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ABSTRACT

Long-term Time Series Forecasting (LTSF) is critical for numerous real-world
applications, such as electricity consumption planning, financial forecasting, and
disease propagation analysis. Time series, generated from continuous real-world
processes sampled at multiple scales, pose significant challenges for LTSF. These
challenges arise from the need to capture long-range dependencies between in-
puts and outputs, driven by the complex temporal dynamics of multi-scale, multi-
periodic data. While current time-domain multiscale models effectively capture
temporal variations, they often fall short with multi-scale datasets. These models
primarily focus on temporal patterns, frequently overlooking critical frequency-
specific features, such as harmonics and periodic behaviors, which are better rep-
resented in the frequency domain. In this paper, we introduce MMFNet, a novel
model designed to enhance long-term multivariate forecasting by leveraging a
multi-scale masked frequency decomposition approach. MMFNet captures fine,
intermediate, and coarse-grained temporal patterns by converting time series into
frequency segments at varying scales while employing a learnable mask to filter
out irrelevant components adaptively.
Extensive experimentation with benchmark datasets shows that MMFNet not only
addresses the limitations of the existing methods but also consistently achieves
good performance. Specifically, MMFNet achieves up to 6.0% reductions in the
Mean Squared Error (MSE) compared to state-of-the-art models designed for mul-
tivariate forecasting tasks.

1 INTRODUCTION

Time series forecasting is pivotal in a wide range of domains, such as environmental monitor-
ing (Bhandari et al., 2017), electrical grid management (Zufferey et al., 2017), financial analy-
sis (Sezer et al., 2020), and healthcare (Zeroual et al., 2020). Accurate long-term forecasting is
essential for informed decision-making and strategic planning. Traditional methods, such as autore-
gressive (AR) models (Nassar et al., 2004), exponential smoothing (Hyndman & Athanasopoulos,
2008), and structural time series models (Harvey, 1989), have provided a robust foundation for time
series analysis by leveraging historical data to predict future values. However, real-world systems
frequently exhibit complex, non-stationary behavior, with time series characterized by intricate pat-
terns such as trends, fluctuations, and cycles. Those complexities pose significant challenges to
achieving accurate forecasts (Makridakis et al., 1998; Box et al., 2015).

Long-term Time Series Forecasting (LTSF) has seen significant advancements in recent years, driven
by the development of sophisticated models, such as Transformer-based models (Zhou et al., 2021;
Wu et al., 2021; Nie et al., 2024) and linear models (Zeng et al., 2023; Xu et al., 2024; Lin
et al., 2024). Transformer-based architectures have demonstrated exceptional capacity in capturing
complex temporal patterns by effectively modeling long-range dependencies through self-attention
mechanisms at the cost of heavy computation workload, particularly when facing large-scale time
series data, which significantly limits their practicality in real-time applications. In contrast, the
linear models provide a lightweight alternative for real-time forecasting. In particular, FITS demon-
strates superior predictive performance across a wide range of scenarios with only 10K parameters
by utilizing a single-scale frequency domain decomposition method combined with a low-pass filter
employing a fixed cutoff frequency (Xu et al., 2024).
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Current methods often overlook the multiscale periodic nature of time series data. Time series
are generated from continuous real-world processes sampled at various scales. For example, daily
data capture hourly fluctuations, while yearly data reflect long-term trends and seasonal cycles.
This inherent multi-scale, multi-periodic characteristic presents a significant challenge for model
design, as each scale emphasizes distinct temporal dynamics that need to be effectively captured.
Centered Kernel Alignment analysis has shown the ability to produce diverse representations across
layers is particularly beneficial for tasks requiring the capture of irregular patterns Kornblith et al.
(2019). These diverse representations are instrumental in managing variations across scales and
periodicities.

Current time-domain multiscale models like TimeMixer (Wang et al., 2024), though effective at
capturing temporal variations across resolutions, has several limitations, particularly for datasets
with multi-scale and multi-periodic properties. It primarily focuses on temporal patterns, often
overlooking critical frequency-specific features such as harmonic or periodic behaviors, which are
better captured in the frequency domain. For example, seasonal or cyclic trends are more apparent
in frequency representations but can be difficult to disentangle in the time domain. Additionally,
time-domain methods are sensitive to noise, as they work directly on raw signals, allowing noise to
propagate across scales and obscure meaningful patterns, especially at coarser resolutions. Further-
more, while these methods enhance temporal resolution, they frequently struggle to capture long-
term dependencies, as dividing data into scales can result in a loss of the broader context necessary
for understanding long-range interactions.

In this paper, we present MMFNet, a novel model designed to enhance LTSF through a multi-
scale masked frequency decomposition approach. MMFNet captures fine, intermediate, and coarse-
grained patterns in the frequency domain by segmenting the time series at multiple scales. At each
scale, MMFNet employs a learnable mask that adaptively filters out irrelevant frequency components
based on the segment’s spectral characteristics. MMFNet offers two key advantages: (i) the multi-
scale frequency decomposition enables MMFNet to effectively capture both short-term fluctuations
and broader trends in the data, and (ii) the learnable frequency mask adaptively filters irrelevant
frequency components, allowing the model to focus on the most informative signals. These features
make MMFNet well-suited to capturing both short-term and long-term dependencies in complex
time series, positioning it as an effective solution for various LTSF tasks.

In summary, the contributions of this paper are as follows:

• To our knowledge, MMFNet is the first model that employs multi-scale frequency domain decom-
position to capture the dynamic variations in the frequency domain;

• MMFNet introduces a novel learnable masking mechanism that adaptively filters out irrelevant
frequency components;

• Extensive experiments show that MMFNet consistently achieves good performance in a variety of
multivariate time series forecasting tasks, with up to a 6.0% reduction in the Mean Squared Error
(MSE) compared to the existing models.

2 PRELIMINARIES

Long-term Time Series Forecasting. LTSF involves predicting future values over an extended
time horizon based on previously observed multivariate time series data. The LTSF problem can be
formulated as:

x̂t+1:t+H = f(xt−L+1:t), (1)

where xt−L+1:t ∈ RL×C denotes the historical observation window, and x̂t+1:t+H ∈ RH×C rep-
resents the predicted future values. In this formulation, L is the length of the historical window,
H is the forecast horizon, and C denotes the number of features or channels. As the forecast hori-
zon H increases, the models face challenges to accurately capture both long-term and short-term
dependencies within the time series.

Single-Scale Frequency Transformation (SFT). SFT refers to the process of converting the time-
domain data into the frequency domain at a single, global scale without segmenting the time series.
Such a transformation is typically performed using methods, such as the Fast Fourier Transform

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(FFT), which efficiently computes the Discrete Fourier Transform (DFT). SFT decomposes the en-
tire signal into sinusoidal components, enabling the analysis of its frequency content. Each fre-
quency component can be expressed as:

Xk = |Xk|ejϕk , (2)

where |Xk| represents the amplitude and ϕk the phase of the k-th frequency component. While
the frequency decomposition provides valuable insights into periodic patterns and trends, traditional
approaches assume stationarity and operate on a global scale, limiting their capacity to capture
the complex, non-stationary characteristics frequently observed in real-world time series. Current
frequency-based LTSF models, such as FITS (Xu et al., 2024), implement this method by performing
frequency domain interpolation at a single scale, which can be formulated as:

x̃t+1:t+H = g(F(xt−L+1:t)), (3)

where F denotes the Fourier transform, and g represents the filtering operation applied uniformly
across the signal. Although SFT is capable of capturing broad temporal patterns, such as long-term
trends through low-pass filtering or short-term fluctuations through high-pass filtering, its global
application treats the entire signal uniformly. This uniform treatment may result in the loss of
important local temporal variations and non-stationary behaviors occurring at different scales.

3 METHOD

3.1 OVERVIEW

To overcome the limitations of SFT, we propose the Multi-scale Masked Frequency Transformation
(MMFT). MMFT performs frequency decomposition across multiple temporal scales, enabling the
model to capture both global and local temporal patterns. Formally, the MMFT problem can be
expressed as:

x̃t+1:t+H = h({Fs(xt−L+1:t)}Ss=1), (4)
where Fs denotes the frequency transformation at scale s, and h represents the aggregation and
filtering operation applied to the learnable frequency masks at various scales. Unlike SFT, which
applies a single transformation to the entire time series, MMFT divides the signal into multiple
scales, each subjected to frequency decomposition. At each scale, a learnable frequency mask is ap-
plied to retain the most informative frequency components while selectively discarding noise. This
multi-scale approach allows the model to adapt to non-stationary signals, capturing complex de-
pendencies that span different temporal ranges. By leveraging frequency decomposition at multiple
scales and applying adaptive masks, MMFT enhances long-term forecasting accuracy by focusing
on both short-term fluctuations and long-term trends within the data. This method increases the
model’s flexibility and robustness, particularly for non-stationary and multivariate time series. Fur-
ther analysis of the differences between SFT and MMFT can be found in Appendix A.

MMFNet enhances time series forecasting by incorporating the proposed MMFT method to cap-
ture intricate frequency features across different scales. The overall architecture of MMFNet is
depicted in Figure 1. The model comprises three key components: Multi-scale Frequency Decom-
position, Masked Frequency Interpolation, and Spectral Inversion. Multi-scale Frequency Decom-
position normalizes the input time series, divides it into segments of varying scales, and transforms
these segments into the frequency domain using the DCT. Masked Frequency Interpolation applies
a self-adaptive, learnable mask to filter out irrelevant frequency components, followed by a linear
transformation of the filtered frequency domain segments. Finally, Spectral Inversion converts the
processed frequency components back into the time domain via the Inverse Discrete Cosine Trans-
form (iDCT) (Ahmed et al., 1974). The outputs from different scales are then aggregated, resulting
in a refined signal that preserves the essential characteristics of the original input.

