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Abstract

Vision-Language Models (VLMs) combine visual
perception with the general capabilities, such as
reasoning, of Large Language Models (LLMs).
However, the mechanisms by which these two
abilities can be combined and contribute remain
poorly understood. In this work, we explore to
compose perception and reasoning through model
merging that connects parameters of different
models. Unlike previous works that often fo-
cus on merging models of the same kind, we
propose merging models across modalities, en-
abling the incorporation of the reasoning capa-
bilities of LLMs into VLMs. Through extensive
experiments, we demonstrate that model merging
offers a successful pathway to transfer reasoning
abilities from LLMs to VLMs in a training-free
manner. Moreover, we utilize the merged models
to understand the internal mechanism of percep-
tion and reasoning and how merging affects it.
We find that perception capabilities are predom-
inantly encoded in the early layers of the model,
whereas reasoning is largely facilitated by the
middle-to-late layers. After merging, we observe
that all layers begin to contribute to reasoning,
whereas the distribution of perception abilities
across layers remains largely unchanged. These
observations shed light on the potential of model
merging as a tool for multimodal integration and
interpretation. Our code is publicly available at:
https://github.com/shiqichen17/VLM Merging.
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1. Introduction
Multimodal reasoning is crucial for a variety of important
applications, such as interpreting charts and figures in sci-
entific publications and government reports. Despite the
great successes of Vision-Language Models (VLMs) in
tasks requiring perceptual and linguistic integration (Li et al.,
2024; Liu et al., 2024; Bai et al., 2023; Wang et al., 2024b),
these models struggle with complex multimodal reasoning
tasks (Lu et al., 2024; Zhang et al., 2024b). This limitation
– partly due to the scarcity of multimodal reasoning data –
leaves them lagging far behind their language model counter-
part which has made remarkable advancement in reasoning
tasks (Yang et al., 2024; DeepSeek-AI et al., 2025).

Perception and reasoning are two fundamental components
in this context. While language models primarily represent
the reasoning ability, VLMs demand both to succeed. There-
fore, it is natural to ask: can we incorporate the reasoning
ability of LMs into VLMs? Achieving such a combination
is challenging, as the interaction between perception and
reasoning within VLMs remains poorly understood. In this
work, we investigate these questions through the lens of
model merging (Ilharco et al., 2023), a straightforward ap-
proach to explore whether perception and reasoning can be
combined across modalities and how these two abilities are
embedded within VLMs.

Concretely, model merging generates a new model by per-
forming arithmetic operations on the parameters of existing
models, without requiring additional training. This strategy
works based on the assumption that models fine-tuned from
a shared initialization reside in a connected subspace of the
parameter space. While previous works on model merg-
ing focus on models of the same kind (Yadav et al., 2023;
Yu et al., 2024b), it remains unknown that whether models
across different modalities are connectable to yield benefits.

In this work, we specifically focus on the textual compo-
nents of the VLMs and select LLMs with task-specific rea-
soning abilities that match the VLM’s configuration, per-
forming a weighted average operation on their parameters
as demonstrated in Figure 1.

We conduct extensive experiments by merging commonly
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Figure 1: Illustration of our work investigating how model merging works when transferring reasoning ability from a
Math-specific LLM to the VLM, showcasing the effects and results of the merged model, as well as the interpretation of
layer-wise abilities. The abilities are represented in corresponding colors: red indicates perception ability hidden in early
layers, while blue denotes reasoning ability hidden in relatively later layers.

used VLMs with LLMs trained on diverse math reason-
ing datasets (§4). Our findings demonstrate that model
merging consistently improves the reasoning capabilities of
VLMs across all math benchmarks, with minimal impact on
the perception-dominant tasks. For instance, merging with
Dart (Tong et al., 2024) enhances LLaVA’s performance on
MathVista’s (Lu et al., 2024) math-related subset, yielding
a 3.6-point absolute improvement. Even in Vision-Only
mode of MathVerse (Zhang et al., 2025), where questions
are presented in images, it also achieves a 1.4-point absolute
improvement. Experiments on multiple reasoning-related
benchmarks and various VLMs consistently show improve-
ment. These results underscore the potential of parameter
merging as a simple yet powerful mechanism for capability
transfer across model architectures.

Furthermore, we delve deeper into understanding how
model merging works and how perception and reasoning
interplay in this context. Specifically, we analyze parameter
changes during the merging process to investigate whether
different capabilities, such as high-level reasoning and low-
level perception, are disentangled within distinct subspaces
of the model’s parameter space (§5). Through knockout
analysis, we identify two key observations: (1) Image per-
ceptual abilities and world knowledge are predominantly
embedded in the early layers of the model, whereas mathe-
matical reasoning skills are concentrated in the middle-to-
late layers; and (2) Merging with reasoning models brings
reasoning abilities to all the layers, while having a minimal
impact on the layer distribution of perception ability. These
findings contribute to a better understanding of how reason-
ing can be transferred between models and provide insights
into model compositionality, offering a promising approach

for enhancing multi-modal reasoning systems.

