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ABSTRACT

The increasing prevalence of streaming data and rising privacy concerns pose
significant challenges for traditional Bayesian optimization (BO), which is of-
ten ill-suited for real-time, privacy-aware learning. In this paper, we propose a
novel online locally differentially private BO framework that enables zero-order
optimization with rigorous privacy guarantees in dynamic environments. Specif-
ically, we develop a one-pass Gaussian process compression algorithm based on
the sliced Wasserstein distance, which effectively addresses the challenges of ker-
nel matrix scalability, memory efficiency, and numerical stability under streaming
updates. We further establish a systematic non-asymptotic convergence analysis
to characterize the privacy—utility trade-off of the proposed estimators. Exten-
sive experiments on both simulated and real-world datasets demonstrate that our
method consistently delivers accurate, stable, and privacy-preserving results with-
out sacrificing efficiency.

1 INTRODUCTION

Bayesian optimization (BO) (Mockus| [1974; Jones et al., |1998) is a sample-efficient framework
widely used for the global optimization of expensive, non-convex, or black-box functions, with
applications in hyperparameter tuning, robotics, and scientific discovery (Snoek et al.l 2012
Berkenkamp et al. 2023). In particular, BO iteratively selects query points using a probabilistic
surrogate model and balances exploration and exploitation through the predictive mean and uncer-
tainty, often achieving high-performance solutions with relatively few evaluations. To date, BO
has been extensively studied, leading to numerous methodological advances, including local de-
scent strategies (Miiller et al., [2021; Nguyen et al.l [2022), mixed-space optimization techniques
(Neiswanger et al .| [2022)), scalable acquisition via Monte Carlo methods (Balandat et al., 2020), and
extensions to iterative and bilevel problems (Fu et al., |2024), supported by theoretical analyses of
high-dimensional Gaussian processes (Hvarfner et al.,|2024)). Furthermore, practical robustness has
been enhanced through improved constraint handling (Nguyen et al., [2024), contextual uncertainty
modeling (Tay et al. [2024), and meta-learning strategies for rapid adaptation (Ravi & Beatson,
2019).

Building on this line of work, several methods have sought to accelerate convergence by incorporat-
ing gradient information via finite differences or kernel-based estimation (Wu et al.| [2017; [Eriksson
et al., 2019). For example, Miiller et al.| (2021)) reformulated BO as an approximate gradient de-
scent procedure, a formulation later extended by the gradient information BO framework (Wu et al.,
2023)), which reduces gradient uncertainty and guarantees convergence to low-gradient regions in
reproducing kernel Hilbert spaces (RKHS). More recently, |Sopa et al.[(2025) adapted these methods
to tackle high-dimensional problems. Nonetheless, the aforementioned BO methods remain predi-
cated on static datasets and are not designed for streaming environments, thereby limiting their ap-
plicability in dynamic and continually evolving settings, such as autonomous systems or large-scale
monitoring, where data are generated at rates that make batch learning and reprocessing infeasible.

The growing demand for real-time decision-making in streaming data environments has elevated
online learning to a central paradigm, with stochastic gradient descent (SGD) serving as its pri-
mary optimization tool (Robbins & Monro, 1951} Bottoul 2010). Recent advances have extended
SGD beyond classical settings to a variety of estimation settings, including online learning (Su &
Zhul 2023} Xie et al., [2025), contextual bandits (Ding et al., 2021), and high dimensional infer-
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ence tasks (Han et al.,[2024). Yet these methods remain rooted in the frequentist paradigm and rely
heavily on heuristic exploration, and depend on gradient access, which constrains data efficiency
and often results in slow convergence in complex, non-convex functions (Ruder, |2016). By con-
trast, BO does not require gradient information and provides a principled framework for balancing
exploration and exploitation, thereby enabling more sample-efficient optimization in such settings
(Jones et al., [1998). From a Bayesian standpoint, online learning has largely been investigated in
sequential decision-making contexts, such as hyperparameter tuning (Snoek et al.|[2012), black-box
optimization (Frazier, 2018)), and sequential hypothesis testing (She et al., |2021), but these meth-
ods typically emphasize decision efficiency over functional exploration and often lack expressive
input—output modeling beyond classification. Consequently, they are ill-suited for streaming en-
vironments, where adaptive and sample-efficient exploration of the response surface is essential,
highlighting the need for a scalable BO framework explicitly designed for online settings.

On the other hand, the increasing complexity and scale of data amplify the challenges of safeguard-
ing individual privacy and sustaining public trust, particularly in applications that involve sensitive
user information, such as financial transactions in banking or location data from mobile applica-
tions. Differential Privacy (DP) (Dworkl 2006} Dwork et al.,2014), one of the most widely adopted
frameworks for privacy-preserving data analysis, provides a rigorous guarantees the output of a com-
putation does not reveal sensitive information about any individual in the dataset. DP is typically
implemented under two models: central DP (CDP), where a trusted server injects noise into aggre-
gated data (Ponomareva et al., [2023)), and local DP (LDP), where users privatize their data before
sharing, thereby removing the need for a trusted server (Duchi et al.| 2018 |[Lowy & Razaviyayn,
2023} |Duchi & Ruan| |[2024). Although substantial advances in both paradigms, most existing meth-
ods continue to be developed within the frequentist framework.

Recently, increasing attention has been devoted to privacy-preserving estimation in BO under the
CDP framework. Early work by |[Heikkild et al.| (2017) proposed a distributed DP-Bayesian learn-
ing method that leverages secure multi-party aggregation and Gaussian mechanisms for efficient
privacy-preserving inference. Subsequently, [Dimitrakakis et al.| (2017) introduced a Bayesian DP
framework based on posterior sampling, establishing sensitivity bounds for arbitrary data metrics.
Building on this foundation, [Triastcyn & Faltings| (2020) incorporated distributional information to
provide more practical privacy guarantees, while Zhang & Zhang| (2023) further advanced the line
of research by designing an exact and efficient DP Metropolis—Hastings algorithm. In parallel, [Li
et al| (2023) investigated DP synthetic data generation using Bayesian networks and established
statistical accuracy guarantees for marginal-based methods. Makhija et al.| (2024)) developed a fed-
erated Bayesian learning framework that trains personalized models across clients with rigorous
DP guarantees, and |Chew et al.| (2025)) introduced a risk-weighted pseudo-posterior distribution to
address imbalanced data in DP deep learning. More recently, [Sopa et al.| (2025)) proposed a DP
gradient-informed BO method for high-dimensional problems with exponential convergence guar-
antees. Despite these advances, existing methods are primarily designed for batch learning and
typically assume a trusted data curator. To the best of our knowledge, no scalable and statistically
rigorous method has yet been developed for online BO under the LDP framework. This gap naturally
motivates the following fundamental question:

Is it possible to develop an online, gradient-free, Bayesian optimization frame-
work that provides rigorous LDP guarantees without sacrificing statistical effi-
ciency?

The main goal of this paper is to address the question outlined above. To this end, we propose a
fully online LDP framework for real-time BO. Specifically, we introduce a novel one-pass, online,
gradient-free LDP-BO algorithm that integrates a Sliced Wasserstein Compression (SWC) strategy,
which enables efficient kernel compression to control memory growth while simultaneously en-
suring privacy-preserving learning in streaming data environments. An overview of the proposed
framework is provided in Figure|l} The key contributions of this work are summarized as follows:

* Online LDP Bayesian estimation framework: Our framework provides rigorous per-
iteration LDP guarantees for BO in an online setting, thereby enabling privacy-preserving
real-time estimation and addressing a key limitation of existing methods that typically re-
quire access to the entire dataset in dynamic environments. By constructing a surrogate
model, we further develop a zeroth-order optimizer that eliminates the need for gradient
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Figure 1: Flowchart of the proposed online privacy-preserving Bayesian framework. Data is pro-
cessed sequentially, and privacy-preserving estimates are obtained using the LDP-BO algorithm.
During this process, the kernel dictionary is compressed via the sliced Wasserstein distance to con-
trol memory growth.

information, making the framework well-suited for complex objective functions with non-
differentiable points or discontinuities.

* Efficient compression algorithm: We propose an efficient compression algorithm based
on the Sliced Wasserstein distance to manage the kernel dictionary in streaming data envi-
ronments. The algorithm reduces memory overhead while preserving numerical stability,
and we establish that the kernel dictionary size remains uniformly bounded, ensuring effi-
cient BO without loss of model fidelity. Moreover, the proposed algorithm achieves O(1)
time and space complexity per iteration. By eliminating the need to store or re-access
historical data, our method avoids the O(#?) computational cost and O(t) memory require-
ments inherent standard BO and inducing point-based batch methods.

