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Abstract

Federated learning (FL) is an effective and widely used approach to training deep
learning models on decentralized datasets held by distinct clients. FL also strength-
ens both security and privacy protections for training data. Common challenges
associated with statistical heterogeneity between distributed datasets have spurred
significant interest in personalized FL (pFL) methods, where models combine
aspects of global learning with local modeling specific to each client’s unique char-
acteristics. This work investigates the efficacy of theoretically supported, adaptive
MMD measures in pFL, primarily focusing on the Ditto framework, a state-of-
the-art technique for distributed data heterogeneity. The use of such measures
significantly improves model performance across a variety of tasks, especially
those with pronounced feature heterogeneity. Additional experiments demonstrate
that such measures are directly applicable to other pFL techniques and yield similar
improvements across a number of datasets. Finally, the results motivate the use of
constraints tailored to the various kinds of heterogeneity expected in FL systems.

1 Introduction

Federated learning (FL) has become an indispensable tool for training deep learning models on
distributed datasets. Such a setting arises naturally in many scenarios where, for various reasons
including privacy, security, and resource constraints, training data should or must reside in disparate
locations. Federally trained models receive updates from a larger collection of training data than
models trained on single data silos and, as such, often demonstrate better performance, generalizability,
and robustness [34]. In a typical FL system, clients each hold a distinct dataset on which a model is
to be collaboratively trained. A server is used to perform model aggregation of some kind, requiring
transfer of model weights but never raw data. In each round, clients perform model training using
their local dataset. After a period of local training, the server aggregates the individual models, or
subsets thereof, and sends the aggregated information back to the clients for another round of training.

While data heterogeneity is challenging in standard model training, it is particularly pernicious in
FL settings due to the increased prevalence of heterogeneity in distributed datasets [19, 40]. Many
works have aimed to address the effects of data heterogeneity in FL since the original mechanism of
FedAvg was introduced [30]. One branch of study considers techniques for robust global optimization,
seeking to restrict or correct local divergence [14, 28, 20, 45]. However, such approaches, referred to
here as global FL methods, typically train a single model for all clients. In many instances, system
and statistical heterogeneity limit the existence of a shared model that performs well across all FL
participants [16, 3]. This has led to the rise of personalized FL (pFL) methods, which federally train
distinct models for each client. Specifically, this work focuses on improving cross-silo pFL methods,
where clients represent a small number of reliable institutions with sufficient training resources [13].
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A common technique for addressing heterogeneity during federated training is the augmentation of
each client’s local loss with a penalty discouraging large deviations in model weights or representa-
tions from a reference model during training. In this work, we propose integrating optimizable MMD
measures [9] into penalty-based pFL frameworks, modifying the Ditto and MR-MTL algorithms as
representative examples [21, 24]. Specifically, Multi-Kernel MMD (MK-MMD) [10] and MMD-D
[23] are applied to constrain divergence between models’ latent representations. Ditto remains one of
the best performing pFL methods available, especially in challenging heterogeneous settings. Several
recent benchmarks show that it delivers state-of-the-art performance in many settings [3, 39, 29]. As
such, it is used here as the primary pFL approach for experimentation.

The contributions of this work are three-fold. First, it proposes using theoretically supported statistical
distance measures as penalty constraints for dealing with heterogeneity in pFL, moving beyond
previously considered paired feature-based constraints. Second, it demonstrates that leveraging the
adaptability of MK-MMD or MMD-D measures through iterative re-optimization provides notable
performance improvements in settings with high feature heterogeneity where existing methods, such
as Ditto, under-perform. Finally, experiments with either natural or controllable levels of label
and feature heterogeneity highlight the strengths and weaknesses of the types of drift penalties
investigated. While Ditto is the main focus, additional results show that the proposed methodology is
directly applicable to other penalty-based optimization techniques in FL and provides similar benefits.

2 Related Work

The most common formulation of penalty-based constraints in FL discourages model weight drift
from a set of reference weights in the ℓ2 norm. This has been applied successfully in global FL
methods like FedProx [20] and pFL approaches such as Ditto [21] and MR-MTL [24]. Recent work,
has modified this constraint to consider feature representations. Both MOON [18] and PerFCL [46]
use contrastive losses to encourage feature representations to be close, or far, from some reference. In
certain settings, MOON demonstrates marked improvements over FedProx as a global FL approach,
partially motivating the investigation here. However, the contrastive losses used in MOON and
PerFCL are not adaptive and require careful hyperparameter tuning. Furthermore, in [39], PerFCL
underperformed contemporary pFL approaches, including Ditto.

As part of the work proposing Ditto, the authors experiment with two alternatives to the standard ℓ2

norm to measure weight divergence, symmetrized KL divergence [12] and Fisher-weighted squared
distances [44]. Therein, no performance improvements are achieved. In addition, these alternative
regularizers are still applied to quantify differences in model weights, rather than latent spaces.
Finally, the measures are not trainable as part of the learning process.

Prototype-based pFL methods, such as FedProto [38], share some similarities with this work. They
aim to constrain local representations tied to class labels, or prototypes, from drifting too far from their
global counterpart. However, these approaches are generally only applicable to classification tasks
by design. Prototypes are also most useful near the final layers of a model, where class separation
becomes sharp. Finally, drift is measured with ℓ2 or ℓ1 norms rather than the adaptive measures
proposed here. There is, however, an opportunity for future work to explore the utility of integrating
adaptive MMD measures into these techniques. Appendix E provides additional discussion of other,
less related, pFL methodologies and how the modifications proposed here might be applied.

A few works have considered integrating MMD into FL systems. FedMMD incorporates a fixed
MMD measure on local features as a means of modifying server-side aggregation in FedAvg [11].
This is strictly a global FL approach and applies MMD to modify model aggregation rather than local
learning. In [42], a static MMD measure is constructed and used to constrain a model’s latent space
during client-side training. However, as with FedMMD, the proposed algorithm is not a pFL approach
and does not consider kernel optimization. It also lacks robust experimentation. Non-adaptive MMD
measures have also been used successfully to overcome feature-distribution shifts when federally
training generative models for local data augmentation [4]. Finally, various forms of MMD have been
used in other areas, most widely in hypothesis testing and domain adaptation [10, 24, 25, 41, 17].
To our knowledge, this is the first study considering the utility of substituting or augmenting the
loss regularizers of Ditto and MR-MTL with an adaptive, feature-based regularizer in the forms of
MK-MMD and MMD-D. Because weight-based, ℓ2 penalties are common in other global and pFL
methods, the results have broader implications beyond improving any single pFL technique.
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3 Methodology

At its core, FL enables multiple clients to train models collaboratively on distributed data while sharing
only model parameters with a server, rather than transferring raw data. Throughout, assume there are
N clients with datasets, D1, . . . , DN such that Di = {(xj , yj)}ni

j=1. Let n = n1 + . . .+ nN . Each
client incorporates a local loss function ℓi parameterized by some set of weights w. In the sections
to follow, the Ditto algorithm is used as an exemplary approach for experimentation. However, the
methodology is transferrable to other pFL methods, with additional experiments showing similar
benefits for MR-MTL through the proposed techniques.

Ditto maintains two models, sharing the same architecture, on each client i, a global model with
weights w(i)

G and a local model with weights w(i)
L . Algorithm 1 summarizes Ditto training, where

T denotes the number of FL rounds, s denotes the number of local training steps performed by
each client, and w̄ is the initial set of weights for both the global and local models. In practice, any
optimizers may be used to train the global and local models, with potentially different learning rates.
Likewise, the number of local training steps may differ. Here, however, as in the original work, these
are coupled for simplicity. For standard Ditto, the measure d(w

(i)
L , w̄) = ∥w(i)

L − w̄∥22.

