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ABSTRACT

Federated learning (FL), as a collaborative distributed training paradigm with sev-
eral edge computing devices under the coordination of a centralized server, is
plagued by inconsistent local stationary points due to the heterogeneity of the local
partial participation clients, which precipitates the local client-drifts problems and
sparks off the unstable and slow convergence, especially on the aggravated het-
erogeneous dataset. To address these issues, we propose a novel federated learn-
ing algorithm, named FedMIM, which adopts the multi-step inertial momentum
on the edge devices and enhances the local consistency for free during the train-
ing to improve the robustness of the heterogeneity. Specifically, we incorporate
the weighted global gradient estimations as the inertial correction terms to guide
both the local iterates and stochastic gradient estimation, which can reckon the
global objective optimization on the edges’ heterogeneous dataset naturally and
maintain the demanding consistent iteration locally. Theoretically, we show that
FedMIM achieves the O( 1√

SKT
) convergence rate with a linear speedup property

with respect to the number of selected clients S and proper local interval K in
each communication round under the nonconvex setting. Empirically, we conduct
comprehensive experiments on various real-world datasets and demonstrate the
efficacy of the proposed FedMIM against several state-of-the-art baselines.

1 INTRODUCTION

Federated Learning (FL) is an increasingly important distributed learning framework where the dis-
tributed data is utilized over a large number of clients, such as mobile phones, wearable devices or
network sensors (Kairouz et al., 2021). In the contrast to traditional machine learning paradigms, FL
places a centralized server to coordinate the participating clients to train a model, without collecting
the client data, thereby achieving a basic level of data privacy and security (Li et al., 2020a). The
common pipelines to achieve this goal includes three steps (Bonawitz et al., 2019): i) The server
broadcasts the current model to clients at the beginning of each communication iteration; ii) The
clients synchronize the local models and update the local model based on their own data; iii) The
server averages the latest local models and repeats these procedures until convergence.

Despite the empirical success of the past work, there are still some key challenges for FL: expensive
communication, privacy concern and statistical diversity. The first two problems are well fixed in
past work(Konečnỳ et al., 2016; Sattler et al., 2019; Hamer et al., 2020; Truex et al., 2019; Xu et al.,
2019) although the last one is still the main challenge that need to be deal with. Due to statistical
diversity among clients within FL system, client drift (Karimireddy et al., 2020a) leads to slow and
unstable convergence within model training. In the case of heterogeneous data, each client’s opti-
mum is not well aligned with the global optimum. The conventional FL algorithm does not consider
this data heterogeneity problem and simply applies the stochastic gradient descent algorithm to the
local update. As a consequence, the final converged solution of clients may differ from the stationary
point of the global objective function since the average of client updates move towards the average
of clients’ optimums rather than the true optimum. As the distribution drift exists over the client’s
dataset, the model may overfit the local training data by applying empirical risk minimization and
it has been reported that the generalization performance on clients’ local data may exacerbate when
clients have different distributions between training and testing dataset (Liang et al., 2020). In order
to overcome these problems, several solutions have been put forward in recent years. Generally,
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there are three types of methods: variance reduction based (Karimireddy et al., 2020b), regulariza-
tion based (Li et al., 2020b; Acar et al., 2021) and momentum based (Xu et al., 2021; Reddi et al.,
2020). Although these past works present some effective methods to reduce the client drift and im-
prove the generalization performance, the problem of local inconsistency is not fully considered. In
the real experiment setting, the local interval K is finite and the local update could not reach the
local optimum. With the iteration running, the final points for local iteration will remain relatively
stable and become dynamic equilibrium. The stability of these points determines the effectiveness of
algorithms and their position will alter when different algorithms are applied. The variance among
these points brings the local inconsistency problem Wang et al. (2021a). However, the analysis of
these past works are not comprehensive and experimental verification of the reduced local inconsis-
tency is lacking. In particular, when data heterogeneity among clients raises, the local update may
repudiate mutually, that is, the direction of the local gradient could not remain compatible. Thus,
the weighted average of local gradient at the aggregation stage is extraordinarily small and the mov-
ing global iteration point may stagnate, which leads to low generalization performance. To settle
this problem, a federated learning algorithm is required to incorporate historical information of full
gradient into client local updates for scaling down the variance between local dynamic equilibrium
points. Furthermore, the usage of historical full gradient information to navigate the local update
ought to be considered wisely instead of simply applied in the weight of models.

