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Abstract

The imperative of user privacy protection and regulatory compliance necessitates
sensitive data removal in model training, yet this process often induces distribu-
tional shifts that undermine model performance-particularly in out-of-distribution
(OOD) scenarios. To address this issue we propose a novel data removal ap-
proach that enhances deep predictive models through factor decorrelation and
loss perturbation. Our approach introduces: (1) a discriminative-preserving factor
decorrelation module employing dynamic adaptive weight adjustment and iterative
representation updating to reduce feature redundancy and minimize inter-feature
correlations. (2) a smoothed data removal mechanism with loss perturbation that
creates information-theoretic safeguards against data leakage during removal oper-
ations. Extensive experiments on five benchmark datasets show that our approach
outperforms other baselines and consistently achieves high predictive accuracy
and robustness even under significant distribution shifts. The results highlight its
superior efficiency and adaptability in both in-distribution and out-of-distribution
scenarios.

1 Introduction

Removing specific data in the machine learning model training process is crucial to protect user
privacy and regulatory compliance [} |2, [3]. For example, users of e-commerce platforms may
invoke data deletion rights for product reviews that have been incorporated into the training corpus
of recommendation models. Satisfying such requests entails removing the associated entries from
front-end systems while also ensuring that the date’s influence is purged from the model’s internal
representations and parameter space. In addition, financial clients can request the removal of
transaction histories or loan application records that have contributed to the training of credit scoring
models. These scenarios highlight that data removal requests are distributed in widely scenarios with
domain-specific regulatory and operational constraints. Furthermore, such removals can induce shifts
in the underlying data distribution, while retraining the overall model for each of the specific cases is
impractical since the computational costs [4} 5]]. Therefore, generalizable approaches to data removal
are essential for adapting to varied and evolving deletion demands.

The primary challenge confronting data removal methodologies lies in the inadequate exploration
and adaptation to out-of-distribution (OOD) data scenarios [6} [7]]. Existing data removal mechanisms
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predominantly rely on gradient-based updates and parameter fine-tuning, assuming that the data
distribution is similar before and after removal, which inherently limits their robustness. As data
distributions may evolve dynamically across temporal and contextual dimensions with continuous data
removal requests, the intrinsic correlation between feature representations and corresponding labels
transforms. These distributional shifts weaken the effectiveness of existing forgetting mechanisms,
reduce removal accuracy, and decrease generalization ability to unseen data. Consequently, existing
removal mechanisms struggle to maintain model performance under dynamic scenarios.

Feature dimensionality reduction serves as an effective decorrelation strategy in OOD scenarios and
has been widely adopted in predictive modelling techniques, including principal component analysis
(PCA) [8, O], clustering-based approaches [10], and kernel-based mappings [11]. For instance,
Stablenet [12]] employs Random Fourier features to achieve spatial transformation for classification
under OOD conditions. A core challenge lies in integrating dimensionality reduction with existing
data removal strategies to design parameter update algorithms to maintain the balance between model
accuracy and computational efficiency. While dimensionality reduction reshapes the representation
space, it may also discard informative and discriminative features as dimensionality decreases. Loss
functions without appropriate adaptation may lead to gradient directions that diverge from the true
optimization objective, introducing training instability and degrading generalization performance.

To address the aforementioned challenge, we propose DecoRemoval, a data removal method that
avoids retraining under OOD scenarios. In such settings, we introduce a discriminative maintenance
factor decorrelation module and use a spatial mapping strategy to efficiently reduce feature dimension-
ality with linear computational complexity. This transformation is based on the Fourier transform of
a kernel function, thereby reducing feature redundancy and promoting factor decorrelation. DecoRe-
moval maintains feature weights through iterative gradient updates, which accelerates convergence
and enhances robustness without assuming a fixed data distribution. To further improve the safety and
reliability of the removal process, we introduce a random linear perturbation module for smoothed
data removal. This perturbation serves as a regularizer in the parameter space, smoothing the solution
landscape of the objective function. As a result, it enables accurate approximation of retraining effects
via localized parameter adjustments. Compared with several baselines, the proposed DecoRemoval
achieves the best performance in balancing accuracy and efficiency in data removal scenarios. The
contributions of this paper can be summarized as follows:

* We propose DecoRemoval, a discriminative-preserving factor decorrelation method that
integrates feature dimensionality reduction with data removal, which dynamically adjusts
feature weights to balance removal precision and computational efficiency.

* We design a smoothed data removal mechanism incorporating a Loss Perturbation module,
which introduces linear interference to protect sensitive information while preserving model
stability during the removal process.

* We conduct extensive experiments on standard benchmarks, showing that DecoRemoval
achieves competitive predictive performance, robust generalization, and high efficiency
under significant distributional shifts.

2 Related Work

2.1 Machine Unlearning

Machine unlearning has emerged as a pivotal area of research in response to growing privacy
concerns and regulatory mandates [[13| (14} 15 [16]. This field focuses on developing methodologies
that enable machine learning models to effectively remove the influence of specific data points
without necessitating complete retraining [17, [18]].

