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ABSTRACT

The increasing prevalence of streaming data and rising privacy concerns pose
significant challenges for traditional Bayesian optimization (BO), which is of-
ten ill-suited for real-time, privacy-aware learning. In this paper, we propose a
novel online locally differentially private BO framework that enables zero-order
optimization with rigorous privacy guarantees in dynamic environments. Specif-
ically, we develop a one-pass Gaussian process compression algorithm based on
the sliced Wasserstein distance, which effectively addresses the challenges of ker-
nel matrix scalability, memory efficiency, and numerical stability under streaming
updates. We further establish a systematic non-asymptotic convergence analysis
to characterize the privacy–utility trade-off of the proposed estimators. Exten-
sive experiments on both simulated and real-world datasets demonstrate that our
method consistently delivers accurate, stable, and privacy-preserving results with-
out sacrificing efficiency.

1 INTRODUCTION

Bayesian optimization (BO) (Močkus, 1974; Jones et al., 1998) is a sample-efficient framework
widely used for the global optimization of expensive, non-convex, or black-box functions, with
applications in hyperparameter tuning, robotics, and scientific discovery (Snoek et al., 2012;
Berkenkamp et al., 2023). In particular, BO iteratively selects query points using a probabilistic
surrogate model and balances exploration and exploitation through the predictive mean and uncer-
tainty, often achieving high-performance solutions with relatively few evaluations. To date, BO
has been extensively studied, leading to numerous methodological advances, including local de-
scent strategies (Müller et al., 2021; Nguyen et al., 2022), mixed-space optimization techniques
(Neiswanger et al., 2022), scalable acquisition via Monte Carlo methods (Balandat et al., 2020), and
extensions to iterative and bilevel problems (Fu et al., 2024), supported by theoretical analyses of
high-dimensional Gaussian processes (Hvarfner et al., 2024). Furthermore, practical robustness has
been enhanced through improved constraint handling (Nguyen et al., 2024), contextual uncertainty
modeling (Tay et al., 2024), and meta-learning strategies for rapid adaptation (Ravi & Beatson,
2019).

Building on this line of work, several methods have sought to accelerate convergence by incorporat-
ing gradient information via finite differences or kernel-based estimation (Wu et al., 2017; Eriksson
et al., 2019). For example, Müller et al. (2021) reformulated BO as an approximate gradient de-
scent procedure, a formulation later extended by the gradient information BO framework (Wu et al.,
2023), which reduces gradient uncertainty and guarantees convergence to low-gradient regions in
reproducing kernel Hilbert spaces (RKHS). More recently, Sopa et al. (2025) adapted these meth-
ods to tackle high-dimensional problems. Nonetheless, the aforementioned BO methods remain
predicated on static datasets and are not designed for streaming environments, thereby limiting their
applicability in dynamic and continually evolving settings.

Real-time systems, such as IoT edge devices, dynamic pricing platforms (e.g., Uber surge pricing),
and credit card fraud detection—produce large volumes of streaming data and require timely deci-
sions while protecting sensitive information (e.g., locations, transactions, personal attributes). This
motivation is reflected in our real-data analyses, including Uber price prediction and credit card fraud
detection. In such settings, privacy protection is essential: Uber trip records contain highly sensitive
location and behavioral data, and training models without privacy safeguards risks regulatory vio-
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lations and loss of user trust. At the same time, data arrive continuously at scales too large for full
storage, and models must be updated in near real time to remain accurate. Ignoring the streaming
nature of the data and relying solely on offline batch training leads to rapidly outdated models as
demand patterns or fraud strategies shift, resulting in degraded predictive performance. However,
traditional Bayesian optimization methods are ill-suited for these scenarios: their computational cost
grows as O(t3) with the number of observations t, making them infeasible for high-frequency, large-
scale data streams. They also assume access to a static dataset, rendering them incompatible with
online settings where data arrive continuously. In contrast, our online Bayesian optimization frame-
work under LDP is designed for streaming environments, provides per-iteration LDP guarantees,
and maintains real-time computational efficiency.

The growing demand for real-time decision-making in streaming data environments has elevated
online learning to a central paradigm, with stochastic gradient descent (SGD) serving as its pri-
mary optimization tool (Robbins & Monro, 1951; Bottou, 2010). Recent advances have extended
SGD beyond classical settings to a variety of estimation settings, including online learning (Su &
Zhu, 2023; Xie et al., 2025), contextual bandits (Ding et al., 2021), and high dimensional infer-
ence tasks (Han et al., 2024). Yet these methods remain rooted in the frequentist paradigm and rely
heavily on heuristic exploration, and depend on gradient access, which constrains data efficiency
and often results in slow convergence in complex, non-convex functions (Ruder, 2016). By con-
trast, BO does not require gradient information and provides a principled framework for balancing
exploration and exploitation, thereby enabling more sample-efficient optimization in such settings
(Jones et al., 1998). From a Bayesian standpoint, online learning has largely been investigated in
sequential decision-making contexts, such as hyperparameter tuning (Snoek et al., 2012), black-box
optimization (Frazier, 2018), and sequential hypothesis testing (She et al., 2021), but these meth-
ods typically emphasize decision efficiency over functional exploration and often lack expressive
input–output modeling beyond classification. Consequently, they are ill-suited for streaming en-
vironments, where adaptive and sample-efficient exploration of the response surface is essential,
highlighting the need for a scalable BO framework explicitly designed for online settings.

On the other hand, the increasing complexity and scale of data amplify the challenges of safeguard-
ing individual privacy and sustaining public trust, particularly in applications that involve sensitive
user information, such as financial transactions in banking or location data from mobile applica-
tions. Differential Privacy (DP) (Dwork, 2006; Dwork et al., 2014), one of the most widely adopted
frameworks for privacy-preserving data analysis, provides a rigorous guarantees the output of a com-
putation does not reveal sensitive information about any individual in the dataset. DP is typically
implemented under two models: central DP (CDP), where a trusted server injects noise into aggre-
gated data (Ponomareva et al., 2023), and local DP (LDP), where users privatize their data before
sharing, thereby removing the need for a trusted server (Duchi et al., 2018; Lowy & Razaviyayn,
2023; Duchi & Ruan, 2024). Although substantial advances in both paradigms, most existing meth-
ods continue to be developed within the frequentist framework.

Recently, increasing attention has been devoted to privacy-preserving estimation in BO under the
CDP framework. Early work by Heikkilä et al. (2017) proposed a distributed DP-Bayesian learn-
ing method that leverages secure multi-party aggregation and Gaussian mechanisms for efficient
privacy-preserving inference. Subsequently, Dimitrakakis et al. (2017) introduced a Bayesian DP
framework based on posterior sampling, establishing sensitivity bounds for arbitrary data metrics.
Building on this foundation, Triastcyn & Faltings (2020) incorporated distributional information to
provide more practical privacy guarantees, while Zhang & Zhang (2023) further advanced the line
of research by designing an exact and efficient DP Metropolis–Hastings algorithm. In parallel, Li
et al. (2023) investigated DP synthetic data generation using Bayesian networks and established
statistical accuracy guarantees for marginal-based methods. Makhija et al. (2024) developed a fed-
erated Bayesian learning framework that trains personalized models across clients with rigorous
DP guarantees, and Chew et al. (2025) introduced a risk-weighted pseudo-posterior distribution to
address imbalanced data in DP deep learning. More recently, Sopa et al. (2025) proposed a DP
gradient-informed BO method for high-dimensional problems with exponential convergence guar-
antees. Despite these advances, existing methods are primarily designed for batch learning and
typically assume a trusted data curator. To the best of our knowledge, no scalable and statistically
rigorous method has yet been developed for online BO under the LDP framework. This gap naturally
motivates the following fundamental question:
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Table 1: A comparison of recent results on differential privacy BO.

Reference Method DP Bayesian

Triastcyn & Faltings (2020) Offline CDP True
Zhang & Zhang (2023) Offline CDP True
Sopa et al. (2025) Offline CDP True
Duchi & Ruan (2024) Offline LDP False
Xie et al. (2025) Online LDP False
Proposed Online LDP True

Is it possible to develop an online, gradient-free, Bayesian optimization frame-
work that provides rigorous LDP guarantees without sacrificing statistical effi-
ciency?

The main goal of this paper is to address the question outlined above. To this end, we propose a
fully online LDP framework for real-time BO. Specifically, we introduce a novel one-pass, online,
gradient-free LDP-BO algorithm that integrates a Sliced Wasserstein Compression (SWC) strategy,
which enables efficient kernel compression to control memory growth while simultaneously en-
suring privacy-preserving learning in streaming data environments. An overview of the proposed
framework is provided in Figure 1. A comparative summary of our method against representative
recent works in differential privacy BO is provided in Table 1. For brevity, we include one exam-
ple from each category of related methods. The key contributions of this work are summarized as
follows:

Figure 1: Flowchart of the proposed online privacy-preserving Bayesian framework. Data is pro-
cessed sequentially, and privacy-preserving estimates are obtained using the LDP-BO algorithm.
During this process, the kernel dictionary is compressed via the sliced Wasserstein distance to con-
trol memory growth.

• Online LDP Bayesian estimation framework: Our framework provides rigorous per-
iteration LDP guarantees for BO in an online setting, thereby enabling privacy-preserving
real-time estimation and addressing a key limitation of existing methods that typically re-
quire access to the entire dataset in dynamic environments. By constructing a surrogate
model, we further develop a zeroth-order optimizer that eliminates the need for gradient
information, making the framework well-suited for complex objective functions with non-
differentiable points or discontinuities.

• Efficient compression algorithm: We propose an efficient compression algorithm based
on the Sliced Wasserstein distance to manage the kernel dictionary in streaming data envi-
ronments. The algorithm reduces memory overhead while preserving numerical stability,
and we establish that the kernel dictionary size remains uniformly bounded, ensuring effi-
cient BO without loss of model fidelity. Moreover, the proposed algorithm achieves O(1)
time and space complexity per iteration. By eliminating the need to store or re-access
historical data, our method avoids the O(t3) computational cost and O(t) memory require-
ments inherent standard BO and inducing point-based batch methods.

• Non-asymptotic analysis: We establish non-asymptotic convergence rates for our estima-
tor under decaying step sizes, addressing both strongly convex losses and the more general
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smooth (but not necessarily convex) losses. The rates depend explicitly on the sample size,
privacy budget, and BO compression error. Specifically, in the strongly convex setting, the
estimation error achieves the same order as that of SGD, whereas under smoothness alone
we provide guarantees of convergence to stationary points. Notably, our method achieves
SGD-like convergence behavior without requiring access to exact gradients at any stage of
the optimization process.

2 PROBLEM FORMULATION

In this paper, we consider an online learning framework in which independent and identically dis-
tributed (i.i.d.) observations {zi}ti=1 with t ≥ 1, arrive sequentially, where each zi = (x⊤

i , yi)
⊤

consists of a covariate vector xi ∈ Rp and a response yi ∈ R, jointly drawn from an underlying
distribution F . Specifically, we consider the following optimization problem:

θ⋆ = argminθ∈Θ

(
f(θ) := Ez∼Pz [L(θ, z)] =

∫
L(θ, z)dPz(z)

)
, (1)

where L(θ, z) denotes a pre-specified loss function with respect to θ and z is a random variable
from the distribution Pz.

We aim to estimate an unknown parameter θ⋆ from streaming data within the BO framework, where
observations are received sequentially over time. The BO framework adopts a Gaussian process
(GP) as a probabilistic surrogate model. By placing a GP prior with a twice-differentiable kernel
K, the objective function f can be efficiently approximated without explicit gradient computations.
Given a collection of points D = {θi}ti=1, the posterior distribution f | D ∼ GP(mD,KD) yields
closed-form estimates, while the gradient process ∇f | D (Müller et al., 2021)

∇f(θ) | D ∼ N
(
∇mD(θ),∇2KD(θ,θ)

)
, (2)

where
∇mD(θ) = ∇m(θ) +∇K(θ,D)K(D,D)−1(f(D)−m(D)),

∇2KD(θ,θ) = ∇2K(θ,θ)−∇K(θ,D)K(D,D)−1∇K(D,θ).
This procedure only depends on zeroth-order function evaluations, thereby eliminating the need for
explicit gradient calculations. Since the true distribution Pz is unknown, the expected risk f(θ) is
intractable and is instead approximated by the empirical loss L(θ, z) based on observed data. For
simplicity, we assume throughout this work that the prior mean function is zero, i.e., m(·) ≡ 0.

Unfortunately, the standard BO framework suffers from two major limitations: (1) it does not scale
to online learning, as the storage requirement for D grows unbounded as new data arrive sequentially,
and (2) it is vulnerable to privacy breaches because repeated data queries during the optimization
process may leak sensitive information, such as medical records (Liu et al., 2024) or consumer data
(Hard et al., 2018). (Additional preliminaries on LDP are provided in Appendix A.1) To address
these challenges, we propose GP-based BO framework to a privacy-preserving online setting that
achieves computationally efficient estimation with reduced time and space complexity, while simul-
taneously providing rigorous individual-level privacy guarantees.

3 METHODOLOGY

In this section, we propose the online locally privacy-preserving estimation within the BO frame-
work to the minimization problem (1).

3.1 ONLINE LOCALLY DIFFERENTIALLY PRIVATE BAYESIAN OPTIMIZATION

We first leverage BO to approximate the gradient of the underlying function defined in (1) through
the gradient of a surrogate model. In particular, at each iteration, the BO procedure selects query
points that minimize an acquisition function, thereby maximizing information gain in the optimiza-
tion process (see Wu et al. (2023) for further details). In line with Müller et al. (2021), this paper
adopts gradient information as the acquisition function, which is defined as

GI(ξ;D,θ) = Tr(∇2KD∪ξ(θ,θ)), (3)

4
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where ξ denotes a candidate point in the parameter space Θ. This strategy minimizes the trace of the
Hessian of the kernel, thereby reducing the uncertainty of gradient estimates. Furthermore, since the
kernel K is smooth and Θ is compact, the acquisition function GI(ξ;D,θ) is uniformly bounded
above by a constant L (Wu et al., 2023).

At each iteration, the candidate point ξ is obtained by optimizing GI(ξ;D,θ) and subsequently in-
corporated into the kernel dictionary D. In streaming settings with infinitely arriving data, however,
the kernel dictionary would grow unbounded as iterations proceed, which fundamentally limits the
applicability of BO in online learning. To overcome this issue, we propose a compression algorithm,
i.e., SWC, based on the sliced Wasserstein distance to efficiently compress D (see Section 3.2 for
details). This algorithm guarantees that the size of the kernel dictionary remains bounded indepen-
dently of t, while ensuring that the compressed probability distribution converges to the domain of
the true probability distribution.

