-7B-Instruct 49.44 62.84
Qwen2-avg-all 48.78 56.89
Qwen2-weighted-all 48.11 61.04

The results of the textual evaluation are pre-
sented in Table 4, while the multimodal evalu-
ation results are shown in Table 5. From these,
we derive several key observations.

Model merging preserves the capabilities of
base models. The textual evaluation results in-
dicate that the merged model retains most of the
original LLM’s capabilities, with improvements in certain domains.

• Knowledge: Modality fine-tuning has been shown to expand the model’s knowledge base. No-
tably, the merged model outperforms even the fine-tuned models, suggesting an enhanced inte-
gration of multimodal knowledge.

• Instruction Following: While fine-tuned models exhibit a decline in instruction-following abil-
ity, merging with the original LLM not only restores but also slightly improves this capability.

• Long Context: The merged model maintains performance comparable to the original LLM,
indicating that model merging does not degrade this ability.

• Reasoning: A consistent performance drop is observed across reasoning tasks following fine-
tuning. However, model merging mitigates this decline to some extent.

• Multilingual: Performance improves after merging, suggesting that merging helps consolidate
multilingual understanding.
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• Safety: The merged model preserves the safety characteristics of the original LLM.

In summary, except for reasoning, the merged model performs on par with or better than the original
LLM across evaluated domains. This suggests that future efforts to retain the base LLM’s capabili-
ties should focus on addressing reasoning degradation during modality fine-tuning.

Weighted model merging preserves more model abilities. Both textual and multimodal evalua-
tions demonstrate that weighted-average model merging achieves more robust performance. This
suggests that parameter shift serves as a crucial indicator of a parameter’s importance. Furthermore,
results indicate that merging a greater number of models further enhances overall performance, high-
lighting the potential of leveraging multiple modality-extended models to improve omni-modality.

6 ON OMNI-MODALITY FINE-TUNING TOWARDS OMNI-MODAL MODEL

Previous sections indicate that model merging still has some degradation in performance. Thus, our
next question is: Is omni-modality fine-tuning the right path towards OLM? In this section, we will
discuss about the effectiveness and the efficiency of omni-modality fine-tuning.

6.1 MODALITY FINE-TUNING ON LANGUAGE MODEL

6.1.1 EXPERIMENTAL SETUP

Table 6: Performance of OLMs and modality-
specific language models on image and video do-
mains. Red indicates OLMs and blue indicates
modality-specific language models.

Text-Image
Model Data VizWiz VQAv2
NextGPT 4.5M 48.40 66.70
InstructBlip 10M 34.50 43.30
LLaVA-Next 1.3M 57.60 81.80

Text-Video
Model Data MSVD-QA MSRVTT-QA
NextGPT 2.1M 64.50 61.40
Video-LLaMA 2.8M 51.60 -
Video-LLaVA 2M 70.70 59.20
Vista-LLaMA 1.3M 65.30 60.50

Model. For the choice of omni-modality
fine-tuned models, we adopt NextGPT (Wu
et al., 2024b) and Qwen2.5-Omni (Xu et al.,
2025). The former utilizes a frozen language
backbone, while the latter trains the whole
model. For the choice of modality fine-tuned
models, we choose models that is special-
ized in certain modality and has the same
base LLM as NextGPT, including Instruct-
Blip (Dai et al., 2023), LLaVA-Next (Liu et al.,
2024), Video-LLaMA (Zhang et al., 2023),
Video-LLaVA (Zhang et al., 2024c), and Vista-
LLaMA (Ma et al., 2023).

Datasets. For easier comparison, we adopt the
datasets that are used to evaluate NextGPT. For image modality, we adopt VizWiz (Bigham et al.,
2010) and VQAv2 (Goyal et al., 2017). For video modality, we adopt MSVD-QA and MSRVTT-
QA (Xu et al., 2017).

6.1.2 RESULTS

Our experimental results are presented in Table 6, detailing the training data volumes and model
performance across evaluation datasets. We also compare the language capabilities of our merged
and fine-tuned omni-modal models in Appendix A.1. The findings reveal that omni-modal fine-
tuning is currently less effective and efficient than modality-specialized models.

For image-based tasks, LLaVA-Next requires only one-third of the training data used by NextGPT
yet significantly outperforms it on visual understanding benchmarks. Similarly, for video-based
tasks, Vista-LLaMA achieves comparable performance to NextGPT while consuming only half
the training data. These results suggest that while omni-modality fine-tuning serves as a proof-
of-concept for generalizing across modalities, it requires a more refined design to achieve efficiency
and performance on par with specialized models. Further research is needed to optimize omni-
modality fine-tuning strategies, ensuring they can effectively balance generalization and efficiency
without excessive data consumption.
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6.2 MODALITY FINE-TUNING ON MERGED MODEL

Given that model merging alone is not consistently effective in extending language models to multi-
ple modalities while simultaneously maintaining their core language proficiencies, we shift our fo-
cus to employing small-step fine-tuning on the merged model. Previous work (Cohere et al., 2025)
has demonstrated that fine-tuning merged language models with a small number of training steps
can enhance their performance across various language-centric abilities. Consequently, we explore
whether this conclusion still stands for the multimodal situation. For the base model to conduct
fine-tuning on, we utilize the weighted-average merged model detailed in Section 5, i.e., Qwen2-
weighted-all. The fine-tuning dataset comprises selections for distinct modalities: MetaMath (Yu
et al., 2023) for language, VisualWebInstruct (Jia et al., 2025) for image, and LLaVA-Video-178K
(Zhang et al., 2024c) for video. These datasets are chosen because: 1) they are curated for tasks
requiring complex reasoning within their specific modality, and 2) they offer a standardized fine-
tuning format, facilitating reproducible research. To approximate a balanced token exposure across
modalities, we set the data proportion for fine-tuning as text : image : video = 3 : 2 : 1.