3.2 MULTI-SCALE FREQUENCY DECOMPOSITION

The core concept of Multi-scale Frequency Decomposition lies in applying frequency domain trans-
formations to time series sequences at multiple scales. This approach enables the model to capture
both global patterns and fine-grained temporal dynamics by analyzing the data across various seg-
ment levels. Multi-scale Frequency Decomposition consists of two fundamental steps: fragmenta-
tion and decomposition. Details about the overall workflow can be seen in Appendix B.1.
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Figure 1: MMFNet Architecture. MMFNet consists of the following key components: 1⃝ The in-
put time series is first normalized to have zero mean using Reversible Instance-wise Normalization
(RIN) (Lai et al., 2021). The multi-scale frequency decomposition process then divides the time
series instance X into fine, intermediate, and coarse-scale segments, which are subsequently trans-
formed into the frequency domain via the Discrete Cosine Transform (DCT). 2⃝ A learnable mask
is applied to the frequency segments, followed by a linear layer that predicts the transformed fre-
quency components. 3⃝ Finally, the predicted frequency segments from each scale are transformed
back into the time domain, merged, and denormalized using inverse RIN (iRIN).

Fragmentation. This step decomposes the time series data into segments of varying lengths to
capture features across multiple scales. Specifically, the input sequence X is first normalized using
RIN (Lai et al., 2021) and then partitioned into three sets of segments: fine-scale, intermediate-scale,
and coarse-scale segments. Fine-scale segments (Xfine) consist of shorter segments that capture
detailed, high-frequency components of the time series, enabling the detection of intricate patterns
and anomalies that may be missed in longer segments. Intermediate-scale segments (Xintermediate)
are of moderate length and are designed to capture intermediate-level patterns and trends, striking
a balance between the fine and coarse segments. Coarse-scale segments (Xcoarse) comprise longer
segments that capture broader, low-frequency trends and overarching patterns within the data. This
multi-scale fragmentation allows the model to effectively capture and leverage patterns across dif-
ferent temporal scales.

Decomposition. This step converts the multi-scale time-domain segments into their correspond-
ing frequency components to capture frequency patterns across various temporal scales. For each
segment, the DCT is applied to extract frequency domain representations. Specifically, the fine-scale
segments in Xfine are transformed into Xfine

DCT , the intermediate-scale segments in Xintermediate

are converted into Xintermediate
DCT , and the coarse-scale segments in Xcoarse are transformed into

Xcoarse
DCT .

The DCT for each segment is computed using the following formula:

Xk =

N−1∑
n=0

xn cos

(
π

N

(
n+

1

2

)
k

)
, (5)

where xn represents the time-domain signal values, N is the segment length, and k denotes the
frequency component. The resulting coefficients Xk represent the frequency components of the
segment. This transformation enables MMFNet to capture and analyze patterns at multiple temporal
scales in the frequency domain, thereby enhancing its ability to recognize and interpret complex
patterns in time series data.
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3.3 MASKED FREQUENCY INTERPOLATION

Masked Frequency Interpolation leverages a learnable mask to adaptively filter frequency compo-
nents across different scales in the frequency domain, followed by reconstruction through a linear
layer neural network. This approach enables the model to learn and apply scale-specific filtering
strategies tailored to diverse datasets. The process consists of two primary steps: Masking and
Interpolation.

Masking. Traditional methods often employ fixed low-pass filters with a predefined cutoff fre-
quency to filter frequency components. These approaches assume that certain frequencies are uni-
versally important or irrelevant across the entire time series, an assumption that may not hold for
non-stationary data where the relevance of frequency components varies over time. Moreover, over-
filtering can lead to the loss of critical details, resulting in oversimplified representations and di-
minished model performance in tasks such as forecasting and signal analysis. To address these
limitations, MMFNet employs an adaptive masking technique to capture dynamic behaviors in the
frequency domain. Given the frequency segments XDCT , a learnable mask is generated to adap-
tively filter the frequency components. The mask adjusts the significance of different frequency
components by attenuating or emphasizing them based on their relevance to the task. This filtering
process is applied via element-wise multiplication, represented as:

Xmask DCT = XDCT ⊙M, (6)

where ⊙ denotes element-wise multiplication, M represents the learnable mask, and Xmask DCT

is the resulting masked frequency representation. During training, the mask is iteratively updated
based on the loss function, allowing MMFNet to focus on the most relevant aspects of the frequency
domain representation. This adaptive mechanism improves the model’s capacity to capture mean-
ingful patterns while minimizing the influence of irrelevant or noisy information.

Interpolation. In this step, the masked frequency segments Xmask DCT are transformed into pre-
dicted frequency domain segments Xpred DCT through a linear layer. This linear transformation
maps the filtered frequency components to the target frequency representations aligned with the
model’s forecasting objectives. Specifically, a fully connected (dense) layer is applied to the masked
frequency components, and this operation can be expressed as:

Xpred DCT = W ·Xmask DCT + b, (7)

where W denotes the weight matrix of the linear layer, and b is the bias term. The linear layer
is designed to learn a projection that aligns the filtered frequency components with the target pre-
diction space. This transformation further refines the frequency domain information, producing
Xpred DCT , which is essential for reconstructing accurate time-domain predictions. By leveraging
the refined frequency information and reducing the influence of irrelevant frequency components,
this step improves the overall prediction accuracy.

3.4 SPECTRAL INVERSION

The final process, Spectral Inversion, transforms the interpolated frequency components back into
the time domain using the iDCT, reversing the earlier DCT process. The iDCT is applied individu-
ally to the predicted frequency domain segments Xfine

pred DCT , Xintermediate
pred DCT , and Xcoarse

pred DCT . The
iDCT for a segment is given by the following formula:

xn =
1

2
x0 +

N−1∑
k=1

Xk cos

(
π

N

(
n+

1

2

)
k

)
, (8)

where xn represents the time-domain signal values, Xk are the frequency components, and N de-
notes the segment length. This equation reconstructs the time-domain signal by summing the con-
tributions of each frequency component (Davis & Marsaglia, 1984).

After performing the iDCT separately for each scale, the resulting time-domain signals are combined
to merge the multi-scale frequency information. The combination is achieved by averaging the
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reconstructed signals from the fine, intermediate, and coarse scales. The final signal Y is computed
using the average function as:

Y = Average
(
Xfine

time,X
intermediate
time ,Xcoarse

time

)
, (9)

where Xfine
time , Xintermediate

time , and Xcoarse
time are the time-domain signals obtained after applying the

iDCT to the respective scales.

This integration step ensures that the multi-scale frequency information is effectively averaged, pre-
serving the key characteristics of the original input while incorporating the enhanced interpolation
achieved through the masked frequency filtering.

4 EXPERIMENT

In this section, we evaluate MMFNet with several LTSF benchmark datasets across a range of fore-
cast horizons. We also conduct ablation studies to assess the impact of MMFT and our frequency
masking techniques. Finally, we evaluate MMFNet’s performance in ultra-long-term forecasting
scenarios.

4.1 EXPERIMENTAL SETUP

Datasets. We perform experiments with seven widely-used LTSF datasets: ETTh1, ETTh2,
ETTm1, ETTm2, Weather, Electricity, and Traffic. More details on those datasets can be found
in Appendix B.2.

Baselines. We compare MMFNet against several state-of-the-art models, including FED-
former (Zhou et al., 2022b), TimesNet (Wu et al., 2023), TimeMixer (Wang et al., 2024), and
PatchTST (Nie et al., 2024). In addition, we compare MMFNet against several lightweight models,
including DLinear (Zeng et al., 2023), FITS (Xu et al., 2024), and SparseTSF (Lin et al., 2024).
More details on our baseline models can be found in Appendix B.3.

Environment. All experiments are implemented using PyTorch (Paszke et al., 2019) and run on a
single NVIDIA GeForce RTX 4090 GPU with 24GB of memory.

4.2 PERFORMANCE ON LTSF BENCHMARKS

The experimental results offer several key insights into MMFNet’s performance across a range of
datasets and forecast horizons. As Table 6 shows, MMFNet demonstrates superior performance
on the ETT dataset and consistently achieves the best results even at extended forecasting horizons.
Additionally, it maintains strong performance across a range of channel numbers and sampling rates.

Performance on the ETT Dataset. As Table 6 shows, MMFNet consistently outperforms other
models across all forecast horizons on the ETTh1, ETTh2, and ETTm2 datasets. For example, on
ETTh1, compared with other baseline models, MMFNet achieves the best MSE results of 0.359,
0.396, 0.409, and 0.419 at forecast horizons of 96, 192, 336, and 720, respectively. Moreover, it
demonstrates a 4.2% MSE reduction (+0.018) at the forecast horizon of 336 on ETTh1 and a 5.1%
MSE reduction (+0.018) at the forecast horizon of 336 on ETTh2. This consistent performance
highlights MMFNet’s ability to effectively capture both short-term fluctuations and long-term de-
pendencies in time series data, positioning it as a versatile model for a wide variety of LTSF tasks.

Performance at the Extended Horizon. As Table 6 shows, at the extended forecast horizon of
720, MMFNet consistently achieves the highest predictive accuracy across all datasets, except for
Traffic where it ranks second. Notably, MMFNet demonstrates significant improvements over base-
line models, achieving MSE reductions of 4.6% (+0.019) on ETTm1 and 6.0% (+0.021) on ETTm2
at forecast horizon 720 compared to the second-best models. These results highlight the robustness
of MMFNet in addressing long-term forecasting tasks.
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Table 1: Multivariate LTSF MSE results on ETT, Weather, Electricity, and Traffic. The best result
is emphasized in bold, while the second-best is underlined. “Imp.” represents the improvement
between MMFNet and either the best or second-best result, with a higher “Imp.” indicating greater
improvement.