Algorithm 1: Ditto algorithm with FedAvg aggregation and batch SGD for local optimization.
Input :N , T , s, λ, η, w̄.
Set w(i)

L = w̄ for each client i.
for t = 0, . . . , T − 1 do

for each client i in parallel do
Set w(i)

G = w̄.
for s iterations, draw batch b do

w
(i)
G = w

(i)
G − η∇ℓi

(
b;w

(i)
G

)
.

w
(i)
L = w

(i)
L − η∇

(
ℓi

(
b;w

(i)
L

)
+ λ

2 d(w
(i)
L , w̄)

)
.

end
Send w

(i)
G to server for aggregation.

end
w̄ = 1

n

∑N
i=1 ni · w(i)

G .
end

3.1 Beyond Weights: Feature-Drift Constraints

The ℓ2-weight constraint imposed by Ditto has been effective in many settings. However, the
relationship between the type and degree of data heterogeneity to the most effective kind of drift-
constraint remains under-explored. In this work, we experiment with both weight- and feature-drift
penalties, analyzing their impact on learning personalized models in various settings. To define the
adaptive constraints investigated below, consider splitting a model into one or several stages, with
intermediate outputs representing latent features. For simplicity of presentation, the setting of a single
latent space is discussed here, where the extension to additional layers is straightforward. The global
and local models, along with their weights, wG = [θG, ϕG] and wL = [θL, ϕL], are decomposed into
a feature extractor f(·; θ) and a classifier g(·;ϕ). For an input x, local predictions are generated as
ŷ = g(f(x; θL);ϕL). Global predictions are produced analogously. In Algorithm 1, the reference
weights, w̄, are also decomposed as w̄ = [θ̄, ϕ̄].

Rather than penalizing divergence of the local model from the global one via the ℓ2 distance between
weights, a measure of drift between latent features is defined. Such constraints may be constructed in
two ways: paired or unpaired. In paired approaches, which are widely used [18, 46], for each input
x, the aim is to minimize d(f(x; θL), f(x; θG)). This enforces point-wise alignment, but disregards
statistical interpretations of the feature space. In contrast, we propose an unpaired approach which
reduces the distance between the probability distributions of the global and local latent spaces,
allowing greater flexibility for models to adapt based on data heterogeneity. Here, cosine similarity is
used as a baseline to represent paired feature alignment by maximizing similarity.
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3.2 Maximum Mean Discrepancy

Let X be some topological space and P and Q be Borel probability measures on X . Any symmetric
and positive-definite kernel k : X ×X → R induces a unique Reproducing Kernel Hilbert Space
(RKHS), Hk, into which P and Q are embedded and their distance measured [33]. This is written

MMD2(P,Q;Hk) = E(x,x′)∼(P,P ) k(x, x
′) + E(y,y′)∼(Q,Q) k(y, y

′)− 2E(x,y)∼(P,Q) k(x, y).

In this work, X ⊆ Rm, where m is a model’s latent-space dimension, and the feature extraction
modules f(x; θL) and f(x; θ̄) produce distributions on X .

MMD measures are a powerful tool for efficiently measuring the distance between two distributions.
However, their effectiveness depends heavily on the kernel, k. As such, kernel optimization techniques
are crucial. Herein, the primary goal of kernel selection is to maximize test power, i.e. the ability
of the measure to accurately distinguish two distributions. Two kernel optimization techniques are
considered to produce strong measures of feature-space discrepancies: MK-MMD and MMD-D. The
former optimizes a linearly weighted combination of radial basis functions (RBFs) of varying length
scale. The latter leverages a learnable deep kernel to construct a strong distance metric. RBFs are not
the only kernel type used in MMD, but they are a common and high-performing choice [35].

3.3 Multi-Kernel MMD

In [10], a set of possible kernels is defined as

K =
{
k | k =

d∑
j=1

βjkj ,

d∑
j=1

βj = 1, βj ≥ 0,∀j ∈ {1, . . . , d}
}
,

where {kj}dj=1 is a set of symmetric and positive-definite functions, kj : X ×X → R. Note that any
k ∈ K uniquely defines an RKHS and associated measure

MK-MMD2(P,Q;Hk) =

d∑
j=1

βjMMD2(P,Q;Hkj ).

Intuitively, any k ∈ K produces a measure of discrepancy between two distributions. The novel idea
of [10] is to optimize the coefficients, βj , to minimize the Type-II error in testing if two distributions,
P and Q, are the same for a fixed Type-I error. That is, one engineers an RKHS that has the best
chance of properly detecting when two distributions differ through specification of an optimal kernel.

Denoting by β ∈ Rd the coefficients of the kernels kj , Type-II error minimization is expressed as

β∗ = argmax
β≥0

MK-MMD2(P,Q;Hk)

σ(P,Q,Hk)
, (1)

where σ2(P,Q,Hk) is the variance of MK-MMD2(P,Q;Hk). This variance has the form
σ2(P,Q,Hk) = βTQkβ, where Qk is the d × d covariance matrix between kernels, kj , with
respect to P and Q.

Let X̂ and Ŷ be sets of samples drawn from P and Q, respectively. To approximately solve Equation
(1), empirical estimates of each MMD2(P,Q;Hkj

), gathered into a vector m̂ = [m̂1, . . . , m̂d]
T , and

Qk, denoted Q̂k, are computed. Following [10], the objective is approximated and rewritten as the
quadratic program

β̂∗ = argmin
βT m̂=1
β≥0

βT (Q̂k + ϵI)β, (2)

where ϵ > 0 is a stabilizing shift and I is the d× d identity matrix.

In the experiments, ϵ = 1e-3. The kernels selected to form K are RBFs of the form kj(x, y) =

e−γj∥x−y∥2
2 for a set of {γj}dj=1. Note that this optimization is only valid if m̂ contains at

least one positive entry. If this is not the case, [10] suggests selecting the kernel, kj , that max-
imizes the ratio MMD2(P,Q;Hkj )/σ(P,Q;Hkj ). Finally, linearly scaling estimates for both
MK-MMD2(P,Q;Hk) and Qk are provided in [10]. Unfortunately, these estimates performed
poorly empirically. As such, they are not used in the experiments to follow.
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3.4 MMD-D

Some studies have shown that simple RBF kernels, varying only in length-scale, γ, may underperform
in more complex spaces where distributions vary significantly across regions [23, 35]. To address
this, the use of deep kernels, which can adapt to the diverse structures needed in different regions, has
been proposed. Here, the structure of [23] is used. Given inputs x and y, a deep kernel is constructed
by applying a kernel function, k, to the output of a featurization network, φ, parameterized by ω as
k(φ(x;ω), φ(y;ω)). Alone, such a kernel may inadvertently learn to treat distant inputs as overly
similar. To mitigate this, a safeguard is introduced defining the full deep kernel as

kω(x, y) = (1− ϵ)k(φ(x;ω), φ(y;ω)) + ϵq(x, y), (3)

where q is a separate kernel acting on the unmodified input.

As in Section 3.3, RBFs are used such that k(x, y) = e−γk∥x−y∥2
2 and q(x, y) = e−γq∥x−y∥2

2 . The
variables of ϵ, γk, γq , and ω are optimized monolithically. Again, the goal of such optimization is to
minimize the Type-II error of the induced measure which, when using the kernel in Equation (3), is
denoted MMD-D2(P,Q;Hk). Similar to MK-MMD, this error minimization takes the form

max
ω,ϵ,γk,γq

MMD-D2(P,Q;Hk)

σ(P,Q;Hk)
, (4)

where σ2(P,Q;Hk) is now the variance of MMD-D2(P,Q;Hk).

For samples X̂ and Ŷ drawn from P and Q, respectively, the estimate for MMD-D2(P,Q;Hk)
derived in [23, Equation 2] is used. To estimate σ2(P,Q;Hk), the regularized estimator of [23,
Equation 5] is applied with λ = 1e-8. A fixed number of steps using an AdamW optimizer [26] with
a learning rate of 1e-3 is applied to approximately solve Equation (4) and learn kernel kω(x, y).
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Figure 1: Feature-drift constraints applied to three latent spaces of a model, where (x,y) represent a
batch of labeled data. In Ditto, the frozen global model (top) is used to constrain the local model
(bottom) during client-side training.

3.5 Adaptive MMD Measures in FL

Provided feature-extraction maps for the global and local models in the Ditto framework, fi(x; θ̄i)
and fi(x; θL,i), the MMD measures defined in the previous section are used to augment the local
model’s loss function during training with weights µi. This process is exhibited in Figure 1 for
three intermediate latent spaces. Note that (x,y) in the figure represents batches of data rather than
individual data points. These measures may be used in isolation or combined with the standard Ditto
penalty of λ∥w(i)

L − w̄∥22. Both MK-MMD and MMD-D aim to adapt non-linear kernels to measure
the distance between two distributions more accurately.
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In a static setting, where P and Q are fixed, the optimization processes for these approaches yield
strong measures to distinguish these distributions. Here, these techniques are used to measure and
constrain the differences in distributions of model latent spaces which evolve significantly throughout
the FL training process. As the model feature maps evolve, previously optimal kernels become
sub-optimal. To address this, we propose taking advantage of the optimization procedures discussed
above to periodically re-optimize the MMD measures using samples of training data. In this way,
strong measures of latent-space divergence are maintained throughout training.