Using the BO surrogate model, we then obtain the approximate gradient at iteration t as

∇̂Lt = µDt−1 = ∇K(θ̂t−1,Dt−1)K(Dt−1,Dt−1)
−1L(θ̂t−1, zt). (4)

This formulation enables iterative updates without requiring storage of historical raw data or direct
access to the gradient of the objective function. Upon receiving the t-th sample zt = (x⊤

t , yt)
⊤, the

parameter estimate is updated via

θ̂t = θ̂t−1 − ηt∇̂Lt,

where ηt denotes the step size at iteration t. Throughout the procedure, only the estimator θ̂t−1

and the kernel dictionary Dt−1 are required, thereby ensuring greater flexibility and substantially
reduced memory usage.

However, while the above procedure enables efficient online estimation, it does not inherently safe-
guard sensitive information. In streaming environments, where each newly arriving observation
may expose individual data, privacy protection is indispensable. Unlike traditional centralized ap-
proaches to DP (Sopa et al., 2025), which inject noise into the entire algorithm in a post-hoc manner,
our framework embeds privacy protection directly into each iteration. This design eliminates the re-
liance on a trusted data curator and achieves LDP by ensuring that data are privatized at the source
before any aggregation occurs. To enforce rigorous LDP guarantees, we first clip the approximate
gradient to a fixed bound B > 0, i.e.,

gt−1(θ̂t−1) = µDt−1 ·min

{
1,

B

∥µDt−1∥

}
,

and then perturb it with noise drawn from a suitable distribution to ensure privacy. Common choices
include Gaussian, Laplace, or more sophisticated mechanisms (Dwork et al., 2014; Dong et al.,
2022). In this work, we adopt the Gaussian mechanism primarily for illustrative purposes, owing
to its analytical simplicity. Nevertheless, our proposed framework is general and can be easily
extended to other noise distributions. Let ωt denote Gaussian noise with mean zero and covariance
matrix 2(2B/εt)

2 log(1.25/δt)Ip, where (εt, δt) is the privacy budget allocated to the t-th iteration.
The proposed private estimator is initialized at θ̂0 = θ̃0 = 0p and updated as

θ̂t = θ̂t−1 − ηt{gt−1(θ̂t−1) + wt}, θ̃t = {(t− 1)θ̃t−1 + θ̂t}/t. (5)

Notably, the optimization of the acquisition function, the SWC compression, and the posterior mean
evaluation depend only on the kernel K, the compressed dictionary Dt−2, and the previous pa-
rameter estimate θ̂t−1, making the proposed method well-suited to streaming environments. The
proposed LDP-BO procedure is summarized in Algorithm 1.

By the post-processing property A.4 of LDP, we establish the following privacy guarantee for Algo-
rithm 1.
Theorem 3.1. Given an initial estimate θ̂0 ∈ Rp, consider the iterates {θ̂t}t≥1 defined in Algorithm
1. Then the final output θ̃t satisfies (max{ε1, . . . , εt},max{δ1, . . . , δt})-LDP.

Theorem 3.1 guarantees that each update of the proposed LDP-BO algorithm satisfies
(max{ε1, . . . , εt},max{δ1, . . . , δt})-LDP by introducing Gaussian noise calibrated to the sensi-
tivity of the gradient. This mechanism safeguards the privacy of every individual sample at each

5
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Algorithm 1 Online Locally Differentially Private Bayesian Optimization Algorithm (LDP-BO).

1: Input: User-defined loss function L(·, z), a clipping bound B > 0, learning rates {ηt}t≥1,
privacy parameters {(εt, δt)}t≥1, and a compression budget κ > 0.

2: Initialize: Non–data-dependent parameters θ̂0 = θ̃0 = 0p, and evaluation set D−1 = ∅.
3: for t = 1, 2, . . . do
4: Collect a new data point zt = (x⊤

t , yt)
⊤.

5: Select the candidate point ξ = argminξ GI(ξ;Dt−2, θ̂t−1).
6: Update the compressed dictionary via SWC Algorithm 2 Dt−1 = SWC(Dt−2, ξ).
7: Evaluate the loss function at L(θ̂t−1, zt) at point zt.
8: Compute the posterior mean µDt−1

by (4).

9: Clip the gradient to obtain gt−1(θ̂t−1) = µDt−1 ·min
{
1, B

∥µDt−1
∥

}
.

10: Perform the noisy gradient descent step and update θ̂t and θ̃t by (5).
11: end for
12: Output: θ̃t.

iteration while eliminating the need to store raw data. The analysis for time-varying privacy parame-
ters (εt, δt) proceeds analogously to that of the constant-(ε, δ) case. Hence, for clarity of exposition,
we focus on a fixed privacy level (ε, δ) in the subsequent discussion.

3.2 SLICED WASSERSTEIN COMPRESSION

As discussed above, a major challenge in streaming data settings is the unbounded growth of the
kernel dictionary as new points are continuously arrived. To address this issue, we develop an
SWC strategy that controls the growth of the dictionary while preserving the statistical fidelity of
the surrogate model. Specifically, in Algorithm 1, whenever a candidate point ξ is selected by
(3), the posterior distribution ρD̃t

is updated according to (2), where D̃t = Dt−1 ∪ ξ. To ensure
computational efficiency, the enlarged dictionary D̃t is subsequently compressed using the Sliced
Wasserstein (SW) distance, which quantifies discrepancies between probability distributions through
their one-dimensional projections (see Bonneel et al. (2015) for details).

Our primary goal is to guarantee that the compressed dictionary Dt satisfies

SW2(ρDt
, ρD̃t

) < κ,

for a prescribed budget parameter κ, where ρ denotes the posterior density. We define the model
order Mt as the column dimension of the compressed kernel dictionary Dt. This compression step
ensures that Mt ≤ Mt−1 + 1, thereby keeping the dictionary size bounded over time. The detailed
SWC procedure is provided in Algorithm 2.

Algorithm 2 Sliced Wasserstein Compression (SWC).

1: Input: Previous dictionary Dt−1, new acquisition point ξ and a compression budget κ > 0.
2: Initialize: D̃t = Dt−1 ∪ ξ and index set I = {1, . . . , M̃t}.
3: while I ≠ ∅ do
4: for j ∈ I do
5: Compute Sliced Wasserstein distance ηj = SW2(ρD−j

, ρD̃t
).

6: end for
7: Identify index with minimal distance j∗ = argminj∈I ηj .
8: if ηj∗ > κ then break
9: else

10: I = I \ {j∗}, Dt = D̃I .
11: end if
12: end while
13: Output: Compressed dictionary Dt such that SW2(ρDt

, ρD̃t
) ≤ κ .

To ensure that the posterior distribution produced by Algorithm 2 converges to a stationary region,
we impose the following assumption.

6
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Assumption 3.2. For any c > 0, let ρt denote the true posterior density, and define the events:
ψt = {SW2(ρt, ρt−1) < c | Dt}, ψ̃t = {SW2(ρDt , ρDt−1) < c | Dt}. We assume that compression
does not increase the probability of divergence relative to the original model, i.e., P{ψt} ≥ P{ψ̃t}.

Assumption 3.2 is mild, as the likelihood of the true posterior is at least as large as that of the sparse
GP, a condition also adopted in Koppel et al. (2021). In our analysis, Assumption 3.2 serves as
the Bayesian analogue of the nonexpansiveness property of projection operators. This property is
essential for establishing an upper bound on the error introduced by kernel dictionary compression.

Theorem 3.3. For the compression process in Algorithm 2, the model order Mt of each posterior
ρDt

is uniformly bounded as

Mt ≤ O
(
1

κ

)p

for all t.

Theorem 3.3 establishes that, in the streaming setting, the kernel dictionary size in our BO frame-
work remains uniformly bounded, with dependence only on the compression budget κ and the input
dimension p. By operating directly on one-dimensional sample projections, the proposed method
circumvents explicit density estimation and thereby mitigates sensitivity to both ambient dimension-
ality and discretization errors (Kolouri et al., 2015).

4 THEORETICAL PROPERTIES

In this section, we investigate the finite-sample properties of the proposed estimator. Firstly, we
establish theoretical guarantees for the estimator produced by Algorithm 1 under the strongly convex
loss. In order to obtain the convergence property, we also need the following assumptions.

Assumption 4.1. There exists a B <∞ such that all t ≥ 1,θ ∈ Θ, we have ∥∇L(θ, zt)∥ ≤ B.

Assumption 4.2. For all t ≥ 1, L(:, zt) ∈ H = RKHS(K), where K is the kernel used in
Algorithm 1. Moreover, there exists a constant CX <∞ such that for all t, ∥L(:, zt)∥H ≤ CX

Assumption 4.3. Assume that the objective function f(θ) is differentiable, ζ-smoothness, and λ-
strongly convex, in the sense

(i) f(θ1)− f(θ2) ≤ ⟨∇f(θ2),θ1 − θ2⟩+
ζ

2
∥θ1 − θ2∥2, ∀θ1,θ2 ∈ Θ ⊆ Rp,

(ii) f(θ1)− f(θ2) ≥ ⟨∇f(θ2),θ1 − θ2⟩+
λ

2
∥θ1 − θ2∥2, ∀θ1,θ2 ∈ Θ ⊆ Rp.

Assumption 4.1 ensures that the sensitivity of the gradient is uniformly bounded, a condition fre-
quently imposed in LDP optimization to control the amount of noise required for privacy see, e.g.,
Song et al. (2013); Avella-Medina et al. (2023). In practice, this condition can be achieved using
Mallow weights (Avella-Medina et al., 2023). Assumption 4.2 requires the target function to lie
within the kernel-induced space, a condition that is commonly assumed in the literature on theoreti-
cal analyses of Bayesian optimization, enabling convergence and estimation bounds under standard
regularity conditions (Wu et al., 2023; Sopa et al., 2025). Assumption 4.3 imposes strong convexity
and smoothness on the loss function, which are standard conditions for the convergence analysis
of (stochastic) gradient optimization methods. Similar conditions can be found in Vaswani et al.
(2022); Zhu et al. (2023).

Recall that θ̂t is the estimate obtained at the t-th iteration of the proposed LDP-BP Algorithm 1
under (ε, δ)-LDP, while θ⋆ denotes the true parameter value. The theorem below provides a non-
asymptotic bound on the mean squared error of the estimate at iteration t.

Theorem 4.4 ((ε, δ)-LDP). Under Assumptions 4.1-4.3, there exist some positive constants ap and
cp that depends on the dimension p and define t0 = min{t : λ ≥ 2a2pηt, ληtt ≥ 8α log t}, such that
for t ≥ t0, ∆̂t = θ̂t − θ⋆ satisfies

E(∥∆̂t∥22) ≲ t−α{(ηcpB2 log(1.25/δ)/(λε2) + η(L+ pκ+ 2B2)/λ+ ∥∆̂0∥22},

when the step-size is chosen to be ηt = ηt−α with η > 0 and 1/2 < α < 1.
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Theorem 4.4 establishes that the mean squared error E(∥∆̂t∥22) converges at rate O(t−α) under
the step size ηt = ηt−α. The bound consists of three components: the privacy-induced noise term
B2 log(1.25/δ)/(λε2), the compression error L + pκ, and the error from the initial estimate. No-
tably, L can be made arbitrarily small by minimizing the acquisition function over p+1 points (Wu
et al., 2023). Furthermore, as the compression budget κ→ 0, the rate coincides with that of Xie et al.
(2025). Unlike their result, which requires a restrictive assumption on the conditional covariance of
gradient noise, our analysis avoids this condition, thereby providing broader applicability.

Although standard in stochastic approximation Chen et al. (2020); Sherman et al. (2021); Kovalev
& Gasnikov (2022), global strong convexity is unrealistic for BO, which often involves multimodal
objectives. Importantly, our theory is not confined to this setting. We have introduced significantly
weaker conditions (Assumptions B.3-B.5), requiring only smoothness, local strong convexity near
each global minimum, and a mild gap–distance condition. Under these assumptions, Corollary B.6
shows that the estimator θ̂t converges to the set of global minimizers Θopt at the same rate O(t−α),
as in the strongly convex case.

Although non-convexity rules out guarantees of global optimality, our analysis relies only on the
weaker assumption of ζ-smoothness, under which we establish convergence to an approximate sta-
tionary point. In non-convex settings with multiple local minima, convergence is typically analyzed
through gradient norms rather than parameter estimates (Garrigos & Gower, 2023).

Theorem 4.5. Under Assumption 4.1, 4.2 and 4.3 (i), there exist some positive constants c′, when
the step-size is chosen to be ηt = ηt−α with η > 0 and 1/2 < α < 1, it follows that for every t ≥ 1

min
1≤i≤t

E∥∇f(θ̂i)∥2 ≤ c′
(f(θ̂0)− f(θ⋆)) + ζ(L+ pκ+B2) + pB2/ε2 log(1.25/δ)

t1−α
.

Theorem 4.5 establishes an O(t−(1−α)) convergence rate of the gradient norm under a step size
ηt = ηt−α in ζ-smooth optimization without assuming strong convexity. With a fixed step size
and no privacy, the rate reduces to the classical O(t−1/2) result (Fang et al., 2023; Bu et al., 2023;
Wu et al., 2023). The weaker ζ-smoothness assumption still enables meaningful gradient-based
analysis, and by controlling the BO approximation error, our method achieves rates comparable
to classical non-convex optimization (Garrigos & Gower, 2023). Notably, our guarantees avoid
restrictive conditions such as fixing the Lipschitz constant to a specific value (e.g., 1), as required in
prior work (Béthune et al., 2023).

In contrast to Theorem 4.4, which relies on strong convexity to establish a convergence rate for pa-
rameter estimation, the lack of convexity precludes direct control over the parameter error, thereby
presenting a fundamental challenge. To address this, Theorem 4.5 leverages recursive moment
bounds on the gradients and averaging techniques, yielding a convergence rate in gradient norm and
guaranteeing convergence to an approximate stationary point. These findings align with existing lit-
erature (Stich, 2019; Garrigos & Gower, 2023): strong convexity enables rapid parameter recovery,
whereas the general analysis guarantees convergence to stationarity in non-convex settings.

5 EXPERIMENTS

We assess the finite-sample performance of our method on two synthetic datasets and one real-world
dataset, comparing it with LDP-SGD (Xie et al., 2025) in the parametric case and with a non-private
deep neural network (Schmidhuber, 2015) in the nonparametric case. We compare the estimates of
the coefficients based on 100 simulation replications. Details about the data generating process can
be found in Appendix D. It is important to highlight that traditional Bayesian optimization (BO)
methods are not suitable for streaming data and, as such, can only be effectively compared on small-
scale datasets. We discuss this issue in detail in Appendix E.1.

Example 5.1 (Parametric Models). We evaluate the proposed LDP-BO algorithm on synthetic data
under three regression settings: linear, logistic, and ReLU. We generate T = 20,000 i.i.d. samples
with features xt ∼ N(0, Ip) and true parameters θ = 1p, considering dimensions p ∈ 2, 5. The
compressed budget is set to κ ∈ 0.1, 0.2, and the privacy budget is either fixed at ε ∈ 1, 2 or
randomly drawn from U(1, 2) per iteration, with δ = 0.2. For comparison, we include LDP-SGD
(Xie et al., 2025), as well as non-private BO and SGD as benchmarks.
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Figure 2: Evolution of the first-dimension coefficient estimate (true value = 1) and MSEs over
iterations for linear, logistic, and ReLU models (rows) in Example 5.1. Columns correspond to
privacy budgets ε = 2, ε ∼ U(1, 2), and ε = 1, and Boxplots of coefficient MSEs.