Figure 1: Local steps of FedAvg and FedMIM with 2 clients.

In this paper, we develop a new FL al-
gorithm to enhance local consistency
for free, Federated Multi-step Inertial
Momentum Algorithm (FedMIM), that
mitigates client drift and reduces local
inconsistency. From a high-level al-
gorithmic perspective, we bring multi-
step inertial momentum to the local up-
date, that is, multi-step momentum is
placed in both weight (orange arrow
shown in Figure 1) and gradient (yel-
low arrow shown in Figure 1) to modify the local update. Rather than calculating the momentum
updates at the server’s side and transmitting them through the down-link, all the clients compute the
momentum term before the local iteration, while the historical momentum is kept in the client’s stor-
age. FedMIM has two major benefits to undertaking aforementioned deficiencies. Firstly, FedMIM
does not acquire the server to broadcast the momentum between rounds, which curtails the com-
munication burden. Secondly, in contrast to previous work that focuses on server side momentum
(Karimireddy et al., 2020b) or client side momentum Xu et al. (2021), FedMIM delivers inertial mo-
mentum term to introduce global information avoiding the gradient exclusion in local update when
there exists large data heterogeneity among the participating clients.

Theoretically, we provide a detailed convergence analysis for FedMIM. By setting proper local
learning rate, FedMIM could achieve O( 1√

SKT
) convergence rate with a linear speedup property

for general non-convex setting with the number of selected clients S, local interval K and commu-
nication round T . As for non-convex function under PL condition, convergence rate achieves O( 1

T )
with proper setting of local learning rate. We test FedMIM algorithm on three datasets (CIFAR-
10, CIFAR-100 and TinyImagenet) with i.i.d, and different Dirichlet distributions in the empirical
studies. The results display that our proposed FedMIM shows the best performance among the
state-of-the-art baselines. When the heterogeneity increases extremely, the performance of the fed-
erated algorithms drops rapidly due to the negative impact of enlarging the local interval, while our
proposed FedMIM can efficiently maintain stability under the same experimental setups.

Contribution. We summarize the main contributions of this work as three-fold:

• FedMIM algorithm delivers a multi-step inertial momentum to guide the gradient updates.
We show that FedMIM successfully solves the problems on the heterogeneous datasets,
which benefits the cross-device implantation in practical applications.

• We display the convergence analysis of FedMIM for general non-convex function and non-
convex function under PL conditions. The theoretical analysis highlights the advantage of
innovating multi-step inertial momentum and presents hyperparameter conditions.
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• We demonstrate the practical efficacy of the proposed algorithm over competitive baselines
through extensive experiments on CIFAR10, CIFAR100 and TinyImagnet datasets, under
the various non-i.i.d. dataset splitting, increased local training interval, and different par-
tial participation ratios setups. The results illustrate that FedMIM consistently surpasses
several vigorous baselines and significantly handles the local data heterogeneity.

2 RELATED WORK

We focus on and categorize the existing approaches to overcoming client drift issues as three main
aspects: variance reduction, regularization, and momentum-based algorithms. These methods per-
form as a global correction to guide the local training, which significantly improves efficiency.

Variance reduction. By adopting the variance reduction techniques in the stochastic optimization,
a series of methods are proposed to mitigate the heterogeneous inconsistency, which efficiently
mitigates the client-drift problems in FL. Karimireddy et al. (2020b) employs control variants to
correct for the ’client-drift’ in its local updates. Karimireddy et al. (2020a) provides a combination
of control-variates and server-level optimizer state at every client-update step to ensure that each
local update mimics that of the centralized method. Mitra et al. (2021) includes a gradient correction
term in the local update rule that exploits memory. Murata & Suzuki (2021) utilizes small second-
order heterogeneity of local objectives and suggests randomly picking up one of the local models
instead of taking the average of them when clients are synchronized. Zhao et al. (2021b) applies
the vanilla minibatch SGD update or the previous gradient with a small adjustment with pre-defined
probability. Zhao et al. (2021a) addresses communication compression and high heterogeneity by
proposing compressed and client-variance reduced methods COFIG and FRECON.