6.2.1 ANALYSIS
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Figure 3: Accuracy over training.

Effects of Fine-Tuning Step Number. To
ground our analysis, we first seek to iden-
tify an optimal range for the number of fine-
tuning steps. We define optimal small-step fine-
tuning as a regimen that 1) enhances modal-
ity alignment and performance on multimodal
tasks, while 2) not substantially degrading the
model’s original language capabilities. Perfor-
mance is evaluated on the MMLU and MMLU-
Pro benchmarks and the MMMU benchmark.

The results, depicted in Figure 3, reveal a criti-
cal trend. We observe that performance on both
MMLU and MMLU-Pro tends to decrease after approximately 1,000 fine-tuning steps. In contrast,
performance on MMMU generally shows improvements with fine-tuning. This divergence strongly
suggests a modality trade-off : enhancing multimodal understanding through fine-tuning can come
at the cost of textual understanding. This observation implies that straightforward small-step fine-
tuning may present challenges for developing truly omni-modal models that excel universally across
all modalities. Furthermore, textual understanding (MMLU/MMLU-Pro) exhibits a slight increase
or peak performance within the initial 100 steps, suggesting that the optimal fine-tuning step number
for preserving or enhancing language abilities is relatively small. Conversely, visual and multimodal
capabilities (MMMU) may benefit from more fine-tuning steps. This disparity in optimal fine-tuning
step number for different modalities likely contributes to the observed trade-off.

Moreover, to examine the impact of modality fine-tuning and model merging on model parameters,
we visualize the parameter shift of these models. The results are presented in Appendix A.2.

7 CONCLUSION

This work explore the impact of modality fine-tuning on LLMs and evaluated two alternative ap-
proaches for developing Omni-Modality Language Models (OLMs): model merging and omni-
modality fine-tuning. Modality fine-tuning effectively extends the capabilities of a base LLM to
handle multimodal inputs but inevitably alters its parameters. This modification can lead to both
improvements in certain domains, such as knowledge expansion, and degradations in core abilities
like reasoning and instruction following. Weighted model merging mitigates some of these losses
but does not fully preserve all capabilities. Omni-modality fine-tuning, though conceptually promis-
ing, proves inefficient compared to modality-specialized models, requiring more training data while
offering limited improvements. Overall, our findings suggest that neither modality fine-tuning nor
naive omni-modality fine-tuning offers a definitive solution to achieving robust OLMs. We hope
this study provides valuable insights for advancing research in multimodal LLMs and inspires new
approaches toward achieving truly omni-modality models.
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This paper presents a study of predominant modality extension methods for LLMs. Our research
aims to transparently evaluate the strengths and weaknesses of current techniques to guide future
development toward more robust and reliable models and introduces a weighted-average model
merging method. There is no major concern about ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we will make our implementation publicly available.
The complete source code, including scripts for data preprocessing, model training, and evaluation,
is provided in the supplementary materials. A detailed description of our experimental setup, in-
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eighth Annual Conference on Neural Information Processing Systems, 2024.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. In Workshop on Efficient Systems for Foundation Models@ ICML2023,
2023.

OpenAI. Gpt-4v(ision) system card, 2024. URL https://openai.com/index/
gpt-4v-system-card.

Yujia Qin, Cheng Qian, Xu Han, Yankai Lin, Huadong Wang, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Recyclable tuning for continual pre-training. In Findings of the Association
for Computational Linguistics: ACL 2023, pp. 11403–11426, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot
benchmark for long text understanding. In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 7977–7989, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of implicit reasoning in transformers: A
mechanistic journey to the edge of generalization. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024a.

12

https://openai.com/index/gpt-4v-system-card
https://openai.com/index/gpt-4v-system-card


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mingyang Wang, Alisa Stoll, Lukas Lange, Heike Adel, Hinrich Schütze, and Jannik Strötgen.
Bring your own knowledge: A survey of methods for llm knowledge expansion. arXiv preprint
arXiv:2502.12598, 2025.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024c.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Lud-
wig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accu-
racy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 23965–23998. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/wortsman22a.html.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ying Shan, and Ping
Luo. Llama pro: Progressive llama with block expansion. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6518–
6537, 2024a.