As concerns about data privacy and regulatory compliance continue to grow, the ability of machine
learning models to "forget" specific data points has emerged as a key area of research. Machine
forgetting aims to remove the influence of individual data without retraining the entire model [[19].
Early approaches include using gradient vectors or summary layers to isolate and mitigate data
influence. Existing methods for forgetting in deep neural networks can be broadly categorized into
two groups: retraining-based and retraining-free approaches. Retraining-based methods involve
re-optimizing the model after data removal, while retraining-free methods avoid this by estimating
the sensitivity of model parameters [20, 21]. These methods often rely on approximations using



the Fisher information matrix or the Hessian matrix, as seen in early techniques such as Certified
Removal and Optimal Brain Damage [22} 23]].

A major challenge in this space has been adapting these forgetting methods to the complex, nonconvex
landscape of deep neural networks [24}, 25]]. To address this, Zhang et al. (2024) extend certified
unlearning to deep models by bounding the error introduced by a Newton update, enabling scalable
and theoretically grounded forgetting in nonconvex settings [26]. Building on this direction, Foster et
al. (2024) introduce Selective Synaptic Dampening, a method that identifies parameters most relevant
to the forget set using Fisher information and proportionally reduces their impact [27]]. This allows
the model to unlearn specific data while maintaining performance on the remaining dataset.

However, in the dynamic environment, data distribution will evolve over time. The existing machine
unlearning methods face serious limitations when dealing with scenarios where data distribution is
changing. Our method introduces the feature decoupling module into deep neural networks, providing
a balance between efficiency and adaptability in both in distribution and out of distribution settings.

2.2 Certified Data Removal

Certified data removal methods allow models to "forget" specific data points while maintaining statis-
tical equivalence to models trained without the removed data [28, 29/ 30, 31]. The requirement for
data removal speed in practical application scenarios of machine learning cannot be ignored. Certified
removal stands out for providing a favorable balance between removal speed and accuracy [13]]. It
can ensure removal accuracy to a certain extent while maintaining extremely high practical efficiency,
making it a leading SOTA method in current research literature.

Certified data removal typically adjusts model parameters by removing residual influences of removed
samples, often through gradient-based updates and calibrated noise injection [32,|31} [33]]. Marchant
et al. [[14] pioneered a verification framework for unlearning by analyzing the Hessian matrix of
training data and gradients associated with removable samples. Their method triggers retraining
if theoretical error bounds exceed predefined thresholds. Subsequent work by Neel et al. [15]
introduced regularized and distributed gradient descent variants, providing formal guarantees on
model indistinguishability and accuracy for weakly convex loss functions. Guo et al. [[13] advanced
these principles for linear classifiers, delivering practical algorithms with theoretical rigor.

Our work restricts the scope to the more mature unlearning area of classification tasks. Based on
certified removal, we introduce feature decoupling and loss perturbation modules to enable a good
approximation of retraining prediction performance after sample removal through localized updates.

3 Factor Decorrelation Enhanced Data Removal

In this section, we will detail the design of our DecoRemoval framework illustrated in Figure [I]
DecoRemoval include two main modules: (1) Discriminative-preserving factor decorrelation by using
random Fourier features to achieve spatial mapping and perform dimensionality reduction on input
features (Section 3.2); (2) Smoothed data removal by integrating the random linear perturbation loss
into unlearning training process to ensure privacy and security (Section 3.3). Moreover, we will
integrate the core steps of 3.2 and 3.3 and introduce the main process of the DecoRemoval algorithm
(Section 3.4). Next, we will explain them one by one.

3.1 Definitions

Definition: Factor Decorrelation [6,[12]: Let X € R™*? denote a dataset with n samples and d
features, and let A be a learning algorithm trained on X. Factor Decorrelation refers to the process
of reducing statistical dependencies (e.g., correlation) among features in X, with the objective
of transforming it into a decorrelated representation X' that preserves essential information for
learning. As the correlations between features affect or even impair the model prediction, several
works have focused on remove such correlation in the training process such as Random Fourier
Features(RFF) [34]. RFF is used to approximate kernel functions and induce decorrelation by
mapping the data to a higher-dimensional space. Given a kernel k(x,y), RFF provides a feature
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Figure 1: Factor decorrelation enhanced data removal. Overview of the DecoRemoval framework. It
consists of two main modules: (1) Discriminative-Preserving Factor Decorrelation based on Random
Fourier Features for spatial mapping and dimensionality reduction; (2) Smoothed Data removal
through random linear perturbation loss integrated into the unlearning training process.

mapping ¢(x) such that the dot product {p(x), d(y)) =~ k(zx,y). The transformation is given by:

o(x) \/g [cos(Wx + b)],

where W € R4 js g random matrix, b € R% is a bias term, and d is the number of random Fourier
features. This transformation is designed to decorrelate the original features by embedding them in a
higher-dimensional space.

ey

Definition: Certified Removal [13]: Let D be a training dataset and A be a learning algorithm
trained on D. Range(A) is the value range of A. A data-removal mechanism M is applied to
A(D), and we say that the removal mechanism M performs e-certified removal (e-CR) for learning
algorithm A if, for all S C Range(A) and x € D, the following condition holds:

P(M(A(D),D,xz)€S) _ .
S T PAD\mes) =° @

—€

The definition ensures that removing a single data point x from the dataset D will not affect the
model’s predictions by more than an exponential factor of €, preserving the model’s stability.