* Non-asymptotic analysis: We establish non-asymptotic convergence rates for our estima-
tor under decaying step sizes, addressing both strongly convex losses and the more general
smooth (but not necessarily convex) losses. The rates depend explicitly on the sample size,
privacy budget, and BO compression error. Specifically, in the strongly convex setting, the
estimation error achieves the same order as that of SGD, whereas under smoothness alone
we provide guarantees of convergence to stationary points. Notably, our method achieves
SGD-like convergence behavior without requiring access to exact gradients at any stage of
the optimization process.

2 PROBLEM FORMULATION

In this paper, we consider an online learning framework in which independent and identically dis-
tributed (i.i.d.) observations {z;}{_, with ¢ > 1, arrive sequentially, where each z; = (x;, ;)"
consists of a covariate vector ; € RP and a response y; € R, jointly drawn from an underlying
distribution F. Specifically, we consider the following optimization problem:

0" = axguingeo (1(6) = Eevr. [£60,2)] = [ £(6.2)0P5(2)). 1)

where £(0, z) denotes a pre-specified loss function with respect to 8 and z is a random variable
from the distribution Pz.

We aim to estimate an unknown parameter 8* from streaming data within the BO framework, where
observations are received sequentially over time. The BO framework adopts a Gaussian process
(GP) as a probabilistic surrogate model. By placing a GP prior with a twice-differentiable kernel
K, the objective function f can be efficiently approximated without explicit gradient computations.
Given a collection of points D = {0;}!_,, the posterior distribution f | D ~ GP(mp, Kp) yields
closed-form estimates, while the gradient process V f | D (Miiller et al., 2021)

Vf(0)|D~N(Vmp(8),V:Ep(0,6)), )

wher
e Vmp(8) = Vm(0) + VK (8, D)K(D, D) (f(D) — m(D)),

V?Kp(6,0) = V2K(0,0) —VK(0,D)K(D,D)"'VK(D,#).
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This procedure only depends on zeroth-order function evaluations, thereby eliminating the need for
explicit gradient calculations. Since the true distribution P, is unknown, the expected risk f(8) is
intractable and is instead approximated by the empirical loss £(6, z) based on observed data. For
simplicity, we assume throughout this work that the prior mean function is zero, i.e., m(:) = 0.

Unfortunately, the standard BO framework suffers from two major limitations: (1) it does not scale
to online learning, as the storage requirement for D grows unbounded as new data arrive sequentially,
and (2) it is vulnerable to privacy breaches because repeated data queries during the optimization
process may leak sensitive information, such as medical records (Liu et al.,[2024) or consumer data
(Hard et al.| 2018). (Additional preliminaries on LDP are provided in Appendix [A.T)) To address
these challenges, we propose GP-based BO framework to a privacy-preserving online setting that
achieves computationally efficient estimation with reduced time and space complexity, while simul-
taneously providing rigorous individual-level privacy guarantees.

3 METHODOLOGY

In this section, we propose the online locally privacy-preserving estimation within the BO frame-
work to the minimization problem (TJ.

3.1 ONLINE LOCALLY DIFFERENTIALLY PRIVATE BAYESIAN OPTIMIZATION

We first leverage BO to approximate the gradient of the underlying function defined in (1) through
the gradient of a surrogate model. In particular, at each iteration, the BO procedure selects query
points that minimize an acquisition function, thereby maximizing information gain in the optimiza-
tion process (see |Wu et al.| (2023) for further details). In line with Miiller et al.| (2021)), this paper
adopts gradient information as the acquisition function, which is defined as

GI(& D, 0) = Tr(V2Kpie(,9)), 3)

where £ denotes a candidate point in the parameter space ®. This strategy minimizes the trace of the
Hessian of the kernel, thereby reducing the uncertainty of gradient estimates. Furthermore, since the
kernel K is smooth and © is compact, the acquisition function GI(&; D, 0) is uniformly bounded
above by a constant L (Wu et al.,|2023).

At each iteration, the candidate point £ is obtained by optimizing GI(&; D, ) and subsequently in-
corporated into the kernel dictionary D. In streaming settings with infinitely arriving data, however,
the kernel dictionary would grow unbounded as iterations proceed, which fundamentally limits the
applicability of BO in online learning. To overcome this issue, we propose a compression algorithm,
i.e., SWC, based on the sliced Wasserstein distance to efficiently compress D (see Section [3.2] for
details). This algorithm guarantees that the size of the kernel dictionary remains bounded indepen-
dently of ¢, while ensuring that the compressed probability distribution converges to the domain of
the true probability distribution.

Using the BO surrogate model, we then obtain the approximate gradient at iteration ¢ as
VL= pp, , = VE(0i-1,D1-1) K (Di—1,Dp—1) "' L(O;-1, 21)- @)

This formulation enables iterative updates without requiring storage of historical raw data or direct
access to the gradient of the objective function. Upon receiving the ¢-th sample z; = (x, ,y;) ', the
parameter estimate is updated via

ét = ét71 - ﬁtﬁ,

where 7; denotes the step size at iteration ¢. Throughout the procedure, only the estimator 0,1
and the kernel dictionary D,_; are required, thereby ensuring greater flexibility and substantially
reduced memory usage.

However, while the above procedure enables efficient online estimation, it does not inherently safe-
guard sensitive information. In streaming environments, where each newly arriving observation
may expose individual data, privacy protection is indispensable. Unlike traditional centralized ap-
proaches to DP (Sopa et al., [2025)), which inject noise into the entire algorithm in a post-hoc manner,



Under review as a conference paper at ICLR 2026

our framework embeds privacy protection directly into each iteration. This design eliminates the re-
liance on a trusted data curator and achieves LDP by ensuring that data are privatized at the source
before any aggregation occurs. To enforce rigorous LDP guarantees, we first clip the approximate
gradient to a fixed bound B > 0, i.e.,

gtfl(etfl) - /,LDt_l : min {17 B} 9
I, |l
and then perturb it with noise drawn from a suitable distribution to ensure privacy. Common choices
include Gaussian, Laplace, or more sophisticated mechanisms (Dwork et al., 2014} [Dong et al.,
2022). In this work, we adopt the Gaussian mechanism primarily for illustrative purposes, owing
to its analytical simplicity. Nevertheless, our proposed framework is general and can be easily
extended to other noise distributions. Let w; denote Gaussian noise with mean zero and covariance
matrix 2(2B/e;)? log(1.25/6;)1,, where (¢, 0;) is the privacy budget allocated to the ¢-th iteration.

The proposed private estimator is initialized at 6y =0, = 0, and updated as

0, = 0,1 — ne{gi—1(0:—1) +wi}, 0, ={(t—1)0,_1 +6,}/t. )]
Notably, the optimization of the acquisition function, the SWC compression, and the posterior mean
evaluation depend only on the kernel K, the compressed dictionary D;_o, and the previous pa-

rameter estimate 6;_;, making the proposed method well-suited to streaming environments. The
proposed LDP-BO procedure is summarized in Algorithm [T}

Algorithm 1 Online Locally Differentially Private Bayesian Optimization Algorithm (LDP-BO).

1: Input: User-defined loss function L(-, z), a clipping bound B > 0, learning rates {n;};>1,
privacy parameters {(e¢, d;) }+>1, and a compression budget « > 0.
Initialize: Non—data-dependent parameters éo = 60y = 0,, and evaluation set D_; = 0.
fort=1,2,...do
Collect a new data point z; = (x/ , y;
Select the candidate point £ = arg ming GI(&; D;_2, ét—l)-
Update the compressed dictionary via SWC Algorithm 2] D,y = SWC(D;_2, £).
Evaluate the loss function at L(ét_l, z;) at point z;.
Compute the posterior mean ptp, , by (Fl_f[)

)"

9: Clip the gradient to obtain gt_l(ét_l) = pp,_, -min {1, H#TBH} .
t—1

10: Perform the noisy gradient descent step and update 6, and 6, by .
11: end for
12: Output: ;.

By the post-processing property [A.4]of LDP, we establish the following privacy guarantee for Algo-
rithm

Theorem 3.1. Given an initial estimate éo € RP, consider the iterates {ét}tz 1 defined in Algorithm
Then the final output 0, satisfies (max{e1, ..., e}, max{d1,...,0})-LDP.

Theorem [3.1I] guarantees that each update of the proposed LDP-BO algorithm satisfies
(max{eq,...,et}, max{dy,...,0:})-LDP by introducing Gaussian noise calibrated to the sensi-
tivity of the gradient. This mechanism safeguards the privacy of every individual sample at each
iteration while eliminating the need to store raw data. The analysis for time-varying privacy parame-
ters (¢, 0+) proceeds analogously to that of the constant-(e, §) case. Hence, for clarity of exposition,
we focus on a fixed privacy level (g, 0) in the subsequent discussion.