Regularization. Another efficient approach is to adopt the regularization terms on the local training
process to correct the local objective to approach the global optimal. Li et al. (2020b) firstly employs
the prox-term into FL framework and propose the FedProx. Tran Dinh et al. (2021) proposes the
FedDR with a Douglas-Rachford splitting in the training. Zhang et al. (2020) adopts the primal-dual
method to the FL. Acar et al. (2021) improve the FedPD and propose a partial merged parameters
method with the full merged dual variables in the global server, named FedDyn. Wang et al. (2022);
Gong et al. (2022) adopt the alternating direction method of multipliers in the FL to extend the
federated primal-dual methods. Fallah et al. (2020) puts forward a personalized federated framework
with the regularization to achieve a better generalization. T Dinh et al. (2020) incorporates the
Moreau-Envelopes in the local training with a stage-wised prox-term. Huang et al. (2021) proposes
an adaptive weight for the regularization term to encourage the clients to aggregate more with similar
neighbours. The efficient regularization methods are important to the FL field.

Global / Local momentum. Inspired by the success of the global correction technique, the exponen-
tial moving average term is introduced to federated learning framework to correct the local training.
Liu et al. (2020) adopts the momentum-SGD to the local clients to improve the generalization per-
formance with a convergence analysis. Wang et al. (2019) proposes a global momentum method to
further improve the stability in the server side. Xu et al. (2021) incorporate the global offset to the
local client as a client-level momentum to correct the heterogeneous drifts. Ozfatura et al. (2021)
combine the global and local momentum update and propose the FedADC algorithm to avoid the
local over-fitting. Reddi et al. (2020) sets a global ADAM optimizer with the momentum update and
propose the adaptive federated optimizer in the FL. Wang et al. (2021b) corrects the pre-conditioner
in the global server. Though momentum terms are the biased estimation of global information, they
still contribute a lot to the federated frameworks in practical empirical experiments.

3 FEDMIM: FEDERATED MULTI-STEP MOMENTUM ALGORITHM

In this section, we describe how FedMIM works while reducing client drift and improving conver-
gence. To begin with, we provide some preliminary for FL and notations adopted in this paper in
Section 3.1. We introduce the diagram of our proposed FedMIM method, and the insights of its
improvement on the performance and the resistance to the local heterogeneity in Section 3.2.
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3.1 PROBLEM SETUP

Considering an FL framework with N local clients and a centralized server to handle the training
process. The client i for i ∈ [N ] has the local private dataset Di without sharing, and the data sample
ξi is randomly drawn from the local dataset Di. The minimization problem could be formulated as:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x) (1)

where fi(x) := Eξi∼pi
[fi(x; ξi)] is the local loss function corresponding to the client i with the data

distribution pi. Note that pi may differ among the local clients, which introduces heterogeneity.

Notations. In this paper, we consider K local iteration steps and total T communication rounds in
the training. ∥∥ denotes the Euclidean l2 norm if not otherwise specified. In t-th communication
round, a set of active clients St with size S is adopted. The symbol (·)ti,k represents the vectors at
k-th local step on the i-th client after the t communication rounds. For simplicity, [N ] represents the
set {1, 2, · · · , N}. x∗ and x∗

i stand for global optimum and local optimum for client i respectively.

3.2 FEDMIM ALGORITHM

Algorithm 1 FedMIM
Input: model parameters x0, constant weight {αj}j∈I , con-

stant weight {βj}j∈I , local learning rate ηl.
Output: model parameters xt.
1: for t = 0, 1, 2, · · · , T − 1 do
2: communicate xt to local client i and set xt

i,0 = xt

3: randomly select active clients-set St at round t
4: for client i ∈ St parallel do
5: Local Update:
6: δt = −(xt − xt−1)/K
7: for k = 0, 1, 2, · · · ,K − 1 do
8: yt

i,k,1 = xt
i,k −

∑
j∈I αjδt−j (

∑
j∈I αj < 1)

9: yt
i,k,2 = xt

i,k −
∑

j∈I βjδt−j (
∑

j∈I βj = ρ)
10: randomly sample local data ξti,k
11: compute stochastic gradient gt

i,k of ∇fi(yt
i,k,2)