4 Datasets

To quantify the utility of the proposed measures, four datasets are used. Each poses unique challenges
in the FL setting. The first set of experiments considers several variants of CIFAR-10 with differing
levels of label heterogeneity. This heterogeneity is synthetically induced using Dirichlet allocation,
a common strategy in previous work [7, 2, 3]. Smaller values of the allocation parameter, α, result
in more heterogeneous clients. Values of {5.0, 0.5, 0.1} are used to split data between five clients.
The second dataset, referred to as Synthetic, is a generated dataset with controllable levels of feature
heterogeneity across eight clients. It is an extension of the approach used in [20]. Heterogeneity
depends on parameters α and β, with larger values corresponding to more heterogeneity. Two datasets
are generated with α = β = 0.0 and α = β = 0.5. Inputs have 60 numerical features mapped to one
of 10 possible classes. Appendix A provides details on the generation process.

The final two datasets focus on real clinical tasks with natural client splits and heterogeneity. Fed-
ISIC2019 is drawn from the FLamby benchmark [8] and consists of 2D dermatological images to
be classified into one of eight melanoma categories. The data is split across six clients. The RxRx1
dataset [36] is composed of 6-channel fluorescent microscopy images, each highlighting different
cellular organelles. The task is to classify which genetic treatment, if any, the cells received based on
the image. The original dataset contains 125K+ images across 1,108 classes. Following [4], only
samples corresponding to the 50 most common classes are selected and three of the image channels
are used. The data is partitioned into four clients based on the hospitals where the images were
collected. This dataset exhibits significant feature heterogeneity. Both Fed-ISIC2019 and RxRx1 are
quite challenging for global FL methods like FedAvg.

For all tasks, performance is measured through standard accuracy, with the exception of Fed-ISIC2019.
Because the labels in Fed-ISIC2019 are highly imbalanced, balanced accuracy is used to better
quantify model performance and matches the metric used in the FLamby benchmark.

5 Experimental Setting

In the experiments, hyperparameter sweeps are conducted to calibrate items such as learning rate
for all methods. A full list of the hyperparameters considered and their optimal values appears in
Appendix B. Other parameters, such as batch size, are detailed in Appendix C. The metrics reported
in the results are the average of values across three training runs. Accompanying standard deviations
are gathered in Appendix G. Within each FL training run, the final metric is the uniform average of
each client’s performance on their respective test sets.2

Each task uses a different model architecture. For the CIFAR-10 datasets, a CNN is used with two
convolutional layers, each of which are followed by batch normalization (BN) and max pooling. The
final two stages are fully connected (FC) layers ending in classification, matching the benchmark
in [3]. Experiments are conducted with up to three latent spaces constrained with the MMD-based
drift penalties. These are the output of the first FC layer, the output of the second BN layer, and the
output of the first BN layer. When referring to the constraint “depth,” 1 corresponds to constraining
only the FC layer, 2 corresponds to adding the second BN layer, and 3 refers to adding the first BN
layer (e.g. Figure 1). During experimentation with CIFAR-10, the optimal “depth” for the MMD
constraints was uniformly 1. Because adding additional constraints did not improve performance, the
remaining experiments simply applied MMD-based constraints at a single latent layer. For a more
detailed discussion and results, see Section 6.2.

2All code is found at: https://github.com/VectorInstitute/FL4Health/tree/main/research
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The model for the Synthetic datasets is a simple two-layer DNN followed by a softmax layer. The first
layer serves as the feature extractor for constraint purposes. The second layer produces classification.
For Fed-ISIC2019, EfficientNet-B0 [37], pretrained on ImageNet, is fine-tuned. The final linear layer
serves as the classifier, and the rest of the model functions as the feature extractor. This architecture
is also used in the FLamby benchmark [8]. Finally, a pretrained ResNet-18 model is fine-tuned for
the RxRx1 task, as done in [4]. The MMD penalties are applied to the output of the model prior to
the final classification layer.

During local training, two ways of updating the MMD measures are considered. In the first approach,
the measures are updated every 20 steps of model training using z batches of sampled training data.
Alternatively, the measures are updated after every training step using the same batch of data. In
either setting, the MMD-D kernel is optimized using AdamW. For MK-MMD, both approaches
are reported and denoted with a subscript 20 or -1, respectively. For the CIFAR-10 and Synthetic
datasets, MMD-D is trained using the periodic update approach with 5 optimization steps, while on
Fed-ISIC2019 and RxRx1, it is updated after every training step with 25 optimization steps.

5.1 Communication, Privacy, and Computation Implications

With the proposed modifications to Algorithm 1, communication costs between clients and the server
remain the same as standard Ditto. Only the global model is exchanged for aggregation and feature
representations remain local. As such, the privacy properties are also nearly identical to Ditto, except
that local training data is periodically used to optimize the MMD kernels on each client. There is also
a small uptick in memory overhead with the need to store a modest number of feature activations
and to train a set of kernel weights for MMD-D. The largest impact associated with the proposed
approach is the computational cost of adapting the MMD measures during training. Optimizing the
kernels for a batch of training data adds O(m3.5) and O(kq) arithmetic operations to each local
training step for MK-MMD and MMD-D, respectively, where m is the latent-space dimension, k is
the number of kernel optimization steps, and q is the arithmetic operations associated with an SGD
step for φ. For more details on computational costs and runtime complexity, see Appendix D.

6 Results

In the first set of experiments, performance of the MMD-based feature constraints is considered in
isolation. That is, the traditional Ditto constraint in Algorithm 1 is replaced with one of the proposed
adaptive measures. As a baseline, training with a cosine-similarity measure to penalize feature
dissimilarity is also explored. The results are reported in Table 1.

Across all datasets, and heterogeneity levels, at least one of the MMD-based penalties outperforms
the cosine-similarity baseline. In the case of the Synthetic, Fed-ISIC2019, and RxRx1 datasets, the
performance gaps are fairly large. These results validate the effectiveness of the proposed measures
in guiding federated training by adaptively limiting feature-representation drift. In most cases, using
the feature-based penalties within the Ditto framework significantly outperforms FedAvg. The only
setting where this is not the case is CIFAR-10 with α = 5.0. This is the most homogeneous setting,
and the convergence of FedAvg is minimally impacted. Below, combining the standard Ditto penalty
with MMD-based measures boosts performance past FedAvg, even for α = 5.0.

For the second set of experiments, the MMD-based measures are combined with the original Ditto
penalty to consider the complementary utility of applying both constraints. The resulting local model
loss function for client i is written

ℓi

(
b;w

(i)
L

)
+

λ

2
∥w(i)

L − w̄∥22 + µd
(
fi(b; θ

(i)
L ), fi(b; θ̄)

)
, (5)

where b represents a batch of training data and d(·, ·) denotes one of the MMD-based measures. For
comparison, standard Ditto is also used to federally train models for each task. This is equivalent to
setting µ = 0 in Equation (5). The results for each dataset are summarized in Table 2.

Comparing the results of Tables 1 and 2, vanilla Ditto outperforms both MMD-D and MK-MMD
when used in isolation for all variants of CIFAR-10 and Fed-ISIC2019. However, for the Synthetic
and RxRx1 datasets, which demonstrate notable feature heterogeneity, using either MMD-D or MK-
MMD yields large performance improvements compared to standard Ditto. For RxRx1, including
the Ditto penalty produces a small, additional improvement with the MMD-D measure, but can

7



Table 1: Average performance when replacing the standard Ditto constraint with various feature-drift
penalties. Bold and underline indicate the best and second best value across pFL methods. Subscripts
for CIFAR-10 and Synthetic indicate values for α and α = β, respectively.

Feature Drift Constraint

Dataset FedAvg Ditto Cos. Sim. MMD-D MK-MMD−1 MK-MMD20

CIFAR-100.1 71.220 84.930 84.212 83.789 84.136 84.439
CIFAR-100.5 75.575 80.702 75.167 75.094 75.678 76.564
CIFAR-105.0 77.284 77.658 67.298 67.729 68.718 68.832

Synthetic0.0 84.733 89.129 89.975 90.237 91.418 90.066
Synthetic0.5 85.458 85.533 90.199 91.270 91.137 90.262

Fed-ISIC2019 64.057 71.350 61.269 64.302 60.168 62.677

RxRx1 35.207 65.629 64.985 67.478 65.861 67.078

Table 2: Average performance when augmenting the standard Ditto constraint with various fea-
ture drift constraints. Bold and underline indicate the best and second best value across methods.
Subscripts for CIFAR-10 and Synthetic indicate values for α and α = β, respectively.