3.2 SLICED WASSERSTEIN COMPRESSION

As discussed above, a major challenge in streaming data settings is the unbounded growth of the
kernel dictionary as new points are continuously arrived. To address this issue, we develop an
SWC strategy that controls the growth of the dictionary while preserving the statistical fidelity of
the surrogate model. Specifically, in Algorithm [I| whenever a candidate point £ is selected by
l) the posterior distribution pp_ is updated according to , where D; = D;_1 U €. To ensure
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computational efficiency, the enlarged dictionary D, is subsequently compressed using the Sliced
Wasserstein (SW) distance, which quantifies discrepancies between probability distributions through
their one-dimensional projections (see Bonneel et al.| (2015)) for details).

Our primary goal is to guarantee that the compressed dictionary D, satisfies
SW2 (po pﬁt) < R,

for a prescribed budget parameter «, where p denotes the posterior density. We define the model
order M, as the column dimension of the compressed kernel dictionary D;. This compression step
ensures that M; < M,;_; + 1, thereby keeping the dictionary size bounded over time. The detailed
SWC procedure is provided in Algorithm

Algorithm 2 Sliced Wasserstein Compression (SWC).

1: Input: Previous dictionary D;_1, new acquisition point £ and a compression budget x > 0.
2: Initialize: D; = D;_; U £ and index set Z = {1,..., M;}.

3: while Z # () do

4: for j € Zdo

5: Compute Sliced Wasserstein distance n; = SWa(pp_;, pp, ).
6: end for

7: Identify index with minimal distance j* = arg min;cz 7);.

8: if n;« > k then break

9: else _
10: I=Z\{j*},D:=Ds.
11: end if

12: end while
13: Output: Compressed dictionary D; such that SWa(pp,, pp,) < 5 .

To ensure that the posterior distribution produced by Algorithm [2| converges to a stationary region,
we impose the following assumption.

Assumption 3.2. For any ¢ > 0, let p; denote the true posterior density, and define the events:
Ve = {SWalps, pr—1) < ¢ | Di}, s = {SWalpp,, pp,_,) < ¢ | Di}. We assume that compression
does not increase the probability of divergence relative to the original model, i.e., P{i;} > P{iy}.

Assumption [3.2]is mild, as the likelihood of the true posterior is at least as large as that of the sparse
GP, a condition also adopted in [Koppel et al.| (2021). In our analysis, Assumption [3.2] serves as
the Bayesian analogue of the nonexpansiveness property of projection operators. This property is
essential for establishing an upper bound on the error introduced by kernel dictionary compression.

Theorem 3.3. For the compression process in Algorithm 2] the model order M, of each posterior
P, is uniformly bounded as

1 p
M, <O <) forallt.
K

Theorem establishes that, in the streaming setting, the kernel dictionary size in our BO frame-
work remains uniformly bounded, with dependence only on the compression budget x and the input
dimension p. By operating directly on one-dimensional sample projections, the proposed method
circumvents explicit density estimation and thereby mitigates sensitivity to both ambient dimension-
ality and discretization errors (Kolouri et al., [2015)).

4 THEORETICAL PROPERTIES

In this section, we investigate the finite-sample properties of the proposed estimator. Firstly, we
establish theoretical guarantees for the estimator produced by Algorithm[T|under the strongly convex
loss. In order to obtain the convergence property, we also need the following assumptions.

Assumption 4.1. There exists a B < oo such that allt > 1,6 € ©, we have |[VL(0, z)|| < B.

Assumption 4.2. Forallt > 1, L(:,z:) € H = RKHS(K), where K is the kernel used in
Algorithm[l} Moreover, there exists a constant Cx < oo such that for all t, || L(:, z)|| < Cx
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Assumption 4.3. Assume that the objective function f(0) is differentiable, (-smoothness, and \-
strongly convex, in the sense

() F(0)~ £(02) < (V](0:),0, — 0:) + 510~ 0u]>, 0.0, € © C B,

(i) 1(0) ~ 1(0) > (Vf(82). 00— 02) + 20, — 02, 0,0, € © C R,

Assumption [4.T] ensures that the sensitivity of the gradient is uniformly bounded, a condition fre-
quently imposed in LDP optimization to control the amount of noise required for privacy see, e.g.,
Song et al.| (2013); |/Avella-Medina et al.| (2023)). Assumption @] requires the target function to lie
within the kernel-induced space, enabling convergence and estimation bounds under standard regu-
larity conditions(Sopa et al., [2025). Assumption imposes strong convexity and smoothness on
the loss function, which are standard conditions for the convergence analysis of (stochastic) gradient
optimization methods. Similar conditions can be found in|[Vaswani et al.| (2022); |Zhu et al | (2023).

Recall that 6, is the estimate obtained at the ¢-th iteration of the proposed LDP-BP Algorithm
under (e, §)-LDP, while 8* denotes the true parameter value. The theorem below provides a non-
asymptotic bound on the mean squared error of the estimate at iteration .

Theorem 4.4 ((&, §)-LDP). Under Assumptions there exist some positive constants ty € N
and cy, that depends on the dimension p, such that for t > to, Ay = 0 — 0 satisfies

E(|AI3) S ¢ *{(ne, B 1og(1.25/8) /(Ae®) + n(L + pr + 2B%) /A + | Ao |3},
when the step-size is chosen to be ny = nt=* withn > 0and 1/2 < a < 1.

Theorem establishes that the mean squared error E(]|A,||2) converges at rate O(¢t~*) under
the step size 1, = nt~. The bound consists of three components: the privacy-induced noise term
B?1og(1.25/8)/(Ae?), the compression error L + pr, and the error from the initial estimate. No-
tably, L can be made arbitrarily small by minimizing the acquisition function over p + 1 points (Wu
et al.,[2023). Furthermore, as the compression budget x — 0, the rate coincides with that of Xie et al.
(2025)). Unlike their result, which requires a restrictive assumption on the conditional covariance of
gradient noise, our analysis avoids this condition, thereby providing broader applicability.

In practice, however, many loss functions are neither strongly convex nor convex. Although non-
convexity rules out guarantees of global optimality, our analysis relies only on the weaker assump-
tion of (-smoothness, under which we establish convergence to an approximate stationary point. In
non-convex settings with multiple local minima, convergence is typically analyzed through gradient
norms rather than parameter estimates (Garrigos & Gower, 2023).

Theorem 4.5. Under Assumption and (i), there exist some positive constants ¢, when
the step-size is chosen to be n, = nt~* withn > 0 and 1/2 < o < 1, it follows that for every t > 1

(f(B0) — f(6*)) + (L + pr + B?) + pB?/e*log(1.25/5)
tl—a

. ). 2 <
i B[VF(0:)]" < c

Theorem establishes an O(t_(l_O‘)) convergence rate of the gradient norm under a step size
1y = nt~% in (-smooth optimization without assuming strong convexity. With a fixed step size,
the rate reduces to the classical O(t’l/z) result (Fang et al., [2023; Bu et al., 2023)). The weaker (-
smoothness assumption still enables meaningful gradient-based analysis, and by controlling the BO
approximation error, our method achieves rates comparable to classical non-convex optimization
(Garrigos & Gower, [2023)). Notably, our guarantees avoid restrictive conditions such as fixing the
Lipschitz constant to a specific value (e.g., 1), as required in prior work (Béthune et al.,|[2023).

In contrast to Theorem [4.4] which relies on strong convexity to establish a convergence rate for pa-
rameter estimation, the lack of convexity precludes direct control over the parameter error, thereby
presenting a fundamental challenge. To address this, Theorem [.5] leverages recursive moment
bounds on the gradients and averaging techniques, yielding a convergence rate in gradient norm and
guaranteeing convergence to an approximate stationary point. These findings align with existing lit-
erature (Stich, [2019; (Garrigos & Gower, [2023): strong convexity enables rapid parameter recovery,
whereas the general analysis guarantees convergence to stationarity in non-convex settings.
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5 EXPERIMENTS

We assess the finite-sample performance of our method on two synthetic datasets and one real-world
dataset, comparing it with LDP-SGD (Xie et al.}|2025)) in the parametric case and with a non-private
deep neural network (Schmidhuber, [2015) in the nonparametric case. We compare the estimates of
the coefficients based on 100 simulation replications. Details about the data generating process can
be found in Appendix [E]

Example 5.1 (Parametric Models). We evaluate the proposed LDP-BO algorithm on synthetic data
under three regression settings: linear, logistic, and ReLU. We generate 7' = 20,000 i.i.d. samples
with features &; ~ N(0,1I,) and true parameters & = 1,,, considering dimensions p € 2,5. The
compressed budget is set to x € 0.1,0.2, and the privacy budget is either fixed at ¢ € 1,2 or
randomly drawn from U(1, 2) per iteration, with § = 0.2. For comparison, we include LDP-SGD
(Xie et al., [2025)), as well as non-private BO and SGD as benchmarks.
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Figure 2: Evolution of the first-dimension coefficient estimate (true value = 1) and MSEs over
iterations for linear, logistic, and ReLU models (rows) in Example [5.1] Columns correspond to
privacy budgets € = 2, ¢ ~ U(1,2), and € = 1, and Boxplots of coefficient MSEs.