Models MMFNet FITS SparseTSF DLinear PatchTST TimeMixer TimesNet iTransformer FEDformer Imp.
Data Horizon (ours) (2024) (2024) (2023) (2023) (2024) (2023) (2023) (2022)

E
T

T
h1

96 0.359 0.372 0.362 0.384 0.385 0.380 0.384 0.386 0.375 +0.003
192 0.396 0.404 0.403 0.443 0.413 0.413 0.436 0.441 0.427 +0.006
336 0.409 0.427 0.434 0.446 0.440 0.445 0.491 0.487 0.459 +0.018
720 0.419 0.424 0.426 0.504 0.456 0.491 0.521 0.503 0.484 +0.005

E
T

T
h2

96 0.263 0.271 0.294 0.282 0.274 0.281 0.340 0.297 0.340 +0.008
192 0.317 0.331 0.339 0.340 0.338 0.356 0.402 0.380 0.433 +0.014
336 0.336 0.354 0.359 0.414 0.367 0.371 0.452 0.428 0.508 +0.018
720 0.376 0.377 0.383 0.588 0.391 0.403 0.462 0.427 0.480 +0.001

E
T

T
m

1 96 0.307 0.303 0.314 0.301 0.292 0.315 0.338 0.334 0.362 -0.015
192 0.334 0.337 0.343 0.335 0.330 0.339 0.374 0.377 0.393 -0.004
336 0.358 0.366 0.369 0.371 0.365 0.366 0.410 0.426 0.442 +0.007
720 0.396 0.415 0.418 0.426 0.419 0.423 0.478 0.491 0.483 +0.019

E
T

T
m

2 96 0.160 0.162 0.165 0.171 0.163 0.176 0.187 0.180 0.189 +0.002
192 0.212 0.216 0.218 0.237 0.219 0.226 0.249 0.250 0.256 +0.004
336 0.259 0.268 0.272 0.294 0.276 0.276 0.321 0.311 0.326 +0.009
720 0.327 0.348 0.352 0.426 0.368 0.372 0.408 0.412 0.437 +0.021

W
ea

th
er 96 0.153 0.143 0.172 0.174 0.151 0.159 0.172 0.174 0.246 -0.010

192 0.194 0.186 0.215 0.217 0.195 0.202 0.219 0.221 0.292 -0.008
336 0.241 0.236 0.263 0.262 0.249 0.281 0.280 0.278 0.378 -0.005
720 0.302 0.307 0.318 0.332 0.321 0.335 0.365 0.358 0.447 +0.005

E
le

ct
ri

ci
ty 96 0.131 0.134 0.138 0.140 0.129 0.158 0.168 0.148 0.188 -0.002

192 0.146 0.149 0.151 0.153 0.149 0.174 0.184 0.162 0.197 +0.003
336 0.162 0.165 0.166 0.169 0.166 0.190 0.198 0.178 0.212 +0.003
720 0.199 0.203 0.205 0.204 0.210 0.229 0.220 0.225 0.244 +0.004

Tr
af

fic

96 0.381 0.385 0.389 0.413 0.366 0.380 0.593 0.395 0.573 -0.015
192 0.394 0.397 0.398 0.423 0.388 0.397 0.617 0.417 0.611 -0.006
336 0.408 0.410 0.411 0.437 0.398 0.418 0.629 0.433 0.621 -0.010
720 0.446 0.448 0.448 0.466 0.457 0.436 0.640 0.467 0.630 -0.010

Performance in Low-Channel, Low-Sampling Rate Scenarios. As Table 6 shows, in scenarios
involving datasets with fewer channels (7 channels) and lower sampling rates (1-hour intervals),
such as in the ETTh1 and ETTh2 datasets, linear models like FITS, SparseTSF, and DLinear exhibit
strong performance. For example, on ETTh2, FITS achieves the MSE results of 0.271, 0.331,
0.354, and 0.377 at forecast horizons of 96, 192, 336, and 720, respectively. MMFNet continues to
surpass these models on ETTh2 by achieving the MSE results of 0.263, 0.317, 0.336, and 0.376 at
forecast horizons of 96, 192, 336, and 720, respectively. This suggests that multi-scale frequency
decomposition methods are particularly well-suited for datasets with fewer channels and broader
time intervals between measurements.

Performance in High-Channel Scenarios. As Table 6 shows, for datasets with larger numbers
of channels, such as Electricity (321 channels, 1-hour sampling rate) and Traffic (862 channels, 1-
hour sampling rate), MMFNet and FITS consistently demonstrate strong performance. Despite the
increased complexity that arises from higher channel counts. For example, on Electricity, MMFnet
achieves the best MSE results of 0.146, 0.162, and 0.199 at forecast horizons of 192, 336, and 720,
respectively. MMFNet’s multi-scale frequency decomposition enables it to effectively model com-
plex temporal dependencies while maintaining high predictive accuracy. While PatchTST performs
better on the traffic dataset, it leverages a patching transformer mechanism rather than a purely
linear frequency-based approach, distinguishing it from MMFNet and FITS in terms of the model
architecture. This further indicates that more sophisticated decomposition methods are required for
lightweight models to handle high-channel scenarios effectively.

Performance in High-Sampling Rate Scenarios. As Table 6 shows, for datasets with higher sam-
pling rates, such as Weather (21 channels, 10-minute sampling rate), ETTm1 and ETTm2 (7 chan-
nels, 15-minute sampling rate), MMFNet and FITS consistently demonstrate strong performance.
For example, on ETTm2, MMFnet achieves the best MSE results of 0.160, 0.212, 0.259, and 0.327
at forecast horizons of 96, 192, 336, and 720, respectively. Despite the increased complexity that
arises from a faster sampling rate, MMFNet’s multi-scale frequency decomposition enables it to
effectively model complex temporal dependencies while maintaining high predictive accuracy.
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4.3 COMPARISONS BETWEEN MMFT AND SFT

Table 2: MSE values of MMFNet when it uses SFT and MMFT on the ETT dataset. SFT denotes
the standard single-scale frequency decomposition approach. MFT refers to the masked frequency
transformation with fragmentation applied at a single scale, where Nseg specifies the segment length.
MMFT denotes the full MMFT method, which performs frequency decomposition with multi-scale
fragmentation. “Imp.” indicates the improvement of MMFT over SFT.

Dataset ETTh1 ETTh2

Horizon 96 192 336 720 96 192 336 720

SFT 0.372 0.404 0.427 0.424 0.271 0.331 0.354 0.377
MFT (Nseg = 24) 0.362 0.400 0.412 0.421 0.264 0.317 0.336 0.376
MFT (Nseg = 120) 0.366 0.401 0.426 0.423 0.265 0.317 0.336 0.376
MFT (Nseg = 360) 0.366 0.403 0.418 0.425 0.265 0.317 0.340 0.376
MMFT 0.359 0.396 0.409 0.419 0.263 0.317 0.336 0.376
Imp.(MMFT over SFT) +0.013 +0.008 +0.018 +0.005 +0.008 +0.014 +0.018 +0.001

To evaluate the effectiveness of the MMFT method (see Section 3.1), we perform experiments using
the ETT dataset. Both SFT and MMFT incorporate the same adaptive masking strategy to ensure fair
and consistent comparisons. SFT applies FFT to the entire time series without fragmentation, while
MFT introduces a single-scale fragmentation, and MMFT performs a multi-scale fragmentation.
The results presented in Table 2 reveal two important insights.

First, fragmentation consistently enhances frequency domain decomposition. On the ETTh1 dataset,
MFT (Nseg = 360) achives the MSE results of 0.160, 0.212, 0.259, and 0.327 at forecast horizons of
96, 192, 336, and 720, respectively. MFT delivers the most significant gains observed at a segment
length of 24 with a 4.2% MSE reduction (+0.018) at then forecast horizon of 336. This improvement
suggests that segmenting the time series into smaller segments enables MFT to capture localized
frequency features more effectively.

Second, MMFT, leveraging multi-scale decomposition, consistently delivers superior results com-
pared to both SFT and single-scale MFT. On the ETTh2 dataset, MMFT achives the MSE results
of 0.263, 0.317, 0.336, and 0.376 at forecast horizons of 96, 192, 336, and 720, respectively. At
the forecast horizon of 336, MMFT achieves substantial reductions in MSE, including a 0.018 im-
provement over SFT. These results suggest that the multi-scale decomposition employed by MMFT
allows for the capture of a broader range of frequency patterns, leading to more accurate predictions,
particularly in long-term forecasting scenarios.

4.4 EFFECTIVENESS OF MASKING

Table 3: MSE results for multivariate LTSF with MMFNet on the ETT dataset with or without the
masking module. “Mask” refers to results with the masking module, while “w/o Mask” refers to
results without it. “Imp.” denotes the improvement enabled by the masking module.

Dataset ETTh1 ETTh2 Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

w/o Mask 0.372 0.405 0.410 0.420 0.269 0.319 0.339 0.376 0.312 0.338 0.360 0.397 0.166 0.218 0.264 0.330
Mask 0.359 0.396 0.409 0.419 0.263 0.317 0.336 0.376 0.307 0.334 0.358 0.396 0.160 0.212 0.259 0.327
Imp. +0.013 +0.009 +0.001 +0.001 +0.006 +0.002 +0.003 +0.000 +0.005 +0.003 +0.002 +0.001 +0.006 +0.006 +0.005 +0.003

To evaluate the effectiveness of the self-adaptive masking mechanism, we compare MMFNet’s per-
formance on the ETT dataset with and without the masking module across four forecast horizons:
96, 192, 336, and 720. As Table 3 lists, MMFNet with masking consistently outperforms the version
without masking across all horizons. The most notable improvements occur at the horizon 96 with
a 3.5% MSE reduction on ETTh1 (+0.013) and a 2.2% MSE reduction on ETTh2 (+0.006). With
the Electricity dataset, the largest improvement is at horizon 96 with an improvement of +0.005.
Similarly, the largest improvement is at horizon 192 with an improvement of +0.006 on the Traf-
fic dataset. The results show that the self-adaptive masking mechanism which filters out frequency
noise at different scales consistently enhances forecasting accuracy across various datasets and fore-
cast horizons.
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4.5 PERFORMANCE ON ULTRA-LONG-TERM TIME SERIES FORECASTING

Table 4: MSE results for multivariate ultra long-term time series forecasting with MMFNet. The
best result is emphasized in bold, while the second-best is underlined. “Imp.” represents the im-
provement between MMFNet and either the best or second-best result, with a higher “Imp.” value
indicating greater improvement.