3.2 Discriminative-Preserving Factor Decorrelation

To deal with OOD, we propose a discriminative-preserving factor decorrelation module that integrates
Random Fourier Features (RFF) [[12] into the neural network architecture. This module aims to
decorrelate input features while preserving their class-discriminative structure, thereby promoting
stable and generalizable learning. Specifically, input features are first projected into a higher-
dimensional randomized feature space via an RFF-based transformation. This mapping reduces
redundancy and statistical dependency among features, resulting in a smoother optimization landscape
for subsequent layers.

While RFF aids in feature decorrelation, it may also disperse discriminative information across
dimensions. Applying standard dimensionality reduction or naive loss functions without adapting
to the transformed structure risks misaligning gradient directions with the true task objective. Such
mismatch can destabilize training and impair generalization. To address this, we explicitly balances
feature decorrelation with discriminative preservation. By aligning the transformation process with
task-aware loss design, our approach maintains effective learning dynamics and avoids representation
collapse.

Random Fourier Feature Mapping: Let the input feature vector for the ¢-th sample be denoted by
X; € R™x. The goal is to map X into a high-dimensional feature space using the Random Fourier



Feature transformation. This transformation is based on the Fourier transform of a kernel function
and is defined as follows:

Zi =V2-cos(wX; +¢), w~N(0,I), ¢~ Uniform(0,2n), 3)

where w € R™# is sampled from a standard normal distribution, and ¢ € [0, 27] is sampled uniformly.
The resulting vector Z; € R™7Z is the transformed feature for the ¢-th sample. By utilizing this
RFF mapping, we can approximate the kernel function k(X, X’) in a feature space without directly
computing it, enabling the use of linear models in a high-dimensional feature space.

Feature Decorrelation via Sample Weighting: To further eliminate the correlation between the
transformed features, we employ a sample weighting strategy that minimizes the dependence between
features. Let Z. ; and Z. ; represent the i-th and j-th feature vectors of the transformed input. The
goal is to reduce the statistical dependence between all pairs of features in the transformed space.

To achieve this, we utilize hypothesis testing statistics based on the cross-covariance between random
variables. Let us define the cross-covariance operator X 4 g between two random variables A and B,
with corresponding kernel functions k 4 and kg, as follows:

(ha,Yaphp) = Eaplha(A)hp(B)] — Ealha(A)Eg[hp(B)], )

where hy € Ha and hp € Hp are elements of the Reproducing Kernel Hilbert Spaces (RKHS)
corresponding to the random variables A and B. The independence of the random variables A and B
is indicated by the condition:

Yap=0 <= A1l B. (®)]

In our case, we use the cross-covariance between the transformed features Z. ; and Z. ; to measure
their dependence. The partial cross-covariance matrix X 4 g can be estimated as follows:

T
n n

o R DOEA) B CEARES SUCA) I FRC

where u and v are the RFF transformations applied to the features Z; and Z;, respectively. The
Frobenius norm of this matrix is used as a measure of the dependence between features:

Iap = |Zasl%. @)

To further reduce feature dependence, we apply sample weighting. Let w; denote the sample weight
for the ¢-th sample. The weighted partial cross-covariance matrix is computed as:

T

~ 1 n 1 n 1 n
EAB;w = m Z U)ZU(Zl) - ﬁ iju(Z]) . U)Z'U(Zl) — E ZU)j’U(Zj) . (8)
=1 j=1 j=1

Optimization of Sample Weights: The optimal sample weights w* are determined by minimizing
the total dependence between all pairs of features. The optimization problem for the weights is
formulated as:
* . - 2
w = arg wHEHAnn Z ||2Z:,iZ:,j;wHF7 ©))
1<i<j<myz

where A, = {w € R™" | 3" | w; = n} ensures that the sample weights are positive and sum to n.

3.3 Smoothed Data Removal

To enhance the data removal mechanism with generalization across distributions, we propose a
smoothed data removal module based on random linear perturbations. Specifically, we inject ran-
domized noise into the training loss, which obfuscates gradient signals associated with removed or
irrelevant samples. This smoothing effect suppresses sharp updates caused by individual data points,
minimizing their influence on model predictions. As a result, the model becomes less sensitive to the
removed data, reducing the risk of information leakage while maintaining stable learning behavior.



Loss Perturbation for Data Removal: To ensure that the removal of data does not inadvertently
leak information about the removed samples, we begin by applying a loss perturbation technique at
the training stage. This involves perturbing the loss function by adding a random linear term:

n

Lyp(we; D) = Y L (whpas,ys) + b wey (10)

i=1

where we;y € R? denotes the weight vector of the linear classifier (distinct from the sample weights

w used for decorrelation), and b € R? is a random vector sampled from a prescribed distribution
(e.g., Gaussian or uniform). The addition of b ",  serves to inject controlled stochasticity into the
optimization process, thereby obscuring potential gradient signals associated with specific training
instances. This perturbation mitigates the risk of overfitting and strengthens the model’s robustness to
sample removal under removal guarantees.