+ Feature Drift Constraint

Dataset FedAvg Ditto Cos. Sim. MMD-D MK-MMD−1 MK-MMD20

CIFAR-100.1 71.220 84.930 84.924 85.214 84.723 84.900
CIFAR-100.5 75.575 80.702 80.669 80.696 80.936 80.976
CIFAR-105.0 77.284 77.658 78.052 77.739 77.578 77.739

Synthetic0.0 84.733 89.129 89.187 89.458 89.183 89.258
Synthetic0.5 85.458 85.533 87.783 89.695 88.154 88.104

Fed-ISIC2019 64.057 71.350 70.970 72.226 71.169 71.267

RxRx1 35.207 65.629 67.027 67.755 65.984 66.892

degrade accuracy with MK-MMD. Similarly, adding the Ditto penalty for the Synthetic datasets
hurts performance across the board. By construction, the Synthetic datasets have aspects that are
adversarial to weight-based constraints, as the feature and label generation process incorporates
normally distributed local weight variations. As such, these constraints may hinder learning at a
certain point. As noted by the dataset creators, RxRx1 exhibits deep feature heterogeneity, which
is especially challenging for FL algorithms. The results suggests that the proposed MMD-based
measures are particularly well-suited for the kind of underlying heterogeneity in these datasets, while
standard Ditto constraints are less effective.

The results in Table 2 also show that combining the traditional Ditto constraint with an MMD-based
one produces the best results for Fed-ISIC2019 and CIFAR-10, in all but one setting. In the case
of CIFAR-10, the improvements are modest but persistent across different levels of heterogeneity.
Interestingly, despite yielding less favorable results as a standalone constraint, pairing the Ditto and
cosine similarity penalties does provide the best performance for the most homogeneous version of
CIFAR-10. In this setting, the MMD-based constraints remain second best. When using MMD-D in
combination with Ditto for Fed-ISIC2019, the improvement is more prominent, especially given how
challenging the task is [8, 39]. Finally, the combined results imply that the flexibility offered by the
deep kernel of MMD-D produces better results than MK-MMD, especially for complex datasets.

The results above demonstrate that replacing or augmenting the traditional Ditto penalty with the
adaptive MK-MMD or MMD-D constraints yields performance benefits. Notably, the proposed
approach is transferrable to other pFL methods that use penalties to guide local training. To exhibit the
utility of the adaptive constraints in other settings, experiments augmenting MR-MTL, another high-
performing pFL method, with MK-MMD or MMD-D as latent-space penalties are conducted. The
results are reported in Appendix F. Integrating the adaptive measures produces accuracy improvements
over the standard MR-MTL algorithm in all settings, with the exception of FedISIC-2019.
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6.1 Interaction of the Ditto and MMD Constraints

For the Synthetic and RxRx1 tasks, the traditional Ditto penalty under-performs compared to applying
either MK-MMD or MMD-D in isolation. However, for the other datasets, a natural question arising
from the results is whether the benefits of adding the MMD-based penalties are captured by simply
increasing the Ditto constraint weight. To consider this, performance is measured for a variety of λ
near the optimal value for the CIFAR-10 and Fed-ISIC2019 datasets. Ditto is both augmented with
the MMD-based measures and considered alone. The results are shown in Figure 2.

Figure 2: Results for CIFAR-10 and Fed-ISIC2019 when varying λ around the optimal value. The
best result is reported for MMD-based penalty weights, µ, drawn from {0.01, 0.1, 1.0}.

For α = 5.0, adding MMD-D outperforms Ditto-only for all values of λ. MK-MMD also improves
performance for λ at or above the best value. In the α = 0.5 setting, augmentation with MK-MMD
is better or equivalent to standard Ditto with increasing λ. In this setting, MMD-D under-performs
for λ = 0.5 but is equivalent or better than Ditto for other values. In the high-heterogeneity
regime, the results are more mixed. For the optimum λ, adding MMD-D provides a performance
boost, but decays more rapidly than Ditto as λ increases. The addition of MK-MMD simply yields
comparable performance. At the highest levels of heterogeneity, weaker constraints, which permit
more substantial local model divergence, can be advantageous. As such, the stronger penalties
provided by augmentation with the MMD-based measures may be less helpful. For Fed-ISIC2019,
both MMD-D and MK-MMD maintain an advantage over Ditto for nearly all values of λ. MMD-D
achieves the highest peak value by a good margin.

Overall, the results demonstrate that the benefits of the new constraints are not simply replicated by
increasing λ. Rather, these constraints capture beneficial aspects of drift not considered by the purely
weight-based penalty. Intuitively, the weight- and feature-based constraints impact training dynamics
differently. Weight-drift penalties weakly constrain a model to a neighborhood of reference weights.
However, with model depth and nonlinearity, small weight perturbations can still produce large
deviations in representations and outputs. We conjecture that combining such penalties with strong
feature constraints can produce a more uniform drift penalty, providing complementary benefits in
certain settings. Furthermore, in many contexts, a single form of heterogeneity will not characterize
all drift between FL clients. Thus, penalizing drift in distinct ways is likely to be advantageous.

6.2 Ablation Studies

In the hyperparameter sweeps for CIFAR-10, the best results are obtained with a constraint depth
of 1. This is illustrated on the left of Figure 3. For a fixed λ = 0.1, accuracy degrades with the
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introduction of additional penalties. We conjecture that constraining too many layers in a relatively
small model, as used in the CIFAR-10 experiments, produces a heavy constraint and hinders learning.
This relationship informed the decision to apply MMD-based constraints to the latent space of a
single layer for the remaining datasets. Further performance improvements may indeed exist for other
datasets with different constraint configurations, as this simply limited the configuration search space.

Figure 3: Evolution of accuracy on the CIFAR-10 (α = 0.1) dataset (left) with an increasing number
of constraints at various model depths for the MMD measures with and without the standard Ditto
drift penalty. Accuracy for Synthetic datasets (right) using a varying number of fixed kernels with
uniform weight compared to using the kernel optimization procedures of MK-MMD or MMD-D.

Improvements to test power when optimizing MMD kernels has been established in previous work
[23, 35]. However, to validate that the kernel optimization procedures translate to task improvements,
the performance of these approaches is compared to using a fixed set of RBF kernels linearly
combined with uniform weights. In the experiment, the first r kernels are selected from the original
18 generated by γj values from 2−3.5 to 21 with exponents evenly spaced in increments of 0.25.
For example, when r = 5, kernels corresponding to γj = 2−3.5, 2−3.25, 2−3, 2−2.75, 2−2.5 are used.
Each receives a uniform weight equal to 1/r such that the MMD measure is the average value of the
individual measures induced by the fixed kernels. Results for the two Synthetic datasets are shown
on the right in Figure 3. Kernel optimization with MK-MMD and MMD-D both outperform all
fixed kernel settings. Notably, the 18-kernel case is equivalent to the MK-MMD setting in previous
experiments, but with the kernel weight optimization procedure disabled. The optimization processes
clearly generate substantive improvement in accuracy in this setting.

7 Conclusions, Limitations, and Future Work

In this work, two adaptive MMD-based measures are proposed to constrain feature representation
divergence between models in FL. The Ditto and MR-MTL frameworks for pFL are expanded to
incorporate such measures, penalizing local-model drift from a model aggregated with FedAvg on
the server. We find that using these measures of feature-space distributions alone, or in tandem with
traditional weight-based distances, produces marked performance improvements across several tasks,
including important real-world, clinical benchmarks. The main results and ablation studies demon-
strate that, rather than simply providing a parallel penalty to the standard weight-drift constraints, the
MMD-based measures differ in kind. These measures appear especially effective in settings with
significant feature heterogeneity between clients, such as in the Synthetic and RxRx1 datasets. Both
measures are effective, but MMD-D empirically provides more consistent improvements.

While the results of this work are promising, some limitations are worth noting. The experiments
focus on the utility of the MMD measures in the context of pFL frameworks with weight-based
penalties. However, other methods, such as FedProto, may also benefit from introducing such
penalties. Moreover, while the experiments indicate settings where the proposed measures offer
notable benefits, this work does not theoretically quantify the conditions under which such measures
are most effective. Some preliminary thoughts on such theory are provided in Appendix H, but
more work is required. Finally, as noted in Section 5.1, the kernel optimization procedures introduce
non-trivial computational costs. Avenues for reducing such costs are discussed in Appendix D. The
above questions and limitations will be the subject of future work.
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LEAF: A benchmark for federated settings. In Workshop on Federated Learning for Data
Privacy and Confidentiality, 2019.