12: xt
i,k+1 = yt

i,k,1 − (1−
∑

j∈I αj)ηlg
t
i,k

13: end for
14: communicate xt

i,K to the server
15: end for
16: xt+1 = 1

S

∑
i∈St

xt
i,K

17: end for

FedAvg proposes a partial scenario of
the local SGD method, with the global
averaged aggregation after local K up-
dates, disturbed by the client drift prob-
lems due to the local heterogeneous case.
To mitigate the aforementioned problem,
we propose the novel federated learn-
ing algorithm with a multi-step inertial
momentum-based technique, dubbed Fed-
MIM, as shown in the right part. Firstly
we introduce the basic process of the pro-
posed FedMIM. At the beginning of each
communication round, the server broad-
casts the global model xt to the activated
clients for local training. The local clients
update their states xt

i,k with total K itera-
tions and then transmit their updated mod-
els xt

i,K to the server, while the server ag-
gregates the received local models as the
updated global model. In the local clients,
they firstly calculate the global model in-
crement δt by the last global model xt−1

in their local own storage. And then, the clients compute the momentum updated yt
i,k,1 and yt

i,k,2

with a multi-step momentum. It should be noted that α and β are adopted for averaging weights
in the multi-step momentum term. Each client calculates an unbiased stochastic gradient gt

i,k and
updates its state. When the local update stops, xt

i,k is transmitted to the server. The iterate scheme
details of FedMIM is summarized in Algorithm 1.

Intuitive Justification To build intuition into our method, we first highlight multi-step inertial part.
Lemma in appendix illustrate that δt is the exponential moving average of past client gradient. The
momentum term δt represent as an approximation to the offset of the global loss function ∇f(xt),
that is, δt ≈ ηl∇f(xt). Thus, we have local update:

xt
i,k+1 = xt

i,k − (1−A)ηlδt−j −Aηl∇fi(x
t
i,k − ηl

∑
j∈I

βjδt−j)

≈ xt
i,k − (1−A)ηl∇f(xt)−Aηl∇fi

(
xt
i,k − ρ̂∇f(xt)

)
≈ xt

i,k − ηl[∇fi(x
t
i,k − ρ̂∇f(xt)) + (1−A)(∇fi(x

t
i,k − ρ̂∇f(xt))−∇f(xt))].

(2)

For simplicity, we set the constant A = 1 −
∑

j∈I αj and ρ̂ = ηlρ. This equation illustrates that
FedMIM interprets the correction term to the local gradient direction. This correction term matches
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the difference between global and local gradient. The second term ∇fi(x
t
i,k − ρ̂∇f(xt)) in Eq.(2)

behaves like Nesterov gradient part, which means that there is global momentum ρ̂∇f(xt) placed
on local iteration point xt

i,k when client i computes the local gradient in k-th local update and t-th
communication round. The added global momentum pushes the local gradient calculation point to
move in the same direction compared with ∇fi(x

t
i,k). This benefits the circumstance where the data

distribution among the clients differs intensively since the client’s update would radiate in a high
data heterogeneity environment. In the meanwhile, the added global momentum dwindles gradually
as the full gradient ∇f(x) reduces, and the influence of global momentum scales down with the
training process. Therefore, each participating client could reach their dynamic equilibrium at the
end of the training. The final correction term is controlled by the parameter α. It is notable that the
local gradient part is ∇fi(x

t
i,k − ρ̂∇f(xt)) rather than ∇fi(x

t
i,k) as the direction of local update is

∇fi(x
t
i,k − ρ̂∇f(xt)) in the front term and the correction term ought to be consistent with it.

Discussion. FedMIM saves the communication bandwidth, which is a crucial problem in FL study.
During the broadcasting stage, the server only needs to send the current global state xt to the clients
rather than the aggregation gradient information in FedCM. The storage of the client is efficiently
utilized since it only needs to store J steps of historical information where J is usually set to be
very small in practical scenarios and the client’s storage requirement does not increase violently.
Next, FedMIM simply calculates the gradient once, while FedSAM computes the gradient twice in
one local iteration. Thus, the local calculation process could be condensed and total training time
is much reduced. The historical global state is stored in clients’ storage. FedMIM brings multi-step
inertial momentum, which is robust to high client heterogeneity. Since global gradient information is
applied to avert the average of client update direction to be minuscule and force global iteration point
to move. The introduced multi-step inertial momentum makes the gradient changes more smooth
during the local training, although there are some atrocious clients who hold discordant data. The
long-step looking makes the approximation exact and smooth for local training, which promotes
communication efficiency and enhances the robustness to the heterogeneity in the FedMIM.

4 CONVERGENCE ANALYSIS

In this section, we provide the theoretical analysis for FedMIM focusing on the general non-convex
setting. Before proposing our convergence analysis, We first state the several assumptions as follows.