Linear Authentication Removal: After the loss perturbation, we proceed to the linear authentication
removal step. To perform linear authentication removal, the deep learning network is split into two
parts: the feature extraction layer parameters w.,+, and the linear classification layer parameters
wey s This separation allows us to rewrite the loss function in terms of the linear classifier:

L(weg; D) = L (whs f(Weatrs f(w’;2:)), i) (11)
1=0

where wy; ; = A(D) = argmin,,,,, L(wes; D). We assume that we aim to remove the last training
sample (z,,, y,) from the dataset D, resulting in a modified dataset D' = D \ (x,,, yn)-

To remove the sample (., ¥, ), we first compute the gradient of the loss function at (xz,,, y,,) and the
Hessian of L(+; D) at wy

A =VL(wes; (Tn,yn)) Hur, = V2L{wi; D) (12)

Werr

We then apply the Newton update removal mechanism M as follows:

wy = M(wgys, D, (Tn, yn)) = wyy + H;zllfA (13)

This update H, ;Ef A represents the influence function of the removed training sample on the vector
cl

wp, ;- The training process of our DecorRemoval is described in Appendix.A.

Robustness of Removal Under Perturbation. To ensure the proposed removal mechanism remains

valid under the perturbed loss, we analyze its impact on the gradient and Hessian. The perturbed loss

is given by:

n

Lyp(ways; D) = Y Llwgpas, ys) + b way, (14)

=1

where b € R? is a random vector independent of individual samples. This linear term introduces a
constant shift in the gradient:

VLp(wclf) = VL(wle) + b, (15)
but leaves the Hessian unchanged:
V2 Lp(wers) = V2 L(wery). (16)

As the removal update depends on the Hessian and the gradient of the sample to be removed, which
are both unaffected by b, the update

w;lf :w:lf+H_1VL<w:lf;(xmyn)) (17)

remains valid. Hence, our removal mechanism is robust to the proposed linear perturbation, and the
specific proof process is detailed in Appendix B.



4 Experiments

4.1 Datasets and Evaluation Metrics

Our approach are evaluated on five widely used datasets spanning multiple data modalities, including
image, text, and structured features. Following the setup in Certified Removal [13]], we consider
three public datasets for classification tasks: MNIST [35], CIFAR-10 [36]], and SST-2 [37]. MNIST
consists of grayscale images of handwritten digits, where digits 3 and § are selected as in-distribution
classes and the remaining digits are treated as out-of-distribution (OOD) data. CIFAR-10 contains
60,000 color images (32x32) evenly distributed across 10 object categories and serves as a standard
benchmark for evaluating image classification methods. SST-2 is a binary sentiment analysis dataset
derived from movie reviews, commonly used in text classification and language understanding tasks.

To assess the algorithm’s applicability to privacy-sensitive structured data, we also include two social
survey datasets: the 2015 China General Social Survey (CGSS) and the 2018 European Social Survey
(ESS). Both datasets contain multi-label annotations related to self-reported happiness levels on a
five-point ordinal scale [38],139].

In the context of unlearning, it is essential to evaluate performance from three key aspects: utility,
efficiency, and privacy protection. Given that certified unlearning methods provide theoretical
guarantees on privacy, our experiments primarily focus on reporting utility and efficiency. We
report accuracy (ACC) and weighted average F1 score as evaluation metrics to capture both overall
classification performance and class imbalance sensitivity across diverse data types.

4.2 Experimental Setting

Following certified removal, we split the dataset into training, validation, and testing sets with a ratio
of 7:1:1. Both training and validation sets consist solely of correctly labeled data to ensure standard
supervised learning conditions. We train models independently on each category (e.g., training with
data from class A), and then sample 10% of instances from other categories (e.g., class B). For
testing, if these testy samples are predicted as "Not A", it means the unlearned model is correct. This
creates an extreme testing scenario where semantic content mismatches the assigned label, enabling
evaluation of the model’s robustness against mislabeling or conceptual confusion.

In the experiment, the data unlearning baselines include Certified Removal(CR) [13], SISA (5
shards) [3], DP-SGD [40]], Certified Unlearning (CU) [26[land SSD [27]. Both CR and DP-SGD
provide strong theoretical guarantees under the framework of differential privacy. CU offers model-
agnostic approximate unlearning strategies with soundness certificates and can be extended to deep
neural networks [26]. SSD leverages the Fisher information matrix for parameter updates and
represents the current state-of-the-art in certified removal [27]. In this paper, the source code provided
by the baselines is used to fine-tune the parameters and obtain the optimal values to represent the
experimental results of the baselines. For baselines which source code was not provided, this study
reproduced the model design based on PyTorch framework. All methods set MLP as the backbone
for all deep prediction models, ans are trained using a batch size of d = 50 and a total of 7" = 20
training epochs. For fair comparison, we fix the standard deviation parameters in DecoRemoval to
d = 1072 and std = 1, and use a consistent optimization schedule with numteps = 100 across all
experiments. Under these conditions, we subsequently applied the removal mechanism to each group
separately. The related experiments in this study are conducted on four NVIDIA 4090D GPUs.

The time consumption for our DecoRemoval algorithm (DR) to remove data mainly comes from
the computation of adaptive weights and the update operation of different features. We evaluate the
performance of DecoRemoval algorithm across multiple datasets and varying data remove scales
(1000, 3000, and 10000 samples). The full retraining from scratch (Retrain) is treated as the upper
bound for accuracy, while Certified Removal serves as the baseline for efficiency comparison [[13]].
Our main codes and datasets are available at https://github.com/WUT-IDEA.