[3] D. Chen, D. Gao, W. Kuang, Y. Li, and B. Ding. pFL-bench: a comprehensive benchmark for
personalized federated learning. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc.

[4] H. Chen, A. Frikha, D. Krompass, J. Gu, and V. Tresp. FRAug: Tackling federated learning
with non-IID features via representation augmentation. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 4849–4859, 2023.

[5] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai. Exploiting shared representations for
personalized federated learning. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 2089–2099. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/collins21a.html.

[6] Y. Deng, M. M. Kamani, and M. Mahdavi. Adaptive personalized federated learning, 2020.

[7] E. Diao, J. Ding, and V. Tarokh. HeteroFL: Computation and communication efficient federated
learning for heterogeneous clients. In International Conference on Learning Representations,
2021.

[8] J. O. du Terrail, S.-S. Ayed, E. Cyffers, F. Grimberg, C. He, R. Loeb, P. Mangold, T. Marchand,
O. Marfoq, E. Mushtaq, B. Muzellec, C. Philippenko, S. Silva, M. Teleńczuk, S. Albarqouni,
S. Avestimehr, A. Bellet, A. Dieuleveut, M. Jaggi, S. P. Karimireddy, M. Lorenzi, G. Neglia,
M. Tommasi, and M. Andreux. FLamby: Datasets and Benchmarks for Cross-Silo Federated
Learning in Realistic Healthcare Settings. In NeurIPS 2022 - Thirty-sixth Conference on
Neural Information Processing Systems, Proceedings of NeurIPS, New Orleans, United States,
November 2022.

[9] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-
sample test. Journal of Machine Learning Research, 13(25):723–773, 2012. URL http:
//jmlr.org/papers/v13/gretton12a.html.

[10] A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, and B. K.
Sriperumbudur. Optimal kernel choice for large-scale two-sample tests. Advances in neural
information processing systems, 25, 2012.

[11] K. Hu, Y. Li, S. Zhang, J. Wu, S. Gong, S. Jiang, and L. Weng. FedMMD: A federated weighting
algorithm considering non-IID and local model deviation. Expert Systems with Applications,
237:121463, 2024. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2023.121463. URL
https://www.sciencedirect.com/science/article/pii/S0957417423019656.

[12] H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao. SMART: Robust and efficient fine-tuning
for pre-trained natural language models through principled regularized optimization. In Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 2177–2190, Online,
July 2020. Association for Computational Linguistics.

11

https://proceedings.mlr.press/v139/collins21a.html
https://proceedings.mlr.press/v139/collins21a.html
http://jmlr.org/papers/v13/gretton12a.html
http://jmlr.org/papers/v13/gretton12a.html
https://www.sciencedirect.com/science/article/pii/S0957417423019656


[13] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira, H. Eichner, S. El Rouayheb,
D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui,
C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak,
J. Konecný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri,
R. Nock, A. Özgür, R. Pagh, H. Qi, D. Ramage, R. Raskar, M. Raykova, D. Song, W. Song,
S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu,
Q. Yang, F. X. Yu, H. Yu, and S. Zhao. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021. ISSN 1935-8237. doi:
10.1561/2200000083. URL http://dx.doi.org/10.1561/2200000083.

[14] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. SCAFFOLD:
Stochastic controlled averaging for federated learning. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 5132–5143. PMLR, 13–18 Jul 2020.

[15] N. Kotelevskii, M. Vono, A. Durmus, and E. Moulines. FedPop: A bayesian ap-
proach for personalised federated learning. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Informa-
tion Processing Systems, volume 35, pages 8687–8701. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
395409679270591fd2a70abc694cf5a1-Paper-Conference.pdf.

[16] V. Kulkarni, M. Kulkarni, and A. Pant. Survey of personalization techniques for federated learn-
ing. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4), pages 794–797, 2020.

[17] K. Li, J. Lu, H. Zuo, and G. Zhang. Multi-source contribution learning for domain adaptation.
IEEE Transactions on Neural Networks and Learning Systems, 33(10):5293–5307, 2022.

[18] Q. Li, B. He, and D. Song. Model-contrastive federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

[19] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and
future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[20] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization
in heterogeneous networks. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of
Machine Learning and Systems, volume 2, pages 429–450, 2020.

[21] T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning through
personalization. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 6357–6368. PMLR, 18–24 Jul 2021.

[22] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou. FedBN: Federated learning on non-IID
features via local batch normalization, 2021.

[23] F. Liu, W. Xu, J. Lu, G. Zhang, A. Gretton, and D. J. Sutherland. Learning deep kernels for
non-parametric two-sample tests. In International conference on machine learning, pages
6316–6326. PMLR, 2020.

[24] Z. Liu, S. Hu, Z. S. Wu, and V. Smith. On privacy and personalization in cross-silo federated
learning. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc.

[25] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transferable features with deep adaptation
networks. In International conference on machine learning, pages 97–105. PMLR, 2015.

[26] I. Loshchilov and F. Hutter. Fixing weight decay regularization in ADAM, 2018.

[27] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh. Three approaches for personalization with
applications to federated learning, 2020.

12

http://dx.doi.org/10.1561/2200000083
https://proceedings.neurips.cc/paper_files/paper/2022/file/395409679270591fd2a70abc694cf5a1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/395409679270591fd2a70abc694cf5a1-Paper-Conference.pdf


[28] K. Matsuda, Y. Sasaki, C. Xiao, and M. Onizuka. FedMe: Federated learning via model
exchange. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM),
pages 459–467, 2022.

[29] K. Matsuda, Y. Sasaki, C. Xiao, and M. Onizuka. Benchmark for personalized federated
learning. IEEE Open Journal of the Computer Society, 5(1):2–13, Jan 2024. ISSN 2644-1268.

[30] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

[31] P. Passban, T. Roosta, R. Gupta, A. Chadha, and C. Chung. Training mixed-domain translation
models via federated learning. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 2576–2586, Seattle, United States, July 2022. Association for Computational Linguistics.

[32] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Koneĉný, S. Kumar, and H. B.
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paper’s contributions and scope?
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Justification: The abstract and introduction clearly state the paper’s contributions, which
include proposing the use of adaptive statistical distance measures, MK-MMD and D-MMD,
to constrain the divergence of local models from the server-side aggregated model for
addressing various types of heterogeneity in pFL. These claims are supported by empirical
results on four different datasets with varying levels and types of heterogeneity, which
highlight the strengths and weaknesses of the different drift penalty methods.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a final section on Conclusion, Limitations, and Future Work,
which also discusses limitations such as the computational overhead of iteratively optimizing
the kernels to better measure statistical distances and the need for additional investigation
into a theoretical framework quantifying the conditions under which the proposed measures
are most effective.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper proposes the use of theoretically supported statistical measures in
an FL setting. The theoretical underpinning of the measures used appear in works cited
throughout. The primary contribution of this work, however, is proposing a framework for
their use in FL and extensive numerical experiments showing the effectiveness thereof.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all the details about the datasets, models, training con-
figurations, and hyperparameter selection procedure, allowing for the reproduction of all
experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material? Answer: [Yes]
Justification: The paper does provide open access to code to reproduce results. All the
datasets used in the experiments are public and should be downloaded/requested separately.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper includes detailed descriptions of the training and test setups, in-
cluding hyperparameters, data generation and splits, and optimizers, in the Experimental
Settings section, with additional details provided in several Appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
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Justification: All results are reported as the average of three runs with different, fixed
random seeds, ensuring reproducibility. However, due to the large number of experiments
and the extensive hyperparameter search involved, experiments were limited to three runs.
Additional computational resources would be required to produce tight confidence intervals
in most settings. The standard deviations associated with the main experimental results are
reported in Appendices F and G. Nevertheless, the mean performance metrics are consistently
higher across all datasets and heterogeneity types when incorporating MMD-based penalties.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide all information about the type of GPUs used, as well as the required
execution time and memory for each dataset’s experiments, in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research does not violates any aspects of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work proposes a pFL solution designed for training in environments
with data-sharing constraints, which can have a broad impact in domains with strict privacy
regulations, such as healthcare. To support our claims, we go beyond using only synthetic
data and CIFAR-10 by including two challenging medical imaging datasets, demonstrating
the effectiveness of our method in real-world healthcare scenarios. Improvements in model
performance, even small ones, have the potential to meaningfully improve patient care and
healthcare outcomes.
Furthermore, federated learning is widely recognized as a solution for addressing data
constraints. Adding to the growing set of literature showing real-world benefits with this
methodology is important in building towards wider adoption of the methodology in fields
where it can break down barriers to model development.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, this work does not introduce any aspects with
high risk for misuse, including data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites the code, datasets and models used, acknowledging the original
creators and their contributions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code to reproduce the experiments of this paper is publicly available.
These assets are strictly in the form of code and library elements. Model assets and dataset
artifacts will be made available on request, due to their size.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects or any aspects that
required IRB approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The work does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Synthetic Dataset Generation Details