Assumption 1 For all x,y ∈ Rd, the non-convex fi is a L-smooth function for all i ∈ [N ], i.e.,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥ (3)

Assumption 2 Let f∗ = f(x∗) and x∗ is a minimizer of f , for all x ∈ Rd, the function f satisfies
PL inequality if there exists the constant µ > 0 such that the function f satisfies the following:

1

2
∥∇f(x)∥2 ≤ µ(f(x)− f∗) (4)

Assumption 3 For all x ∈ Rd, the stochastic gradient ∇fi(x, ξ), computed by the sampled data ξ
on the local client i, is an unbiased estimator of ∇fi(x) with bounded variance σ2

l , i.e.,

Eξ[∇fi(x, ξ)] = ∇fi(x), Eξ∥∇fi(x, ξ)−∇fi(x)∥2 ≤ σ2
l (5)

Assumption 4 For all x ∈ Rd, the local functions fi holds (G,B)-locally dissimilarity with f , i.e.,

1

N

N∑
i=1

∥∇fi(x)∥2 ≤ G2 +B2∥∇f(x)∥2. (6)

These assumptions are commonly used in federated optimization (Li et al., 2020b; Reddi et al.,
2020; Karimireddy et al., 2020a;b). Assumption 1 tells the smoothness of local loss function fi,
that is, the gradient function of fi is Lipschitz continuous with Lipschitz constant L. Assumption 2
shows the global function satisfies the PL conditions. The PL inequality does not require fi to be
convex but suggests that every stationary point is a minimum. The µ-PL property is implied by
µ-strong convexity, but it allows for multiple minima and does not require convexity of any kind.
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Assumption 3 bounds the variance of stochastic gradient and Assumption 4 provides the bound of
the different levels of the local private heterogeneity.

We now state our convergence results of FedMIM. The detailed proof is stated in Appendix.

Theorem 4.1 Let Assumptions 1, 3, and 4 hold. Assume the partial participation ratio being |St|/N
where St is a uniformly sampled subset from the N clients and satisfies |St| = S and let ut = xt −
K
A

∑
j∈I

∑J−1
s=j αsδt−j . With the constant local learning rate satisfying ηl ≤ min{ 1

4LK
√
A , 3

16KL}
and λ ∈ (0, 1

2 ) in Algorithm 1, the sequence {ut} satisfies the following upper bound:

min
t∈[T ]

E∥∇f(ut)∥2 ≤ f0 − f∗
ηlλKT

+Ψ

where Ψ = 1
λ

(
ηlLσ2

l

S + 4ηlKLG2

S + 9η2l A
2KL2σ2

l + 72η2l AK2L2G2 + 3η2l L
2K2V C

)
. V , C are

two constants defined in the proof for the convergence analysis (details are stated in the Appendix).

Remark 4.1 If the number of total clients N is large enough, the initial state point will affect the
convergence upper bound to a great extent, which requires a larger local learning rate ηl to diminish
the negative impact. Specifically, when we fix N as a constant and select a proper local interval K,
let ηl = O(

√
S√

KT
), the convergence rate achieves at least O( 1√

SKT
), which indicate the linear

speedup of the FedMIM and the stochastic variance dominates the upper bound of the convergence.

Theorem 4.2 Let Assumption 1, 2, 3, and 4 hold and all the conditions being similar as required by
Theorem 4.1. Given ηl ≥ 1

µλKT , the output uout chosen randomly from the sequence {ut} satisfies:

E
∥∥∇f

(
uout)∥∥2 ≤ 4µ(f0 − f∗)e

−µηlλKT +Ψ

where Ψ = 1
λ

(
2ηlLσ2

l

S + 8ηlKLG2

S + 18η2l KA2L2σ2
l + 144η2l AK2L2G2 + 6η2l L

2K2V C
)
.

Remark 4.2 The term introduced by initial point is exponential diminished by the communication
round T . Let ηl = O( log(µ

2ST )
µλKT ) ≥ 1

µλKT , the convergence rate achieves at least O( 1
µST ).

Remark 4.3 The B in Assumption 4 weakly influences the convergence bound both in Theorem 4.1
and 4.2 in our proof, which indicates that the major negative impact from the heterogeneity is the
constant upper bound G. If G maintains the stability without large fluctuations during the training,
let x = x∗ we have 1

N

∑
i=1 ∥∇fi(x∗)∥2 ≤ G2, where G measures the local inconsistency of total

clients. Enhancing the local consistency will further improve the performance in the FL framework.