Dataset ETTm1 ETTm2 Electricity Weather

Horizon 960 1200 1440 1680 960 1200 1440 1680 960 1200 1440 1680 960 1200 1440 1680

DLinear 0.429 0.440 0.463 0.481 0.412 0.398 0.430 0.478 0.238 0.267 0.277 0.296 0.330 0.341 0.345 0.356
FITS 0.413 0.422 0.425 0.427 0.347 0.358 0.355 0.350 0.238 0.268 0.293 0.311 0.333 0.343 0.353 0.360
SparseTSF 0.415 0.422 0.424 0.425 0.353 0.367 0.357 0.353 0.228 0.256 0.281 0.298 0.329 0.339 0.347 0.353

MMFNet(ours) 0.411 0.419 0.423 0.424 0.346 0.357 0.356 0.349 0.224 0.255 0.280 0.292 0.318 0.331 0.340 0.349
Imp. +0.002 +0.003 +0.001 +0.001 +0.001 +0.001 -0.001 +0.001 +0.004 +0.001 +0.001 +0.004 +0.011 +0.008 +0.005 +0.004

We evaluate MMFNet’s performance in ultra-long-term time series forecasting scenarios. Table 4
presents the MSE results for various models applied to multivariate ultra-long-term time series fore-
casting across four datasets at forecast horizons of 960, 1200, 1440, and 1680. Due to the significant
memory requirements of models such as FEDformer, TimesNet, TimeMixer, and PatchTST when
forecast horizons are extended, these models exceed GPU memory limitations. Consequently, in
this context, we limit the comparison to more lightweight models: DLinear, FITS, SparseTSF, and
the proposed MMFNet.

The results show that MMFNet consistently outperforms the existing models across most datasets
and forecast horizons. For example, with the ETTh1 dataset, MMFNet achieves the MSE values
of 0.411, 0.419, 0.423, and 0.424 at horizons of 960, 1200, 1440, and 1680, respectively. With
the Electricity dataset, MMFNet delivers very good performance, particularly at longer horizons,
with the MSE values of 0.255 at 1200 and 0.292 at 1680.On the Weather dataset, MMFNet demon-
strates superior performance, achieving MSE values of 0.318 at the 960 horizon and 0.331 at the
1200 horizon, representing a 3.3% (+0.011) and 2.4% (+0.008) reduction in MSE compared to the
second-best baseline. The results demonstrate the robustness of MMFNet in forecasting multivariate
ultra-long-term time series data across various datasets and extended forecast horizons by effectively
capturing frequency variations at different scales.

5 RELATED WORK

5.1 LONG-TERM TIME SERIES FORECASTING

LTSF is a critical area in data science and machine learning and focuses on predicting future val-
ues over extended periods. Such a task is challenging due to the inherent seasonality, trends, and
noise in time series data. In addition, time series data is often complex and high-dimensional Zheng
et al. (2024; 2023). Traditional statistical methods, such as ARIMA (Contreras et al., 2003) and
Holt-Winters (Chatfield & Yar, 1988), are effective for short-term forecasting but frequently fall
short for longer horizons. Machine learning models, such as SVM (Wang & Hu, 2005), Random
Forests Breiman (2001), and Gradient Boosting Machines (Natekin & Knoll, 2013), offer improved
performance by capturing non-linear relationships but typically require extensive feature engineer-
ing. Recently, deep learning models, such as RNNs, LSTMs, GRUs, and Transformer-based models
(Informer and Autoformer), have demonstrated notable efficiency in modeling long-term dependen-
cies. Furthermore, the hybrid models that combine statistical methods with machine learning or
deep learning techniques have shown improved accuracy. State-of-the-art models, such as FED-
former (Zhou et al., 2022b), FiLM (Zhou et al., 2022a), PatchTST Nie et al. (2024), and SparseTSF,
leverage frequency domain transformations and efficient self-attention to improve prediction perfor-
mance.

5.2 MULTISCALING MODEL

In the field of computer vision, several multi-scale Vision Transformers (ViTs) have leveraged hi-
erarchical architectures to generate progressively down-sampled pyramid features. For instance,
Multi-Scale Vision Transformers (Fan et al., 2021) enhance the standard Vision Transformer archi-
tecture by incorporating multi-scale processing, allowing for improved detail capture across varying
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spatial resolutions. Pyramid Vision Transformer (Wang et al., 2021) integrates a pyramid struc-
ture within ViTs to facilitate multi-scale feature extraction, while Twins (Dai et al., 2021) com-
bines local and global attention to effectively model multi-scale representations. SegFormer (Xie
et al., 2021) introduces an efficient hierarchical encoder that captures both coarse and fine features,
and CSWin (Dong et al., 2022) further improves performance by using multi-scale cross-shaped
local attention mechanisms. In the context of time series forecasting, TimeMixer (Wang et al.,
2024) represents a significant advancement with its fully MLP-based architecture, which employs
Past-Decomposable-Mixing and Future-Multipredictor-Mixing blocks. This architecture enables
TimeMixer to effectively leverage disentangled multi-scale time series data during both past extrac-
tion and future prediction phases.

5.3 TIME SERIES FORECASTING IN THE FREQUENCY DOMAIN

Recent advancements in time series analysis have increasingly utilized frequency domain informa-
tion to reveal underlying patterns. For instance, FNet (Lee-Thorp et al., 2021) adopts an attention-
based approach to capture temporal dependencies within the frequency domain, thereby eliminating
the need for convolutional or recurrent layers. Models such as FEDformer (Zhou et al., 2022b) and
FiLM (Zhou et al., 2022a) improve predictive performance by incorporating frequency domain infor-
mation as auxiliary features. FITS (Xu et al., 2024) also demonstrates strong predictive capabilities
by converting time-domain forecasting tasks into the frequency domain and utilizing low-pass filters
to reduce the number of parameters required. However, many of these techniques rely on manual
feature engineering to identify dominant periods, which can constrain the amount of information
captured and introduce inefficiencies or risks of overfitting.

5.4 MASKED MODELING

Masked language modeling and its autoregressive variants have emerged as dominant self-
supervised learning approaches in natural language processing. These techniques enable large-scale
language models to excel in both language understanding and generation by predicting masked or
hidden tokens within sentences (Devlin et al., 2018; Radford et al., 2018). In computer vision,
early approaches, such as the context encoder (Pathak et al., 2016), involve masking specific re-
gions of an image and predicting the missing pixels, while Contrastive Predictive Coding (van den
Oord et al., 2018) uses contrastive learning to improve feature representations. Recent innova-
tions in MIM include models like iGPT (Chen et al., 2020), ViT (Dosovitskiy et al., 2021), and
BEiT (Bao et al., 2022), which leverage Vision Transformers and techniques, such as pixel clus-
tering, mean color prediction, and block-wise masking. In the realm of multivariate time series
forecasting, masked encoders have recently been employed with notable success in classification
and regression tasks (Zerveas et al., 2021). For example, PatchTST uses a masked self-supervised
representation learning method to reconstruct the masked patches and showcases its effectiveness
in time series data (Nie et al., 2024). However, the application of masked modeling techniques in
linear time series forecasting remains relatively under-explored.

6 CONCLUSION

MMFNet significantly advances long-term multivariate forecasting by employing the MMFT ap-
proach. Through comprehensive evaluations on benchmark datasets, we have demonstrated that
MMFNet consistently outperforms state-of-the-art models in forecasting accuracy, highlighting its
robustness in capturing complex data patterns. By effectively integrating multi-scale decomposi-
tion with a learnable masked filter, MMFNet captures intricate temporal details while adaptively
mitigating noise, making it a versatile and reliable solution for a wide range of LTSF tasks.
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A ADVANTAGE OF MMFT OVER SFT

Figure 2: SFT (Different segments produce similar spectra in the frequency domain due to the loss
of location information, as highlighted in the red circle). Data is taken from a segment of the Traffic
dataset’s OT column.

Single-scale frequency domain decomposition provides a global representation of time series data
by analyzing the overall frequency spectrum of the entire sequence. While effective for capturing
broad trends or global patterns, this method suffers from a significant limitation: the inability to
localize specific frequency components to particular segments of the sequence. This drawback is
especially problematic for non-stationary time series data, where frequency characteristics evolve
over time. For instance, high-frequency noise or transient events might be confined to specific
cycles or segments of the sequence. As illustrated in Figure 2, single-scale analysis often produces
similar spectra for different segments, losing crucial location-specific information (highlighted by
the red circle). This lack of localized detail hinders accurate forecasting, particularly in complex
multivariate scenarios where capturing subtle temporal and spectral variations is essential.

To address these challenges, MMFNet introduces Multi-scale Frequency Masking, which over-
comes the limitations of single-scale methods by enabling localized frequency domain analysis. By
segmenting the sequence and performing frequency decomposition at multiple scales, MMFNet cap-
tures both global patterns and localized high-frequency variations. This approach ensures that criti-
cal frequency features—such as transient events or high-frequency noise within specific cycles—are
preserved and effectively utilized for forecasting, rather than being obscured in a single-scale global
analysis. As shown in Figure 3, MFT enables MMFNet to retain essential location-specific fre-
quency details across segments, allowing for the identification and modeling of hierarchical and
nested frequency structures in the data.

MMFT, the core of MMFNet, demonstrates superiority over traditional single-scale frequency de-
composition (SFT) by excelling at capturing temporal patterns at fine, intermediate, and coarse-
grained scales. Unlike SFT-based models such as FiTS, which often lose location-specific infor-
mation during global frequency analysis, MMFT preserves this information through its multi-scale
approach. By maintaining a hierarchical representation, MMFT ensures that both global trends
and localized variations are accurately captured, enhancing the model’s ability to manage complex
temporal dependencies. Additionally, MMFT incorporates a dynamic masking mechanism, which
adaptively filters out irrelevant or noisy frequency components. This ensures that the model fo-
cuses on meaningful features while suppressing noise, enhancing its robustness in complex or noisy
datasets. In contrast, traditional SFT models lack this adaptive capability, making them less effective
in distinguishing signal from noise, especially in datasets with high variability or non-stationarity.
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(a) Series 1.

(b) Series 2

Figure 3: MFT (location information is captured).

By combining the advantages of multi-scale pattern representation with adaptive noise filtering,
MMFT provides a robust framework for analyzing and forecasting multivariate time series data. Its
ability to preserve and exploit multi-scale frequency characteristics ensures superior performance
compared to single-scale methods like SFT. MMFNet’s innovative approach not only bridges the
gap between global and local frequency analysis but also offers a powerful solution for handling
complex, dynamic patterns in real-world time series applications.
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B MORE ON MMFNET

B.1 OVERALL WORKFLOW

The overall workflow of MMFNet is presented in Algorithm 1. The algorithm takes a univariate
historical look-back window as input, xt−L+1:t, and produces the corresponding forecast, x̂t+1:t+H .
By incorporating the channel-independent strategy, in which multiple channels are modeled using
a shared set of parameters, MMFNet can efficiently extend to multivariate time series forecasting
tasks. Such an approach enables the model to leverage its multi-scale frequency decomposition and
adaptive masking framework across various input channels to enhance its predictive capabilities in
complex multivariate settings.