Label heterogeneity of varying levels of intensity can be imposed on public datasets using Dirich-
let allocation. Inducing controllable levels of feature heterogeneity is more challenging. To
simulate feature-level heterogeneity, we extend the approach outlined in [20]. Therein, to gen-
erate data for k clients, samples (Xk, Yk) are synthesized using a simple one-layer network as
y = argmax(softmax(Wx+ b)). To produce a more complicated and multi-layer relationship, the
generative function is extended to use a two-layer network as

y = argmax
(
softmax

(
W2

(
T−1(W1x+ b1)

)
+ b2

))
,

where x ∈ R60, W1 ∈ R20×60, b1 ∈ R20, W2 ∈ R10×20, b2 ∈ R10, and T is the temperature for
smoothing the output of first layer. For data generation, T = 2.

For layer i ∈ {1, 2}, we model W i
k ∼ N (ui

k, 1), b
i
k ∼ N (ui

k, 1), u
i
k ∼ N (0, α), and xk ∼ N (vk,Σ),

where Σ is a diagonal covariance matrix with Σ(j,j) = j−1.2. Each element in the mean vector vk is
drawn from N (Bk, 1), with Bk ∼ N (0, β). Therefore, α controls the variation among local models,
while β controls the differences between local data across clients. We vary α, β to generate two
levels of heterogeneous datasets, with (α, β) set to (0, 0) and (0.5, 0.5).

B Hyperparameter Details

The hyperparameters studied in each of the experiments, along with their optimal values, are
outlined in this section. For each dataset, the only hyperparameter tuned when using FedAvg
is the learning rate (LR) for their respective local optimizers. The LR is selected from the set
{0.00001,0.0001,0.001,0.01,0.1}. The optimal hyperparameters found for each method and dataset
are displayed in Table 3. For any fixed set of parameters, three runs are performed with random seeds
of {2021, 2022, 2023}.

B.1 CIFAR-10

Following the implementation in pFL-bench [3], we use an SGD optimizer with momentum 0.9. For
all levels of heterogeneity, the same parameter ranges are considered. For Ditto, the client-side LR
are {0.0001, 0.001, 0.01, 0.1} and λ ∈ {0.1, 0.5, 1, 2, 10}.

For cosine similarity, when applied alone, the LR values are {0.001, 0.01}, and µ has values
{0.01, 0.1, 1.0}. When combined with Ditto, LR ∈ {0.001, 0.01}, µ ∈ {0.01, 0.1, 1.0}, and
λ ∈ {0.1, 0.5, 1, 2, 10}.

In experiments applying only MMD-D and MK-MMD, the LR is selected from {0.001, 0.01}. The
value of µ is drawn from {0.01, 0.1, 1.0}. Constraint depths of 1, 2, and 3 are considered with
the optimal depth always being 1. As such, when combining the standard Ditto penalty and an
MMD-based measure, a depth of 1 is always used. In such settings, the LR values are {0.001, 0.01},
µ is drawn from {0.01, 0.1, 1.0}, and λ is selected from {0.1, 0.5, 1, 2, 10}.

B.2 Synthetic

Following the setup in [20], an SGD optimizer with momentum 0.9 and weight decay 0.001 is used.
For both levels of heterogeneity, the same parameter ranges are considered. For Ditto, the LR is
selected from {0.0001, 0.001, 0.01, 0.1} and λ ∈ {0.01, 0.1, 1.0}.

In the remaining experiments, based on the Ditto results, the LR is fixed to 0.001 for (α, β) = (0, 0)
and to 0.01 for data with (α, β) = (0.5, 0.5). The hyperparameter µ for cosine similarity, MMD-D,
and MK-MMD is selected from the set {0.01, 0.1, 1.0}. When these methods are combined with
Ditto, we additionally select λ from {0.01, 0.1} while continuing to tune µ within the same range.

B.3 Fed-ISIC2019

In [39], using an AdamW optimizer for this dataset led to improved performance in the FL setup,
compared to using SGD, as was done in [8]. Based on these findings, AdamW is used in the
experiments. Similar to the previous two datasets, for Ditto we search for the optimal LR in the
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Table 3: Best hyperparameters for each of the methods across all datasets.

CIFAR-10 Synthetic Fed-ISIC2019 RxRx1

0.1 0.5 5.0 (0.0, 0.0) (0.5, 0.5) – –

FedAvg LR 0.01 0.01 0.01 0.001 0.01 0.0001 0.0001

Ditto LR 0.01 0.01 0.01 0.001 0.01 0.001 0.0001
λ 0.1 0.1 0.5 0.01 0.1 1.0 0.01

MMD-D LR 0.01 0.01 0.01 0.001 0.01 0.001 0.0001
µ 0.01 0.01 0.01 1.0 1.0 1.0 0.01

MK-MMD LR 0.01 0.01 0.01 0.001 0.01 0.001 0.0001
µ 1.0 1.0 1.0 1.0 0.1 1.0 0.01

Cos. Sim. LR 0.01 0.01 0.01 0.001 0.01 0.001 0.0001
µ 0.1 0.1 0.1 1.0 1.0 1.0 1.0

Ditto
+ MMD-D

LR 0.01 0.01 0.01 0.001 0.01 0.001 0.0001
λ 0.1 0.1 0.5 0.01 0.01 1.0 0.01
µ 0.01 0.01 0.01 1.0 1.0 1.0 0.01

Ditto
+ MK-MMD

LR 0.01 0.01 0.01 0.001 0.01 0.001 0.0001
λ 0.1 0.1 1.0 0.01 0.01 1.0 0.01
µ 0.1 0.1 0.1 0.1 1.0 0.1 0.1

Ditto
+ Cos. Sim.

LR 0.01 0.01 0.01 0.001 0.01 0.001 0.0001
λ 0.1 0.1 0.5 0.01 0.01 0.1 0.01
µ 0.1 0.1 1.0 1.0 1.0 0.1 0.01

set {0.0001, 0.001, 0.01, 0.1}, and tune λ over {0.1, 1}. Among these, an LR of 0.001 consistently
outperformed other values.

Fixing the LR to 0.001, the hyperparameter µ is tuned for cosine similarity, MMD-D, and MK-MMD
from the set {0.01, 0.1, 1.0}. When these methods are integrated with Ditto, the same range for µ is
searched, along with λ ∈ {0.1, 1}.

B.4 RxRx1

Following [4], we use an AdamW optimizer to fine-tune a pretrained ResNet-18 model. For Ditto,
the LR is tuned within the set {0.00001, 0.0001, 0.001, 0.01}, and the regularization parameter λ is
taken from {0.01, 0.1, 1}. An LR of 0.0001 consistently yielded the best performance across various
λ values.

With the learning rate fixed at 0.0001, we optimize the hyperparameter µ for cosine similarity,
MMD-D, and MK-MMD from the set {0.01, 0.1, 1.0}. When these methods are combined with
Ditto, λ = 0.01 and the same range of search for an optimal µ is maintained.

C FL Settings and Checkpointing

In this section, dataset specific FL settings for the experiments are outlined and the checkpointing
strategy is described. Regardless of dataset, each client participates in every round of FL training.
That is, there is no client subsampling. It should be noted that, in principle, the Ditto approach allows
for different types of optimizers, and learning rates, to be applied to the global and local models
during client-side optimization. However, in the experiments, the same LR and optimizer type are
applied to both models, which is also done in the original work.