The first three columns of Figure 2 shows the evolution of the average of the first-dimension co-
efficient estimate (true value = 1) over iterations. For simple models (linear), LDP-BO and LDP-
SGD closely track their non-private counterparts, while in more complex models (logistic, ReLU),
BO-based methods outperform SGD across all privacy levels. The last column of Figure 2 re-
ports Mean-Squared Errors (MSEs) of the estimates, calculated as MSE =

∑p
j=1 MSEj/p =∑p

j=1

∑t
i=1(θ̂i,j −θj)2/(tp), where LDP-BO consistently achieves lower error and variability than

LDP-SGD, especially in complex settings. Under strong privacy (ε = 1), LDP-BO converges faster
and attains accuracy comparable to non-private BO and SGD. These results highlight LDP-BO’s
modeling advantage in nonlinear problems, mitigating the utility loss common in gradient-based
methods. Results for p = 5, 20 and varying compression budgets, reported in Appendix D, are
similar.

Example 5.2 (Nonparametric Models). In this example, we evaluate our approach under nonpara-
metric settings using the Sine and Friedman functions. A Gaussian process regression model is
employed to estimate the unknown function, with kernel parameters optimized via our proposed
LDP-BO framework (see Appendix D for details). We compare its utility against a non-private deep
neural network (denoted as DNN) (Schmidhuber, 2015) trained incrementally with one data point
per iteration.

We generate T = 10,000 i.i.d. samples with features xt ∼ U(−1, 1). For the Sine function, yt =
sin(2πxt)+εt; for the Friedman function, yt = sin(πx1tx2t)+(x3t−0.5)2+x4t+x5t+εt, where
εt ∼ N (0, 0.12). We set the compression budget to κ = 0.1, the privacy budget to (ε, δ) = (1, 0.2)
and B = 2. We report the MSE of averaged estimators at sample sizes n = 2000, 5000, and 10000,
and provide function fitting plots at n = 10000 using 100 randomly generated test points.

Figure 3 presents the prediction errors (calculated as errort = t−1
t errort−1 + 1

t (yt − ŷt)
2 in the

online setting) and function fitting results for the proposed LDP-BO method and the DNN base-
line. The LDP-BO method consistently outperforms the non-private DNN, even under privacy con-
straints. The boxplots show that LDP-BO achieves lower variance and fewer outliers, indicating
greater stability and robustness across trials. The fitted curves further demonstrate that LDP-BO
closely tracks the true function, capturing both global trends and fine-scale structure—particularly
in high-value regions critical for optimization. In contrast, the DNN exhibits larger deviations and
unstable oscillations, reflecting weaker generalization and poorly calibrated uncertainty.
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Figure 3: Predcition errors and function fitting plots of the proposed LDP-BO and DNN methods in
Example 5.2.

Example 5.3 (Real Data Analysis). In this example, we apply LDP-SGD to real Uber Fares Dataset
1 and Credit Card Fraud Detection Dataset2. Uber Fares Dataset comprises approximately 21,000
historical trip records collected between 2014 and 2015 in New York City. The selected features
include distance, hour of day, day of week and passenger count; see Appendix D for full prepro-
cessing details. These predictors, which collectively capture spatial, temporal, and demand-related
determinants of Uber fare variations, have been similarly employed in prior studies (Khandelwal
et al., 2021; Silveira-Santos et al., 2023; Huynh et al., 2025). The response is chosen to be the fare.

Credit Card Fraud Detection Dataset comprises approximately 20,000 transaction records made in
September 2013. The dataset consists of transaction records where each transaction is represented
by PCA-transformed features. The top 5 principal components are selected to capture the most sig-
nificant variations in the data, which is a common practice in fraud detection studies (Bestami Yuksel
et al., 2020; Ogundile et al., 2024). The target variable is binary, indicating whether the transaction
is fraudulent or legitimate. Since the data is already in its principal component form, no further
preprocessing is required.

The Table 2 compares the performance of LDP-BO, DP-BO, and LDP-SGD under (ε, δ) = (1, 0.2)
on the Uber and Credit datasets at different sample sizes of 2000, 5000, 10000, and 20000. The re-
sults show that LDP-BO consistently outperforms LDP-SGD across all metrics, achieving lower pre-
diction error for Uber and higher accuracy for Credit. While the offline method (Sopa et al., 2025),
is only applied to the first 2000 samples due to its computational limitations, LDP-BO demonstrates
similar performance in smaller sample sizes. As the sample size increases, LDP-BO continues to
exhibit improved accuracy and stability, whereas offline methods face significant challenges and
cannot scale to larger datasets. This trend highlights the reduced estimation variance and enhanced
stability of LDP-BO, even under strict privacy constraints.

Table 2: Performance on Uber (average prediction error) and Credit (accuracy) for different methods
at various sample sizes.

Sample Size Uber Credit

LDP-BO DP-BO LDP-SGD LDP-BO DP-BO LDP-SGD

2000 5.471 5.129 17.412 0.941 0.944 0.913
5000 2.224 * 10.271 0.944 * 0.929
10000 1.409 * 3.252 0.951 * 0.940
20000 0.782 * 1.794 0.969 * 0.952

1https://www.kaggle.com/datasets/yasserh/uber-fares-dataset
2https://www.kaggle.com/mlg-ulb/creditcardfraud
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Mikko Heikkilä, Eemil Lagerspetz, Samuel Kaski, Kana Shimizu, Sasu Tarkoma, and Antti
Honkela. Differentially private bayesian learning on distributed data. Advances in Neural In-
formation Processing Systems, 30, 2017.

Tuyet Ngoc Thi Huynh, Huu Dat Bui, Tuyet Nam Thi Nguyen, and Tan Dat Trinh. Enhancing
prediction of ride-hailing fares using advanced deep learning techniques. New Trends in Computer
Sciences, 3(1):64–82, 2025.

Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs great in
high dimensions. In International Conference on Machine Learning, pp. 20793–20817, 2024.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the
ACM (JACM), 68(2):1–29, 2021.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

Kunal Khandelwal, Atharva Sawarkar, and Swati Hira. A novel approach for fare prediction using
machine learning techniques. International Journal of Next-Generation Computing, 12(5), 2021.

Soheil Kolouri, Se Rim Park, and Gustavo K Rohde. The radon cumulative distribution transform
and its application to image classification. IEEE Transactions on Image Processing, 25(2):920–
934, 2015.

Alec Koppel, Hrusikesha Pradhan, and Ketan Rajawat. Consistent online gaussian process regres-
sion without the sample complexity bottleneck. Statistics and Computing, 31(6):76, 2021.

Dmitry Kovalev and Alexander Gasnikov. The first optimal algorithm for smooth and strongly-
convex-strongly-concave minimax optimization. Advances in Neural Information Processing
Systems, 35:14691–14703, 2022.

Ximing Li, Chendi Wang, and Guang Cheng. Statistical theory of differentially private marginal-
based data synthesis algorithms. arXiv preprint arXiv:2301.08844, 2023.

Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan AK Suykens. Random features for kernel ap-
proximation: A survey on algorithms, theory, and beyond. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(10):7128–7148, 2021.

WeiKang Liu, Yanchun Zhang, Hong Yang, and Qinxue Meng. A survey on differential privacy for
medical data analysis. Annals of Data Science, 11(2):733–747, 2024.

Andrew Lowy and Meisam Razaviyayn. Private federated learning without a trusted server: Optimal
algorithms for convex losses. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Disha Makhija, Joydeep Ghosh, and Nhat Ho. A bayesian approach for personalized federated
learning in heterogeneous settings. Advances in Neural Information Processing Systems, 37:
102428–102455, 2024.
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A BACKGROUND ON LDP AND SLICED WASSERSTEIN DISTANCE

A.1 DIFFERENTIAL PRIVACY

In this section, we begin with the basic concepts and properties of Local Differential Privacy (LDP),
Rényi Differential Privacy (RDP) and Gaussian Differential Privacy (GDP). The intuition underlying
LDP is that a randomized algorithm produces outputs that are statistically similar, even when a single
individual’s information in the dataset is modified or removed, thereby ensuring the protection of
individual privacy. The formal definition of LDP is presented below.
Definition A.1. ((ε, δ)-LDP (Xiong et al., 2020)) Let X be the sample space for an individual data,
a randomized algorithm A : X → R is (ε, δ)-LDP if and only if for any pair of input single values
z, z′ ∈ X and for any S ⊆ R, the inequality below holds

P (A(z) ∈ S) ≤ eε · P (A(z′) ∈ S) + δ.

In contrast to CDP, LDP imposes a stricter requirement in which each individual perturbs their data
locally before submission. This design eliminates the need for a trusted data curator and is particu-
larly well suited to streaming environments, where data are continuously generated and transmitted.
To formalize the guarantee, we introduce the notion of sensitivity, which quantifies the maximum
change in an algorithm’s output resulting from the modification of a single data entry.
Definition A.2. For any deterministic function g : X → R and any pair of input single values
z, z′ ∈ X , the ℓp-sensitivity of g is defined as

∆p(g) = sup
z,z′∈X

∥g(z)− g(z′)∥p.

Among various LDP mechanisms, we introduce the following Gaussian mechanism for illustrative
purposes, as it facilitates clear exposition.
Definition A.3. (The Gaussian Mechanism (Dwork, 2006)) Let g : X → R be a deterministic
function with ∆2(g) < ∞. For w ∈ R with coordinates w1, w2, · · · , wp be i.i.d samples drawn
from N(0, 2(∆2(g)/ε)

2 log(1.25/δ)), g(z) +w is (ε, δ)-LDP.

The post-processing and parallel composition properties are fundamental to LDP, enabling complex
algorithms to be systematically constructed from simpler components.
Proposition A.4. (Post-processing Property for LDP (Xiong et al., 2020)) Let A be an (ε, δ)-LDP
algorithm and g be an arbitrary function which takes A(z) as input, then g(A(z)) is also (ε, δ)-
LDP.
Proposition A.5. (Parallel Composition for LDP (Xiong et al., 2020)) Suppose n mechanisms
{A1, . . . ,An} satisfy (εi, δi)-LDP, respectively, and are computed on disjoint subsets of data, then
a mechanism formed by (A1(z1), . . . ,An(zn) satisfies (max(εi),max(δi))-LDP.

As an alternative to standard LDP, RDP was introduced by Mironov (2017) as a generalization of
LDP based on Rényi divergence, providing a more structured and flexible framework for privacy
accounting. RDP quantifies privacy loss through the Rényi divergence of order q > 1 between the
output distributions of an algorithm on adjacent datasets. For two probability distributions P and Q,
the Rényi divergence of order q is defined as

Dq(P∥Q) =
1

q − 1
logEQ

{(
P

Q

)q−1
}
,

whenever the expectation exists. This divergence provides a smooth and fine-grained measure of
dissimilarity that depends on the order q, thereby enabling more precise tracking of cumulative
privacy loss under composition compared to the standard (ε, δ)-LDP framework. Formally, RDP is
defined as follows:
Definition A.6. (RDP, Mironov (2017)). Let A be a randomized algorithm, and let z and z′ be two
adjacent datasets. For any real number α > 1, the algorithm A satisfies (q, ε)-RDP if

Dq

(
A(z) ∥A(z′)

)
≤ ε,

where A(z) denotes the distribution of the output of A on data z.
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Building on this hypothesis testing framework, Dong et al. (2022) introduced GDP, a privacy no-
tion with a natural statistical interpretation: determining whether an individual’s data is included
in a dataset is at least as difficult as distinguishing between N(0, 1) and N(µ, 1) based on a single
observation, for some µ > 0. Formally, GDP is defined as follows:
Definition A.7. (GDP, Dong et al. (2022) Let A be a randomized algorithm.

1. A satisfies f -DP if, for any α-level test ofH0, the power function β(α) satisfies β(α) ≤ 1−f(α),
where f is convex, continuous, non-increasing, and f(α) ≤ 1− α for all α ∈ [0, 1].

2. A satisfies µ-GDP if it is f -DP with f(α) ≥ Φ(Φ−1(1 − α) − µ) for all α ∈ [0, 1], where Φ(·)
denotes the standard normal CDF.

A.2 SLICED WASSERSTEIN DISTANCE

Definition A.8. (Wasserstein Distance (Villani, 2021)) The Wasserstein distance Wp(u, ν) quanti-
fies the optimal transport cost between two probability distributions u and ν, defined as the minimal
expected cost required to redistribute mass from u to ν. For univariate distributions, it admits the
closed-form

Wp(u, ν) =

(∫
X

∣∣x− F−1
ν (Fu(x))

∣∣p du(x))1/p

=

(∫ 1

0

∣∣F−1
u (t)− F−1

ν (t)
∣∣p dt)1/p

,

where F (·) denotes the cumulative distribution function (CDF). In particular, if u = N(m1, σ
2
1)

and ν = N(m2, σ
2
2), are univariate Gaussian distributions, their 2-Wasserstein distance admits the

analytic form W2(u, ν) =
√
(m1 −m2)2 + (σ1 − σ2)2.

Definition A.9. (Sliced Wasserstein (SW) Distance (Bonneel et al., 2015)) The Sliced Wasserstein
distance generalizes the Wasserstein distance to higher dimensions via Radon transforms. Specifi-
cally, it projects multivariate distributions onto one-dimensional subspaces determined by directions
θ ∈ Sp−1, computes the Wasserstein distance between these projections, and then averages across
directions:

SWp(u, ν) =

(∫
θ∈Sp−1

W p
p (Ruθ,Rνθ) dθ

)1/p

.

In practice, the SW distance is typically approximated using Monte Carlo sampling over m random
directions: SWp(u, ν) ≈ {

∑m
l=1W

p
p (Ruθ,Rνθ) /m}1/p. For our experiments, we used a value of

m = 100.

B ADDITIONAL COROLLARIES

In this section, we additionally present two corollaries that provide non-asymptotic error bounds for
the LDP-BO algorithm under specific privacy definitions.
Corollary B.1 ( (q, ε)-RDP). Suppose the conditions of Theorem 4.4 hold. Under (q, ε)-Rényi
Differential Privacy (RDP), where noise ωt = B

√
q/(2ε) · N(0, Ip) is added at each iteration in

Algorithm 1, the expected estimation error satisfies

E(∥∆̂t∥22) ≲ t−α{(ηcpB2q/(2λε) + η(L+ pκ+ 2B2)/λ+ ∥∆̂0∥22}.
Corollary B.2 (µ-GDP). Suppose the conditions of Theorem 4.4 hold. Under µ-Gaussian Differen-
tial Privacy (GDP), where noise ωt =

2B
µ ·N(0, Ip) is added at each iteration in Algorithm 1, the

expected estimation error satisfies

E(∥∆̂t∥22) ≲ t−α{(ηcpB2/(λµ2) + η(L+ pκ+ 2B2)/λ+ ∥∆̂0∥22}.