The first three columns of Figure 2] shows the evolution of the average of the first-dimension co-
efficient estimate (true value = 1) over iterations. For simple models (linear), LDP-BO and LDP-
SGD closely track their non-private counterparts, while in more complex models (logistic, ReLU),
BO-based methods outperform SGD across all privacy levels. The last column of Figure 2] re-
ports Mean-Squared Errors (MSEs) of the estimates, calculated as MSE = ;’:1 MSE;/p =

];:1 Z§=1 (éz ;—0;)?/(tp), where LDP-BO consistently achieves lower error and variability than
LDP-SGD, especially in complex settings. Under strong privacy (¢ = 1), LDP-BO converges faster
and attains accuracy comparable to non-private BO and SGD. These results highlight LDP-BO’s
modeling advantage in nonlinear problems, mitigating the utility loss common in gradient-based

methods. Results for p = 5 and varying compression budgets, reported in Appendix[E} are similar.

Example 5.2 (Nonparametric Models). In this example, we evaluate our approach under nonpara-
metric settings using the Sine and Friedman functions. A Gaussian process regression model is
employed to estimate the unknown function, with kernel parameters optimized via our proposed
LDP-BO framework (see Appendix [E|for details). We compare its utility against a non-private deep
neural network (denoted as DNN) (Schmidhuber] 2015)) trained incrementally with one data point
per iteration.

We generate 7' = 10,000 i.i.d. samples with features @; ~ U(—1, 1). For the Sine function, y; =
sin(27x;) +&; for the Friedman function, y; = sin(mz1429;) + (23¢ — 0.5)% + 244 + 5 + &4, where
et ~ N(0,0.12). We set the compression budget to k = 0.1, the privacy budget to (g, ) = (1,0.2)
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and B = 2. We report the MSE of averaged estimators at sample sizes n = 2000, 5000, and 10000,
and provide function fitting plots at n = 10000 using 100 randomly generated test points.

Figure [3| presents the prediction errors (calculated as error; = %errort_l + %(yt — gjt)Q in the

online setting) and function fitting results for the proposed LDP-BO method and the DNN base-
line. The LDP-BO method consistently outperforms the non-private DNN, even under privacy con-
straints. The boxplots show that LDP-BO achieves lower variance and fewer outliers, indicating
greater stability and robustness across trials. The fitted curves further demonstrate that LDP-BO
closely tracks the true function, capturing both global trends and fine-scale structure—particularly
in high-value regions critical for optimization. In contrast, the DNN exhibits larger deviations and
unstable oscillations, reflecting weaker generalization and poorly calibrated uncertainty.

Sine Sine Friedman Friedman

0.3 . 0.8

£ £

= = 0.6

E 0.2 ;

2 g4

g g

£0.1 ]

& l & 02 ;

0.0 L 3 0.0
2000 5000 10000 -5 0 5 2000 5000 10000 0 25 50 75 100
Iterations X Iterations index

[ LDP-BO  =O= LDP-BO Prediction o TrueData
] DNN =f=DNN Prediction

Figure 3: Predcition errors and function fitting plots of the proposed LDP-BO and DNN methods in

Example|[5.2}

Example 5.3 (Real Data Analysis). In this example, we apply LDP-SGD and the proposed LDP-
BO to a real Uber Fares Dataset|'} which comprises approximately 21,000 historical trip records
collected between 2014 and 2015 in New York City. The selected features include distance, hour
of day, day of week and passenger count; see Appendix [E] for full preprocessing details. These
predictors, which collectively capture spatial, temporal, and demand-related determinants of Uber
fare variations, have been similarly employed in prior studies (Khandelwal et al., 2021} [Silveira-
Santos et al.,[2023; [Huynh et al., 2025)). The response is chosen to be the fare.

We adopt a Gaussian regression framework with a 4-dimensional parameter space for possible com-
plex relationships. Among privacy-preserving methods, LDP-SGD applied to a linear model is the
only one supporting both LDP and online parameter estimation; thus, we use it as a baseline for
comparing prediction error across methods.

Figure[d|compares the performance of LDP-BO and LDP-SGD under (e, §) = (1,0.2) across sample
sizes of 5000, 10000, and 20000 in terms of the prediction error. It show that LDP-BO consistently
outperforms LDP-SGD across all metrics, achieving lower prediction error and exhibiting narrower
interquartile ranges as sample size increases. This trend indicates reduced estimation variance and
improved stability for LDP-BO.

40 LDP-BO

LDP-SGD

w
S

Prediction Error
W
<

L

5000 10000 20000
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Figure 4: Fare prediction errors of LDP-BO and LDP-SGD in Example

'https://www.kaggle.com/datasets/yasserh/uber-fares—dataset
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A BACKGROUND ON LDP AND SLICED WASSERSTEIN DISTANCE

A.1 DIFFERENTIAL PRIVACY

In this section, we begin with the basic concepts and properties of Local Differential Privacy (LDP),
Rényi Differential Privacy (RDP) and Gaussian Differential Privacy (GDP). The intuition underlying
LDP is that a randomized algorithm produces outputs that are statistically similar, even when a single
individual’s information in the dataset is modified or removed, thereby ensuring the protection of
individual privacy. The formal definition of LDP is presented below.

Definition A.1. ((¢,0)-LDP (Xiong et al.||2020)) Let X be the sample space for an individual data,
a randomized algorithm A : X — R is (€,9)-LDP if and only if for any pair of input single values
z,2' € X and for any S C R, the inequality below holds

P(A(z) € 8) < ¢ - P(A(Z) € S) + 4.

In contrast to CDP, LDP imposes a stricter requirement in which each individual perturbs their data
locally before submission. This design eliminates the need for a trusted data curator and is particu-
larly well suited to streaming environments, where data are continuously generated and transmitted.
To formalize the guarantee, we introduce the notion of sensitivity, which quantifies the maximum
change in an algorithm’s output resulting from the modification of a single data entry.

Definition A.2. For any deterministic function g : X — R and any pair of input single values
z,z' € X, the Ly-sensitivity of g is defined as

Ap(g) = sup_|lg(z) — g(z)llp-
z,z2'eX

Among various LDP mechanisms, we introduce the following Gaussian mechanism for illustrative
purposes, as it facilitates clear exposition.

Definition A.3. (The Gaussian Mechanism (Dwork, |2000)) Let g : X — R be a deterministic
function with Ay(g) < oo. For w € R with coordinates w1, ws, - - - ,w, be i.i.d samples drawn
from N(0,2(Aa(g)/e)?1log(1.25/6)), g(z) + w is (g, 5)-LDP.

The post-processing and parallel composition properties are fundamental to LDP, enabling complex
algorithms to be systematically constructed from simpler components.

Proposition A.4. (Post-processing Property for LDP (Xiong et al.| 2020)) Let A be an (¢, 6)-LDP
algorithm and g be an arbitrary function which takes A(z) as input, then g(A(z)) is also (g, 6)-
LDP.

Proposition A.5. (Parallel Composition for LDP (Xiong et al., |2020)) Suppose n mechanisms
{A1,..., A} satisfy (e;,0;)-LDP, respectively, and are computed on disjoint subsets of data, then
a mechanism formed by (A1(z1), . .., An(2zy) satisfies (max(e;), max(d;))-LDP.

As an alternative to standard LDP, RDP was introduced by Mironov| (2017) as a generalization of
LDP based on Rényi divergence, providing a more structured and flexible framework for privacy
accounting. RDP quantifies privacy loss through the Rényi divergence of order ¢ > 1 between the
output distributions of an algorithm on adjacent datasets. For two probability distributions P and @,
the Rényi divergence of order ¢ is defined as

DA(PIQ) = — log { (g)} ,

whenever the expectation exists. This divergence provides a smooth and fine-grained measure of
dissimilarity that depends on the order ¢, thereby enabling more precise tracking of cumulative
privacy loss under composition compared to the standard (g, §)-LDP framework. Formally, RDP is
defined as follows:

Definition A.6. (RDP, Mironov|(2017)). Let A be a randomized algorithm, and let z and z' be two
adjacent datasets. For any real number o > 1, the algorithm A satisfies (q,€)-RDP if

Dy(A(2) | A(z)) <e,

where A(z) denotes the distribution of the output of A on data z.
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Building on this hypothesis testing framework, Dong et al.| (2022) introduced GDP, a privacy no-
tion with a natural statistical interpretation: determining whether an individual’s data is included
in a dataset is at least as difficult as distinguishing between N (0, 1) and N(u, 1) based on a single
observation, for some g > 0. Formally, GDP is defined as follows:

Definition A.7. (GDP,|Dong et al|(2022) Let A be a randomized algorithm.