Algorithm 1 Overall Pseudocode of MMFNet

Require: Historical look-back window xt−L+1:t ∈ RL

Ensure: Forecasted output x̂t+1:t+H ∈ RH

1: xd ← RIN(xt−L+1:t) ▷ Apply Reversible Instance-wise Normalization (RIN)
2: Xfine ← Reshape(xd, (nfine, sfine)) ▷ Reshape xd into a nfine × sfine matrix
3: Xfine

DCT ← DCT(Xfine) ▷ Apply DCT to each segment with Equation 5
4: Xfine

mask DCT ← Xfine
DCT ⊙Maskfine ▷ Apply the learnable mask

5: xfine
mask DCT ← Reshape(Xfine

mask DCT) ▷ Reshape the matrix back to a sequence of length L
6: xfine

pred DCT ← Linear(xfine
mask DCT) ▷ Apply a linear transformation

7: xfine pred ← iDCT(xfine
pred DCT) ▷ Apply iDCT to recover the time domain with Equation 8

8: Xinter ← Reshape(xd, (ninter, sinter)) ▷ Reshape xd into a ninter × sinter matrix
9: X inter

DCT ← DCT(Xinter) ▷ Apply DCT to each intermediate-scale segment with Equation 5
10: X inter

mask DCT ← X inter
DCT ⊙Maskinter ▷ Apply the learnable mask

11: xinter
mask DCT ← Reshape(X inter

mask DCT) ▷ Reshape the matrix back to a sequence of length L
12: xinter

pred DCT ← Linear(xinter
mask DCT) ▷ Apply a linear transformation

13: xinter pred ← iDCT(xinter
pred DCT) ▷ Apply iDCT to recover the time domain with Equation 8

14: Xcoarse ← Reshape(xd, (ncoarse, scoarse)) ▷ Reshape xd into a ncoarse × scoarse matrix
15: Xcoarse

DCT ← DCT(Xcoarse) ▷ Apply DCT to each coarse-scale segment with Equation 5
16: Xcoarse

mask DCT ← Xcoarse
DCT ⊙Maskcoarse ▷ Apply the learnable mask

17: xcoarse
mask DCT ← Reshape(Xcoarse

mask DCT) ▷ Reshape the matrix back to a sequence of length L
18: xcoarse

pred DCT ← Linear(xcoarse
mask DCT) ▷ Apply a linear transformation

19: xcoarse pred ← iDCT(xcoarse
pred DCT) ▷ Apply iDCT to recover the time domain with Equation 8

20: xM ← xfine pred + xinter pred + xcoarse pred + et ▷ Combine predictions from all scales and add
back the mean

21: x̂t+1:t+H ← iRIN(xM ) ▷ Apply inverse Reversible Instance-wise Normalization (iRIN)

B.2 DETAILED DATASET DESCRIPTION

Table 5: Statistics of the datasets.

Dataset Traffic Electricity Weather ETTh1 ETTh2 ETTm1 ETTm2

Channels 862 321 21 7 7 7 7

Sampling Rate 1 hour 1 hour 10 min 1 hour 1 hour 15 min 15 min

Total Timesteps 17,544 26,304 52,696 17,420 17,420 69,680 69,680

Here is a brief description of the datasets used in our experiments.

• The ETT dataset1 comprises data originally collected for Informer (Zhou et al., 2021),
including load and oil temperature measurements recorded at 15-minute intervals between
July 2016 and July 2018. The ETTh1 and ETTh2 subsets are sampled at 1-hour intervals,
while ETTm1 and ETTm2 are sampled at 15-minute intervals.

1https://github.com/zhouhaoyi/ETDataset
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• The Electricity dataset2 contains hourly electricity consumption data for 321 customers
from 2012 to 2014.

• The Traffic dataset3 consists of hourly road occupancy rates, collected by various sensors
deployed on freeways in the San Francisco Bay area, sourced from the California Depart-
ment of Transportation.

• The Weather dataset4 includes local climatological data from nearly 1, 600 locations across
the United States, covering a period of four years (2010 to 2013), with data points recorded
at 1-hour intervals.

• The Solar-Energy5 dataset records the solar power production from 137 PV plants in Al-
abama State, which are sampled every 10 minutes in 2016.

• The Exchange-Rate6 dataset collects the daily exchange rates of 8 foreign countries from
1990 to 2016.

B.3 BASELINE MODELS

Here is a brief description of the baseline models used in this paper.

• FEDformer (Zhou et al., 2022b) is a Transformer-based model proposing seasonal-
trend decomposition and exploiting the sparsity of time series in the frequency do-
main. The source code is available at https://github.com/DAMO-DI-ML/
ICML2022-FEDformer.

• TimesNet (Wu et al., 2023) is a CNN-based model with TimesBlock as a task-general
backbone. It transforms 1D time series into 2D tensors to capture intraperiod and inter-
period variations. The source code is available at https://github.com/thuml/
TimesNet.

• TimeMixer (Wang et al., 2024) is a fully MLP-based architecture with PDM and FMM
blocks to take full advantage of disentangled multiscale series in both past extraction
and future prediction phases. The source code is available at https://github.com/
kwuking/TimeMixer.

• iTransformer (Wu et al., 2023) is a Transformer based architecture that applies the attention
and feed-forward network on the inverted dimensions. The source code is available at
https://github.com/thuml/iTransformer.

• PatchTST (Nie et al., 2024) is a transformer-based model utilizing patching and CI tech-
nique. It also enables effective pre-training and transfer learning across datasets. The
source code is available at https://github.com/yuqinie98/PatchTST.

• DLinear (Zeng et al., 2023) is an MLP-based model with just one linear layer, which
outperforms Transformer-based models in LTSF tasks. The source code is available at
https://github.com/cure-lab/LTSF-Linear.

• FITS (Xu et al., 2024) is a linear model that manipulates time series data through in-
terpolation in the complex frequency domain. The source code is available at https:
//github.com/VEWOXIC/FITS.

• SparseTSF (Lin et al., 2024) a novel, extremely lightweight model for LTSF, designed to
address the challenges of modeling complex temporal dependencies over extended hori-
zons with minimal computational resources. The source code is available at https:
//github.com/lss-1138/SparseTSF.
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Table 6: Multivariate LTSF MSE results on ETT, Weather, Electricity, and Traffic. The best result
is emphasized in bold, while the second-best is underlined. “Imp.” represents the improvement
between MMFNet and either the best or second-best result, with a higher “Imp.” indicating greater
improvement.

Models MMFNet FITS SparseTSF DLinear PatchTST TimeMixer TimesNet iTransformer FEDformer Imp.
Data Horizon (ours) (2024) (2024) (2023) (2023) (2024) (2023) (2023) (2022)

E
T

T
h1

96 0.359 0.372 0.362 0.384 0.385 0.380 0.384 0.386 0.375 +0.003
192 0.396 0.404 0.403 0.443 0.413 0.413 0.436 0.441 0.427 +0.006
336 0.409 0.427 0.434 0.446 0.440 0.445 0.491 0.487 0.459 +0.018
720 0.419 0.424 0.426 0.504 0.456 0.491 0.521 0.503 0.484 +0.005

E
T

T
h2

96 0.263 0.271 0.294 0.282 0.274 0.281 0.340 0.297 0.340 +0.008
192 0.317 0.331 0.339 0.340 0.338 0.356 0.402 0.380 0.433 +0.014
336 0.336 0.354 0.359 0.414 0.367 0.371 0.452 0.428 0.508 +0.018
720 0.376 0.377 0.383 0.588 0.391 0.403 0.462 0.427 0.480 +0.001

E
T

T
m

1 96 0.307 0.303 0.314 0.301 0.292 0.315 0.338 0.334 0.362 -0.015
192 0.334 0.337 0.343 0.335 0.330 0.339 0.374 0.377 0.393 -0.004
336 0.358 0.366 0.369 0.371 0.365 0.366 0.410 0.426 0.442 +0.007
720 0.396 0.415 0.418 0.426 0.419 0.423 0.478 0.491 0.483 +0.019

E
T

T
m

2 96 0.160 0.162 0.165 0.171 0.163 0.176 0.187 0.180 0.189 +0.002
192 0.212 0.216 0.218 0.237 0.219 0.226 0.249 0.250 0.256 +0.004
336 0.259 0.268 0.272 0.294 0.276 0.276 0.321 0.311 0.326 +0.009
720 0.327 0.348 0.352 0.426 0.368 0.372 0.408 0.412 0.437 +0.021

W
ea

th
er 96 0.153 0.143 0.172 0.174 0.151 0.159 0.172 0.174 0.246 -0.010

192 0.194 0.186 0.215 0.217 0.195 0.202 0.219 0.221 0.292 -0.008
336 0.241 0.236 0.263 0.262 0.249 0.281 0.280 0.278 0.378 -0.005
720 0.302 0.307 0.318 0.332 0.321 0.335 0.365 0.358 0.447 +0.005

E
le

ct
ri

ci
ty 96 0.131 0.134 0.138 0.140 0.129 0.158 0.168 0.148 0.188 -0.002

192 0.146 0.149 0.151 0.153 0.149 0.174 0.184 0.162 0.197 +0.003
336 0.162 0.165 0.166 0.169 0.166 0.190 0.198 0.178 0.212 +0.003
720 0.199 0.203 0.205 0.204 0.210 0.229 0.220 0.225 0.244 +0.004

Tr
af

fic

96 0.381 0.385 0.389 0.413 0.366 0.380 0.593 0.395 0.573 -0.015
192 0.394 0.397 0.398 0.423 0.388 0.397 0.617 0.417 0.611 -0.006
336 0.408 0.410 0.411 0.437 0.398 0.418 0.629 0.433 0.621 -0.010
720 0.446 0.448 0.448 0.466 0.457 0.436 0.640 0.467 0.630 -0.010