Corollaries B.1–B.2 present the expected estimation error under two specific privacy definitions,
(q, ε)-RDP and µ-GDP. The bounds follow the same structure as Theorem 4.5, with identical sec-
ond and third components, while the first component varies by privacy definition. Specifically,
Corollary B.1 shows that (α, ε)-Rényi DP improves the bound from O

(
t−α ·B2 log(1/δ)/(λε2)

)
to O

(
t−α ·B2α/(λε)

)
, whereas Corollary B.2 demonstrates that µ-Gaussian DP yields a bound of

order O
(
t−α ·B2/(λµ2)

)
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Furthermore, Theorem 4.5 is stated under the global strong convexity Assumption 4.3. The same
convergence rate, however, can be established under a local strong convexity condition in a neigh-
borhood of the optimum, using standard localization arguments. Hence, in what follows we replace
global strong convexity with the following weaker local curvature assumption. In this setting, the
optimal point need not be unique; we denote the set of optimal points by Θopt. We begin by stating
the conditions required for our analysis.
Assumption B.3. There exists positive constants Cs and Chl such that for any θ1,θ2 ∈ Θ,

∥∇f(θ1)−∇f(θ2)∥ ≤ Cs∥θ1 − θ2∥,
∥∇2f(θ1)−∇2f(θ2)∥ ≤ Chl∥θ1 − θ2∥.

There exists λ̃min > 0 such that for any θopt ∈ Θopt, λmin(∇2f(Θopt)) ≥ λ̃min.

Smoothness assumptions on the gradient and Hessian are standard in the optimization literature;
see, e.g., Jin et al. (2021); Vlaski & Sayed (2021). The local strong convexity condition ensures
that every local minimum is a strong attractor. In particular, by the second part of B.3 there exists a
constant rLgood > 0 such that for any θopt ∈ Θopt,

λmin

(
∇2f(θ)

)
≥ λ̃min

2 , ∀ ∥θ − θopt∥ ≤ rLgood.

Moreover, we assume that optimal points are separated at this scale, i.e., ∥θ − θ′∥ > rLgood for any
θ,θ′ ∈ Θopt.
Assumption B.4. Θopt is a countable set. There exists a positive constantCtf and a positive integer
βtf such that for any θ ∈ Θ,θopt ∈ Θopt,

∥θ − θopt∥2 ≤ Ctf

(
1 +

(
f(θ)− fmin

)βtf
)
.

Assumption B.5. We define rgood ≜
rLgood

9 ,

Rgood(θ
opt) ≜ {θ : ∥θ − θopt∥ ≤ rgood}, RL

good(θ
opt) ≜ {θ : ∥θ − θopt∥ ≤ rLgood}.

We let Rgood ≜
⋃

θopt∈Θopt Rgood(θ
opt). There exist positive constant b0 and λ̃ such that for any

θ ∈ Θ, if ∥∇f(θ)∥ ≤ b0 and λmin(∇2f(θ)) > −λ̃, then θ ∈ Rgood.

Assumption B.4 allows us to use the objective function value to bound the error. Intuitively, it
ensures that the objective function landscape resembles a basin, preventing significant deviations in
the path (Zhong et al., 2023). Under Assumption B.5, we ensure that all saddle points are escapable,
which holds if all saddle points are strict and finite, as is often the case in practice Ge et al. (2015);
Sun et al. (2015).
Corollary B.6. Suppose that Assumptions 4.1-4.2 and Assumptions B.3-B.5 hold. The step size
parameter α satisfies that 1

2 < α < 1. Then for any θopt ∈ Θopt, we have(
∥θ̂t − θopt∥21

{
lim
k→∞

θ̂k = θopt
})

= O(t−α).

Corollary B.6 establishes that, under non-convexity, the convergence rate of the estimated param-
eters θ̂t to the optimal solution θopt follows the same rate as in Theorem 4.4 for global strong
convexity, i.e., O(t−α). This result holds for any θopt ∈ Θopt, the set of optimal solutions, and
demonstrates that local strong convexity is sufficient to guarantee the same convergence rate typi-
cally associated with global strong convexity. However, due to the shift from global to local strong
convexity, there is no longer a unique global optimum; instead, the set Θopt may contain multi-
ple optimal solutions (Zhong et al., 2023). Despite this, the algorithm still converges to a solution
within this set at the same rate, showing that the convergence behavior is maintained.Corollary B.6
establishes that, under non-convexity, the convergence rate of the estimated parameters θ̂t to the
optimal solution θopt follows the same rate as in Theorem 4.4 for global strong convexity, i.e.,
O(t−α). This result holds for any θopt ∈ Θopt, the set of optimal solutions, and demonstrates that
local strong convexity is sufficient to guarantee the same convergence rate typically associated with
global strong convexity. However, due to the shift from global strong convexity to nonconvexity,
there is no longer a unique global optimum; instead, the set Θopt may contain multiple optimal
solutions (Zhong et al., 2023). Despite this, the algorithm still converges to a solution within this set
at the same rate, showing that the convergence behavior is maintained.
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C SUPPORTING LEMMAS

Lemma C.1. Let ρ0 be the corresponding true population posterior distribution. Suppose the fol-
lowing conditions hold:

i. For any measurable subset A ⊆ [0, 1]p with Lebesgue measure λ(A) ≥ (Kpt)
−1, where Kp ∈

(0, 1] is a constant, A contains at least one sample point θt.

ii. For all t ≥ 1, the kernel matrix is positive definite Kt ≻ 0.

iii. The covariance kernel is translation-invariant, taking the form K(θ,θ′) = K(β∥θ − θ′∥) for
some scale parameter β > 0.

iv. There exist constants δ ∈ (0, 1/2) and b1, b2 > 0 such that for all t ≥ 1, PΠ

(
β > tδ

)
< b1e

−b2t,
where PΠ denotes the probability under the Gaussian prior Π for β.

Then, the posterior distribution without compression ρt is asymptotically consistent, i.e. for every
c > 0,

P (SW2(ρt, ρ0) < c | Dt) → 1 (a.s.).

Proof of Lemma C.1. The results of this lemma are well established, with detailed proofs provided
in Theorem 6 of Choi & Schervish (2007).

Lemma C.2. Assuming the regularity conditions specified in Lemma C.1, which guarantee the well-
behaved geometry of the target distribution, Algorithm 2 achieves κ-approximate convergence under
the SW metric. Specifically, for any c > 0

lim
t→∞

P
{
SW2(ρDt

, ρDt−1
) < c+ κ | Dt

}
= 1.

Proof of Lemma C.2. Using triangle inequality, we obtain

SW2(ρDt
, ρDt−1

) ≤ SW2(ρDt
, ρD̃t

) + SW2(ρD̃t
, ρDt−1

),

The first term corresponds exactly to the stopping criterion in Algorithm 2, and is therefore bounded
above by κ. Consequently, following the argument of Koppel et al. (2021), we have the following
containment relationship for any c′ > 0:

{SW2(ρDt
, ρDt−1

) < c′} ⊂ {SW2(ρDt
, ρD̃t

) + SW2(ρD̃t
, ρDt−1

) < c′}
⊂ {SW2(ρD̃t

, ρDt−1) + κ < c′}.

Taking prior probability with respect to Π, it follows that

PΠ{SW2(ρDt
, ρDt−1

) < c′} ≤ PΠ{SW2(ρDt
, ρD̃t

) + SW2(ρD̃t
, ρDt−1) < c′}

≤ PΠ{SW2(ρD̃t
, ρDt−1) + κ < c′}

≤ PΠ{SW2(ρD̃t
, ρDt−1

) < c′ − κ}

By Assumption 3.2, which states that PΠ{ψt} ≥ PΠ{ψ̃t}, we have

PΠ{SW2(ρD̃t
, ρDt−1) < c′ − κ} ≤ PΠ{SW2(ρt, ρt−1) < c′ − κ}

By Lemma C.1 the supremum of the probability of the right-hand side of tends 1 as t → ∞ for
c = c′ − κ > 0. Therefore

lim
t→∞

supPΠ{SW2(ρDt , ρDt−1) < c′} = 1.

Exploiting the continuity of both the GP posterior and the SW metric, we conclude that the above
limit exists. Substituting c′ = c+ κ, Lemma C.2 follows.

Lemma C.3. For a vector v ∈ Rp, define the projection operator ΠB(v) = v ·min{1, B
∥v∥}, which

projects v onto the Euclidean ball BB(0) of radius B centered at the origin. Under Assumption 4.1,
we have, ∀t ≥ 1,

∥ΠB (µDt)−∇L(θt, zt)∥ ≤ ∥µDt −∇L(θt, zt)∥ .
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Proof of Lemma C.3. Notice that ΠB(x) = argminx′∈BB(0) ∥x − x′∥, that is, ΠB(x) is the Eu-
clidean projection of x onto the ball BB(0). Now, let y ∈ BB(0). Since BB(0) is convex, for any
0 < η < 1, the convex combination z := ηy + (1 − η)ΠB(x) = ΠB(x) + η(y − ΠB(x)), also
belongs to BB(0), i.e., z ∈ BB(0).

We then obtain

∥x−ΠB(x)∥2 ≤ ∥x− z∥2 = ∥x−ΠB(x)− η(y −ΠB(x))∥2

= ∥x−ΠB(x)∥2 + η2∥y −ΠB(x)∥2 − 2η⟨x−ΠB(x), y −ΠB(x)⟩,
(6)

where the inequality follows from the definition of ΠB(x) as the closest point in BB(0) to x. Thus,
we have

⟨x−ΠB(x),ΠB(x)− y⟩+ η

2
∥y −ΠB(x)∥2 ≥ 0.

As 0 < η < 1 is arbitrary, we obtain

⟨x−ΠB(x),ΠB(x)− y⟩ = lim
η→0+

⟨x−ΠB(x),ΠB(x)− y⟩+ η

2
∥y −ΠB(x)∥2 ≥ 0

for all y ∈ BB(0). Using inequality (6), we can further derive the following bound:

∥µDt
−∇L(θt, zt)∥2 = ∥µDt

−ΠB(µDt
) + ΠB(µDt

)−∇L(θt, zt)∥2

= ∥µDt
−ΠB(µDt

)∥2 + ∥ΠB(µDt
)−∇L(θt, zt)∥2

+ 2 ⟨µDt
−ΠB(µDt

),ΠB(µDt
)−∇L(θt, zt)⟩

≥ ∥ΠB(µDt
)−∇L(θt, zt)∥2 ,

where the final inequality follows from the fact that both the first and last terms on the right-hand
side of (6) are nonnegative, since by Assumption 4.1 we have ∇L(θt, zt) ∈ BB(0).

Lemma C.4. Assume Assumption 4.1 and Assumption 4.2 hold. let θ ∈ Θ and let D denote a set
containing points θ. Denote g(θt) = ΠB(∇K(θt,Dt)K(Dt,Dt)

−1f(θt)). Then, there exists some
constant c1 > 0 such that

∥∇f(θt)− g(θt)∥2 ≤ c1(L+ pκ).

Proof of Lemma C.4. Combining Assumption 4.2 with Lemma C.3 of Wu et al. (2023), we obtain

∥∇f(θt)−g(θt)∥2 ≤ ∥∇f(θt)−∇K(θt,Dt)K(Dt,Dt)
−1f(θt, zt)∥2 ≤ CXTr(∇2KDt

(θt,θt)),

Since Dt is obtained by compressing D̃t = Dt−1 ∪ ξ, we then have

SW2(ρDt
, ρD̃t

) ≤ κ.

Using the expression of the Sliced Wasserstein distance for multivariate normal distributions, it
follows that

SW2
2(ρDt

, ρD̃t
)

= Eθ∼U(Sp−1)

[
(θ⊤(µt+1|Dt

− µt+1|D̃t
))2 +

(√
θ⊤Σt+1|Dt

θ −
√
θ⊤Σt+1|D̃t

θ

)2
]

≤ κ2.

This implies Eθ∼U(Sp−1){(
√
θ⊤Σt+1|Dt

θ −
√
θ⊤Σt+1|D̃t

θ)2} ≤ κ2. Notice that θ is the projec-

tion on the unit sphere. We then have Eθ∼U(Sp−1)

[
θ⊤Σθ

]
= 1

p tr(Σ). Therefore, we obtain

tr(Σt+1|Dt
)− tr(Σt+1|D̃t

) = p · Eθ∼U(Sp−1)

[
θ⊤Σt+1|Dt

θ − θ⊤Σt+1|D̃t

]
.

Hence,

θ⊤(Σt+1|Dt
−Σt+1|D̃t

)θ =

(√
θ⊤Σt+1|Dt

θ +
√

θ⊤Σt+1|D̃t
θ

)(√
θ⊤Σt+1|Dt

θ −
√
θ⊤Σt+1|D̃t

θ

)
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Without loss of generality, assume the operator (spectral) norms of
√
θ⊤Σt+1|Dt

θ and√
θ⊤Σt+1|D̃t

θ are uniformly bounded by C. We then have

θ⊤(Σt+1|Dt
− Σt+1|D̃t

)θ ≤ 2C

(√
θ⊤Σt+1|Dt

θ −
√
θ⊤Σt+1|D̃t

θ

)
Therefore, we obtain

tr(Σt+1|Dt
)− tr(Σt+1|D̃t

) ≤ 2Cpκ.

As established in the discussion of BO (Wu et al., 2023), there exists some constant L > 0 such that

tr(Σt+1|D̃t
) = tr(∇2KD∪z(θ,θ)) ≤ L.

Consequently, we obtain that, for some constant c1 > 0,

∥∇L(θt, zt)− µDt
∥2 ≤ c1(L+ pκ).

Lemma C.5. Let gt(θt) be defined as in Algorithm 1. Under Assumptions 4.1 and 4.2, there exists
some constant c1 > 0 such that

∥gt(θt)− g(θt)∥2 ≤ 2B2.

Proof of Lemma C.5. Using Lemma C.3, the effect of the projection operator ΠB can be removed
from the analysis. Consequently, we obtain

∥gt(θt)− g(θt)∥2 =
∥∥ΠB (µDt

(zt))−ΠB(∇K(θt,Dt)K(Dt,Dt)
−1f(θt))

∥∥2
≤ ∥ΠB (µDt

(zt))∥2 +
∥∥ΠB(∇K(θt,Dt)K(Dt,Dt)

−1f(θt))
∥∥2

≤ B2 +B2

≤ 2B2.

Lemma C.6. (1) Suppose that f : Rp → R is a λ-strongly convex function, we have

⟨∇f(θ1)−∇f(θ2),θ1 − θ2⟩ ≥ λ∥θ1 − θ2∥22, ∀θ1,θ2 ∈ Rp,

and if f is twice-differentiable, then ∇2f(θ) ⪰ λI, ∀θ ∈ Rp.