4.3 Unlearning Performance

Evaluated on five diverse datasets, DecoRemoval consistently achieves near-retraining performance in
both accuracy and F1 score across varying removal scales. Unlike prior methods that focus primarily
on privacy, our approach addresses feature correlation shifts via spatial mapping and randomized loss



Table 1: Comparison of ACC (%) and F1 scores across different methods and removed sample sizes
(The closer to Retrain, the better)

Dataset Samples _ erain CR[13] SISA[3] DP-SGD [40] SSD [27] CU[26] DR (Ours)

ACC FI ACC FI ACC FI ACC F1 ACC F1 ACC Fl1 ACC F1

1000 51.753 0.505 43.132 0.394 43.635 0.405 45.783 0.440 45.452 0.458 47.345 0.458 48.973 0.482
MNIST 3000 51.351 0.498 42.213 0.391 43.455 0.401 45.342 0.438 45.241 0.455 46.943 0.455 48.653 0.478
10000 51.016 0.495 41.872 0.390 42.955 0.398 44.873 0.432 45.031 0.450 46.532 0.450 48.340 0.473

1000  50.762 0.501 43.086 0.392 43.214 0.401 45301 0.436 45.062 0.452 46.842 0.452 48.563 0.478
CIFAR-10 3000 50.459 0.496 42.293 0.391 42.942 0.396 44.839 0.433 44.723 0.448 46.521 0.449 48.141 0.473
10000 50.011 0.491 41.763 0.389 42.512 0.392 44.371 0.428 44.513 0.443 46.106 0.444 47.832 0.469

1000  91.764 0.843 89.705 0.808 89.975 0.817 90.452 0.825 89.983 0.818 89.942 0.813 90.451 0.827
SST-2 3000 91.545 0.840 89.651 0.801 89.760 0.814 90.356 0.820 89.865 0.816 89.765 0.808 90.387 0.825
10000 91.142 0.839 89.478 0.796 89.653 0.809 90.101 0.816 89.873 0.816 89.673 0.805 90.375 0.821

1000 55.432 0.540 48.608 0.410 48.635 0.420 50.473 0.450 50.147 0.486 51.341 0.490 54.973 0.520
ESS 3000 55351 0.540 48.412 0.400 48.455 0.410 50.012 0.440 50.007 0.479 51.153 0.480 54.852 0.510
10000 55.236 0.530 48.402 0.390 48.435 0.410 49.673 0.430 49.186 0.478 50.871 0.470 54.640 0.510

1000 51.602 0.515 41.239 0.465 43.516 0.472 46.756 0.487 47.765 0.475 48.765 0.485 50.824 0.501
CGSS 3000 51.324 0.506 40.738 0.458 43.016 0.469 46.252 0.482 47.313 0.474 48.210 0.480 50.482 0.496
10000 50.975 0.498 40.145 0.434 42.745 0.465 45.954 0.473 47.152 0.471 47.851 0.477 50.104 0.495

perturbation, ensuring both utility and robustness. Compared to recent baselines such as SSD and
certified unlearning, DecoRemoval demonstrates stronger generalization, especially under large-scale
deletions and noisy, high-dimensional data.

DecoRemoval achieved the best performance in out of distribution scenarios across five datasets.
As shown in Table ref Table: merged, DecoRemoval consistently achieved near-retraining accuracy
and F1 score across five datasets and removal sizes, surpassing all existing Sota data removal
models under out-of-distribution settings. On the ESS and CGSS datasets, which feature noisy
and highly correlated survey data, our method achieves 54.9% and 50.8% accuracy after removing
1000 samples, with minimal degradation compared to full retraining (55.4% and 51.6%). In SST-2,
DecoRemoval maintains over 90.3% accuracy across all remove scales, outperforming DecoRemoval
by approximately 1 percentage point on both ACC and F1 metrics. Especially in image dataset scenes,
DecoRemoval achieved significant improvement under out of distribution settings. This scenario is
the main research and application goal of the current data removal mechanism.

Compared to traditional data removal models that mainly focus on privacy processing, DecoRe-
moval performs better. The biggest problem with data removal under out of distribution settings
is the correlation between features that affects the distribution of data. The existing traditional data
removal models mainly focus on privacy protection issues during the data removal process, using
methods such as differential privacy to ensure model stability and security. However, when there
are out of distribution changes in the data scene, these methods lack processing of the correlation
between features, resulting in poor model performance. DecoRemoval identified the complexity of
features in this scenario, achieved feature dimensionality reduction through spatial mapping, and
ensured the privacy of the removal process by adding random loss perturbations, thus achieving
optimal performance in ACC and F1 scores in OOD scenarios.

Greater robustness compared to SOTA. Compared with the latest methods such as SSD updated
with Fisher matrix and optimized Certified Unlearning, DecoRemoval utilizes the advantage of
spatial dimensionality reduction in feature correlation processing and exhibits stronger robustness
in large-scale data deletion. For example, on the CGSS dataset with 10000 removed samples, our
method achieved an F1 score of 0.495, while Zhang and Foster’s methods only scored 0.477 and
0.471, respectively. This pattern is applicable to all datasets, indicating that our method has stronger
generalization ability and stability.