For all MK-MMD experiments, in constructing the kernel space K, d = 18 different RBF kernels
are used of the form kj(x, y) = e−γj∥x−y∥2

2 . The values of {γj}dj=1 ranged from 2−3.5 to 21 with
exponents evenly spaced in increments of 0.25. Further, when periodically optimizing MK-MMD
or MMD-D every 20 steps, the number of batches of data used for optimization, z, varied. For
Fed-ISIC2019, z = 64, and for the remainder of datasets z = 50.
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For all variants of CIFAR-10, there are five clients and FL proceeds for 10 server rounds. Within each
round, clients perform five epochs of local training using a standard SGD optimizer with momentum
set to 0.9 and a batch size of 32. For the Synthetic data experiments, we generate eight clients,
each with 5000 samples. Federated training is conducted over 15 server rounds, with each round
consisting of 5 local training epochs. Following [20], we use a batch size of 10 and optimize the
models using SGD with a momentum of 0.9 and a weight decay of 0.001. Following the settings of
the FLamby benchmark [8], there are 15 rounds of federated training with six participating clients
for Fed-ISIC2019. During an FL round, each client trains for 100 steps using a batch size of 64. An
AdamW optimizer is used with default parameters. Finally, for RxRx1, four clients are present and
10 rounds of federated training are run. Each client performs five epochs of local training using a
batch size of 32. Again an AdamW optimizer is applied using default parameters.

In all experiments, the final model for each client is checkpointed and evaluated on a held-out test
set to quantify performance. This is a commonly applied approach in FL [20, 14, 31]. For FedAvg,
the final global (aggregated) model is saved. For all other approaches, the local models are persisted.
During experimentation, we also considered checkpointing each client’s model after each round of
local training based on local validation performance. Because results were similar or worse for all
approaches with such checkpointing, only those using the latest checkpoint are presented.

D Compute Resources and Runtime Complexity: Ditto Experimentation

All experiments were performed on a high-performance computing cluster. For the CIFAR-10 and
Synthetic datasets, an NVIDIA T4V2 GPU with 32GB of CPU memory was used. Each FedAvg and
Ditto experiment on CIFAR-10 took approximately 10 and 20 minutes, respectively. The addition of
optimization-based losses increased training time, with MMD-D, MK-MMD−1, and MK-MMD20

experiments requiring approximately 2, 1, and 1.5 hours, respectively. Training for the Synthetic data
took under 5 minutes on the same GPU for all methods.

For the Fed-ISIC2019 and RxRx1 datasets, we used an NVIDIA A100 GPU with 64GB and 100GB
of CPU memory, respectively. With Fed-ISIC2019, FedAvg and Ditto required 2 and 3.5 hours of
training time, while incorporating MMD-D, MK-MMD−1, and MK-MMD20 increased the training
time to approximately 4, 4, and 7 hours, respectively. For RxRx1, FedAvg took 2 hours, Ditto took
2.5 hours, and the addition of MMD-D, MK-MMD−1, and MK-MMD20 extended training times to
3.5, 3, and 6 hours, respectively.

The objective of this work is demonstrating that integrating the proposed MMD measures improves
performance in heterogeneous data settings. Thus, no concerted effort is made to reduce the overhead
associated with optimization of the MK-MMD or MMD-D kernels. However, a number of possibilities
for cost reduction exist. For MK-MMD, a general, python-based, quadratic program (QP) solver
called qpth is used. Experimenting with more heavily optimized libraries or QP solvers specifically
tailored to the MK-MMD system may yield large reductions. It is also possible that the QP systems
need not be solved to significant precision, decreasing the number of iterations used by the solvers.
Finally, pre-conditioning techniques, such as using previous solutions as iteration starting points
could markedly compress computation time. For MMD-D, future work could include studying
utility trade-offs associated with various configurations, including kernel update frequencies, training
data sizes, and optimizers. In the experiments, the featurization networks, φ, are also of moderate
size, consisting of four linear layers and activations with a hidden dimension of 50. Contracting or
changing this architecture would likely speed up optimization.

D.1 Runtime Complexity Analysis

The use of the proposed, adaptive MMD measures comes with an increase in runtime complexity due
to the arithmetic operations associated with either solving the quadratic program for MK-MMD or
performing SGD steps with MMD-D. In this section, we quantify these increases using Ditto as the
reference algorithm. Borrowing the notation of Algorithm 1, let p denote the number of arithmetic
operations for a single step of SGD with batch size b to update the model weights, wL or wG. For
Ditto, the total cost across all N clients is O(N · T · s · p). For simplicity, assume we perform kernel
optimization for either MK-MMD or MMD-D after every iteration of local model training and have a
single latent-space penalty.
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For MMD-D, let q be the arithmetic operations associated with a single step of SGD for the deep
kernel, φ, with batch size b. Denote by k the number of kernel optimization steps taken. Then the
total cost across all clients becomes O(N · T · s · (p+ kq)). In most cases, p will be significantly
greater than kq, as the primary models are expected to be much larger than φ.

With MK-MMD, a convex quadratic program needs to be constructed according to Equation (2).
However, the cost of this construction is generally smaller than the cost of solving the system for
small data sizes. A QP solver based on interior-point methods requires O(

√
m) iterations, each

costing O(m3) arithmetic operations, where m is the size of the latent space [43]. Hence, the total
cost across all clients is O(N · T · s · (p+m3.5)). As in the case of MMD-D, the quantity m3.5 will
often be much smaller than p, as d simply represents the dimension of the constrained latent space.

E Extended Related Work: Other pFL Approaches

This section discusses less similar, but still related, approaches in pFL and how the measures proposed
in this work might be incorporated, if applicable. Sequentially split models are common in pFL.
Quintessential examples include FedPer and FedRep [1, 5]. These techniques sequentially decompose
models into feature maps and classifier layers and only exchange model sub-components, most often
the feature maps, with the server for aggregation. As a result, only certain modules incorporate global
information through aggregation. Parallel-split pFL methods employ a similar trick, but decompose
the models differently. In these methods, two or more modules process input in parallel. At least
one of the modules is meant to be aggregated, incorporating global information, while others remain
strictly local. Parallel modules could constitute complete classifiers, as in APFL [6], or lower-level
feature maps, as in PerFCL [46] or FENDA-FL [39]. Combining partial model exchange, whether
sequential or parallel, with penalty-based pFL approaches like Ditto can take many forms, including
straightforward modifications. For example, during local training, the feature maps in FedRep may
be constrained to not drift too far from those of a FedAvg model, as in Ditto, using the MK-MMD or
MMD-D measures proposed in this work.

Other pFL methods, fitting into less broad categories, exist. FedBN [22] proposes excluding batch
normalization layers from global exchange, as these layers can struggle to handle heterogeneity well.
HypCluster [27] partitions clients into clusters and trains isolated models for each cluster. When
the number of clients is small, as in this work, such partitioning is impractical and forgoes global
information. Other methods, such as FedPop [15], are explicitly designed for cross-device settings
rather than cross-silo FL. They take advantage of large-scale client populations with relatively small
datasets, rather than focusing on smaller client pools. Each of these techniques incorporate ideas that
narrow their applicability with respect to the setting considered in this work.

F MR-MTL Experiments

The integration of the proposed adaptive MMD measures is not limited to the Ditto algorithm. This
appendix demonstrates the extensibility of the main results to other existing approaches. In the
experiments below, MR-MTL is augmented to include either MK-MMD or MMD-D as latent-space
penalties. The training process of MR-MTL is similar to Ditto except that, instead of training a
separate global model to constrain local model training, the local models are simply penalized when
drifting too far from the average of all local models [24]. Thus, the algorithm resembles FedProx, but
without replacing local models with the averaged one prior to client-side training.

While MR-MTL is competitive with Ditto for certain tasks, it tends to be a slightly less effective
approach. However, the removal of the separate global-model training process has significant
differential-privacy benefits and also markedly reduces the computational cost that comes with
training two models simultaneously [24]. Thus, MR-MTL is useful in settings where privacy is of the
utmost importance or compute constraints intervene.

Table 4 summarizes the experimental results. As observed with Ditto, combining the weight-based ℓ2

constraint of MR-MTL with the adaptive, latent-space constraints proposed in this work has visible
benefits. For all variants of CIFAR-10 and the RxRx1 dataset, using either MK-MMD or MMD-D
markedly boosts performance. Similarly, the Synthetic datasets also see improvements with MMD-D
for both heterogeneity levels, and MK-MMD lifts performance when α = β = 0.5. Fed-ISIC2019 is
the lone dataset that does not see improvements when augmenting with these constraints.
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Table 4: Average performance (and standard deviation) when augmenting the MR-MTL constraint
with the proposed MMD penalties. Bold and underline indicate the best and second best value.
Subscripts for CIFAR-10 and Synthetic indicate values for α and α = β, respectively.