(2) Suppose that f : Rp → R is a convex and ζ-smooth function, we have for any θ1,θ2 ∈ Rp,

∥∇f(θ1)−∇f(θ2)∥22 ≤ ζ⟨∇f(θ1)−∇f(θ2),θ1 − θ2⟩,

and
∥∇f(θ1)−∇f(θ2)∥2 ≤ ζ∥θ1 − θ2∥2.

If f is twice-differentiable, then ∇2f(θ) ⪯ ζI, ∀θ ∈ Rp.

Proof of Lemma C.6. The results of this lemma are standard and can be found in the convex opti-
mization literature; see, for example, Boyd & Vandenberghe (2004) for detailed proofs.
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS

In this subsection, we provide details of data generating processes and additional results in Section
5.

Example 5.1 (Continued). We evaluate the proposed algorithm and the competing methods under
linear, logistic and ReLU regression models, respectively.

Linear regression. We sample T = 20000 i.i.d. data points {(xt, yt)}Tt=1, where the covariates are
drawn as xt ∼ N(0, Ip), and the responses are generated according to

yt = x⊤
t θ + εt,

with true parameter vector θ = 1p and noise terms εt
i.i.d.∼ N(0, 1). We employ the Huber loss

function ρc with threshold c = 1, and incorporate gradient sensitivity control to ensure stability.
The overall objective function is given by

L(θ) = 1

T

T∑
t=1

ρc
(
yt − x⊤

t θ
)
·min

(
1,

2

∥xt∥2

)
.

This reweighting scheme effectively bounds the influence of high-magnitude gradients, serving as a
form of implicit gradient clipping that enhances robustness during optimization.

Logistic regression. The feature vectors xt ∈ Rd are sampled independently from a standard
normal distribution, xt ∼ N(0, Ip). Binary labels yt ∈ {−1,+1} are generated according to the
logistic model:

P (yt = 1 | xt) =
1

1 + exp(−x⊤
t θ)

,

where the true parameter vector θ = 1p defines the underlying decision boundary. The learning
objective is defined via the binary cross-entropy loss, which measures the discrepancy between the
predicted probabilities and the true labels. Specifically, we minimize the following empirical risk:

L(θ) = − 1

T

T∑
t=1

[yt log(pt) + (1− yt) log(1− pt)] ·min

(
1,

2

∥xt∥2

)
,

where, pt = P (yt = 1 | xt) represents the predicted probability of the positive class for sample t,
given by the sigmoid function applied to the linear combination of features and parameters.

ReLU regression. We generate synthetic data {(xt, yt)}Tt=1 according to the model:

yt = ReLU(x⊤
t θ),

with true parameter vector θ = 1p. The objective is to minimize the squared loss, which quantifies
the discrepancy between the predicted values and the true responses. The empirical risk is thus
defined as:

L(θ) = 1

T

T∑
t=1

ρc
(
yt − ReLU(x⊤

t θ)
)
·min

(
1,

2

∥xt∥2

)
.

This setup allows us to evaluate how effectively each method can handle nonlinear transformations
and non-continuous derivative functions, as introduced by the ReLU activation. By applying this
nonlinearity, we test the robustness of various algorithms in approximating complex, discontinuous
mappings while maintaining low prediction error.

Figure 4 presents additional results for p = 5. The first three columns of Figure 4 illustrate the
trajectory of the first-dimensional coefficient estimate (true value = 1) across iterations in the p = 5
setting. For the linear model, both LDP-BO and LDP-SGD closely track their non-private counter-
parts. In nonlinear models (logistic and ReLU), however, BO-based methods consistently outper-
form SGD-based approaches under all privacy regimes. The last column of Figure 4 reports MSE of
the parameter estimates, revealing that LDP-BO achieves consistently lower error and reduced vari-
ability compared to LDP-SGD in complex settings. Even under strong privacy constraints (ε = 1),
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LDP-BO exhibits faster convergence and attains accuracy on par with non-private BO and SGD.
These results underscore the modeling advantage of LDP-BO in handling nonlinear problems in
moderate-dimensional (p = 5) scenarios, where it effectively mitigates the utility degradation often
associated with gradient-based private optimization.

Figure 4: Left figure represents evolution of the first-dimension coefficient estimate (true value = 1)
over iterations for linear, logistic, and ReLU models (rows) in Example 5.1. Columns correspond
to privacy budgets ε = 2, ε ∼ U(1, 2), and ε = 1. Right figure represents boxplots of coefficient
MSEs across three models under different privacy budgets in Example 5.1.

In addition, to assess performance in a moderate-dimensional scenario, we extended Example 5.1
to include experiments with covariate dimension p = 20. As shown in Table 3, LDP-BO con-
tinues to exhibit strong estimation and prediction accuracy. The conclusions mirror those in the
low-dimensional setting: for a fixed privacy budget, LDP-BO consistently matches or outperforms
LDP-SGD across linear, logit, and ReLU regression models.

Table 4 compares the runtime (in minutes) between LDP-BO and LDP-SGD across different mod-
els and dimensions, based on 50 replications. As expected, LDP-BO consistently takes more time
than LDP-SGD due to the inherent exploration process of Bayesian Optimization, which is un-
avoidable. However, the results clearly show that LDP-BO significantly outperforms LDP-SGD,
particularly in more complex models (Logit and ReLU). This demonstrates the trade-off between
time and performance, where LDP-BO sacrifices some computational efficiency for much better
results in challenging settings.

The compression budget strikes a balance between prediction time and prediction accuracy. A
smaller compression budget retains more essential information, leading to improved results at the
cost of increased computational time. Figure 5 further illustrates the impact of different compres-
sion budgets (0.1 and 0.2) on the performance of linear, logistic, and ReLU regression models under
varying privacy budgets (ε = 2, ε = U(1, 2), and ε = 1). Across all settings, a smaller compression
budget (0.1, represented by red lines) consistently leads to better performance compared to a larger
budget (0.2, represented by blue lines), as evidenced by faster convergence and higher final accu-
racy. This improvement is particularly pronounced in complex models such as logistic and ReLU
regression, where the underlying data structure is more nonlinear and intricate. In these cases, a
smaller compression budget helps preserve a greater amount of critical kernel information during
the Bayesian optimization process, which is essential for accurately modeling complex decision
boundaries. Therefore, tighter compression—achieved through a smaller budget—is especially ben-
eficial in complex models, as it enables the algorithm to retain more informative data points, leading
to more reliable and accurate parameter estimates. The results suggest that carefully controlling
the compression budget is crucial for balancing efficiency and utility, with more complex problems
generally requiring stricter (i.e., smaller) compression budgets to achieve optimal performance.
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Table 3: MSE (×10−3) of LDP-BO and LDP-SGD for linear, logit and ReLU regression with p = 20
under different privacy levels. Means (standard deviations) are computed over 50 repetitions.

Model Privacy level t LDP-BO LDP-SGD

Linear

No DP

5,000 8.79 (3.08) 12.56 (5.65)
10,000 2.78 (0.97) 3.97 (1.79)
15,000 1.29 (0.45) 1.84 (0.83)
20,000 0.73 (0.26) 1.05 (0.47)

ε = 2

5,000 19.75 (6.91) 28.21 (12.69)
10,000 9.37 (3.28) 13.39 (6.03)
15,000 5.06 (1.77) 7.23 (3.25)
20,000 3.04 (1.06) 4.35 (1.96)

Logit

No DP

5,000 4.35 (1.52) 6.22 (2.80)
10,000 1.17 (0.41) 1.67 (0.75)
15,000 0.52 (0.18) 0.745 (0.34)
20,000 0.29 (0.10) 0.418 (0.19)

ε = 2

5,000 31.56 (11.05) 57.39 (25.83)
10,000 24.99 (8.75) 45.44 (20.45)
15,000 21.07 (7.37) 38.31 (17.24)
20,000 18.33 (6.42) 33.33 (15.00)

ReLU

No DP

5,000 4.40 (1.54) 6.28 (2.83)
10,000 1.20 (0.42) 1.71 (0.77)
15,000 0.54 (0.19) 0.77 (0.35)
20,000 0.30 (0.10) 0.43 (0.19)

ε = 2

5,000 28.86 (10.10) 52.48 (23.62)
10,000 21.26 (7.44) 38.66 (17.40)
15,000 16.92 (5.92) 30.77 (13.85)
20,000 13.18 (4.61) 23.97 (10.79)

Table 4: Runtime comparison (in minutes) between LDP-BO and LDP-SGD for different models
and dimensions over 50 replications.

Model Linear Logit ReLU

LDP-BO LDP-SGD LDP-BO LDP-SGD LDP-BO LDP-SGD

p = 2 29.58 0.78 31.78 0.84 32.33 0.80
p = 5 75.55 1.45 138.92 1.73 144.08 1.51
p = 20 92.78 3.12 145.42 3.85 148.52 3.20
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Figure 5: Results of experiments with different compression budget, where dimension p = 5,
and privacy budget δ = 0.2. Each row corresponds to a different model: linear regression,
logistic regression, and ReLU regression. Each column represents a different privacy budget
ε = 2, Unif(1, 2), 1, ordered from highest to lowest noise intensity.

Example 5.2 (Continued). In this example, we perform LDP-BO with (ε, δ) = (1, 0.2), κ = 0.1
and B = 2. The following is a detailed description of the models, including the Sine function and
the Friedman function.

Sine function. We apply an exact Gaussian process regression model designed under privacy con-
straints. The model employs a constant mean function m(x) = 0 and a scaled radial basis function
(RBF) covariance kernel:

K(x,x′) = σ2
output exp

(
−∥x− x′∥2

2ℓ2

)
,

The kernel contains two trainable parameters: the length scale ℓ, which controls the smoothness of
the function, and the output scale σoutput, which modulates the amplitude of the output. The model
is trained by minimizing the negative log marginal likelihood (NLL), which serves as our objective
function:

L(θ) = − log p(y | x,θ) = 1

2
y⊤K−1

y y +
1

2
log |Ky|+

1

2
log(2π),

where Ky = K + σ2
noiseI denotes the noise-perturbed covariance matrix. This loss function natu-

rally balances data fit (first term) and model complexity (second term), providing a probabilistically
principled measure of model adequacy. We set σ2

noise = 10−4.

We optimize the parameters in log space to ensure positivity and improve numerical stability. The
trainable parameter vector is thus θ = (log ℓ, log σoutput), making this a two-dimensional opti-
mization problem. The actual kernel parameters are recovered via exponentiation: ℓ = exp(log ℓ),
σoutput = exp(log σoutput). This formulation enables efficient Bayesian optimization of the kernel
parameters while providing a tractable and interpretable objective for privacy-preserving parame-
ter optimization. The entire framework offers a rigorous foundation for adaptive, nonparametric
regression under DP constraints.

Friedman function. We propose an adaptive Gaussian process GP regression framework employing
automatic relevance determination (ARD) to handle multidimensional input spaces in sequential
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learning scenarios. The model utilizes a constant mean function and a scaled radial basis function
(RBF) covariance kernel with ARD:

K(x,x′) = σ2
output exp

−1

2

p∑
j=1

(xj − x′j)
2

ℓ2j

 ,

where each input dimension p has its own trainable length scale ℓj , allowing the model to automat-
ically learn the relevance of each feature. The output scale σoutput can be either optimized or fixed
to modulate function amplitude. In our simulations, we fixed it to 1.

The training objective minimizes the negative log marginal likelihood:

L(θ) = − log p(y | x,θ) = 1

2
y⊤K−1

y y +
1

2
log |Ky|+

1

2
log(2π),

where θ = (log ℓ1, log ℓ2, . . . , log ℓp) represents the p-dimensional hyperparameter vector opti-
mized in log space to ensure positivity and numerical stability. The ARD formulation enables au-
tomatic feature selection by assigning larger length scales to less relevant dimensions, effectively
suppressing their contribution to the covariance function.

This approach provides a principled probabilistic framework for high-dimensional regression, with
the optimization complexity scaling linearly with the input dimension p. The model maintains com-
putational tractability through exact inference while offering interpretable insights into feature rele-
vance through the learned length scales, making it particularly suitable for Bayesian optimization in
parameterized spaces.

We included cumulative regret evaluations for the Sine and Friedman test functions from Example
5.2. Unlike the earlier parameter-estimation examples, this analysis focuses on predictive perfor-
mance. As shown in Table 5, LDP-BO attains substantially lower cumulative regret than the DNN-
based baseline on both benchmarks. This demonstrates that, under the same privacy constraints,
our method is much more sample-efficient and can identify high-reward regions of the search space
significantly faster than the competing approach, highlighting its effectiveness in prediction tasks.

Table 5: Cumulative regret on the Sine and Friedman functions.

Method Sine Friedman

LDP-BO 207.873 1270.889
DNN-based baseline 622.921 2275.447

Example 5.3 (Continued). The Uber Fares Dataset preprocessing pipeline starts with comprehen-
sive cleaning to enhance data robustness. We remove records with invalid fare amounts, such as
negative values or extreme outliers beyond predefined percentile thresholds, and handle missing
values in key fields. Following this, feature engineering is conducted to extract meaningful signals
from the raw data.

Original features such as passenger count are retained to account for the impact of group
travel on fare pricing. Spatial information is derived from the provided geographic coordinates:
pickup longitude and pickup latitude (indicating where the trip began), along with
dropoff longitude and dropoff latitude (marking the destination). From these, we
compute the Manhattan distance between pickup and drop-off points—a more accurate proxy for
actual travel distance in New York City’s grid-like street layout than Euclidean distance.

Temporal patterns are captured by extracting features from the pickup patetime field, including
the hour of the day and day of the week, which help model variations in demand, traffic congestion,
and surge pricing dynamics.

The final feature set combines cleaned original variables with these engineered spatial and temporal
features, forming the input for downstream regression models designed to accurately predict fare
amounts. We adopt a Gaussian regression framework with a 4-dimensional parameter space for
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possible complex relationships. Among privacy-preserving methods, LDP-SGD applied to a linear
model is the only one supporting both LDP and online parameter estimation; thus, we use it as a
baseline for comparing prediction error across methods.

Figure 6 compares the performance of LDP-BO and LDP-SGD under (ε, δ) = (1, 0.2) across sample
sizes of 5000, 10000, and 20000 in terms of the prediction error. It show that LDP-BO consistently
outperforms LDP-SGD across all metrics, achieving lower prediction error and exhibiting narrower
interquartile ranges as sample size increases. This trend indicates reduced estimation variance and
improved stability for LDP-BO.

Figure 6: Fare prediction errors of LDP-BO and LDP-SGD in Example 5.3.

Credit Card Fraud Detection Dataset comprises approximately 20,000 transaction records made in
September 2013. We construct a Logistic Regression model using PCA-transformed features from
the dataset. Since the data is already in its principal component form, no additional preprocessing
is required. We use the top 5 principal components to capture the most significant variations in the
data, following common practice in fraud detection studies (Bestami Yuksel et al., 2020; Ogundile
et al., 2024). The target variable is whether the transaction is fraudulent (1) or legitimate (0).