5 EXPERIMENTS

In this section, we demonstrate the efficacy of the proposed FedMIM. We test the generalization
performance under different levels of the heterogeneity on the real-world dataset. To ensure a fair
comparison, we fix all the common hyper-parameters and finetune the specific parameters unique
to each algorithm to search for their best performance. We provide a brief introduction to the ex-
perimental setups in 5.1. We compare the proposed FedMIM with the baselines and report their
performance in 5.2. Some ablation studies and hyper-parameters sensitivity studies are stated in 5.3.

5.1 SETUPS

Dataset. We conduct the extensive experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009)
and TinyImagenet (Le & Yang, 2015). Both CIFAR-10 and CIFAR-100 contain 50K training sam-
ples and 10K test samples of images with the size of 32× 32. TinyImagenet contains 200 categories
of 100K training samples and 10K test samples of images with the size of 64× 64 selected from the
Imagenet (Deng et al., 2009). We divide the training dataset into N parts and deploy them to local
clients without sharing access. At the beginning of each communication round in the training, we
randomly crop, horizontally flip, and normalize the local dataset as the common data augmentation.
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Heterogeneity. For the IID setting, the local dataset is randomly sampled. For the non-IID setting,
we follow by Hsu et al. (2019) to introduce different levels of the heterogeneity by sampling the
label ratios from different Dirichlet distributions, which is a common federated setup in previous
works (Reddi et al., 2020; Karimireddy et al., 2020b; Acar et al., 2021; Xu et al., 2021; Qu et al.,
2022; Kim et al., 2022). In addition, we superimpose a color perturbation (Arjovsky et al., 2019)
which is strongly correlated to the local clients to further induce the heterogeneity. Specifically, we
adopt different brightness and saturation coefficients to the different local training data samples.

Baselines. We compare the performance of several SOTA baselines, including FedAvg (McMahan
et al., 2017), FedAdam (Reddi et al., 2020), SCAFFOLD (Karimireddy et al., 2020b), FedDyn (Acar
et al., 2021), FedCM (Xu et al., 2021), and FedSAM (Qu et al., 2022), on the backbone of standard
ResNet-18 network implemented in the Pytorch Model Zoo (7 × 7 filter in the 1st conv) (He et al.,
2016) with the group normalization (Wu & He, 2018; Hsieh et al., 2020). We summarize and discuss
these methods in Section 3.2 to illustrate the respective improvements and practical performance.

Hyper-parameters selections. To ensure a fair comparison, we fix the common hyper-parameter
setups. We set the local learning rate as 0.1 and decay it as 0.998× per round. The global learning
rate is set as 1.0 to aggregate each local parameters without decaying, except for FedAdam which
adopts 0.1. The local mini-batch is selected in {20, 50}. The weight decay is set as 1e-3. The
local training epoch is selected in {1, 2, 5, 10} to further show the impacts of enlarging the local
interval. The number of total clients is selected in {100, 500} and the sampling probability of each
client being activated per communication round is selected in {0.2, 0.1, 0.02}. The prox-weight in
FedDyn and the client-level momentum weight in FedCM are both set as 0.1. We report the detailed
hyper-parameters selections for each experimental result in the following figures and tables.

5.2 EXPERIMENTAL RESULTS

5.2.1 COMPARISON ON INCREASING THE HETEROGENEITY.

To explore the impact of introducing the heterogeneity, we select the three splitting methods on
the dataset, including IID, Dirichlet-0.3 and Dirichlet-0.1. On the simple CIFAR-10/100 dataset,
FedMIM achieves top-1 performance among the three heterogeneous settings. In the IID case on
CIFAR-10, FedMIM achieves 86.39% with 4.23% over the FedAvg baseline. The second top per-
formance of FedCM is 85.62%. When the heterogeneity is increased to DIR-0.3, FedCM drops
from 85.62% to 82.39% with 3.23% loss, while FedMIM drops only 2% and maintains the top-1
accuracy. The other methods like SCAFFOLD, FedDyn and FedSAM are affected at different levels.
When we further enlarge the heterogeneity to DIR-0.1, the FedAdam is most affected and its accu-
racy drops from 83.19% to 71.75% with an approximate 12% loss. On the large CIFAR-100 and
TinyImagenet datasets, similar results can be observed. Our proposed FedMIM have the very stable
test accuracy. In particular, when the heterogeneity is introduced to DIR-0.1 on CIFAR-100, Fed-
MIM achieves only 1% drops, which is far better than the others with at least 2%. Its performance
is also better than the test accuracy on DIR-0.3 of most other baselines. In the IID splitting of Tiny-
Imagenet, the FedAdam even can achieve the top-1 performance, while when the heterogeneity its
performance drops rapidly and even worse than FedAvg. FedMIM adopts the inertial momentum to
the local training both on the iteration points and gradients and enhances the local consistency, which
can efficiently resist on the heterogeneity. The multi-step makes the gradient changes more smooth
during the training, even under the participation of some bad samples of clients whose dataset holds
a very large difference, the long-step looking makes the approximation exact and stable for local
training, which encourages the efficiency and robustness to the heterogeneity for the FedMIM.