Dataset MR-MTL + MK-MMD20 + MMD-D

CIFAR-100.1 79.516 (1.674) 81.269 (0.400) 80.307 (1.705)
CIFAR-100.5 73.361 (1.027) 74.333 (0.742) 74.446 (0.529)
CIFAR-105.0 68.224 (1.223) 69.487 (1.180) 70.353 (0.149)

Synthetic0.0 90.879 (0.267) 90.708 (0.257) 91.142 (0.031)
Synthetic0.5 86.750 (3.189) 90.958 (0.981) 90.337 (0.499)

Fed-ISIC2019 70.628 (0.911) 68.180 (2.735) 70.366 (0.970)

RxRx1 64.065 (1.663) 65.791 (0.363) 66.673 (0.480)

The setup for the MR-MTL experiments mirrors that of Ditto. The same FL settings and checkpointing
described in Appendix C are used, and the same models are trained. The values reported in Table 4
are the average of three distinct runs. The optimal hyperparameters for each method and dataset are
displayed in Table 5. The hyperparameter ranges swept are reported thereafter. Note that the ranges
are subsets of those covered in the Ditto experiments, as only neighborhoods of the optimal values
there are considered.

Table 5: Best hyperparameters for methods in the MR-MTL experiments across all datasets.

CIFAR-10 Synthetic Fed-ISIC2019 RxRx1

0.1 0.5 5.0 (0.0, 0.0) (0.5, 0.5) – –

MR-MTL LR 0.001 0.001 0.001 0.001 0.001 0.0001 0.0001
λ 0.1 0.1 0.1 0.01 0.01 0.1 0.01

+ MMD-D
LR 0.001 0.001 0.001 0.001 0.001 0.0001 0.0001
λ 0.1 0.1 0.1 0.01 0.01 0.1 0.01
µ 1.0 1.0 1.0 1.0 1.0 0.01 0.01

+ MK-MMD20

LR 0.001 0.001 0.001 0.001 0.01 0.0001 0.0001
λ 0.1 0.1 0.1 0.01 0.01 0.1 0.01
µ 0.01 0.01 0.01 1.0 1.0 0.01 0.1

CIFAR-10 For all levels of heterogeneity, the same parameter ranges are used. For MR-MTL,
the client-side LRs are {0.001, 0.01, 0.1} and λ ∈ {0.1, 0.5, 1.0}. In experiments applying either
MMD-D and MK-MMD alongside the traditional MR-MTL constraint, the LR is fixed at 0.001,
λ = 0.1, and µ is drawn from {0.01, 0.1, 1.0}.

Synthetic For both levels of heterogeneity, the same parameter ranges are searched. For MR-MTL,
the LR is {0.001, 0.01} and λ ∈ {0.01, 0.1, 1.0}. When MK-MMD or MMD-D are combined with
MR-MTL, we fix λ = 0.01 while tuning µ ∈ {0.1, 1.0} and LR in {0.001, 0.01}.

Fed-ISIC2019 For MR-MTL, we search for the optimal LR in the set {0.0001, 0.001}, and tune
λ over {0.01, 0.1, 1}. When MK-MMD or MMD-D are used with MR-MTL, the LR is constant at
0.0001 and λ = 0.1. The value of µ is tuned in the range {0.01, 0.1, 1.0}.

RxRx1 For MR-MTL, the LR is tuned within the set {0.0001, 0.001}, and λ is taken from
{0.01, 0.1, 1.0}. For a fixed learning rate of 0.0001 and λ = 0.01, the hyperparameter µ is op-
timized, when combining MR-MTL and MMD-D or MK-MMD, within {0.01, 0.1, 1.0}.

G Standard Deviations of Main Results

Due to space constraints, and for clarity of presentation, the standard deviations of the main results
of Section 6 are deferred to this appendix. Table 6 reports a condensed version of Tables 1 and 2
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Table 6: Average performance (and standard deviations) for various constraint configurations. Bold
indicates the best values. Subscripts for CIFAR-10 and Synthetic indicate values for α and α = β,
respectively. Finally + indicates that the MMD constraint is applied in tandem with the standard
Ditto constraint, rather than as a replacement.

Dataset Ditto MMD-D MK-MMD−1 MK-MMD20

CIFAR-100.1 84.930 (0.142) 83.789 (0.184) 84.136 (0.346) 84.439 (0.304)
CIFAR-100.5 80.702 (0.121) 75.094 (0.532) 75.678 (0.000) 76.564 (0.125)
CIFAR-105.0 77.658 (0.268) 67.729 (0.591) 68.718 (0.262) 68.832 (0.174)

Synthetic0.0 89.129 (2.200) 90.237 (0.405) 91.418 (0.339) 90.066 (2.628)
Synthetic0.5 85.533 (0.250) 91.270 (0.309) 91.137 (0.694) 90.262 (0.144)

Fed-ISIC2019 71.350 (1.191) 64.302 (1.546) 60.168 (2.979) 62.677 (0.604)

RxRx1 65.629 (1.936) 67.478 (1.200) 65.861 (1.151) 67.078 (0.394)

Dataset Ditto + MMD-D + MK-MMD−1 + MK-MMD20

CIFAR-100.1 84.930 (0.142) 85.214 (0.079) 84.723 (0.501) 84.900 (0.318)
CIFAR-100.5 80.702 (0.121) 80.696 (0.148) 80.936 (0.224) 80.976 (0.365)
CIFAR-105.0 77.658 (0.268) 77.739 (0.376) 77.578 (0.139) 77.739 (0.271)

Synthetic0.0 89.129 (2.200) 89.458 (0.348) 89.183 (2.249) 89.258 (2.269)
Synthetic0.5 85.533 (0.250) 89.695 (0.186) 88.154 (1.817) 88.104 (0.721)

Fed-ISIC2019 71.350 (1.191) 72.226 (1.241) 71.169 (1.369) 71.267 (1.037)

RxRx1 65.629 (1.936) 67.755 (0.672) 65.984 (0.774) 66.892 (0.851)

with the corresponding standard deviations over three runs. It should be noted that in pFL, especially
under heterogeneous settings, a certain degree of performance variation is expected and has also been
reported in previous work [29].

H Initial Thoughts on Optimal Conditions for Adaptive MMD Measures

This work empirically demonstrates that the proposed adaptive, feature-based MMD penalties are
beneficial in the context of pFL algorithms imposing local drift constraints. The experiments are
specifically designed to provide insight into settings where such penalties provide the most benefit.
The results suggest that the presence of strong feature heterogeneity is one such setting. In contrast,
when label heterogeneity is induced via Dirichlet allocation and training data is otherwise independent
and identically distributed (IID), as in the CIFAR-10 datasets, the benefits are less pronounced.

In most settings, theoretical support for FL algorithms centers on demonstrating convergence through
bounding the magnitude of model updates or local gradients by some contracting value with respect
to the server rounds [20, 38, 21, 32]. Proving various aspects of optimality compared with other
algorithms is more rare, especially in non-IID settings. Some exceptions of interest are the conver-
gence rates analysis of SCAFFOLD [14] and the optimal regularization parameter theory of Ditto
and MR-MTL [21, 24].

In [21], it is shown that there exists a regularization parameter value, λ∗, yielding optimal average
test performance across heterogeneous clients for the Ditto framework in the context of federated
linear regression. Beyond the simplified model setting, the setup assumes that clients’ heterogeneity
is expressed as perturbations in their labeling functions from a common mapping. While this
heterogeneity is different in kind from the feature heterogeneity for which the approach proposed
herein empirically improves performance, the theoretical model may be useful in building similar
results for latent-space penalties.

A possible avenue is considering a shared latent-space distribution and labeling function across
clients but varying linear feature maps. As such, the input feature spaces of each client would have
differing statistical properties induced by the inverse feature maps. Nonetheless, with the correct
feature mappings, labels are consistently and accurately applied. Provided that the target latent-space
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has structured statistical properties, such as being a Gaussian mixture, and the feature maps are
sufficiently conditioned or simple, deriving optimal MMD kernels may be possible. From there,
showing that there exists an optimal weight, µ, for such a kernel would yield the desired result.

The setting above is specifically manufactured to be difficult for a standard Ditto-based approach. By
construction, feature maps are not within a neighborhood of one another, implying that penalizing drift
from a central model is likely detrimental. While the setting is artificial, it is related to real problems,
where, for example, different medical imaging devices produce unique artifacts but fundamentally
similar decision criterion when these artifacts are accounted for during feature processing.

Characterizing the settings under which the MMD constraints studied in this work are optimal remains
an open and interesting question. While the suggested theoretical tack may require modifications, the
experimental results in this paper provide insights into the design of such theoretical machinery.
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