1. A satisfies f-DP if, for any a-level test of Hy, the power function B(«) satisfies B(a) < 1— f(«),
where f is convex, continuous, non-increasing, and f(a) < 1 — a for all o € [0, 1].

2. A satisfies u-GDP if it is f-DP with f(a) > ®(®@71(1 — «) — ) for all o € [0, 1], where ®(-)
denotes the standard normal CDF.

A.2 SLICED WASSERSTEIN DISTANCE

Definition A.8. (Wasserstein Distance (Villani) 2021))) The Wasserstein distance W,(u,v) quanti-
fies the optimal transport cost between two probability distributions u and v, defined as the minimal
expected cost required to redistribute mass from u to v. For univariate distributions, it admits the
closed-form

Wytw) = ( [ o= B (E)] dulo)) . (/ ES ) - ER ) ) "

where F(-) denotes the cumulative distribution function (CDF). In particular, if w = N(mq,0%)
and v = N(my,03), are univariate Gaussian distributions, their 2-Wasserstein distance admits the
analytic form Wa(u,v) = /(m1 —m2)? + (o1 — 02)2.

Definition A.9. (Sliced Wasserstein (SW) Distance (Bonneel et al., 2015|)) The Sliced Wasserstein
distance generalizes the Wasserstein distance to higher dimensions via Radon transforms. Specifi-
cally, it projects multivariate distributions onto one-dimensional subspaces determined by directions
0 c SP~1, computes the Wasserstein distance between these projections, and then averages across
directions:

1/p
SW, (1, v) = ( / WP (Rug, Rvp) da) .
fesr—1

In practice, the SW distance is typically approximated using Monte Carlo sampling over m random
directions: SW), (u,v) ~ {3~ WP (Rug, Rvg) /m}/P. For our experiments, we used a value of
m = 100.

B ADDITIONAL COROLLARIES

In this section, we additionally present two corollaries that provide non-asymptotic error bounds for
the LDP-BO algorithm under specific privacy definitions.

Corollary B.1 ( (¢,£)-RDP). Suppose the conditions of Theorem hold. Under (q,¢)-Rényi

Differential Privacy (RDP), where noise wy = B+/q/(2¢) - N(0,1,) is added at each iteration in
Algorithm([l} the expected estimation error satisfies

E(|Ad3) St {(nep B2q/(2Xe) + n(L + pr + 2B%) /A + | Ao |3}
Corollary B.2 (11-GDP). Suppose the conditions of Theorem[{.4|hold. Under p-Gaussian Dren-
1

tial Privacy (GDP), where noise w; = % - N(0,1,) is added at each iteration in Algorithm|l| the
expected estimation error satisfies

E(|AI3) S ¢ {(ney B/ (Ma®) + (L + pr + 2B%) /A + [| Ao 3}

Corollaries present the expected estimation error under two specific privacy definitions,
(¢,¢)-RDP and p-GDP. The bounds follow the same structure as Theorem with identical sec-
ond and third components, while the first component varies by privacy definition. Specifically,
Corollary shows that («, £)-Rényi DP improves the bound from O (t=* - B?log(1/§)/(Ae?))

to O (t_o‘ - B%a/ ()\6)), whereas Corollarydemonstrates that p-Gaussian DP yields a bound of
order O (t=* - B?/(Ap?)).
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C SUPPORTING LEMMAS

Lemma C.1. Let py be the corresponding true population posterior distribution. Suppose the fol-
lowing conditions hold:

i. For any measurable subset A C [0, 1]P with Lebesgue measure \(A) > (Kyt)™!, where K, €
(0,1] is a constant, A contains at least one sample point ;.

ii. For allt > 1, the kernel matrix is positive definite K; > 0.

iii. The covariance kernel is translation-invariant, taking the form K(0,0’) = K(8||6 — 0’||) for
some scale parameter 3 > 0.

iv. There exist constants § € (0,1/2) and by,bs > 0 such that for allt > 1, Py (ﬁ > t‘S) < bpe~ b2t
where P11 denotes the probability under the Gaussian prior 11 for (3.

Then, the posterior distribution without compression p, is asymptotically consistent, i.e. for every
c>0,
P(SWa(p,p0) <c|Dy) =1 (a.s.).

Proof of Lemma[C.1] The results of this lemma are well established, with detailed proofs provided
in Theorem 6 of |(Choi & Schervish| (2007). O

Lemma C.2. Assuming the regularity conditions specified in Lemma which guarantee the well-
behaved geometry of the target distribution, Algorithm[2achieves r-approximate convergence under
the SW metric. Specifically, for any ¢ > 0

tligoloP{SWQ(prth71) <ct+k | Dt} =1

Proof of Lemma Using triangle inequality, we obtain
SW2 (th s PDy ) < SW2 (PDt ) p’f), ) + SW2 (pf), y PDy_1 )a

The first term corresponds exactly to the stopping criterion in Algorithm 2] and is therefore bounded
above by k. Consequently, following the argument of [Koppel et al.| (2021)), we have the following
containment relationship for any ¢’ > 0:

{SWa(pp,, pp,_,) < '} C{SWa(pp,,pp,) + SWalps,,pp,_,) < '}
C {SWQ(pﬁt,th_l) + K< C/}.
Taking prior probability with respect to II, it follows that
Pu{SW2(pp,,pp,_,) < '} <Pu{SWal(pp,, p3,) + SWa(pp,,pp,_,) < ¢}
< Pn{SWa(pp,.pp,_,) + £ <}
< Pu{SWa(pp,: pp, ) < d — Kk}

By Assumption which states that Pr;{;} > Pr;{¢);}, we have

Pri{SWa(pp,. pp,1) < ¢ =k} < Pu{SWa(ps, pr—1) < ¢’ =k}

By Lemma [C.1] the supremum of the probability of the right-hand side of tends 1 as ¢ — oo for
¢ = — k > 0. Therefore

tlim sup Pn{SWa(pp,, pp,_,) <} = 1.

Exploiting the continuity of both the GP posterior and the SW metric, we conclude that the above
limit exists. Substituting ¢’ = ¢ + k, Lemmafollows. O

Lemma C.3. For avector v € RP, define the projection operator Ilg(v) = v - min{1, ﬁ}, which

projects v onto the Euclidean ball Bg(0) of radius B centered at the origin. Under Assumption
we have, ¥Vt > 1,

s (up,) = VLO, z1)|| < l[wp, — VL(OL 2] -
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Proof of Lemma|C.3] Notice that Ilg(z) = argming cp, o) ||z — 2’|, that is, IIp(x) is the Eu-
clidean projection of x onto the ball Bg(0). Now, let y € Bp(0). Since Bg(0) is convex, for any
0 < n < 1, the convex combination z := ny + (1 — n)llg(z) = g(x) + n(y — Up(x)), also
belongs to Bp(0), i.e., z € Bp(0).

‘We then obtain
2 —Tp(@)|? < ||z — 2| = [|o — TMp(x) — n(y — Mp(x))|
= [lo = p(@)|1*> + n°lly — Mp(@)|]* — 2n(z — p(z),y — Mp(z)),

where the inequality follows from the definition of Iz () as the closest point in Bg(0) to x. Thus,
we have

(6)

(v = g (2), Wp(x) — y) + 31y — La(@)|* > 0.

As 0 < 1 < 11is arbitrary, we obtain

(z —Ip(z),1p(z) —y) = lim (x—Tp(z), Mp(r) —y) + glly ~Tp(@)|* 20

n—0+
for all y € Bp(0). Using inequality @, we can further derive the following bound:

o, = VLO 2)II* = |up, — s (po,) + s (pp,) — VLG, 20)]

= [|pp, — p(pp,)|* + s (kp,) — VLB, 2|
+2(up, — Up(pp,), Up(up,) — VL(O:, 2))
> g (pp,) — VL(O, 2|,

where the final inequality follows from the fact that both the first and last terms on the right-hand
side of () are nonnegative, since by Assumption[4.1]we have VL(,, z;) € Bg(0). O

Lemma C.4. Assume Assumption[d.1|and Assumption[d.2| hold. let @ € © and let D denote a set
containing points 6. Denote g(0;) = I15(VK(0;,D;)K(Dy,D;) "1 f(0:)). Then, there exists some
constant ¢ > 0 such that

IV£(6:) — g(0)|” < (L + pr).
Proof of Lemma|C.4] Combining Assumption[4.2] with Lemma [C.3]of Wu et al| (2023)), we obtain
IV£(0:)—g(0)|* < [V f(6:)—VE(6;, D) K(Dy, Di) " f (81, 20)||> < CxTr(V2Kp,(6:,6:)),
Since D is obtained by compressing Dt = D;_ 1 UE, we then have

SWa(pp,,pp,) < K.