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multi-
modal llm. In Forty-first International Conference on Machine Learning, 2024b.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.
Continual learning for large language models: A survey. arXiv preprint arXiv:2402.01364, 2024c.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanis-
tically explains long-context factuality. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=EytBpUGB1Z.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang.
Video question answering via gradually refined attention over appearance and motion. In Pro-
ceedings of the 25th ACM international conference on Multimedia, pp. 1645–1653, 2017.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
Fan, Kai Dang, et al. Qwen2. 5-omni technical report. arXiv preprint arXiv:2503.20215, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671,
2024.

Yutao Yang, Jie Zhou, Xuanwen Ding, Tianyu Huai, Shunyu Liu, Qin Chen, Yuan Xie, and Liang
He. Recent advances of foundation language models-based continual learning: A survey. ACM
Computing Surveys, 57(5):1–38, 2025.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
10222–10240, 2023.

13

https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://openreview.net/forum?id=EytBpUGB1Z


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Pengfei Yu and Heng Ji. Information association for language model updating by mitigating lm-
logical discrepancy. In Proceedings of the 28th Conference on Computational Natural Language
Learning, pp. 117–129, 2024.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-
llms: Recent advances in multimodal large language models. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 12401–12430, 2024a.

Han Zhang, Yu Lei, Lin Gui, Min Yang, Yulan He, Hui Wang, and Ruifeng Xu. Cppo: Continual
learning for reinforcement learning with human feedback. In The Twelfth International Confer-
ence on Learning Representations, 2024b.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 543–553, 2023.

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024c.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Tinghui Zhu, Qin Liu, Fei Wang, Zhengzhong Tu, and Muhao Chen. Unraveling cross-modality
knowledge conflicts in large vision-language models. arXiv preprint arXiv:2410.03659, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Performance of the merged model compared to the fine-tuned model on language bench-
marks. Abs. stands for the absolute difference and Rel. stands for relative difference.

Omni-Modality Fine-tuning Weighted Merging

Qwen2.5-7B Qwen2.5-Omni-7B Abs. Rel. Qwen2-7B-Inst. Qwen2-7B-weighted Abs. Rel.

MMLU-Pro 56.3 47.0 -9.3 -16.5% 35.1 36.3 +1.2 +3.4%
GPQA 36.4 30.8 -5.6 -15.4% 13.6 9.1 -4.5 -33.1%
MATH 75.5 71.5 -4.0 -5.3% 60.0 57.0 -3.0 -5.0%
HumanEval 84.8 78.7 -6.1 -7.2% 54.2 50.0 -4.2 -7.7%

A EXPERIMENTS

A.1 MODEL MERGING V.S. OMNI-MODALITY FINE-TUNING

Furthermore, both model merging and omni-modal fine-tuning tend to degrade the original language
capabilities, demonstrating a decline across most language abilities, particularly in reasoning tasks.
However, the merged model shows a slight improvement in language understanding and knowledge-
related capabilities. The averaged performance drop for the fine-tuned model is -6.3%, compared
to -2.6% for the merged model. This indicates that while both methods impact language skills, the
fine-tuning approach appears to be more detrimental to core language abilities than model merging.
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(a) Visualization of weight shifts after fine-tuning on
text, image, video, and mixed modality datasets.
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Figure 4: Comparative visualizations of model weight distributions. We use t-SNE to visualize the
weight shifts.

A.2 EFFECTS OF FINE-TUNING V.S. MERGING

To further understand the mechanisms contributing to the modality trade-off, we investigate the
shifts in model weights induced by the merging process itself versus subsequent fine-tuning. For the
fine-tuning aspect of this experiment, we sample 1,000 instances from each modality-specific dataset
(text, image, and video) and fine-tune the merged model (Qwen2-weighted-all) on these individual
sets, as well as on a combined mixed-modality set comprising all 3,000 samples.

The t-SNE (Van der Maaten & Hinton, 2008) visualizations of the weight distributions are presented
in Figure 4. From Figure 4a, it is evident that fine-tuning on different modalities propels the model
weights in distinct directions within the parameter space. This suggests that fine-tuning encourages
specialization towards the statistical properties of the specific modality it is trained on. Conversely,
Figure 4b indicates that weighted model merging positions the resultant model in a region that
aggregates the weights of the base models.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

This fundamental distinction in how weights are manipulated–fine-tuning driving towards special-
ized, often divergent points in the weight space versus merging seeking a consensual, interpolated
representation–offers a compelling explanation for the observed modality trade-off. While fine-
tuning can significantly enhance performance for a target modality, it risks pulling the model’s ca-
pabilities away from others. Model merging, on the other hand, achieves an initial balance but may
not unlock peak performance for any single modality. Subsequent fine-tuning of this merged model,
as shown, tends to quickly re-specialize the model, often reintroducing the trade-off by favoring
improvement in one area at the expense of another.

B THE USE OF LARGE LANGUAGE MODELS

In this manuscript, LLM is utilized as a general-purpose writing assistant. Its role is strictly limited
to improving the clarity, conciseness, and grammatical correctness of the text. The LLM is used for
tasks such as rephrasing sentences, shortening paragraphs, and polishing the overall prose to meet
academic standards. All intellectual contributions, including the research ideation, experimental
design, data analysis, and the core arguments presented, are entirely the work of the human authors.
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