4.4 Efficiency Analysis

In addition to unlearning fidelity, computational efficiency is a critical factor for practical deployment.
While full retraining (Retrain) achieves optimal activity performance, it requires model reinitialization



Table 2: Comparison of running Time(s) for different removal methods (the closer to Certified
Removal, the better)

Samples  Dataset Retrain CR[13] SISA[3] DP-SGD [40] CU]J[26] SSD [27] DR

MNIST  4643.100 21.312 1923.430 38.710 33.134 32.541 30.430
1000 SST-2 61.500 0.074 24.670 0.124 0.105 0.095 0.097
ESS 1539.100 7.420 648.400 12.800 12.458 12.127 11.500
CGSS 615.690 8.450 362.400 15.346 14.541 14.377 14.353
MNIST  11432.500  62.425 4321.200 102.510 91.329 90.786 81.420
3000 SST-2 178.100 0.204 78.430 0.401 0.325 0.309 0.315
ESS 3142.200  22.120 1448.200 40.500 38.718 37.812 35.200
CGSS 1923.500 25.630 983.200 47.545 45.341 44.7749 43.345
MNIST  43123.500 190.342 13214.400 310.120 287.490  276.710  268.420
10000 SST-2 598.400 0.715 236.400 1.030 0.904 0.891 0.894
ESS 14532.500  78.400 6534.400 131.100 127.760  123.710  121.400
CGSS 5893.400 81.423 3418.900 164.600 158.860  147.230  141.700

and complete retraining on the original dataset, making it computationally impractical for frequent or
large-scale data removal scenarios. In contrast, DecoRemoval delivers strong unlearning performance
at significantly lower computational cost. Unlike Retrain, which revisits the entire training set,
DecoRemoval performs a lightweight fine-tuning procedure that specifically targets the removal-
induced dominant feature directions, enabling it to efficiently handle removal scales ranging from
1,000 to 10,000 samples without full model retraining. Furthermore, compared to existing methods,
DecoRemoval achieves better performance with lower overhead. Certified Removal and SISA
rely on ensemble models or shard-based training pipelines, which incur significant complexity and
computational burden [3} [13]. While DP-SGD offers built-in privacy guarantees, it injects substantial
noise during training, resulting in lower post-removal accuracy despite its relative efficiency [40].
Finally, DecoRemoval strikes a more favorable balance between efficiency and unlearning quality
than recent approaches proposed by Certified Unlearning (2024) and SSD (2024) [26 [27]]. Across all
settings, it consistently maintains performance close to the retraining upper bound while requiring
far fewer computational resources, making it particularly suitable for real-world, large-scale, or
streaming environments where fast and effective unlearning is essential.

4.5 Empirical Evaluation of Privacy Protection via Membership Inference Attacks

To further validate the privacy-preserving capabilities of DecoRemoval in the context of compliant
machine learning (e.g., GDPR, CCPA), we evaluate its robustness against Membership Inference
Attacks (MIAs)—a canonical threat model where an adversary attempts to determine whether a
specific data sample was used in model training. Strong resistance to MIAs indicates effective data
removal and reduced risk of information leakage.

Our evaluation is conducted under a realistic forgetting scenario with a privacy budget of ¢ = 1.
We compare DecoRemoval against several baselines. We assess MIA success rates across three
model architectures (MLP, LSTM, Transformer) and two real-world datasets (ESS, CGSS), while
also reporting accuracy and F1-score to evaluate utility preservation.

The results are summarized in Table[3] Key observations include:

* DecoRemoval consistently achieves lower MIA success rates than No-DP, demonstrating
effective privacy protection after data removal.

* It outperforms SSD and CR across most settings, especially on Transformers, with better
utility.

* On CGSS with LSTM, it achieves the lowest attack rate (50.2%) while maintaining higher
accuracy than CR.

* Compared to DP-SGD, DecoRemoval offers significantly better utility at comparable privacy
levels.



Table 3: Performance comparison of DecoRemoval and baselines on ESS and CGSS datasets across
different architectures. Metrics: Accuracy (%), F1-score (%), and MIA success rate (%). Lower
attack rate is better.

Backbone | Method | ESSACCT ESSF1+ ESSAttack | | CGSSACCT CGSSF11 CGSS Attack |
Retrain 63.9 62.5 66.1 60.4 48.2 61.4
DP-SGD 56.8 54.4 56.8 51.7 43.5 51.8
MLP SSD 59.0 56.9 57.3 53.2 452 52.5
CR 60.7 59.8 56.7 55.6 459 524
DecoRemoval 61.5 59.6 56.8 56.3 457 52.1
Retrain 65.8 65.2 65.3 62.5 56.4 59.8
DP-SGD 52.5 48.5 56.5 52.1 49.1 51.6
LSTM SSD 55.6 53.2 56.8 53.8 53.2 50.9
CR 57.1 53.5 55.9 554 54.1 50.4
DecoRemoval 589 554 56.7 56.8 55.1 50.2
Retrain 65.6 65.0 69.2 61.5 55.6 63.3
DP-SGD 54.1 52.5 62.0 539 51.6 59.1
Transformer | SSD 573 55.8 62.3 54.8 52.7 58.8
CR 57.7 56.1 60.5 554 529 57.4
DecoRemoval 58.4 56.3 60.9 56.2 52.8 58.1

These results confirm that DecoRemoval not only stabilizes model distribution after data removal but
also provides strong empirical privacy guarantees, making it suitable in privacy-sensitive applications.

4.6 Key Parameter Study

In Figure 2] we map the MINST dataset to a two-dimensional space for visualization after dimen-
sionality reduction. It can be observed that after data removal, the distribution of the dataset and
the position of the center point have undergone significant changes, which is consistent with our
initial hypothesis about the impact of data removal. Appendix C shows DecoRemoval’s performance
depends on hidden layer size and RFF dimension, with optimal capacity ensuring good generalization.