Using the expression of the Sliced Wasserstein distance for multivariate normal distributions, it
follows that

SW2*(pp,, pp,)

2
= Egusv—1) | (0" (mes1lp, — pes1lp,))” + (\/ 073 11]p,0 — \/9T2t+1|75t9> ]

< K2

This implies Egyqse-1){(v/ 0 Xiy1]D,0 — /0T X1 11]5,0)*} < w*. Notice that 6 is the projec-
tion on the unit sphere. We then have Egy s»-1) [0 0] = Str(3). Therefore, we obtain

tr(Sealp,) — tr(Sesilp,) = P+ Boruse—1) [0 Sta1]p,0 — 07 Spalp, ] -

Hence,

0T<Zt+1|Dt_Et+1|ﬁt)0 — (\/0T2t+1|Dt0 + \/0T2t+1ﬁt0) <\/0T2t+1|pte — \/0T2t+113t0)
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Without loss of generality, assume the operator (spectral) norms of /073, 1|p,0 and

\/0T 3 | 5,6 are uniformly bounded by C'. We then have

0" (Sii1lp, — Sivalp,)0 < 2C (\/0T2t+1|Dt0 - \/9th+1|@0>

Therefore, we obtain

tr(Eet1lp,) — tr(Ze41lp,) < 2Cpk.
As established in the discussion of BO (Wu et al., [2023)), there exists some constant L > 0 such that

tr(Seq1lp,) = tr(V2Kpuza(6,0)) < L.
Consequently, we obtain that, for some constant ¢; > 0,
IVL(O:, 2) — up,||? < c1(L + pr).
O

Lemma C.5. Let g.(0,) be defined as in Algorithm Under Assumptions and there exists
some constant ¢y > 0 such that

l9:(8:) — g(8:)||> < 2B

Proof of Lemma|C.5] Using Lemma the effect of the projection operator IIz can be removed
from the analysis. Consequently, we obtain

19:(6:) — 9(8:)|1> = |15 (pp, (24)) — HB(VK(‘%Dt)K(DnDt)*lf(ot))||2
< I (o, ()| + [TV (81, D) K (Dy, D)~ £(0,))]|”
< B?+ B?
< 2B2.

Lemma C.6. (1) Suppose that f: RP — R is a A-strongly convex function, we have
(VF(61) = Vf(62),601 — 03) > N6y — 6]]3, V61,6, € RP,
and if f is twice-differentiable, then V2 f(0) = \I, VO € RP.
(2) Suppose that f: RP — R is a convex and (-smooth function, we have for any 01,605 € RP,
IVf(61) = V£(82)]3 < ((Vf(81) = Vf(62),0: - 82),

and
IV£(01) =V f(02)]2 < (|61 — 62 2.
If f is twice-differentiable, then V2 f(0) < (I, VO € RP.

Proof of Lemma|C.6] The results of this lemma are standard and can be found in the convex opti-
mization literature; see, for example, Boyd & Vandenberghe| (2004)) for detailed proofs. O

D ALL TECHNIQUE PROOFS

Proof of Theorem Consider two neighboring data points z; and z; for ¢ > 1, differing in exactly
one entry, i.e., dg (2, z;) = 1. Recall that

w1 =VK(0;_1,D)K(D,D) 'L(D, z),
fi;_1 = VK0, 1,D)K(D,D)"'L(D,z)).

. B . . . B
gt = -1 min 1, ——— 5 Gy = fiy_1 -min ¢ 1, -—— 5.
el -1l

18
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It follows that the global sensitivity of the estimated gradient at time ¢ is

- . B - . B
lge = gull = |[per - min {1, ——— b — gy omin 1, 2
Thtea] =

. B ) . B
< ({[pemr -mind 1, —Z— Hl 4 || Ay -min § 1, ——
el (=l

< B+ B=2B.

Hence, by adding noise sampled from A (0,2(2B/e;)?log(1.25/6;)I,) at each iteration,
the gradient update is guaranteed to satisfy (e, d;)-LDP. Moreover, by the parallel com-

position property of DP, the cumulative output 6; produced by Algorithm satisfies
(max{eq,...,et}, max{dy,...,0:})-LDP.

Without loss of generality, we assume that the first iteration of Algorithm [l|satisfies (1, d7)-LDP.
Since the initial estimate éo is deterministic, it follows directly that él also satisfies (1, d1)-
LDP. At the second iteration, 65, depends on both the privatized output 6, and the disjoint sam-
ple zo. It follows from Proposition that the two-fold composed algorithm (éh 92) satis-
fies (max{e1,e2}, max{d1,d2})-LDP when the samples z; and z, are disjoint. Iteratively ap-
plying this argument, we conclude that after ¢ iterations the entire sequence of updates satisfies
(max{ey,..., e}, max{dy, ..., 8 })-LDP. By the post-processing property, both ; and its aver-
aged version 6, inherit the same privacy guarantees. O

Proof of Theorem Our proof builds upon the framework of [Koppel et al.|(2021)), which depends
on the Hellinger distance, but here we adapt the analysis to the Sliced Wasserstein distance. Let
pp, denote the posterior distribution at iteration ¢, where D; is a dictionary of size M;. When a
new sample 6, is incorporated at iteration ¢ + 1, the dictionary is augmented to Dyy1 = [Dy; 60y,
increasing its size to M; + 1. The stopping criterion for Algorithm [2]is violated whenever
i i < K. 7

P s RERL A @
Notice that (/) provides a lower bound on the approximation error 1y, +1 incurred by removing the
newly added point 6;. In particular, if a7, 1 < &, then the criterion in (7)) is satisfied, and the model
order remains unchanged. Consequently, 77,7, +1 can serve as a proxy forn; forall j = 1,..., M;+1.

For the case of the Sliced Wasserstein distance between multivariate Gaussian distributions, the
approximation error 7y, +1 depends only on the changes in the mean vector and covariance matrix
induced by incorporating the new sample. 6;. Specifically,

TNIMe+1 X (lu’t"rl‘Dt — MDDy, Et+1|Dt - EDt)7

where pi41|p, and X;11|p, denote the mean and covariance conditioned on the dictionary Dy,
respectively, and pp,, Xp, are the corresponding quantities without 6;.

Although there is no closed-form expression directly linking these mean and covariance differ-
ences to the Sliced Wasserstein distance, one can interpret the problem geometrically in terms of
the Hilbert subspace defined by the current dictionary, Hp, := span{ K (D; )}j\ﬁl In particular,
the approximation quality is governed by the distance between the kernel evaluation at the new point
K (6., ) and the subspace Hp,. Intuitively, if this distance is small, the new point contributes little
additional information and can be safely excluded without degrading the fidelity of the surrogate
model, thereby satisfying the compression criterion. The approximation quality is then determined
by the distance from the kernel evaluation at the new point to the current dictionary’s Hilbert sub-
space:
dist(K(Ot, s 'Hpt) = vrenﬂgllt HK(Bt, )= vTth(~)||H ,

where Hp, = span{K (D, )};”i’l denotes the subspace spanned by the kernel functions in the
current dictionary.

Therefore, if there exists some constant ¢ > 0 such that dist(K(6y,-), Hp,) < ¢, then there ex-
ists some x > 0 for which 17,41 < k. This ensures that the approximation error remains suffi-
ciently small, and hence the model order does not increase. Since 8 lies in a compact set and K
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is continuous, the range of the kernel embedding ¢(6) := K (6, -) is compact (Engel et al., 2004).
Consequently, the number of balls of radius ¢ required to cover ¢(8) is finite and determined by the
covering number of ¢(0) at scale ¢ (Anthony & Bartlett, 2009).