5.2.2 COMPARISON ON ENLARGING THE LOCAL INTERVAL.

To further explore the impact of enlarging the local interval K, we select the three different local
intervals to test the performance of our proposed FedMIM and the other baselines. We follow the
previous works (Acar et al., 2021; Xu et al., 2021; Kim et al., 2022) to compare the performance
under different local epochs E = 1, 5, 10. The total training samples in CIFAR-10/100 is 50,000 and
they are split into 100 parts equally with 500 samples from a local client. To fairly compare with the
others, we fix the batchsize as 50, which means the local iteration is TrainSamples/Batchsize = 10
per epoch. It should be noted that in the proof the local interval K corresponds to the iteration.
When the E = 1 with a short local interval, local training do not introduce more local heterogeneity
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Table 1: Test accuracy (%) after 1000 communication rounds on IID., Dirichlet-0.3 (DIR.3), and
Dirichlet-0.1 (DIR.1) dataset. We set the number of clients as 100 and set the participation ratio as
0.1. The local interval is fixed as 5 epochs and the batchsize is fixed as 50 for all algorithms.

Method CIFAR-10 CIFAR-100 TinyImagenet

IID. DIR.3 DIR.1 IID. DIR.3 DIR.1 IID. DIR.3 DIR.1

FedAvg 82.16 80.19 75.92 42.77 42.18 40.88 30.31 28.61 27.93
FedAdam 83.19 78.61 71.75 48.92 44.58 42.96 37.04 32.34 29.44

SCAFFOLD 84.43 82.39 78.78 49.11 48.34 46.93 35.09 34.68 34.17
FedCM 85.62 82.57 77.31 51.14 49.27 45.59 34.35 33.34 32.34
FedDyn 84.23 81.44 75.66 46.87 45.77 43.93 33.91 31.97 30.11
FedSAM 84.98 82.13 77.65 48.32 46.24 44.18 35.04 33.15 32.86

Ours 86.39 84.39 80.82 52.83 50.53 49.20 36.47 35.17 34.83

Table 2: Test accuracy (%) after the corresponding proper communication rounds and local epoch
E = 1, 5, 10 respectively. We set the number of clients as 100 and the participation ratio as 0.1. The
batchsize is fixed as 50 and the heterogeneous dataset is divided as the Dirichlet-0.6 distribution.

Method CIFAR-10 CIFAR-100 TinyImagenet

E = 1 E = 5 E = 10 E = 1 E = 5 E = 10 E = 1 E = 5 E = 10

FedAvg 82.76 81.84 81.06 44.95 42.45 40.84 36.28 28.79 24.77
FedAdam 83.56 81.42 80.21 51.50 46.16 44.18 38.25 32.14 21.89

SCAFFOLD 85.03 84.12 83.54 48.35 48.85 43.25 37.21 34.87 26.75
FedCM 86.33 84.89 82.83 52.11 50.42 48.14 40.63 33.70 25.82
FedDyn 85.45 83.96 78.12 49.94 45.80 44.97 39.33 30.55 22.36
FedSAM 84.48 84.17 82.97 49.18 46.79 45.33 38.11 32.94 25.16

ours 86.68 85.18 84.13 55.77 51.37 50.13 40.95 36.82 28.32

to the global view. When the local epochs are enlarged to 10, the long local update exacerbates the
inconsistency problem and shows a negative impact on the test accuracy. Especially on the large
TinyImagenet dataset, most algorithms fail to converge at T = 1000. Thus the test accuracy could
be considered as the convergence rate for all the methods. FedMIM achieves the top-1 accuracy on
both short epochs and long epochs. In the local iteration, the inertial momentum which promotes
the local consistency, plays an important role in the stochastic gradient estimation. FedMIM obtains
the iterative point closer to the global iterative point via perturbing the local gradient, which approx-
imates the global direction and updates it by one step gradient descent. This allows the local update
to be corrected not only on the gradient term, but also on the iterative points where the gradient is
calculated. In the next part, we will discuss the consistency between the baselines and some ablation
studies, including the participation ratio, the selection of the αj and βj and the different multi-steps.