2. Model Merging Across Modalities
In this section, we introduce model merging for transferring
the reasoning abilities of textual LMs to VLMs. A typical
VLM consists of three key components: a vision tower, a
language Model, and a projector that bridges these two parts.
The vision tower processes images, enabling the model to
“see” visual content, while the language model serves as
the reasoning engine, processing knowledge and generating
responses. Therefore, we target the language model (θvlm)
for merging while keeping the vision tower and projector
unchanged.

Model merging has emerged as a promising “free lunch”
technique, enabling performance improvements by reusing
existing models through simple arithmetic operations on
their parameters, without requiring additional training. For
simplicity, we adopt linear merging (Ilharco et al., 2023),
a widely used and robust merging strategy, in our main ex-
periments. We also experiment with TIES merging (Yadav
et al., 2023) in some cases to compare both methods in
Appendix C.

The core idea of model merging relies on task vectors, the
modifications made during fine-tuning, which is usually the
information necessary to do well on a given task. Given a
base model θbase and a fine-tuned model θft, the correspond-
ing task vector τtask is defined as:

τtask = θft − θbase.

Task vectors provide an interpretable way to understand
how fine-tuning adapts a model to a particular task. In the

2



Bring Reason to Vision: Understanding Perception and Reasoning through Model Merging

Category Name Size Base Model

VLMs
LLaVA-NeXT (Liu et al., 2024) 8B LLaMA-series
Idefics2-8B (Laurençon et al., 2024) 8B Mistral-series
InternVL2 (Chen et al., 2024b) 76B LLaMA-series

Domain Base Model

Task Vectors

Dart-Math (Tong et al., 2024) Math Domain LLaMA/Mistral-series
MetaMath (Yu et al., 2024a) Math Domain LLaMA-series
MAmmoTH-1 (Yue et al., 2024a) Math Domain LLaMA-series
MAmmoTH-2 (Yue et al., 2024b) General Domain LLaMA/Mistral-series
Magpie-v0.3 (Xu et al., 2024) Math Domain LLaMA-series
Deepseek-R1-Distill (DeepSeek-AI et al., 2025) Math Domain LLaMA-series

Table 1: Overview of Vision-Language Models (VLMs) and Task Vectors with the attributes -size, base models and domains.

context of VLMs, we define the adaptation of the language
model component as:

τvlm = θvlm − θbase.

where τvlm captures the changes introduced when adapting
the base LLM into the VLM. Similarly, for a reasoning-
specialized LLM θreason, we define its corresponding task
vector:

τreason = θreason − θbase.

To enhance the reasoning ability of the VLM, we merge its
language model with a strong reasoning-specialized LLM
by linear merging:

θ′vlm = θbase + λτvlm + (1− λ)τreason.

Here, λ determines the weight assigned to the VLM task
vector, allowing us to control the balance between the orig-
inal multi-modal capabilities of the VLM and the newly
introduced reasoning strength from the LLM.

3. Experiment settings
In this section, we describe our experimental setup, detail-
ing the selected models, datasets, and evaluation protocols
used to evaluate the effectiveness of model merging and
understand its internal workings.

VLMs We span models in different sizes and base models
to verify the generalization ability of merging. For VLMs,
we use LLaVA-Next-LLaMA3-8B (Liu et al., 2024), Idefics2-
8B (Laurençon et al., 2024), and InternVL2-LLaMA3-
76B (Chen et al., 2024b) (Abbreviated as LLaVA, Idefics,
and InternVL in our paper) ranging from 8B to 76B and
including both Mistral-based and LLaMA-based models.

Reasoning Task Vectors We span task vectors across
different reasoning domains, beginning with mathemati-
cal reasoning tasks featured in Dart-Math (Tong et al.,

2024), which includes two variants: Dart-Uniform and Dart-
Prop2diff. In this paper, we refer to the latter as Dart-Prop.
Additionally, we examine MAmmoTH-1 (Yue et al., 2024a),
Magpie-v0.3 (Xu et al., 2024), MetaMath (Yu et al., 2024a),
and Deepseek-R1-Distill (DeepSeek-AI et al., 2025). Our
scope further extends to broader reasoning task vectors ob-
tained in MAmmoTH-2 (Yue et al., 2024b). The base mod-
els and task vectors are detailed in Table 1.

Hyperparameters In our main analysis and experimental
sections, we employ a linear merging strategy for all task
vectors under the same hyperparameter settings to ensure a
fair comparison. This approach assigns a weight of 0.9 to the
textual component of LLaVA-Next-LLaMA3-8B and 0.1 to
the reasoning task vector, where λ = 0.9. This parameter is
tuned on MathVista based on Dart-Prop (Tong et al., 2024).
We choose the best value from the range (0.8, 0.85, 0.9).

For our additional experiments analyzing the effects of merg-
ing across different base VLMs, we adjust the parameter
within a range of 0.05 across the intervals (0.8, 0.85, 0.9)
based on Dart-Prop on MathVista and apply the same hyper-
parameter across all benchmarks and other task vectors if
they exist.

Evaluation We evaluate the performance on a series of
VLM benchmarks. We apply five benchmarks: Math-
Vista (Lu et al., 2024), MathVerse (Zhang et al., 2025),
MathVision (Wang et al., 2024a), Dynamath (Zou et al.,
2024) and MMStar (Chen et al., 2024a).