The table 6 presents the results of an ablation study on the choice of κ for the Uber regression task
and the Credit classification task. For the Uber dataset, the average prediction error is reported,
while for the Credit dataset, we report the classification accuracy. As κ increases, we observe that
the performance for Uber degrades, with a notable increase in average prediction error, particularly
for κ = 0.5. On the other hand, for the Credit dataset, accuracy decreases as κ increases, with a
sharp drop for κ = 0.5.

Given the trade-off between performance and computational time, we choose κ = 0.1 as a reason-
able compromise. This value provides a good balance between accuracy and efficiency, as demon-
strated by its results, which are relatively close to the best-performing configurations for both tasks.
We therefore use κ = 0.1 for comparisons with other methods in the main body of the text.

Table 6: Ablation on κ for the Uber regression task and the Credit classification task. For Uber we
report average prediction error, for Credit we report accuracy.

κ Uber Credit

0.05 0.711 0.971
0.10 0.782 0.969
0.20 1.243 0.958
0.50 3.745 0.921

D.2 ABLATIONS

we have added comprehensive ablation and sensitivity studies. Specifically, we conduct these ex-
periments on the linear regression model from Example 5.1, where the response is generated as
yt = x⊤

t θ
⋆ + εt. We systematically vary three key parameters of our proposed LDP-BO proce-

dure and evaluate their effect on the MSE: the privacy budget ε ∈ [0.5, 10], the initial step size
γ0 ∈ [0.1, 2] in the schedule ηt = γ0t

−α, and the compression threshold κ ∈ [0.01, 0.5]. Table 7
reports the results for different choices of these tuning parameters. In each experiment, a single
parameter is varied while the remaining parameters are fixed at their default values.

The findings indicate the following:
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• Privacy budget ε: increasing ε weakens privacy protection and consequently improves es-
timation accuracy;

• Initial step size γ0: the proposed method is robust to the choice of initial step size over a
broad range;

• Compression threshold κ: κ induces a clear trade-off between estimation quality and run-
time, with smaller values leading to faster execution but slightly reduced accuracy.

Table 7: Ablation study on ε, γ0 and compression parameter κ. Reported values are MSE (×10−3)
averaged over 50 repetitions; computation time for different values of κ is given in minutes.

Privacy Budget ε Initial Step Size γ0 Compression Parameter κ

ε MSE (×10−3) γ0 MSE (×10−3) κ Time (minutes) MSE (×10−3)

0.5 18.10 0.1 8.61 0.01 318.7 1.41
1 3.46 0.2 1.83 0.05 165.3 1.59

U(1, 2) 2.73 0.3 2.01 0.10 33.0 1.88
2 1.81 0.5 2.41 0.20 29.2 4.50
5 1.65 1 9.63 0.50 18.8 16.30

2 20.10

In practice, κ reflects the trade-off between computational efficiency and predictive accuracy. A
simple approach is to perform cross-validation on a small held-out prefix of the data stream over
a short grid of κ values, and select the largest κ that maintains acceptable prediction error. This
procedure is fast and avoids extensive hyperparameter searches.

D.3 NON-STATIONARY STREAMING DATA

We have added experimental studies for non-stationary settings, focusing on parameter drift in the
linear model of Example 5.1. These experiments use privacy parameters ((ε, δ) = (2, 0.2)) and a
compression budget of κ = 0.1 in T = 20000 samples. Following (Barber et al., 2023), we consider
two types of non-stationarity:

• Case 1: Abrupt regime shifts. The regression coefficient θ switches among three fixed
vectors over successive time segments:

θ(1) = (1, 2, 1, 0, 0), θ(2) = (0,−1,−2,−1, 0), θ(3) = (0, 0, 1, 2, 1),

with θt = θ(1)I(1 ≤ t ≤ T/3) + θ(2)I(T/3 < t ≤ 2T/3) + θ(3)I(2T/3 < t ≤ T ).

• Case 2: Smooth concept drift. The regression coefficient evolves linearly from

θstart = (1, 2, 1, 0, 0), θend = (0, 0, 1, 2, 1),

according to θt = (1− αt)θstart + αt θend, αt = (t− 1)/(T − 1).

Table ?? shows that LDP-BO consistently outperforms LDP-SGD in both cases, achieving lower
prediction error and more stable performance under the same (ε, δ)-LDP budget, and approaching
the performance of the non-private baseline. The suboptimal result at 15,000 samples in Case 1
corresponds to the regime shift around 13,000 samples; with larger sample sizes, LDP-BO converges
more rapidly than LDP-SGD.

Similar to (Barber et al., 2023), we generate data via xt ∼ N (0, I5) and yt = x⊤
t θt + εt for

t = 1, . . . , T = 20,000, where θt ∈ R5 and εt ∼ N (0, 1) is Gaussian noise. We consider the
following two scenarios:

1. Abrupt regime shifts: We consider T = 20,000 observations and define three fixed coef-
ficient vectors

θ(1) = (1, 2, 1, 0, 0), θ(2) = (0,−1,−2,−1, 0), θ(3) = (0, 0, 1, 2, 1).
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The time horizon {1, . . . , T} is equally divided into three segments, and we set

θt =


θ(1), 1 ≤ t ≤ T/3,

θ(2), T/3 < t ≤ 2T/3,

θ(3), 2T/3 < t ≤ T.

In other words, with T = 20,000, abrupt regime shifts occur at the two equally spaced
change points t = T/3 and t = 2T/3.

2. Smooth concept drift: We let θt evolve linearly over time:

θt = (1− αt)θstart + αtθend, αt =
t− 1

T − 1
,

where θstart = (1, 2, 1, 0, 0) and θend = (0, 0, 1, 2, 1).

Table 8 presents the MSE (×10−2) of LDP-BO and LDP-SGD across two cases, where (ϵ, δ) =
(2, 0.2) and κ = 0.1. In Case 1, LDP-BO consistently outperforms LDP-SGD, particularly as the
sample size increases. The performance gap becomes more significant in Case 2, where the data ex-
hibits more complexity. LDP-BO remains more robust and accurate in handling non-stationary data,
demonstrating superior performance over LDP-SGD even as the sample size grows. This highlights
the advantage of LDP-BO in adapting to evolving data streams, where changes or fluctuations in the
data are more pronounced.

Table 8: MSE (×10−2) of LDP-BO and LDP-SGD in Case 1 and Case 2 under different privacy
levels. Means (standard deviations) are computed over 50 repetitions.

Case Privacy level t LDP-BO LDP-SGD

Case 1

No DP

5,000 1.11 (0.58) 1.59 (0.72)
10,000 0.60 (0.31) 0.86 (0.39)
15,000 0.93 (0.48) 1.33 (0.60)
20,000 1.08 (0.56) 1.55 (0.70)

ε = 2

5,000 1.48 (0.76) 2.11 (0.95)
10,000 1.20 (0.62) 1.71 (0.77)
15,000 55.44 (28.51) 79.20 (35.64)
20,000 3.42 (1.76) 4.88 (2.20)

Case 2

No DP

5,000 3.29 (1.70) 4.70 (2.12)
10,000 1.72 (0.89) 2.46 (1.11)
15,000 1.54 (0.79) 2.20 (0.99)
20,000 1.59 (0.82) 2.27 (1.02)

ε = 2

5,000 6.10 (3.14) 8.72 (3.92)
10,000 3.33 (1.71) 4.76 (2.14)
15,000 3.94 (2.02) 5.63 (2.53)
20,000 5.83 (3.00) 8.33 (3.75)

D.4 COMPARISON OF KERNEL MATRIX APPROXIMATION METHODS

We have compared SWC with two widely used kernel matrix approximation methods: random
feature truncation (Liu et al., 2021) and Nyström approximation (Abedsoltan et al., 2024). Random
Feature Truncation selects a fixed-dimensional subset of features by a low-dimensional random
feature space. Nyström approximation selects a set of reference points approximate to the kernel
matrix. We apply all three kernel approximation methods to the three models in Example 5.1 (linear,
logistic, and ReLU regression), using exactly the same parameter settings as in that example, see
Pages 30-31. To isolate the effect of approximation, no privacy noise is added. All methods are
evaluated on prediction error and kernel computation time. For fairness, the baselines use a fixed
feature budget of Mt = 128 while SWC adaptively selects its effective order Mt via data-driven
pruning based on the threshold κ. As reported in Table 9, SWC achieves lower prediction error
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with fewer components (Mt < 128) and competitive kernel computation time. Unlike fixed-budget
methods, SWC maintains per-iteration efficiency independent of t, remaining tractable in large-scale
online settings while preserving strong estimation performance.

Table 9: Comparison of SWC with random feature truncation and Nyström approximation over 50
repetitions.

Model Metric SWC Random Nyström

linear
MSE (×10−3) 2.21 81.9 2.83
Mt 31 128 128
Time/s 5.8× 10−3 2.5× 10−5 1.6× 10−2

ReLU
MSE (×10−3) 1.58 13.9 3.05
Mt 44 128 128
Time/s 7.3× 10−3 2.4× 10−5 1.9× 10−2

Logit
MSE (×10−3) 4.27 41.8 6.73
Mt 61 128 128
Time/s 9.6× 10−3 2.5× 10−5 2.1× 10−2

We further evaluate the variation of the kernel matrix order (Mt) over 50 simulations for different
models (Linear, Logit, and ReLU) using the Sliced Wasserstein Compression (SWC) method. As
shown in the figure, the kernel matrix order does not grow to the upper bound. Instead, it primarily
depends on the model complexity: the more complex the model, the higher the matrix order. How-
ever, even in more complex models such as Logit and ReLU,Mt remains significantly lower than the
upper bound, demonstrating that SWC adapts to the data distribution and efficiently compresses the
kernel matrix without excessive increase in order. This behavior highlights SWC’s ability to man-
age computational complexity effectively while preserving model accuracy, making it well-suited
for dynamic and non-stationary data scenarios where model complexity can vary.

Figure 7: Variation of kernel matrix order (Mt) over 50 simulations for different models.

D.5 MORE PRIVACY MECHANISMS

Our framework is compatible with standard DP mechanisms—Gaussian, Laplace, GDP Dong et al.
(2022), RDP (Mironov, 2017), etc., as long as the noise scale is calibrated using the derived sensitiv-
ity. We further provides a clearer and unified description of calibration across mechanisms. We have
compared four mechanisms: direct (ε, δ)-DP calibration, GDP, RDP, and Laplace, under the same
privacy budget (ε, δ) = (2, 0.2), converting each to an equivalent (ε, δ)-guarantee for linear model
of Example 5.1. Table 10 reports empirical performance. Results show that our conclusions are
robust across mechanisms, with GDP calibration yielding the strongest predictive accuracy under
matched privacy guarantees.
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Table 10: MSE (×10−3) with standard deviations for various privacy mechanisms evaluated at
different sample sizes.

5000 10000 15000 20000
(ε, δ)-DP 6.05 (1.10) 1.62 (0.35) 0.976 (0.21) 0.513 (0.12)
ε-DP 6.80 (1.25) 1.85 (0.40) 1.10 (0.25) 0.600 (0.14)
µ-GDP 3.81 (0.75) 1.34 (0.28) 0.66 (0.14) 0.34 (0.08)
RDP 4.46 (0.85) 1.46 (0.30) 0.77 (0.16) 0.46 (0.11)

E DISCUSSIONS

E.1 COMPUTATIONAL COMPLEXITY OF SWC

At online step t, let the current (uncompressed) dictionary be D̃t with size M̃t = |D̃t| = |Dt−1|+1.
Algorithm 2 iteratively removes points from D̃t until the sliced Wasserstein distance between the
compressed dictionary Dt and D̃t exceeds the budget κ. In each iteration, SWC computes ηj =
SW2(ρD−j

, ρD̃t
) for all j in the current index set I and removes the index with minimal distance.

Hence, in the worst case the algorithm evaluates at most 1 + 2 + · · · + M̃t = O(M̃2
t ) sliced

Wasserstein distances. A single sliced Wasserstein distance computed with L random projections in
Rp has cost

CSW(M̃t) = O
(
L(M̃t log M̃t + pM̃t)

)
,

following standard implementations of sliced Wasserstein metrics (e.g., Rabin et al. (2011); Bonneel
et al. (2015)). Therefore the total cost of SWC at step t is

O
(
M̃2

t CSW(M̃t)
)
= O

(
LM̃3

t log M̃t + LpM̃3
t

)
.

Crucially, Theorem 3.3 shows that, for fixed compression budget κ and dimension p, the dictionary
size M̃t is uniformly bounded for all t. As a consequence, the per-iteration complexity of SWC is
O(1) with respect to the time index t. In practice, the values of M̃t observed in our experiments
lie in a moderate range, so the M̃2

t factor remains small and the resulting runtime is far below that
of traditional GP-based BO, whose memory and time costs grow at least as O(t2) with the number
of observations. If the complexity remains too high, one possible approach to further reduce it is
to use low-rank updates, which we consider as a potential strategy for future work to optimize the
complexity.

Computational time. We compare the computational efficiency of different methods on a desktop
computer equipped with a 3.00 GHz Intel Core i7-9700 CPU and 8GB RAM. Computational times
are recorded for sample sizes ranging from n = 200 to n = 2000.

Figure 8 shows the computational time versus sample size for three methods: our proposed LDP-
BO, the offline method Sopa et al. (2025), and the online method without SWC. As the sample size
increases, LDP-BO demonstrates nearly constant computational time, reflecting its linear complex-
ity O(t). In contrast, both Offline and Without SWC methods show cubic growth, indicating O(t3)
complexity. The MSE comparison in Table 11 demonstrates that our LDP-BO method, even with
compression (SWC), incurs only a minimal loss in accuracy, further confirming the effectiveness of
our approach in balancing both runtime and performance.

Table 11: Comparison of MSE for different sample sizes n over 50 repetitions.

Method Sample Size n

200 500 1000 1500 2000

LDP-BO 0.120 (0.020) 0.090 (0.015) 0.075 (0.010) 0.060 (0.008) 0.055 (0.007)
No SWC 0.110 (0.020) 0.080 (0.014) 0.068 (0.009) 0.055 (0.007) 0.052 (0.006)
Offline 0.090 (0.015) 0.055 (0.010) 0.045 (0.008) 0.043 (0.007) 0.041 (0.006)
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Figure 8: Change in computation times of our proposed LDP-BO and baselines (Offline and LDP-
BO without SWC) as sample size increases from 200 to 2000 in Example 5.1 (Linear Model) over
50 repetitions.