5.3 ABLATION STUDIES AND HYPER-PARAMETER SENSITIVITY

5.3.1 PARTICIPATION RATIO

We test the experiments on the CIFAR-10 dataset under different participation ratios, which are
selected from 5%, 20% to test the convergence rate under the setups of fixed local epoch 5 and
batchsize 50. The heterogeneity is set as DIR-0.1. From the Figure 2 (a), when the heterogeneity
is enlarged, the convergence speed of FedAvg loses the most performance. FedAdam, FedCM,
and FedDyn show a high sensitivity to the participation ratios. SCAFFOLD performs well and
maintains the excellent generalization performance via the variance reduction technique under the
higher participation option. Beneficial from the inertial momentum, the global direction could be
exact estimated. And a multi-steps calculation is adopted to further enhance the stability and smooth
characteristic in the estimation. Our proposed FedMIM shows a very stable performance both on
different heterogeneity and participation ratios, especially on the extreme heterogeneous settings.
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(a) Participation Ratios.
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(b) Local Consistency.

Figure 2: (a) Comparison on different participation ratios on CIFAR-10 dataset and (b) comparison
on different methods for the local consistency. We fix the other hyper-parameters. In (a), L/R shows
the ratio equals to 5%/20%. In (b), L/R shows the consistency under the CIFAR10/100 dataset.

5.3.2 SELECTION OF MULTI-STEPS Table 3: Selection of αj and βj .

α1 α2 β1 β2 Accuracy(%)

- - - - 81.61
0.9 - - - 84.14
0.5 - - - 83.53
0.8 0.1 - - 84.29
0.6 0.3 - - 84.67
0.3 0.6 - - 83.86
0.6 0.3 0.9 0.1 84.98
0.6 0.3 0.5 0.5 84.42
0.6 0.3 0.1 0.9 84.04

We test the different selection of steps J and selection
of αj , βj . The experimental setup is: local epochs 5,
total communication rounds 500 and batchsize is fixed
as 50. When J = 2, FedMIM achieves the best gen-
eralization performance. As shown in Table 3, if we
set αj = 0 and βj = 0, FedMIM degenerates to the
FedAvg method. And if we set α2 = 0 and βj = 0,
FedMIM degenerates to the FedCM method. It shows
that the βj with a long history is not a good selection
for the local clients, due to the expired information be-
fore the current time. Local updates will be misled by
the redundancy of the invalid offset. The adjacent update is the most important. While the αj is
more relaxed, which can be searched from the last two or three steps. In the empirical studies, we
recommend the selection can be decided by different indicators, a large αj and a proper βj are better.

5.3.3 LOCAL CONSISTENCY

We test the consistency during the training as 1
S

∑
i ∥xt

i,K − xt+1∥2 where xt+1 = 1
S

∑
i x

t
i,K . In

the practical training, the local models can not approach the true local optimal due to the limitation
of local interval K, thus all the xt

i,K will represent for the dispersion from the global model xt+1. To
keep the xt

i,K close to each other can improve the resistance to the local heterogeneity (the idealized
case is that all local clients always generate the same parameters per round). Figure 2 (b) shows
the empirical results of the consistency on the different dataset, FedMIM handles the more excellent
efficiency on maintaining the local similarity than the other baselines on the both CIFAR-10/100.

6 CONCLUSION

In this work, we propose a novel federated algorithm, named FedMIM, which adopts the multi-
step inertial momentum to guide the local training on the heterogeneous clients both on the gra-
dient estimation and the iterative point for gradient calculation. We also theoretically prove that
the proposed FedMIM achieves O( 1√

SKT
) under the smoothness assumptions and O( 1

T ) under the
Polyak-Lojasiewicz (PL) inequality, under the non-convex cases. FedMIM can efficiently improve
the local consistency to mitigate the influence from the heterogeneous dataset. We conduct extensive
experiments to demonstrate the significant performance of our proposed FedMIM on the real-world
dataset. Furthermore, we learn some ablation studies to verify the stability under different setups.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
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