In particular, there exists a finite constant M °° such that, if M; = M, then dist(K (0;, ), Hp,) <
¢, and consequently 7a7,+1 < k. Therefore, M; < M for all . As shown by Engel et al.|(2004),
for a Lipschitz continuous Mercer kernel defined on a compact domain @ C RP, the covering number

satisfies
1 p
M<O () |
K
We have completed the proof of this theorem. O

Proof of Theorem Recall that

ét = ét—l — Nt (gt—l(ét—l) + wt)-
Define the shifted functions
Gi-1(A) = g1 (A +6%), §(A)=g(A+6), [(A)=f(A+6"),
which correspond to a change of variables centered at the true parameter 8*. We then have
Ay =Ar —nigi—1(0i-1) + nuwy
=A; - ntVf(Atq) +n{ V(A1) - §(At71)}
+0edG(Aim1) = Gem1(Avm1)} + mwy

= A1 — V(A1) + nebue + mebar + mwr,
where {1, = vf(At—l) - g(At—l), §ar = ﬁ(At—l) - Qt—1(At—1)~
Therefore,

1AE =l Aevl =20 (Ar1, V(A1) = 10— a1 — 1)

®)

- 2
+ 77t2 Vf(At,l) — &1t — ot — wy )

Notice that E[w;] = 0, the expectation of gradient estimate V f(6;_1) is g(6;_1), and g,_1(6;_1) —
g(6:_1) is a transformation of the martingale difference sequence VL(6;_1,z;) — Vf(0;_1). This
implies that

E [<At—1,€1t + 8ot + Wt>} =0.
Meanwhile, applying Lemma i) to the pair (8*,6,_1), we obtain

- “ JUN A~ A A
(VF(A—1), A1) > f(A1) + §||At—1\|§ > 5\\At—1||§-

Using the upper equations above, we obtain

R IO A A
E{2m (A1, V(A1) — &1 — & —wi)} > 5”&—1\\%- 9

Applying Lemma ii) to the pair (0*,9,5_1 , we obtain the gradient norm bound
IVF(Ai—D)|2 < ¢||Ai_1]2. In addition, Lemma and Lemma jointly provide explicit
upper bounds on the second moments of the stochastic error terms: F(||¢1:]]3) < ei(L +
pr) and  E(|€xl3) < 282

Using Young’s inequality, we then have
E{|IVf(Ai1) = &t — &ar — wil[3}
<AV F(Ar1) 3+ 4B Z) + 4B (| ) + 4B 3 (10)
<4C?|| A1 |12 + 8B? + 4ey (L + pr) + 32pB? /% log(1.25/6).
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Replacing the appropriate terms in (8) with (@) and (T0), we have
E(JA3) < (1= X+ )| As1 |15 + epni B /e log(1.25/8) + 4 (er (L + pr) + 2B).
Therefore, there exists some positive constant a,, depending on the dimension p such that
E(|Ad3) < (1= M+ apn?) | Av—a |13 + apni B2 /e* 10g(1.25/6) + 4ni (1 (L + pr) + 2B%),
Define tg = min{t : A > 2a12,77t, At > 8alogt}. Then, for any ¢ > ¢y and some constant
b, = O(ay), the equation simplifies to
E(IA) < (1 = Au/2) A1 3 + by B /e 10g(1.25/6) + 4 (e (L + pr) + 2B),
Note that exp(—tAn;/4) < exp(—Ant!=®/4) < ¢t72% < ¢ for t > 2tq. Therefore, using the
same arguments as in|Chen et al.| (2020), for ¢t > 2t,, we have
E(|Acl13) < exp(=tAne /4)El| A5 + 2bpm /2B 1og(1.25/8)/ (Ae®) + 8n7 o (1 (L + pr) + 2B7)
< exp(—te/4)(El|Any I3 + 2,7, B 0g(1.25/6)/ (Ae?)
+ 8Ny (c1 (L + pr) + 2B?)/X) + 2b,n(t/2)* B?log(1.25/5) /(Ae?)
+8n(t/2)"*(er (L + pr) + 2B%) /A
< exp(—tme/4){e(1 + [ Aoll3) + 26,10, B? 1og(1.25/5) /(Ae?)
+ 8Ny (c1 (L + pr) + 2B%) A} + 2b,n(t/2) " B?log(1.25/5)/(A\e?)
+8n(t/2)"*(er(L + pr) + 2B%) /A

< | Agll3 + ¢"bmB log(1.25/A) /(Ae) + (L + pr + 2B%)/A}.
O

Proof of Theoremd.3] Recall that 0, =6,_1—mn (gt,l(ét,l) + wy). By Assumption we have
F(6:) < f(B1-1) + (VF(0i-1),0, — 6,_1) + %Hét — 6,1
Thus, substituting the step sizes, we obtain

2
F(6:) < F(0r—1) — ne(VF(0r-1), gr—1(01—1) +wy) + %Hgt—l(ét—l) + wi|?

= [ (Or—1) = (T F(Or-1): ge1(81-1)) = 11 (VF(Bi-1). 1)
S (g2 (Bl + o+ 201 1(8,1), )
< f(9t—1) 1 (Vf(0r1),91-1(81-1) = V(O 1) + Vf(0:-1)) — me(V f(B:-1), 1)
4 S (g B+ 8pB2 /22 108(1.25/9) + 2{g11(6,1), )
< f(0i-1) =V F(01-1), 90-1(8:-1) = VF(r-1)) = mel|VF(Or-1)[1* = me(V f(Br-1), wr)
4 S (9B I? + 91 (Bir) — VFO )+ 2097 Brr). 0r(Br) — TFBio))
+ % (3052 /108(1.25/8) + 2(gu-1(Bu-1), 1))
< F(Or1) = TNVFOG )| + (Vg1 (81-1) = F(Br1), 1)

+ S (lge1(801) = VI )P + 898 = 0g(1.25/9)).

where the first inequality follows from (-smoothness and the last inequality holds due to 7, < %
The result is obtained by rearranging terms.

TNVFOr-1)|> < f(Bim1) = F(B:) +1e(g1-1(81-1) = VF(Br—1), 1)

4 S (lgp1(B12) = V1B )|? + 80B%/<2 1o5(1.25/0)).
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Summing the inequalities over ¢t = 1,...,T, we have

T T
STl V012 < 2(£(B0) — F(O7-1)) + > 204(ge-1(8—1) — V(1-1),wy)

t=1 t=1

T
+ Z 2477? (Hgt,l(ét,l) - vf(ét71)||2 + 16pB2/62 log(1.25/5))
t=1
T

< 2(f(80) = F(0*) + > 2m{gi-1(8:-1) — VF(Br-1), wi)

t=1

T
+ Z 2(n} (Hgt—l(ét_l) —Vf(6;-1)|? + 16pB? /& 10g(1.25/6)) )

t—1
(11)
Dividing both sides by Zle 7 yields
Yoy |V £ (6 Ol _ 2/ (60) — 1(67)) N St 2me{gi—1(8—1) — Vf(01—1),we)
Zt 17 a Zt:l Mt Z;[:l Mt
23:1 20n? (Hgt—l(ét—l) — Vf(6,-1)| + 16pB2 /&2 10g(1.25/§)>
+ oE .
Et:l Up

Note that F(w;) = 0, the expectation of gradient estimate V f (0t 1) is g(0t 1), and g¢—1 (ét,l) -
(0,5 1) is a transformation of the martingale difference sequence Vﬁ(@t 1,2t) — Vf(0;—1), im-
plying
E((ge-1(0-1) — V(B;-1),wr)) = 0.
Furthermore,
I9e-1(81-1) — VFOr—1)|1* < [|ge-1(81-1) — g(B—1)|> + [|9(Be—1) — V f(Be—1)]|?
<2B? + c1(L + pk).

Taking the expectation with respect to these terms and substituting into (T, we obtain

>t ME| V.S (0i— DI _ 2(/(80) — £(64))

Zt 1 B thl Uiz
. S, 2002 ((e1 (L + pr) + 2B?) 4 16pB2 /e2 log(1. 25/5))
Zt 1Mt
‘We then obtain
i BIVA0, ) < 2T
. S 202 (e (L + pr) + 2B2) + 16pB2 /&2 log(1. 25/5))
Zf 17t

Recall that n; = not~*. Following the integral bounding technique in |Garrigos & Gower| (2023)),
there exist constants ¢y and ¢z such thaty [ n, = oY, t7% < T and 3, 7? =
o Zthl t72 < ¢3. Therefore, the inequality simplifies to

min EHVf(ét )H2 < C/(f(éo) — f( )) + C((L +p/€) + Bz) +p32/€2 log(l 25/6)
1<t<T -1 - Tl-o
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E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide details of data generating processes and additional results in Section 5]

Example 5.1 (Continued). We evaluate the proposed algorithm and the competing methods under
linear, logistic and ReLLU regression models, respectively.

Linear regression. We sample 7' = 20000 i.i.d. data points {(z;,y;)}._, where the covariates are
drawn as x; ~ N(0,1I,), and the responses are generated according to

yt:w:0+5t7

with true parameter vector & = 1, and noise terms &; N (0,1). We employ the Huber loss
function p. with threshold ¢ = 1, and incorporate gradient sensitivity control to ensure stability.
The overall objective function is given by

T
1 . 2
L£(0) = T ch (yt — :BZO) - min (1, W) .
t=1

This reweighting scheme effectively bounds the influence of high-magnitude gradients, serving as a
form of implicit gradient clipping that enhances robustness during optimization.