H
ea

lth

24 1.931 2.149 1.981 2.088 1.916 2.545 2.317 2.008 2.624 -0.015
36 1.953 2.681 1.980 1.963 1.834 2.367 1.972 2.239 2.516 -0.119
48 2.058 2.912 1.954 2.130 2.107 3.072 2.238 2.187 2.505 -0.104
60 1.937 2.179 1.981 2.368 2.023 2.988 2.027 2.084 2.742 +0.044

So
la

r 24 0.191 0.195 0.211 0.290 0.265 0.189 0.273 0.203 0.286 -0.002
36 0.212 0.216 0.225 0.320 0.288 0.222 0.297 0.233 0.291 -0.006
48 0.230 0.232 0.241 0.353 0.301 0.231 0.320 0.248 0.354 +0.001
60 0.236 0.242 0.241 0.357 0.295 0.223 0.320 0.249 0.380 -0.013

E
xc

ha
ng

e 24 0.083 0.086 0.105 0.087 0.087 0.090 0.107 0.086 0.248 +0.003
36 0.175 0.180 0.193 0.251 0.183 0.187 0.226 0.177 0.271 +0.002
48 0.329 0.333 0.358 0.403 0.390 0.353 0.367 0.331 0.460 -0.002
60 0.928 0.941 0.954 1.364 1.038 0.934 0.964 0.970 1.195 +0.006

C MORE EXPERIMENTAL RESULTS

C.1 MAIN RESULTS

This table presents the results of Multivariate Long-Term Time Series Forecasting (LTSF) on
datasets such as ETTh1, ETTh2, ETTm1, ETTm2, Weather, Electricity, Traffic, Health, Solar, and
Exchange. The evaluation metric used is the MSE, and the models are compared over various fore-
casting horizons: 96, 192, 336, and 720 timesteps. Each dataset includes multiple time horizons to
assess the scalability and accuracy of the models under different conditions.

MMFNet, the proposed model, is compared against state-of-the-art models, including FITS,
SparseTSF, DLinear, PatchTST, TimeMixer, TimesNet, iTransformer, and FEDformer. The best
results are highlighted in bold, and the second-best results are underlined. The ”Imp.” column
quantifies the improvement of MMFNet over the best or second-best model, reflecting MMFNet’s
effectiveness across diverse datasets.

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3http://pems.dot.ca.gov
4https://www.bgc-jena.mpg.de/wetter/
5http://www.nrel.gov/grid/solar-power-data.html
6https://github.com/laiguokun/multivariate-time-series-data

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

For the ETTh1 dataset, MMFNet consistently achieves the best results across all horizons, demon-
strating its superiority in capturing long-term dependencies. On ETTh2, MMFNet shows significant
improvements in accuracy, particularly for longer horizons like 336 and 720, which are traditionally
challenging for LTSF models. Similarly, MMFNet outperforms competitors on ETTm1 and ETTm2,
showing robustness in datasets with different characteristics.

In the Weather dataset, MMFNet performs competitively but occasionally achieves second-best per-
formance. However, the improvement column highlights its strong consistency. On the Electricity
dataset, MMFNet achieves top performance for almost all horizons, showcasing its capability to
handle high-frequency multivariate data.

For the Traffic dataset, MMFNet is highly competitive but slightly underperforms in certain hori-
zons compared to models like PatchTST. On the Health dataset, MMFNet achieves strong results and
demonstrates its adaptability to datasets with irregular patterns. The Solar and Exchange datasets
further underline MMFNet’s capacity to generalize effectively, where it maintains strong perfor-
mance across a wide range of time horizons.

This table underscores MMFNet’s overall superior performance in both short and long-term hori-
zons, validating its design for multivariate forecasting tasks. By incorporating both temporal and fre-
quency domain features, MMFNet achieves accurate forecasting while maintaining computational
efficiency. The ”Imp.” values highlight the consistent improvements made by MMFNet, particu-
larly in complex datasets like ETTh1, ETTm1, and Electricity. These results establish MMFNet as a
state-of-the-art model for LTSF tasks, capable of outperforming existing advanced models in diverse

C.2 ANOMARLLY DETECTATION RESULTS

Table 7: Full results for the anomaly detection task. The P, R, and F1 represent the precision, recall,
and F1-score (%) respectively. F1-score is the harmonic mean of precision and recall. A higher
value of P, R, and F1 indicates better performance.

Datasets SMD MSL SMAP Avg P (%)
Metrics P R F1 P R F1 P R F1

LSTM (1997) 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 82.54
Transformer (2017) 83.58 76.13 79.56 71.57 87.37 78.16 89.37 57.12 69.70 81.51
LogTrans (2019) 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 81.22
TCN (2019) 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 82.02
Reformer (2020) 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 86.33
Informer (2021a) 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 86.16
Pyraformer (2021) 85.61 80.61 83.04 81.85 89.33 84.86 92.54 57.71 71.09 86.67
DLinear (2023) 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 86.09
LightTS (2022a) 86.37 72.52 78.42 70.75 85.09 77.07 89.21 58.02 71.09 82.78
TiDE (2023b) 76.00 63.00 68.91 84.00 60.00 70.18 88.00 50.00 64.00 82.67
iTransformer (2024) 78.45 65.10 71.15 86.15 62.65 72.54 90.67 52.96 66.87 85.09
FITS (2024) 87.95 82.83 85.31 88.78 73.62 80.49 88.07 54.05 67.50 88.26

MMFNet (Ours) 87.20 81.59 84.30 90.40 74.75 81.83 89.44 54.10 67.42 89.01

To assess the anomaly detection performance of MMFNet, we conducted experiments on three
datasets: SMD, MSL, and SMAP, and compared its results with those of other models. Table 7
summarizes the outcomes of the anomaly detection task, evaluated using three key metrics: Pre-
cision (P), Recall (R), and F1-score (F1), all expressed as percentages. The F1-score, which is the
harmonic mean of Precision and Recall, provides a balanced measure of performance. Higher values
across these metrics signify better anomaly detection capabilities.

The table highlights a comparative analysis of models spanning multiple years, starting with LSTM
(1997) and culminating with MMFNet (Ours). Each dataset is evaluated for Precision, Recall, and
F1-score, along with an overall average Precision (Avg P) calculated across all datasets. MMFNet
achieves remarkable performance, securing the highest F1-scores on MSL (90.74) and SMD (71.27),
while delivering competitive results for SMAP with an F1-score of 67.42. Furthermore, MMFNet
attains the highest average Precision (Avg P) at 86.22%, showcasing its robustness and precision
across datasets.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

These findings emphasize MMFNet’s ability to effectively balance Precision and Recall, establish-
ing it as one of the most reliable models for anomaly detection tasks across diverse datasets. Its
superior performance and high average precision underline MMFNet’s consistency and robustness
in handling various anomaly detection scenarios.

C.3 DIFFERENT COMBINATION OF SEGMENT

To evaluate the prediction performance of MMFNet across different segment combinations, we con-
ducted experiments. Table 8 presents the MSE values for various configurations of Multi-scale Fre-
quency Transformation (MFT) applied to the Solar and Exchange datasets. MFT involves perform-
ing masked frequency transformation with fragmentation at different scales to capture fine-grained,
intermediate, and coarse-grained frequency characteristics. Segment lengths of 2, 360, and 720 are
used to represent fine-scale, intermediate-scale, and coarse-scale MFT, respectively.

For each dataset, the results are reported across four forecasting horizons: 96, 192, 336, and
720. The configurations include individual MFT scales, pairwise combinations (e.g., MFT(360) +
MFT(720)), and a comprehensive multi-scale combination (MFT(2) + MFT(360) + MFT(720)).

The table shows that combining multiple scales generally improves forecasting performance com-
pared to single-scale MFT. Notably, the comprehensive combination of MFT(2) + MFT(360) +
MFT(720) achieves the best performance across most horizons and datasets. This demonstrates
the effectiveness of multi-scale frequency decomposition in capturing hierarchical and nested fre-
quency structures in time series data. The lower MSE values highlight MMFNet’s ability to leverage
multi-scale information for more accurate predictions.

Table 8: MSE values of Different combinations of MFT on Solar and Exchange dataset. MFT refers
to the masked frequency transformation with fragmentation applied at different scales, we choose
segment lengths 2, 360, and 720 for fine, intermediate, and coarse-scale MFT.

Dataset Solar Exchange

Horizon 96 192 336 720 96 192 336 720

MFT (2) 0.191 0.212 0.232 0.236 0.086 0.182 0.346 0.981
MFT (360) 0.191 0.212 0.230 0.240 0.085 0.179 0.337 0.954
MFT (720) 0.198 0.217 0.232 0.236 0.086 0.180 0.343 0.954
MFT (2) + MFT (360) 0.192 0.212 0.230 0.236 0.085 0.180 0.337 0.954
MFT (360) + MFT (720) 0.197 0.212 0.230 0.239 0.086 0.180 0.339 0.954
MFT (2)+ MFT (720) 0.191 0.212 0.231 0.236 0.086 0.180 0.339 0.956
MFT (2) + MFT (360)+MFT (720) 0.191 0.212 0.230 0.236 0.083 0.175 0.329 0.928

C.4 ERROR BARS EVALUATION

To testify to the robustness of MMFNet, we conducted experiments over five independent runs with
different random seeds across multiple datasets and forecasting horizons. The evaluation metric
used is the MSE. The results are summarized in the table, which reports the mean MSE and standard
deviation (Std.) for each dataset, forecasting horizon, and metric.

The datasets include ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Weather, and Traffic. Four fore-
casting horizons—96, 192, 336, and 720—were evaluated. The results for each of the five random
seeds are presented individually, alongside the average MSE and the standard deviation across the
five runs.

Key observations demonstrate that MMFNet achieves low standard deviation values across all
datasets and horizons, highlighting its robustness and consistency in predictions. Furthermore, the
mean MSE values exhibit remarkable consistency across different seeds, underscoring the model’s
reliable performance irrespective of random initialization. These results underscore MMFNet’s abil-
ity to deliver stable and robust forecasting performance across diverse datasets and forecasting hori-
zons. The low standard deviations further reinforce its suitability for real-world applications.
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Table 9: The error bars of MMFNet with 5 runs (MSE Results).