UMAP of MNIST Dataset Before Data Removal

T Dataset Showing Medoids Before and After Data Removal UMAP of Remaining Samples After Data Removal

Figure 2: Results of MNIST dataset showing medoids before and after data removal

5 Conclusions and Future work

To tackle privacy preservation and out-of-distribution (OOD) challenges in predictive tasks, we inte-
grate discriminative-preserving factor decorrelation with smoothed data removal. Our DecoRemoval
mechanism enables efficient data unlearning while maintaining compliance with privacy regulations.
The proposed method alleviates accuracy degradation commonly seen in traditional unlearning ap-
proaches under distribution shifts. Empirical results confirm its effectiveness and robustness in OOD
scenarios. Future work will focus on applying this algorithm to various application domains that
require robust machine unlearning capabilities, and how to work with current popular large models.
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A DecoRemoval Training Algorithm

In 3.1 and 3.2, we have introduced feature dimensionality reduction methods using kernel based
mapping and certified removal mechanism incorporating random loss perturbations. By utilizing the
characteristics of random Fourier transform and sample feature weightings are fused through iterative
loss fusion, and feature weights and related parameters are updated.So we summarized the overall
algorithm flow of DecoRemoval and introduced the data removal mechanism after adding feature
dimensionality reduction.

The DecoRemoval Algorithm aims to minimize feature correlation through the use of Random Fourier
Features (RFF) and optimize sample weights efficiently. In the first step, the algorithm prepares the
training dataset D = {(x1,¥1),. ., (Zn, yn)} and initializes the neural network’s feature extraction
weights we,, and classification layer weights w; r. The RFF transformation is applied to map the
input features into a higher-dimensional space, resulting in transformed feature vectors Z;. In the
second step,the algorithm calculates the feature dependence between pairs of transformed features and
optimizes sample weights w; to minimize this dependence, achieving decorrelation. For certified data
removal in the third step, the influence of each sample is removed by applying a Newton update rule
to the classifier weights. To prevent leakage of information from the removed samples, a perturbation
term is added to the loss function. The final output includes the optimized classifier weights w; s and

the transformed feature vectors Z;.

Algorithm 1: Factor decorrelation enhanced data removal

Inputs: training dataset D = {(z1,y1),- -, (n, yn)}, kernel function &, neural network with feature
extraction layer weztr, and linear classification layer we; f;
Hyperparameters: number of features mz, number of samples n;
Step 1: Random Fourier Feature Mapping;
fori=1,...,ndo
Sample w; ~ N(0,I), ¢; ~ Uniform(0, 27);
L Z; = RFF_transform(X;, wi, ¢;);
Step 2: Discriminative-Preserving Factor Decorrelation;
for each pair (Z;, Z;) do
L Compute feature dependence: I;; = FrobeniusNorm(iij);
Apply sample weights w; to minimize feature dependence: w* = Optimize Weights(fl ABw);
Step 3: Smoothed Data Removal;
for each sample (zr,yn) do
Compute gradient: A = VL(wef; (Tn,Yn));
Compute hessian: H“’sz = V2L(wzlf; D),
Update classifier: w,;, = wg;y + H;lef A,

Add random linear term to the loss: Lp, = L + b wg 13
Return: Optimized classifier parameters w, ; and transformed feature vectors Z;.

B Proof of Robustness Under Loss Perturbation

In this section, we provide a formal proof that adding a linear perturbation term to the training loss
does not affect the correctness of the linear authentication removal mechanism.

B.1 Perturbed Loss Function

We consider a perturbed loss function of the following form:
Lp(wep; D) = ZL(wjlfg;i,yi) +b way, (18)
i=1

where we; € R< is the linear classifier, and b € R? is a random vector sampled from a fixed
distribution (e.g., Gaussian or uniform). The term b " w,; ¢ introduces controlled randomness to the
optimization process.
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B.2 Gradient and Hessian Analysis

Let Losig(werp) = Z?:l L(w;g £Tis y; ) denote the original loss function. Then, the gradient of the
perturbed loss is:

VLp (wdf) = VLorig(wclf) + b. (19)
The Hessian of the perturbed loss is:
V2Lp(werf) = V2 Losig(wery) + V(b weif) = V? Loig (wety), (20)

since the second derivative of a linear term is zero. Thus, the curvature of the loss landscape (captured
by the Hessian) remains unchanged by the perturbation.

B.3 Effect on Removal Update

Assume that we wish to remove the final sample (x,,, y,,) from the dataset D, yielding the modified
dataset D’ = D \ (2, yn). The Newton-based removal update is given by:

wy = wiy + H 'VL(ws; (0, yn)), 1)

where wy, ; is the minimizer of the loss (perturbed or unperturbed), and H is the Hessian of the loss
over D' evaluated at wy, ;.

Under the perturbed loss, we denote the minimizer as w;, +» which satisfies:

Vieig(wF) +b=0 = VLeg(wl;) = —b. (22)

Ci
However, this constant offset in the gradient does not affect the sample-specific gradient
VL(weif; (€n,Yn)), nor the Hessian H, since both are independent of b. Therefore, the removal
update remains:

way = wify + H VLW (2n, yn)), (23)

which is structurally identical to the original update formula. As a result, the removal mechanism is
preserved under loss perturbation.