Logistic regression. The feature vectors ; € R? are sampled independently from a standard
normal distribution, x; ~ N(0,1,). Binary labels y, € {—1,+1} are generated according to the

logistic model:
1

1 +exp(—x/0)’
where the true parameter vector @ = 1,, defines the underlying decision boundary. The learning

objective is defined via the binary cross-entropy loss, which measures the discrepancy between the
predicted probabilities and the true labels. Specifically, we minimize the following empirical risk:

P(yt:1|wt):

T
1 ) 2
£(0) = T > lyelog(pe) + (1 — ye) log(1 — py)] - min (L ||33t||2> ;
t=1
where, p; = P(y; = 1 | z;) represents the predicted probability of the positive class for sample t,
given by the sigmoid function applied to the linear combination of features and parameters.

ReLU regression. We generate synthetic data {(x, y;)}~_; according to the model:
y; = ReLU(z/ 9),

with true parameter vector 8 = 1,,. The objective is to minimize the squared loss, which quantifies
the discrepancy between the predicted values and the true responses. The empirical risk is thus
defined as:

T
1 . 2
t=1 .

This setup allows us to evaluate how effectively each method can handle nonlinear transformations
and non-continuous derivative functions, as introduced by the ReLU activation. By applying this
nonlinearity, we test the robustness of various algorithms in approximating complex, discontinuous
mappings while maintaining low prediction error.

Figure [5 presents additional results for p = 5. The first three columns of Figure [3] illustrate the
trajectory of the first-dimensional coefficient estimate (true value = 1) across iterations in the p = 5
setting. For the linear model, both LDP-BO and LDP-SGD closely track their non-private counter-
parts. In nonlinear models (logistic and ReLU), however, BO-based methods consistently outper-
form SGD-based approaches under all privacy regimes. The last column of Figure [5|reports MSE of
the parameter estimates, revealing that LDP-BO achieves consistently lower error and reduced vari-
ability compared to LDP-SGD in complex settings. Even under strong privacy constraints (¢ = 1),
LDP-BO exhibits faster convergence and attains accuracy on par with non-private BO and SGD.
These results underscore the modeling advantage of LDP-BO in handling nonlinear problems in
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Figure 5: Left figure represents evolution of the first-dimension coefficient estimate (true value = 1)
over iterations for linear, logistic, and ReLU models (rows) in Example [5.1] Columns correspond
to privacy budgets € = 2, ¢ ~ U(1,2), and ¢ = 1. Right figure represents boxplots of coefficient
MSEs across three models under different privacy budgets in Example @

moderate-dimensional (p = 5) scenarios, where it effectively mitigates the utility degradation often
associated with gradient-based private optimization.

The compression budget strikes a balance between prediction time and prediction accuracy. A
smaller compression budget retains more essential information, leading to improved results at the
cost of increased computational time. Figure [6] further illustrates the impact of different compres-
sion budgets (0.1 and 0.2) on the performance of linear, logistic, and ReLU regression models under
varying privacy budgets (¢ = 2, = U(1,2), and € = 1). Across all settings, a smaller compression
budget (0.1, represented by red lines) consistently leads to better performance compared to a larger
budget (0.2, represented by blue lines), as evidenced by faster convergence and higher final accu-
racy. This improvement is particularly pronounced in complex models such as logistic and ReLU
regression, where the underlying data structure is more nonlinear and intricate. In these cases, a
smaller compression budget helps preserve a greater amount of critical kernel information during
the Bayesian optimization process, which is essential for accurately modeling complex decision
boundaries. Therefore, tighter compression—achieved through a smaller budget—is especially ben-
eficial in complex models, as it enables the algorithm to retain more informative data points, leading
to more reliable and accurate parameter estimates. The results suggest that carefully controlling
the compression budget is crucial for balancing efficiency and utility, with more complex problems
generally requiring stricter (i.e., smaller) compression budgets to achieve optimal performance.

Example 5.2] (Continued). In this example, we perform LDP-BO with (e, ) = (1,0.2),x = 0.1
and B = 2. The following is a detailed description of the models, including the Sine function and
the Friedman function.

Sine function. We apply an exact Gaussian process regression model designed under privacy con-
straints. The model employs a constant mean function m(x) = 0 and a scaled radial basis function
(RBF) covariance kernel:

xr — iL'/ 2
K(QE’ 13/) = Ucz)utput eXp <_H2£2H> )

The kernel contains two trainable parameters: the length scale ¢, which controls the smoothness of
the function, and the output scale oqytput, Which modulates the amplitude of the output. The model
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Figure 6: Results of experiments with different compression budget, where dimension p = 5,
and privacy budget § = 0.2. Each row corresponds to a different model: linear regression,
logistic regression, and ReLU regression. Each column represents a different privacy budget
e =2,Unif(1,2),1, ordered from highest to lowest noise intensity.

is trained by minimizing the negative log marginal likelihood (NLL), which serves as our objective
function:

1+ 1 1
L(0) =—logp(y | z,0) = §yTKy Ly + 5 log |Ky| + 5 log(2m),

where K, = K + 02,1 denotes the noise-perturbed covariance matrix. This loss function natu-

rally balances data fit (first term) and model complexity (second term), providing a probabilistically
principled measure of model adequacy. We set o2, . = 1074

noise

We optimize the parameters in log space to ensure positivity and improve numerical stability. The
trainable parameter vector is thus 8 = (log ¢, log ooutput), making this a two-dimensional opti-
mization problem. The actual kernel parameters are recovered via exponentiation: ¢ = exp(log¥¢),
Toutput = €XP(log ooutput). This formulation enables efficient Bayesian optimization of the kernel
parameters while providing a tractable and interpretable objective for privacy-preserving parame-
ter optimization. The entire framework offers a rigorous foundation for adaptive, nonparametric
regression under DP constraints.

Friedman function. We propose an adaptive Gaussian process GP regression framework employing
automatic relevance determination (ARD) to handle multidimensional input spaces in sequential
learning scenarios. The model utilizes a constant mean function and a scaled radial basis function
(RBF) covariance kernel with ARD:

1~ (2 —))?
K(wv wl) = Ugutput €Xp _5 Z — )
Jj=1 J

where each input dimension p has its own trainable length scale ¢, allowing the model to automat-
ically learn the relevance of each feature. The output scale ooutput can be either optimized or fixed
to modulate function amplitude. In our simulations, we fixed it to 1.

The training objective minimizes the negative log marginal likelihood:
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1+ 1 1
L(0) =—logp(y | z,0) = §yTKy Yy + 5 log |Ky| + 5 log(2m),

where 8 = (log¢1,log/s, ..., log¢,) represents the p-dimensional hyperparameter vector opti-
mized in log space to ensure positivity and numerical stability. The ARD formulation enables au-
tomatic feature selection by assigning larger length scales to less relevant dimensions, effectively
suppressing their contribution to the covariance function.

This approach provides a principled probabilistic framework for high-dimensional regression, with
the optimization complexity scaling linearly with the input dimension p. The model maintains com-
putational tractability through exact inference while offering interpretable insights into feature rele-
vance through the learned length scales, making it particularly suitable for Bayesian optimization in
parameterized spaces.

Example (Continued). The data preprocessing pipeline starts with comprehensive cleaning to
enhance data robustness. We remove records with invalid fare amounts, such as negative values or
extreme outliers beyond predefined percentile thresholds, and handle missing values in key fields.
Following this, feature engineering is conducted to extract meaningful signals from the raw data.

Original features such as passenger_count are retained to account for the impact of group
travel on fare pricing. Spatial information is derived from the provided geographic coordinates:
pickup_longitude and pickup_latitude (indicating where the trip began), along with
dropoff_longitude and dropoff_latitude (marking the destination). From these, we
compute the Manhattan distance between pickup and drop-off points—a more accurate proxy for
actual travel distance in New York City’s grid-like street layout than Euclidean distance.

Temporal patterns are captured by extracting features from the pickup_patet ime field, including
the hour of the day and day of the week, which help model variations in demand, traffic congestion,
and surge pricing dynamics.

The final feature set combines cleaned original variables with these engineered spatial and temporal
features, forming the input for downstream regression models designed to accurately predict fare
amounts.

F THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we employed a large language model (LLM) to assist in the
polishing and refinement of the writing. The model was used exclusively for improving linguistic
expression, enhancing clarity, and ensuring consistency of terminology—tasks that contribute to
the overall readability and academic tone of the document. All technical content, mathematical
reasoning, and scientific conclusions remain entirely formulated by the authors. The use of LLM-
assisted editing did not alter the theoretical contributions or empirical results presented in this work.
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