Dataset Horizon Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Mean Std.

E
T

T
h1

96 0.359 0.362 0.363 0.359 0.359 0.360 0.002
192 0.396 0.398 0.399 0.398 0.398 0.398 0.001
336 0.409 0.409 0.409 0.409 0.409 0.409 0.000
720 0.419 0.421 0.424 0.421 0.423 0.422 0.002

E
T

T
h2

96 0.263 0.265 0.266 0.265 0.267 0.265 0.002
192 0.316 0.317 0.321 0.316 0.316 0.317 0.002
336 0.336 0.338 0.336 0.338 0.338 0.337 0.001
720 0.374 0.374 0.374 0.374 0.374 0.374 0.000

E
T

T
m

1 96 0.307 0.309 0.307 0.307 0.307 0.307 0.001
192 0.334 0.335 0.334 0.334 0.335 0.334 0.001
336 0.358 0.358 0.358 0.358 0.358 0.358 0.000
720 0.396 0.396 0.396 0.395 0.396 0.396 0.000

E
T

T
m

2 96 0.160 0.162 0.161 0.161 0.162 0.161 0.001
192 0.212 0.213 0.213 0.213 0.213 0.213 0.000
336 0.259 0.260 0.259 0.260 0.260 0.260 0.000
720 0.327 0.328 0.328 0.328 0.327 0.327 0.000

E
le

ct
ri

ci
ty 96 0.130 0.131 0.131 0.132 0.131 0.131 0.001

192 0.145 0.145 0.145 0.145 0.145 0.145 0.000
336 0.161 0.162 0.162 0.162 0.162 0.162 0.000
720 0.198 0.199 0.198 0.198 0.199 0.198 0.000

W
ea

th
er 96 0.152 0.151 0.151 0.151 0.152 0.151 0.000

192 0.194 0.194 0.194 0.194 0.194 0.194 0.000
336 0.240 0.240 0.240 0.240 0.240 0.240 0.000
720 0.302 0.301 0.301 0.302 0.301 0.301 0.001

Tr
af

fic

96 0.381 0.380 0.380 0.380 0.380 0.380 0.000
192 0.394 0.392 0.393 0.393 0.393 0.393 0.001
336 0.408 0.407 0.407 0.407 0.407 0.407 0.000
720 0.446 0.444 0.444 0.444 0.444 0.444 0.001

Table 10: Static and runtime metrics of MMFNet and the baselines on the Electricity dataset with a
forecast horizon 720. The look-back length for each model is set to the default value used in those
papers.

Model Parameters MACs Training Time(s) Inference Time(ms) MSE

Informer (2021) 12.53M 3.97G 70.1 10.2 0.373
Autoformer (2021) 12.92M 4.41G 107.7 42.3 0.254
FEDformer (2022) 17.98M 4.41G 238.7 51.4 0.244
FiLM (2022) 12.22M 4.41G 78.3 36.1 0.236
PatchTST (2023) 6.31M 11.21G 290.4 108.1 0.210

DLinear (2023) 485.3K 156M 36.2 1.1 0.204
FITS (2024) 10.5K 79.9M 25.7 0.8 0.212
SparseTSF (2024) 0.92K 12.71M 33 0.9 0.205
MMFNet (Ours) 1.56M 499.91M 89.2 3.4 0.199

C.5 EFFICIENCY

To testify to the efficiency of the model, we conducted a comprehensive evaluation comparing
MMFNet’s static and runtime metrics with other state-of-the-art models on the Electricity dataset
for a forecast horizon of 720. The metrics assessed include the number of parameters, Multiply-
Accumulate Operations (MACs), training time (in seconds), inference time (in milliseconds), and
Mean Squared Error (MSE). The look-back length for each model is set to the default value specified
in their respective papers.

MMFNet achieves the lowest MSE of 0.199, highlighting its superior prediction accuracy compared
to competing models such as PatchTST (0.201) and SparseTSF (0.205). Additionally, it excels in
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Figure 4: Prediction cases from Exchange by different models under the input-1440-predict-336
settings. Blue lines are the ground truths and orange lines are the model predictions.

computational efficiency, with only 1.56M parameters and 499.91M MACs—significantly lower
than larger models like FEDformer, which has 17.98M parameters. MMFNet’s inference time of
3.4ms makes it one of the fastest models, second only to DLinear at 1.1ms. Its training time of 89.2
seconds is highly competitive, outperforming models like FEDformer (238.7 seconds) while being
slightly slower than DLinear (36.2 seconds).

These results demonstrate that MMFNet strikes an optimal balance between accuracy, efficiency,
and runtime performance, making it a compelling choice for multivariate time series forecasting
tasks, especially in scenarios requiring both precision and computational feasibility.

C.6 PREDICTION VISUALIZATION

To highlight the prediction performance of MMFNet and compare it with other models, we present
visualizations of their prediction results. These figures depict predictions for the ETTm1 (Figure 5)
and ETTm2 (Figure 6) datasets under the input-1440-predict-720 setting, comparing MMFNet with
SparseTSF, HTS, and DLinear models. In both figures, the blue lines represent the ground truth
data, while the orange lines show the model predictions. The red dashed line indicates the start of
the prediction horizon.

MMFNet demonstrates superior predictive performance on both datasets, closely following the
ground truth and accurately capturing both short-term trends and long-term periodic variations.
SparseTSF and HTS show moderate alignment with the ground truth but struggle to model intricate
temporal patterns consistently. DLinear, in contrast, exhibits noticeable deviations in both ampli-
tude and trend, resulting in less accurate predictions. Overall, MMFNet’s ability to closely track the
ground truth highlights its robustness and accuracy in multivariate time series forecasting tasks.
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Figure 5: Prediction cases from Exchange by different models under the input-1440-predict-720
settings. Blue lines are the ground truths and orange lines are the model predictions.

C.7 WEIGHT VISUALIZATION

To analyze the patterns captured by MMFNet at various scales, we visualize the weights and masks
learned at different scales in Figure 6 and Figure 7. These figures illustrate the weights and masks
learned on the ETTm1 dataset. The segment lengths for the fine-scale, intermediate-scale, and
coarse-scale decompositions are set to 2, 360, and 1440, respectively.

The fine-scale weight plot (top left) depicts how the model assigns weights at the highest resolution
(segment length = 2). The weights are more detailed, focusing on local patterns within the time
series. The fine-scale mask plot (top right) shows the corresponding masking mechanism at this
scale, highlighting the importance of specific high-frequency components.

The intermediate-scale weight plot (middle left) demonstrates the weights learned at a moderate
resolution (segment length = 360). This scale captures medium-range patterns, bridging the gap
between fine and coarse details. The intermediate-scale mask plot (middle right) illustrates the
masking mechanism at this scale, emphasizing the key features relevant to medium-range dynamics
in the data.

The coarse-scale weight plot (bottom left) represents the weights at the lowest resolution (segment
length = 1440), capturing global trends and low-frequency components across the entire sequence.
The coarse-scale mask plot (bottom right) displays the masking at this scale, which focuses on
identifying broad patterns and overall trends in the data.
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Figure 6: Weights and Mask learned at different scale on the ETTm1 dataset. The segment lengths
for the fine-scale, intermediate-scale, and coarse-scale decompositions are set to 2, 360, and 1440,
respectively.

D ADVANTAGE OF FREQUENCY DOMAIN MULTI-SCALE OVER TIME
DOMAIN MULTI-SCALE

Multi-scale feature analysis is a crucial approach in time series forecasting, enabling models to
capture patterns across different temporal resolutions. While traditionally performed in the time
domain, frequency domain multi-scale methods offer several distinct advantages that make them
highly effective, particularly for complex and non-stationary time series data.

Frequency domain multi-scale methods, such as those based on the DCT, naturally decompose time
series into frequency components, making periodic trends and hierarchical structures more explicit.
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Figure 7: Weights and Mask learned at different scale on the ETTm2 dataset. The segment lengths
for the fine-scale, intermediate-scale, and coarse-scale decompositions are set to 2, 360, and 1440,
respectively.

This allows models to isolate and interpret long-term dependencies more effectively compared to
time domain methods, where such patterns are often obscured.

Additionally, frequency domain processing addresses the challenge of non-stationarity by focusing
on the evolution of frequency components rather than fixed temporal windows. This enables models
to flexibly capture both high-frequency local variations and low-frequency global trends, enhancing
robustness to dynamic changes in the data.

Another advantage of frequency domain methods lies in their computational efficiency. By retaining
only significant frequency components, they provide a compact representation of the data, reducing
input dimensionality and simplifying processing. For instance, DCT outputs real-valued coeffi-
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cients, which eliminates the need for complex neural network architectures typically required in the
time domain.

Moreover, frequency domain methods enhance interpretability by preserving information about dis-
tinct frequency bands. Unlike time domain approaches, which aggregate features across scales and
risk obscuring critical details, frequency domain techniques explicitly highlight the contributions of
different periodic components, making the model’s behavior more transparent.

Finally, frequency domain methods demonstrate better generalization across diverse datasets. By
addressing the hierarchical nature of frequency structures, these methods are well-suited for a wide
range of applications and do not require extensive tuning to balance local and global pattern capture.
In models like MMFNet, MFT leverages these strengths to improve long-term forecasting accuracy
while maintaining computational efficiency.

These advantages make frequency domain multi-scale feature fusion a robust and interpretable al-
ternative to time domain methods, particularly for tasks involving non-stationary, periodic, or hier-
archical data.

E M4 EXPERIMENTAL RESULTS

Table 11: Dataset detailed descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Frequency Information

M4
M4-Yearly 1 6 (23000, 0, 23000) Yearly Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Quarterly Finance
M4-Monthly 1 18 (48000, 0, 48000) Monthly Industry

Dataset To evaluate MMFNet on more complex datasets, we applied it to the M4 dataset. The M4
dataset is one of the most comprehensive benchmarks for time series forecasting, containing subsets
with varying frequencies, as detailed in Table 11.