E.2 CLIPPING V.S. MALLOW’S WEIGHTING

In practice, we employ Mallow’s weights rather than gradient clipping to ensure boundedness.
Mallow-type weighting directly adjusts the loss rather than truncating the estimating equation. For
example, in the linear regression setting, the empirical loss is

L(θ,xt, yt) = ρc
(
yt − x⊤

t θ
)
min

(
1,

2

∥xt∥2

)
,

where ρc(·) is a Huber-type loss and min(1, 2/∥xt∥2) is a Mallows-type weight that caps the in-
fluence of large covariate values. It preserves consistency and asymptotic unbiasedness even under
noise or privacy constraints. In contrast, gradient clipping alters the estimating equation itself and
typically introduces a non-vanishing bias that depends on the clipping threshold.

Prior work by Avella-Medina et al. (2023) and Xie et al. (2025) has shown that Mallow-type weight-
ing yields consistent estimators under privacy, whereas clipping may lead to biased or unstable es-
timates. To illustrate this in our setting, we replicate Example 5.1 with a logistic regression model
under Mallow weighting ω(x) = min(1, 2/∥x∥2) and under cliping bound

√
2. This setting en-

sures that both methods have the same sensitivity. Table 12 shows that Mallow weighting retains
tight concentration around the true value (1.0) across all privacy levels, while clipping consistently
produces upward-biased estimates.

Table 12: Mean (standard deviation) of the estimated value under the logistic model across 50
replications.

Method No DP ε = 2 ε ∈ [1, 2] ε = 1

Mallow weights 1.00 (0.02) 0.99 (0.05) 1.02 (0.06) 0.98 (0.08)
Clipping 1.15 (0.02) 1.18 (0.05) 1.20 (0.07) 1.19 (0.08)

E.3 EMPIRICAL VERIFICATION ASSUMPTION 3.2

Assumption 3.2 is a mild assumption, relying on a consistency property formalized in Lemma C.1.
This consistency and non-expansive projection assumption is standard in the online Gaussian pro-
cess regression and nonparametric Bayesian regression literature (e.g., Schmidhuber (2015); Koppel
et al. (2021)). To empirically validate Assumption 3.2, we performed an ablation study comparing
LDP-BO with and without SWC using the linear regression model from Example 5.1. To visually
verify Assumption 3.2, we did not apply any privacy protection in this experiment and set κ = 0.1.
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Figure 9 show that the SW distance increases after applying compression (SWC), indicating more
variability. However, this does not lead to a higher probability of divergence compared to the origi-
nal model, confirming that compression does not negatively impact the model’s ability to learn and
update, as stated in Assumption 3.2.

Figure 9: Comparison of Mallow’s Weights and Gradient Clipping under logistic model.

E.4 LIMITATIONS

While our method is designed to enable privacy-preserving streaming Bayesian Optimization (BO),
there are some inherent limitations that must be considered. First, at very small privacy budgets
ε, we observe a risk of utility collapse: model accuracy can deteriorate as privacy protection be-
comes increasingly stringent. This phenomenon is well documented in privacy-preserving machine
learning and highlights the need for careful calibration of the privacy budget. Second, while SWC
effectively controls kernel growth, it may introduce bias through the choice of projection directions
used in the compression step. Such bias can obscure fine-grained structure in the data distribution,
particularly in highly structured or multimodal settings. We plan to explore further refinements in
future work.

E.5 FUTURE WORK

Federated learning. For completeness, we also outline how the LDP-BO update naturally extends
to federated learning (FL). Consider N clients, where client j holds i.i.d. samples from Pj . The
central server aims to solve

θ⋆ = argminθ∈Θ

f(θ) := N∑
j=1

pjEzj∼Pj
[Lj(θ, zj)]

 ,

where pj is the weight of the jth client and Lj(·, zj) is the loss function. At time point t ≥ 1,
each client performs a locally private update using a noisy BO-based gradient: θj

t = θj
t−1 −

ηtgt−1(θ
j
t−1) + ηtω

j
t , where ωj

t is properly calibrated LDP noise, and the BO gradient approxi-
mation is

gt−1(θt−1) = µDt−1
= ∇K(θt−1,Dt−1)K(Dt−1,Dt−1)

−1L(θt−1, zt),

with µDt−1
representing the posterior expectation given Dt−1. The central server aggregates the

local updates θt+1 =
∑N

j=1 pjθ
j
t , broadcasts θt+1 to all clients, and repeats for θ̄j

t rounds, yielding
the final estimator θ̄T . The detailed theoretical analysis will be left for our future research.

Reinforcement learning. Our framework can naturally extend to reinforcement learning (RL) by
applying LDP-BO to optimize the expected return J(θ) of a policy πθ. The BO loop operates over
policy parameters, while local differential privacy is enforced on the observed returns.
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• Local privatization of returns. At iteration t, the algorithm selects θt, runs episodes under
πθt

, and locally privatizes the resulting return (rt):

rt = J(θt) + ωt,

where ωj
t is properly calibrated LDP noise. Since only a scalar reward is privatized, sen-

sitivity follows directly from standard bounded-reward assumptions in RL, and σ2 is cali-
brated accordingly.

• BO surrogate update with SWC. The privatized return rt is incorporated into the BO surro-
gate. The privatized return is added to the kernel surrogate, and SWC maintains a compact
dictionary,

Dt = SWC(Dt−1,θt).

ensuring the model size does not grow with time and enabling continual RL operation.
• Acquisition step. The next policy parameter is chosen by minimizing the Gaussian infor-

mation (GI) acquisition rule:

θt+1 = argmin
θ

GI(θ;Dt,θt) = argmin
θ

Tr(∇2KDt∪θ(θt,θt))

yielding a fully online, privacy-preserving BO loop for policy search, where KDt∪θ rep-
resents posterior covariance given Dt ∪ θ.

A promising direction for future work is to analyze how LDP noise affects the explo-
ration–exploitation trade-off, building on BO-based RL approaches such as (Wilson et al., 2014;
Balakrishnan et al., 2020; Müller et al., 2021) Wilson et al. (2014), Balakrishnan et al. (2020), and
Müller et al. (2021).

F ALL TECHNIQUE PROOFS

Proof of Theorem 3.1. Consider two neighboring data points zt and z′
t for t ≥ 1, differing in exactly

one entry, i.e., dH(zt, z
′
t) = 1. Recall that

µt−1 = ∇K(θt−1,D)K(D,D)−1L(D, zt),
µ̃t−1 = ∇K(θt−1,D)K(D,D)−1L(D, z′

t).

and

gt = µt−1 ·min

{
1,

B

∥µt−1∥

}
, g̃t = µ̃t−1 ·min

{
1,

B

∥µ̃t−1∥

}
.

It follows that the global sensitivity of the estimated gradient at time t is

∥gt − g̃t∥ =

∥∥∥∥µt−1 ·min

{
1,

B

∥µt−1∥

}
− µ̃t−1 ·min

{
1,

B

∥µ̃t−1∥

}∥∥∥∥
≤
(∥∥∥∥µt−1 ·min

{
1,

B

∥µt−1∥

}∥∥∥∥+ ∥∥∥∥µ̃t−1 ·min

{
1,

B

∥µ̃t−1∥

}∥∥∥∥)
≤ B +B = 2B.

Hence, by adding noise sampled from N
(
0, 2(2B/εt)

2 log(1.25/δt)Ip
)

at each iteration,
the gradient update is guaranteed to satisfy (εt, δt)-LDP. Moreover, by the parallel com-
position property of DP, the cumulative output θ̃t produced by Algorithm 1 satisfies
(max{ε1, . . . , εt},max{δ1, . . . , δt})-LDP.

Without loss of generality, we assume that the first iteration of Algorithm 1 satisfies (ε1, δ1)-LDP.
Since the initial estimate θ̂0 is deterministic, it follows directly that θ̂1 also satisfies (ε1, δ1)-
LDP. At the second iteration, θ̂2, depends on both the privatized output θ̂1 and the disjoint sam-
ple z2. It follows from Proposition A.4 that the two-fold composed algorithm (θ̂1, θ̂2) satis-
fies (max{ε1, ε2},max{δ1, δ2})-LDP when the samples z1 and z2 are disjoint. Iteratively ap-
plying this argument, we conclude that after t iterations the entire sequence of updates satisfies
(max{ε1, . . . , εt},max{δ1, . . . , δt})-LDP. By the post-processing property, both θ̂t and its aver-
aged version θ̃t inherit the same privacy guarantees.
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Proof of Theorem 3.3. Our proof builds upon the framework of Koppel et al. (2021), which depends
on the Hellinger distance, but here we adapt the analysis to the Sliced Wasserstein distance. Let
ρDt

denote the posterior distribution at iteration t, where Dt is a dictionary of size Mt. When a
new sample θt is incorporated at iteration t + 1, the dictionary is augmented to D̃t+1 = [Dt;θt],
increasing its size to Mt + 1. The stopping criterion for Algorithm 2 is violated whenever

min
j=1,...,Mt+1

ηj ≤ κ. (7)

Notice that (7) provides a lower bound on the approximation error ηMt+1 incurred by removing the
newly added point θt. In particular, if ηMt+1 ≤ κ, then the criterion in (7) is satisfied, and the model
order remains unchanged. Consequently, ηMt+1 can serve as a proxy for ηj for all j = 1, . . . ,Mt+1.

For the case of the Sliced Wasserstein distance between multivariate Gaussian distributions, the
approximation error ηMt+1 depends only on the changes in the mean vector and covariance matrix
induced by incorporating the new sample. θt. Specifically,

ηMt+1 ∝ (µt+1|Dt
− µDt

, Σt+1|Dt
−ΣDt

) ,

where µt+1|Dt and Σt+1|Dt denote the mean and covariance conditioned on the dictionary Dt,
respectively, and µDt , ΣDt are the corresponding quantities without θt.

Although there is no closed-form expression directly linking these mean and covariance differ-
ences to the Sliced Wasserstein distance, one can interpret the problem geometrically in terms of
the Hilbert subspace defined by the current dictionary, HDt

:= span{K(Dj , ·)}Mt
j=1. In particular,

the approximation quality is governed by the distance between the kernel evaluation at the new point
K(θt, ·) and the subspace HDt

. Intuitively, if this distance is small, the new point contributes little
additional information and can be safely excluded without degrading the fidelity of the surrogate
model, thereby satisfying the compression criterion. The approximation quality is then determined
by the distance from the kernel evaluation at the new point to the current dictionary’s Hilbert sub-
space:

dist
(
K(θt, ·),HDt

)
:= min

v∈RMt

∥∥K(θt, ·)− v⊤νDt
(·)
∥∥
H ,

where HDt
:= span{K(Dj , ·)}Mt

j=1 denotes the subspace spanned by the kernel functions in the
current dictionary.

Therefore, if there exists some constant c > 0 such that dist(K(θt, ·),HDt) ≤ c, then there ex-
ists some κ > 0 for which ηMt+1 ≤ κ. This ensures that the approximation error remains suffi-
ciently small, and hence the model order does not increase. Since θ lies in a compact set and K
is continuous, the range of the kernel embedding ϕ(θ) := K(θ, ·) is compact (Engel et al., 2004).
Consequently, the number of balls of radius c required to cover ϕ(θ) is finite and determined by the
covering number of ϕ(θ) at scale c (Anthony & Bartlett, 2009).

In particular, there exists a finite constant M∞ such that, if Mt =M∞, then dist(K(θt, ·),HDt) ≤
c, and consequently ηMt+1 ≤ κ. Therefore, Mt ≤ M∞ for all t. As shown by Engel et al. (2004),
for a Lipschitz continuous Mercer kernel defined on a compact domain θ ⊂ Rp, the covering number
satisfies

M ≤ O
(
1

κ

)p

.

We have completed the proof of this theorem.

Proof of Theorem 4.4. Recall that

θ̂t = θ̂t−1 − ηt
(
gt−1(θ̂t−1) + ωt

)
.

Define the shifted functions
g̃t−1(∆) = gt−1(∆+ θ⋆), g̃(∆) = g(∆+ θ⋆), f̃(∆) = f(∆+ θ⋆),

which correspond to a change of variables centered at the true parameter θ⋆. We then have

∆̂t = ∆̂t−1 − ηtgt−1(θ̂t−1) + ηtωt

= ∆̂t−1 − ηt∇f̃(∆̂t−1) + ηt{∇f̃(∆̂t−1)− g̃(∆̂t−1)}
+ ηt{g̃(∆̂t−1)− g̃t−1(∆̂t−1)}+ ηtωt

= ∆̂t−1 − ηt∇f̃(∆̂t−1) + ηtξ1t + ηtξ2t + ηtωt,
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where ξ1t = ∇f̃(∆̂t−1)− g̃(∆̂t−1), ξ2t = g̃(∆̂t−1)− g̃t−1(∆̂t−1).

Therefore,
∥∆̂t∥22 =∥∆̂t−1∥22 − 2ηt

〈
∆̂t−1,∇f̃(∆̂t−1)− ξ1t − ξ2t − ωt

〉
+ η2t

∥∥∥∇f̃(∆̂t−1)− ξ1t − ξ2t − ωt

∥∥∥2
2
.

(8)

Notice that E[ωt] = 0, the expectation of gradient estimate ∇f(θ̂t−1) is g(θ̂t−1), and gt−1(θ̂t−1)−
g(θ̂t−1) is a transformation of the martingale difference sequence ∇L(θ̂t−1, zt)−∇f(θ̂t−1). This
implies that

E
[〈

∆̂t−1, ξ1t + ξ2t + ωt

〉]
= 0.

Meanwhile, applying Lemma C.6(i) to the pair (θ⋆, θ̂t−1), we obtain

⟨∇f̃(∆̂t−1), ∆̂t−1⟩ ≥ f̃(∆̂t−1) +
λ

2
∥∆̂t−1∥22 ≥ λ

2
∥∆̂t−1∥22.

Using the upper equations above, we obtain

E{2ηt⟨∆̂t−1,∇f̃(∆̂t−1)− ξ1t − ξ2t − ωt⟩} ≥ λ

2
∥∆̂t−1∥22. (9)

Applying Lemma C.6(ii) to the pair (θ⋆, θ̂t−1), we obtain the gradient norm bound
∥∇f̃(∆̂t−1)∥2 ≤ ζ∥∆̂t−1∥2. In addition, Lemma C.4 and Lemma C.5 jointly provide explicit
upper bounds on the second moments of the stochastic error terms: E(∥ξ1t∥22) ≤ c1(L +
pκ) and E(∥ξ2t∥22) ≤ 2B2.

Using Young’s inequality, we then have

E{∥∇f(∆̂t−1)− ξ1t − ξ2t − ωt∥22}
≤4∥∇f(∆̂t−1)∥22 + 4E(∥ξ1t∥22) + 4E(∥ξ2t∥22) + 4E∥ωt∥22
≤4ζ2∥∆̂t−1∥22 + 8B2 + 4c1(L+ pκ) + 32pB2/ε2 log(1.25/δ).

(10)

Replacing the appropriate terms in (8) with (9) and (10), we have

E(∥∆̂t∥22) ≤ (1− ληt + c′η2t )∥∆̂t−1∥22 + cpη2tB
2/ε2 log(1.25/δ) + 4η2t (c1(L+ pκ) + 2B2).