B.4 Conclusion

The addition of a linear perturbation term does not interfere with the linear removal update. The
gradient shift induced by b is constant and does not impact the relative influence of any individual
data point. The Hessian remains unchanged, and the Newton update retains its validity. This confirms
the robustness of our removal strategy under smoothed loss perturbations.

C In-distribution Setting Experiment

For the in distribution data scenario, we evaluated the accuracy and F1 score of Certified Removal(CR),
DecoRemoval(DR), Certified Unlearning(CU), and SSD on different datasets. This setting enables us
to systematically evaluate the robustness of the model to domain differences and its generalization
ability when the training distribution remains largely unchanged.

Table 4: Comparison of ACC (%) and F1 scores across different methods under in-distribution setting

MNIST CIFAR10 SST-2 ESS CGSS
Method
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
CR 91.974 0.930 90.878 0.931 96.103 0.979 92.863 0.939 92.798 0.921
SSD 92.429 0.940 92.320 0.964 96.982 0.987 93.754 0.943 93.305 0.930
CU 94.213 0.964 93.271 0.946 96.923 0.982 93.671 0.950 93.193 0.945

DR (Ours)  95.841 0.968 95.034 0.963 97.011 0.988 93.852 0.969 93.860  0.948
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D Unlearning Performance
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E Key Parameter Study

Accuracy and F1 Score.

These results demonstrate the effectiveness of
DecoRemoval, our factor decorrelation-based
data removal strategy. By adaptively
reweighting feature dimensions to suppress
redundant correlations, DecoRemoval
eliminates the need for full retraining,
ensuring fast and efficient data removal. It
performs well across various datasets and
conditions, providing high forgetting fidelity
and accuracy while balancing computational
efficiency and rigorous unlearning, making it
ideal for privacy-sensitive applications.

Efficiency. Overall, our DecoRemoval
achieves an effective balance between high
forgetting fidelity and practical efficiency, es-
pecially when facing out of distribution situ-
ations as shown in Figure @ It can achieve
performance close to the level of retraining
without incurring the huge cost of compre-
hensive retraining, and has a significant im-
provement in the balance between accuracy
and efficiency compared to existing data re-
moval mechanisms. This makes it a highly
promising solution for scalable and trustwor-
thy machine learning.

Our DecoRemoval algorithm adjusts the hidden layer dimension and the random Fourier transform
dimension of the neural network under out-of-distribution settings, and the tested results are reported
in terms of Accuracy and F1 score on the datasets, as shown in Figure[5} Specifically, when the
hidden layer dimension is about 80, the accuracy and F1 score of the two happiness datasets ESS
and CGSS, as well as the sentiment text dataset SST-2, reach their maximum values, outperforming
other traditional models and approaching the results of retraining. For the image dataset MNIST, the
performance reaches its best when the hidden layer dimension is about 400.

Mnist
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Figure 5: Results of different hidden layer dimensions in adaptive weighted factor decorrelation

The results indicate that the DecoRemoval algorithm can significantly improve its generalization

ability in the presence of out-of-distributed data.
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Effect of RFF Dimensions on ACC and F1 Score RFF dimensions

o6 {8 A€ During training with varying RFF dimensions,
055 ] we observed that both model accuracy and
054 F1 score consistently improved as the dimen-
© o033 sionality increased, peaking at 1000 dimen-
A sl sions as shown in Figure@ Beyond this point,
051 performance gains plateaued, showing min-
050 imal change with further increases. These
o4 findings suggest that the DecoRemoval al-

200 a0 600 800 1000 1200 1400 gorithm effectively enhances generalization
Dimensions of Random Fourier Features (RFF) . . . ..
under non-out-of-distribution conditions, par-
Figure 6: Experimental results of ESS in dif-  ticularly when equipped with a sufficiently
ferent RFF dimensions expressive RFF representation.

F Backbones

Table 5: Comparison of ESS Deletion Efficiency of Different Backbones in Deep Predictive Models
(the closer to Retrain, the better)

B Retrain Certified Removal FD-DR(ours)
ackbones

Time(s) | ACC(%)1T Time(s)! ACC(%)1T Time(s)] ACC(%)1
MLP 1539.1 55.4 7.4 48.6 11.5 54.8
LSTM 3583.1 53.9 20.4 48.2 28.6 52.5
Transformer 1956.2 54.1 16.4 48.5 15.4 53.1

G Limitations

Limited Exploration Beyond Feature-Level Decorrelation. This work primarily focuses on
mitigating out-of-distribution (OOD) challenges through feature-level factor decorrelation. While
effective, it leaves open how this approach interacts with other common OOD handling techniques
such as data augmentation, adversarial training, or ensemble learning. A promising direction for
future work is to explore how these methods can be systematically integrated with data removal
strategies to enhance both generalization and unlearning robustness.

Trade-off Between Certified Removal and Accuracy. Although certified removal offers strong
theoretical guarantees and is efficient for linear layers, it may be suboptimal in scenarios where high
predictive accuracy is critical, such as medical diagnosis or financial forecasting. In such cases,
privacy strength could be moderately relaxed in favor of more expressive unlearning methods, such
as influence function-based unlearning or fine-tuning-based approximate unlearning, to strike a better
balance between utility and privacy.
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