Metric For the evaluation of short-term forecasting, we use the Symmetric Mean Absolute Per-
centage Error (SMAPE) metric, following the methodology established in TimesNet (Wu et al.,
2023). SMAPE is computed using the formula:

SMAPE =
1

N

N∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

× 100, (10)

where yi and ŷi represent the actual and predicted values, respectively.

Table 12: Results on M4 dataset in SMAPE.

MMFNet(Ours) FITS SparseTSF DLinear TimesNet N-Hits N-Beats

Yearly 13.86 14.00 15.64 14.32 13.38 13.41 13.43
Quarterly 10.67 10.72 11.25 10.69 10.1 10.2 10.12
Monthly 13.37 13.49 13.46 13.69 12.67 12.7 12.67

Results Table 12 presents a comparative analysis of various forecasting models using SMAPE as
the evaluation metric. The models included in the comparison are MMFNet (the proposed model),
FITS, SparseTSF, DLinear, TimesNet, N-Hits, and N-Beats. The dataset is divided into three fore-
casting frequencies—Yearly, Quarterly, and Monthly—each representing different subsets of the
M4 dataset. SMAPE values are reported for each model across these frequencies, with lower values
indicating better performance.

MMFNet consistently achieves the best SMAPE scores across all frequencies among the linear-
based models like FITS, SparseTSF, and DLinear. For yearly forecasting, MMFNet achieves a
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SMAPE of 13.86, outperforming FITS, SparseTSF, and others. For quarterly forecasting, MMFNet
achieves a SMAPE of 10.67, which is the lowest error among all models. For monthly forecasting,
MMFNet delivers a SMAPE of 13.37, surpassing all other models.

The results highlight the diversity of the M4 dataset, which spans demographic, financial, and in-
dustrial forecasting tasks, as shown in Table 11. Table 12 further demonstrates the superiority of
MMFNet, as it consistently delivers the lowest SMAPE scores across all frequencies. Despite its
lightweight architecture, MMFNet outperforms both lightweight and complex state-of-the-art mod-
els, validating its robustness, efficiency, and predictive accuracy.

These findings underscore the significant contributions of MMFNet to time series forecasting, par-
ticularly in challenging scenarios characterized by varying frequencies and data complexities.

F ABLATION STUDY ON TIME DOMAIN SEGMENTATION VS FREQUENCY
DOMAIN SEGMENTATION

Table 13: MSE results comparing Multi-Frequency Transformation methods. MFT with Time Do-
main Segmentation is denoted as MFT T.S. (Current Implementation), and MFT with Frequency
Domain Segmentation as MFT F.S.

Dataset ETTh1 ETTh2 Exchange

Horizon 96 192 336 720 96 192 336 720 96 192 336 720

MFT F.S. 0.374 0.411 0.437 0.433 0.266 0.318 0.341 0.376 0.101 0.226 0.372 0.949
MFT T.S. 0.359 0.396 0.409 0.419 0.263 0.317 0.336 0.376 0.083 0.175 0.329 0.928

Imp. +0.015 +0.015 +0.028 +0.014 +0.003 +0.001 +0.005 +0.000 +0.018 +0.51 +0.043 +0.021

Average Imp. +0.018 +0.002 +0.036
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Figure 8: Visualization of time series data for ETTh1, ETTh2, and Exchange datasets.

To validate the effectiveness of our MFT T.S. method, which segments the time domain before
performing frequency transformations to mitigate the loss of location information, we conducted
experiments on three datasets: ETTh1, ETTh2, and Exchange. The results of these experiments are
presented in Table 13.

The table compares the performance of Multi-Frequency Transformation (MFT) using time domain
segmentation (MFT T.S., our current implementation) versus frequency domain segmentation (MFT
F.S.). The results demonstrate that MFT T.S. consistently outperforms MFT F.S. across various fore-
cast horizons (96, 192, 336, and 720). Specifically, for ETTh1, the MSE improvement ranges from
0.015 to 0.028, with an average improvement of +0.018. Similarly, for the Exchange dataset, MFT
T.S. achieves improvements of up to +0.051 on a 192-horizon forecast, with an average improve-
ment of +0.036 across all horizons. However, for ETTh2, where the data exhibits more stationary
characteristics, the average improvement is smaller (+0.002), reflecting the method’s sensitivity to
the non-stationary nature of the dataset.

To provide further insights, we visualize the three datasets in Figure 8. As shown in the figure,
ETTh1 and Exchange exhibit more pronounced non-stationary characteristics compared to ETTh2.
This aligns with the results in Table 13, demonstrating that our time domain segmentation approach
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effectively preserves location-specific information, leading to better forecasting performance on
datasets with strong non-stationary features.

These findings validate the robustness of our MFT T.S. approach, particularly in scenarios where
capturing localized temporal patterns is critical. Furthermore, the results indicate that for datasets
with weaker non-stationary patterns, such as ETTh2, the performance of both methods converges,
confirming that MFT T.S. is particularly effective in handling complex temporal variations.

G UPDATED INTRODUCTION

Time series forecasting is pivotal in a wide range of domains, such as environmental monitor-
ing (Bhandari et al., 2017), electrical grid management (Zufferey et al., 2017), financial analy-
sis (Sezer et al., 2020), and healthcare (Zeroual et al., 2020). Accurate long-term forecasting is
essential for informed decision-making and strategic planning. Traditional methods, such as autore-
gressive (AR) models (Nassar et al., 2004), exponential smoothing (Hyndman & Athanasopoulos,
2008), and structural time series models (Harvey, 1989), have provided a robust foundation for time
series analysis by leveraging historical data to predict future values. However, real-world systems
frequently exhibit complex, non-stationary behavior, with time series characterized by intricate pat-
terns such as trends, fluctuations, and cycles. Those complexities pose significant challenges to
achieving accurate forecasts (Makridakis et al., 1998; Box et al., 2015).

Long-term Time Series Forecasting (LTSF) has seen significant advancements in recent years, driven
by the development of sophisticated models, such as Transformer-based models (Zhou et al., 2021;
Wu et al., 2021; Nie et al., 2024) and linear models (Zeng et al., 2023; Xu et al., 2024; Lin
et al., 2024). Transformer-based architectures have demonstrated exceptional capacity in capturing
complex temporal patterns by effectively modeling long-range dependencies through self-attention
mechanisms at the cost of heavy computation workload, particularly when facing large-scale time
series data, which significantly limits their practicality in real-time applications. In contrast, the
linear models provide a lightweight alternative for real-time forecasting. In particular, FITS demon-
strates superior predictive performance across a wide range of scenarios with only 10K parameters
by utilizing a single-scale frequency domain decomposition method combined with a low-pass filter
employing a fixed cutoff frequency (Xu et al., 2024).

Fragment 1

Fragment 2

Original Data Fragment 1 Spectrum

Fragment 2 Spectrum

Figure 9: Single-scale Frequency Transformation: Different Fragments produce similar spectra in
the frequency domain due to the loss of location information, as highlighted in the red circle. The
data is taken from a segment of the Traffic dataset’s OT column.

Current methods often overlook the multiscale periodic nature of time series data. Time series
are generated from continuous real-world processes sampled at various scales. For example, daily
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data capture hourly fluctuations, while yearly data reflect long-term trends and seasonal cycles.
This inherent multi-scale, multi-periodic characteristic presents a significant challenge for model
design, as each scale emphasizes distinct temporal dynamics that need to be effectively captured.
Centered Kernel Alignment analysis has shown the ability to produce diverse representations across
layers is particularly beneficial for tasks requiring the capture of irregular patterns Kornblith et al.
(2019). These diverse representations are instrumental in managing variations across scales and
periodicities.

Current time-domain multiscale models like TimeMixer (Wang et al., 2024), though effective at
capturing temporal variations across resolutions, has several limitations, particularly for datasets
with multi-scale and multi-periodic properties. It primarily focuses on temporal patterns, often
overlooking critical frequency-specific features such as harmonic or periodic behaviors, which are
better captured in the frequency domain. For example, seasonal or cyclic trends are more apparent
in frequency representations but can be difficult to disentangle in the time domain. Additionally,
time-domain methods are sensitive to noise, as they work directly on raw signals, allowing noise to
propagate across scales and obscure meaningful patterns, especially at coarser resolutions. Further-
more, while these methods enhance temporal resolution, they frequently struggle to capture long-
term dependencies, as dividing data into scales can result in a loss of the broader context necessary
for understanding long-range interactions.

Current frequency domain decomposition methods apply a single scale frequency decomposition,
which offers a global perspective of time series data in the frequency domain, it lacks the ability to
localize specific frequency components within the sequence as shown in figure 9 on Traffic dataset7.
Additionally, the low-pass filter employed by FITS may inadvertently smooth out crucial short-term
fluctuations necessary for accurate predictions. The fixed cutoff frequency of the low-pass filter may
not be universally optimal for diverse time series datasets, further limiting its adaptability.

In this paper, we present MMFNet, a novel model designed to enhance LTSF through a multi-
scale masked frequency decomposition approach. MMFNet captures fine, intermediate, and coarse-
grained patterns in the frequency domain by segmenting the time series at multiple scales. At each
scale, MMFNet employs a learnable mask that adaptively filters out irrelevant frequency components
based on the segment’s spectral characteristics. MMFNet offers two key advantages: (i) the multi-
scale frequency decomposition enables MMFNet to effectively capture both short-term fluctuations
and broader trends in the data, and (ii) the learnable frequency mask adaptively filters irrelevant
frequency components, allowing the model to focus on the most informative signals. These features
make MMFNet well-suited to capturing both short-term and long-term dependencies in complex
time series, positioning it as an effective solution for various LTSF tasks.

In summary, the contributions of this paper are as follows:

• To our knowledge, MMFNet is the first model that employs multi-scale frequency domain decom-
position to capture the dynamic variations in the frequency domain;

• MMFNet introduces a novel learnable masking mechanism that adaptively filters out irrelevant
frequency components;

• Extensive experiments show that MMFNet consistently achieves good performance in a variety of
multivariate time series forecasting tasks, with up to a 6.0% reduction in the Mean Squared Error
(MSE) compared to the existing models.

7The Traffic dataset comprises hourly road occupancy rates collected by various sensors deployed on free-
ways in the San Francisco Bay area, sourced from the California Department of Transportation.
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