Therefore, there exists some positive constant ap depending on the dimension p such that

E(∥∆̂t∥22) ≤ (1− ληt + a2pη
2
t )∥∆̂t−1∥22 + apη

2
tB

2/ε2 log(1.25/δ) + 4η2t (c1(L+ pκ) + 2B2),

Define t0 = min{t : λ ≥ 2a2pηt, ληtt ≥ 8α log t}. Then, for any t ≥ t0 and some constant
bp = O(ap), the equation simplifies to

E(∥∆̂t∥22) ≤ (1− ληt/2)∥∆̂t−1∥22 + bpη
2
tB

2/ε2 log(1.25/δ) + 4η2t (c1(L+ pκ) + 2B2),

Note that exp(−tληt/4) ≤ exp(−ληt1−α/4) ≤ t−2α ≤ t−α for t ≥ 2t0. Therefore, using the
same arguments as in Chen et al. (2020), for t ≥ 2t0, we have

E(∥∆̂t∥22) ≤ exp(−tληt/4)E∥∆̂t/2∥22 + 2bpηt/2B
2 log(1.25/δ)/(λε2) + 8η2t/2(c1(L+ pκ) + 2B2)

≤ exp(−tληt/4)(E∥∆̂n0
∥22 + 2bpηn0

B2 log(1.25/δ)/(λε2)

+ 8ηn0(c1(L+ pκ) + 2B2)/λ) + 2bpη(t/2)
−αB2 log(1.25/δ)/(λε2)

+ 8η(t/2)−α(c1(L+ pκ) + 2B2)/λ

≤ exp(−tληt/4){c(1 + ∥∆̂0∥22) + 2bpηn0
B2 log(1.25/δ)/(λε2)

+ 8ηn0(c1(L+ pκ) + 2B2)/λ}+ 2bpη(t/2)
−αB2 log(1.25/δ)/(λε2)

+ 8η(t/2)−α(c1(L+ pκ) + 2B2)/λ

≤ c′t−α{∥∆̂0∥22 + c′′bpηB
2 log(1.25/∆)/(λε2) + η(L+ pκ+ 2B2)/λ}.
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Proof of Theorem 4.5. Recall that θ̂t = θ̂t−1 − ηt(gt−1(θ̂t−1) + ωt). By Assumption 4.3, we have

f(θ̂t) ≤ f(θ̂t−1) + ⟨∇f(θ̂t−1), θ̂t − θ̂t−1⟩+
ζ

2
∥θ̂t − θ̂t−1∥2.

Thus, substituting the step sizes, we obtain

f(θ̂t) ≤ f(θ̂t−1)− ηt⟨∇f(θ̂t−1), gt−1(θ̂t−1) + ωt⟩+
ζη2t
2

∥gt−1(θ̂t−1) + ωt∥2

= f(θ̂t−1)− ηt⟨∇f(θ̂t−1), gt−1(θ̂t−1)⟩ − ηt⟨∇f(θ̂t−1), ωt⟩

+
ζη2t
2

(
∥gt−1(θ̂t−1)∥2 + ∥ωt∥2 + 2⟨gt−1(θ̂t−1), ωt⟩

)
≤ f(θ̂t−1)− ηt⟨∇f(θ̂t−1), gt−1(θ̂t−1)−∇f(θ̂t−1) +∇f(θ̂t−1)⟩ − ηt⟨∇f(θ̂t−1), ωt⟩

+
ζη2t
2

(
∥gt−1(θ̂t−1)∥2 + 8pB2/ε2 log(1.25/δ) + 2⟨gt−1(θ̂t−1), ωt⟩)

)
≤ f(θ̂t−1)− ηt⟨∇f(θ̂t−1), gt−1(θ̂t−1)−∇f(θ̂t−1)⟩ − ηt∥∇f(θ̂t−1)∥2 − ηt⟨∇f(θ̂t−1), ωt⟩

+
ζη2t
2

(
∥∇f(θ̂t−1)∥2 + ∥gt−1(θ̂t−1)−∇f(θ̂t−1)∥2 + 2⟨∇f(θ̂t−1), gt−1(θ̂t−1)−∇f(θ̂t−1)⟩

)
+
ζη2t
2

(
8pB2/ε2 log(1.25/δ) + 2⟨gt−1(θ̂t−1), ωt⟩)

)
≤ f(θ̂t−1)−

ηt
2
∥∇f(θ̂t−1)∥2 + ηt⟨∇gt−1(θ̂t−1)− f(θ̂t−1), ωt⟩

+
ζη2t
2

(
∥gt−1(θ̂t−1)−∇f(θ̂t−1)∥2 + 8pB2/ε2 log(1.25/δ)

)
,

where the first inequality follows from ζ-smoothness and the last inequality holds due to ηt ≤ 1
ζ .

The result is obtained by rearranging terms.
ηt
2
∥∇f(θ̂t−1)∥2 ≤ f(θ̂t−1)− f(θ̂t) + ηt⟨gt−1(θ̂t−1)−∇f(θ̂t−1), ωt⟩

+
ζη2t
2

(
∥gt−1(θ̂t−1)−∇f(θ̂t−1)∥2 + 8pB2/ε2 log(1.25/δ)

)
.

Summing the inequalities over t = 1, . . . , T , we have
T∑

t=1

ηt∥∇f(θ̂t−1)∥2 ≤ 2(f(θ̂0)− f(θ̂T−1)) +

T∑
t=1

2ηt⟨gt−1(θ̂t−1)−∇f(θ̂t−1), ωt⟩

+

T∑
t=1

2ζη2t

(
∥gt−1(θ̂t−1)−∇f(θ̂t−1)∥2 + 16pB2/ε2 log(1.25/δ)

)
≤ 2(f(θ̂0)− f(θ⋆)) +

T∑
t=1

2ηt⟨gt−1(θ̂t−1)−∇f(θ̂t−1), ωt⟩

+

T∑
t=1

2ζη2t

(
∥gt−1(θ̂t−1)−∇f(θ̂t−1)∥2 + 16pB2/ε2 log(1.25/δ)

)
.

(11)
Dividing both sides by

∑T
t=1 ηt yields∑T

t=1 ηt∥∇f(θ̂t−1)∥2∑T
t=1 ηt

≤ 2(f(θ̂0)− f(θ⋆))∑T
t=1 ηt

+

∑T
t=1 2ηt⟨gt−1(θ̂t−1)−∇f(θ̂t−1), ωt⟩∑T

t=1 ηt

+

∑T
t=1 2ζη

2
t

(
∥gt−1(θ̂t−1)−∇f(θ̂t−1)∥2 + 16pB2/ε2 log(1.25/δ)

)
∑T

t=1 ηt
.

Note that E(ωt) = 0, the expectation of gradient estimate ∇f(θ̂t−1) is g(θ̂t−1), and gt−1(θ̂t−1)−
g(θ̂t−1) is a transformation of the martingale difference sequence ∇L(θ̂t−1, zt) − ∇f(θ̂t−1), im-
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plying
E(⟨gt−1(θ̂t−1)−∇f(θ̂t−1), ωt⟩) = 0.

Furthermore,

∥gt−1(θ̂t−1)−∇f(θ̂t−1)∥2 ≤ ∥gt−1(θ̂t−1)− g(θ̂t−1)∥2 + ∥g(θ̂t−1)−∇f(θ̂t−1)∥2

≤ 2B2 + c1(L+ pκ).

Taking the expectation with respect to these terms and substituting into (11), we obtain∑T
t=1 ηtE∥∇f(θ̂t−1)∥2∑T

t=1 ηt
≤ 2(f(θ̂0)− f(θ⋆))∑T

t=1 ηt

+

∑T
t=1 2ζη

2
t

(
(c1(L+ pκ) + 2B2) + 16pB2/ε2 log(1.25/δ)

)∑T
t=1 ηt

.

We then obtain

min
1≤t≤T

E∥∇f(θ̂t−1)∥2 ≤ 2(f(θ̂0)− f(θ⋆))∑T
t=1 ηt

+

∑T
t=1 2ζη

2
t

(
(c1(L+ pκ) + 2B2) + 16pB2/ε2 log(1.25/δ)

)∑T
t=1 ηt

.

Recall that ηt = η0t
−α. Following the integral bounding technique in Garrigos & Gower (2023),

there exist constants c2 and c3 such that
∑T

t=1 ηt = η0
∑T

t=1 t
−α ≤ c2T

1−α and
∑T

t=1 η
2
t =

η0
∑T

t=1 t
−2α ≤ c3. Therefore, the inequality simplifies to

min
1≤t≤T

E∥∇f(θ̂t−1)∥2 ≤ c′
(f(θ̂0)− f(θ⋆)) + ζ((L+ pκ) +B2) + pB2/ε2 log(1.25/δ)

T 1−α
.

Proof of Theorem 4.5. For simplicity, denote event {limk→∞ θk = θopt} by Sopt and ∆t ≜ θt −
θopt. We have the following decomposition,

E
(
∥∆T ∥21Sopt

)
= E

(
∥∆T ∥21Sopt

1

{
∃T
4

≤ t ≤ T

2
,θT ∈ Rgood

})
+ E

(
∥∆T ∥21Sopt1

{
∀T
4

≤ t ≤ T

2
,θT /∈ Rgood

})
≜ A+B.

A can be further decomposed as follows,

A ≤ E

(
∥∆T ∥21Sopt1

{
∃T
4

≤ t ≤ T

2
,θT ∈ Rgood

(
θopt

)})
+ E

(
∥∆T ∥21Sopt

1

{
∃T
4

≤ t ≤ T

2
,θT ∈ Rgood\Rgood

(
θopt

)})
≜ A1 +A2.

Next, we have

A1 ≤ E

(
∥∆T ∥21

{
∃T
4

≤ t ≤ T

2
,θn ∈ RL

good

(
θopt

)
for all n ≥ t

})
+ E

(
∥∆T ∥21

{
∃T
4

≤ t ≤ T

2
,θt ∈ Rgood

(
θopt

)
but θn /∈ RL

good

(
θopt

)
for some n ≥ t

})
≜ A11 +A12.
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Now, we are to show that A11 = O(T−α). For any t ∈ Z+, we have

∆̂t = ∆̂t−1 − ηtgt−1(θ̂t−1) + ηtωt

= ∆̂t−1 − ηt∇f̃(∆̂t−1) + ηtξ1t + ηtξ2t + ηtωt,

where ξ1t = ∇f̃(∆̂t−1)− g̃(∆̂t−1), ξ2t = g̃(∆̂t−1)− g̃t−1(∆̂t−1).

Recall proof of Theorem 4.4 and based on condition ??, we know that on {θt−1 ∈ RL
good(θ

opt)},

⟨∆t−1,∇f(θt−1)⟩ ≥
1

2
λ̃min∥∆t−1∥2.

Therefore, on {θt−1 ∈ RL
good(θ

opt)}, we have

E(∥∆̂t∥22) ≤ (1− λ̃minηt + a2pη
2
t )∥∆̂t−1∥22 + apη

2
tB

2/ε2 log(1.25/δ) + 4η2t (c1(L+ pκ) + 2B2),

where ap is some positive constant depending on the dimension p.

Define t0 = min{t : λ̃min ≥ 2a2pηt, λ̃minηtt ≥ 8α log t}. Then, for any t ≥ t0 and some constant
bp = O(ap), the equation simplifies to

E(∥∆̂t∥22) ≤ (1− λ̃minηt/2)∥∆̂t−1∥22 + bpη
2
tB

2/ε2 log(1.25/δ) + 4η2t (c1(L+ pκ) + 2B2).

For the sake of simplicity, we let C0 = b2pB
2/ε2 log(1.25/δ) + 42(c1(L+ pκ) + 2B2). As a result,

we have

E

(∥∥∥∆̂T

∥∥∥2 1{θt ∈ RL
good

(
θopt) , T

2
≤ t ≤ T − 1

})
=E

((
E
∥∥∥∆̂T

∥∥∥2)1

{
θt ∈ RL

good

(
θopt) , T

2
≤ t ≤ T − 1

})
≤
(
1− 1

2
λ̃minγT

)
E

(∥∥∥∆̂T−1

∥∥∥2 1{θt ∈ RL
good

(
θopt) , T

2
≤ t ≤ T − 1

})
+ C0γ

2
T

· · ·

≤

 T∏
t=T

2 +1

(
1− 1

2
λ̃minγt

)E
∥∥∥∆̂T

2

∥∥∥2 + C0

T∑
t=T

2 +1

γ2t T∏
j=t+1

(
1− 1

2
λ̃minγj

)
≤ exp

−1

2
Cλ̃min

T∑
t=T

2 +1

t−α

E
∥∥∥∆̂T

2

∥∥∥2 + C0

T∑
t=T

2 +1

(
γ2t

(
1− 1

2
λ̃minγT

)T−t
)

≤ exp

(
−Cλ̃min

4
T 1−α

)
E
∥∥∥∆̂T

2

∥∥∥2 + C0

(
T

2

)−2α T∑
t=T

2 +1

(
1− 1

2
λ̃minγT

)T−t

≤ exp

(
−Cλ̃min

4
T 1−α

)
E
∥∥∥∆̂T

2

∥∥∥2 + C0

(
T

2

)−2α(
1

2
λ̃minγT

)−1

=O(T−α).

where the last step is similar with proof of Theorem 4.4. Then, we can see that

A11 ≤ E
(
∥∆̂T ∥21

{
θt ∈ RL

good(θ
opt), T/2 ≤ t ≤ T − 1

})
= O(T−α). (12)

Using the same arguments as in Zhong et al. (2023), we have

A12 ≤
(
E∥∆̂T ∥3

) 2
3P

1
3

(
∃ T
4

≤ t ≤ T

2
, θt ∈ Rgood(θ

opt)

but θs /∈ RL
good(θ

opt) for some s ≥ t
)

≤
(
E∥∆̂T ∥3

) 2
3T−2α

= O(T−α).

(13)
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Based on (12) and (13), we have

A1 = O(T−α).

To show A2 = O(T−α), we have

A2 ≤
(
E∥∆̂T ∥3

) 2
3P

1
3

(
Sopt ∩

{
∃T/4 ≤ t ≤ T/2, θt ∈ Rgood\Rgood(θ

opt)
})

≤
(
E∥∆̂T ∥3

) 2
3P

1
3

(
∃T/4 ≤ t ≤ T/2, θ′ ∈ Θopt, θt ∈ Rgood(θ

′) but θs /∈ Rgood(θ
′) for some s ≥ t

)
= O(T−α),

where the last step is similar to the 2nd step of (13). Therefore, we have

A = A1 +A2 = O(T−α).

G THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we employed a large language model (LLM) to assist in the
polishing and refinement of the writing. The model was used exclusively for improving linguistic
expression, enhancing clarity, and ensuring consistency of terminology—tasks that contribute to
the overall readability and academic tone of the document. All technical content, mathematical
reasoning, and scientific conclusions remain entirely formulated by the authors. The use of LLM-
assisted editing did not alter the theoretical contributions or empirical results presented in this work.
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