Among these benchmarks, MathVista is a diverse bench-
mark that includes both math-related reasoning tasks and
general visual question answering tasks. Each data sam-
ple in MathVista is meticulously annotated with meta-
information such as source, task etc., allowing us to evaluate
various aspects of improvement, such as identifying the spe-
cific scenarios where our method is most effective.
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4. Can Model Merging Enhance VLM
Capabilities?

In this section, we present model merging as a viable ap-
proach for enhancing inherent VLM capabilities, specifi-
cally exploring how merging with specialized models can
augment core functionalities such as underdeveloped rea-
soning abilities in standard VLMs.

Merging VLMs with math-specialized models consis-
tently improves performance across all math bench-
marks. We posit that VLMs primarily rely on two fun-
damental capabilities: perception and chain-of-thought rea-
soning ability to solve the visual reasoning problems. Ad-
ditionally, they also leverage the knowledge-recall ability
to enhance their decision-making. Among these, chain-
of-thought reasoning remains as a bottleneck in current
VLMs (Zhang et al., 2024a), despite significant advances in
this area by LLMs. This observation motivates our investi-
gation into whether merging VLMs with math-specialized
LLMs can enhance their inherent reasoning capabilities.

To explore this hypothesis, we use LLaVA-Next-LLaMA3-
8B, a commonly employed VLM, as the base model, and
integrate it with 5 state-of-the-art reasoning models (see
task vectors in Table 1) that were specifically fine-tuned on
reasoning tasks: Dart-Math (Tong et al., 2024) (Dart has two
variants: Dart-Uniform and Dart-Prop2diff, abbreviated as
Dart-Prop in our paper), MAmmoTH-1 (Yue et al., 2024a),
MAmmoTH-2 (Yue et al., 2024b), and Magpie-v0.3 (Xu
et al., 2024). For a fair comparison of the task vectors, we
employ the linear merging strategy to all task vectors in the
same hyper-parameter setting, which assigns a weight of 0.9
to the textual component of LLaVA-Next-LLaMA3-8B and
0.1 to the math task vector. The merged model is evaluated
across five datasets (see §3), and the results are summarized
in Table 2. As indicated by the green arrows, integrating
VLMs with math-specialized models such as Dart (Tong
et al., 2024) consistently improves performance over the
baseline across all five mathematical datasets. Notably, on
the MathVerse Benchmark in Text-Dominant evaluation
mode, merging with Dart-Prop yields a 30% relative im-
provement over the baseline (a 6-point absolute increase).
Additionally, it boosts performance on math-related VQA
in MathVista by 3.5 absolute points. Whereas merging with
a general-purpose reasoning LLM like MagPie (Xu et al.,
2024) offers only modest gains.

Moreover, we extend our methods to other VLMs and task
vectors. Table 3 presents results for Idefics2-8B (Yadav
et al., 2024) and InternVL2-76B (Chen et al., 2024b) using
task vectors available in the open-source community. For
Idefics, MAmmoTH-1 achieves the best performance, im-
proving accuracy by approximately 1.0 absolute points on
average, while most reasoning task vectors fail to provide a
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algebraic reasoning

textbook QA

logical reasoning

geometry problem solving

math word problem

statistical reasoning

Overall

scientific reasoning

visual QA

arithmetic reasoning

numeric commonsense

figure QA

4.60 4.18 0.84 0.00 0.84

3.56 3.56 1.42 0.36 1.42

0.00 3.16 1.27 0.00 2.53

0.00 5.41 0.00 0.00 0.00

3.37 1.92 0.48 -0.48 0.00

3.23 1.08 -1.08 -0.54 -1.08

1.99 2.33 -1.33 -1.33 -0.33

0.50 0.70 -0.70 -0.80 -0.10

-1.64 -1.64 -0.82 -0.82 0.82

-1.68 0.00 -1.12 -0.56 -1.12

-0.28 -0.57 -1.70 -1.13 -1.98

-2.08 -0.69 -1.39 -0.69 -1.39

-1.86 -1.49 -2.23 -1.86 -0.37 2

1

0

1

2

3

4

5

Ac
cu

ra
cy

 C
ha

ng
e

Figure 2: Accuracy changes after merging compared to
the baseline. Generally, datasets directly requiring math-
related and text-dominant capabilities, such as textbook QA
and math word problem, exhibit clear improvements while
domains requiring visual processing such as figure QA show
performance degradation.

benefit. We attribute this to Idefics already being extensively
fine-tuned on large-scale text-only data, including math SFT
data, leading to a high degree of overlap with existing task
vectors, which limits further improvements through merging.
For InternVL2-76B, integrating Dart improves all bench-
marks by approximately 1 absolute point, demonstrating
that merging can also be beneficial for large-scale VLMs.

Model merging exhibits minimal improvement or even
decreased performance on vision-dominant tasks and
general knowledge-centric tasks. A closer analysis of
performance across different subtasks reveals that on the
MathVerse benchmarks, model merging yields higher per-
formance gains for math-related and text-dominant samples,
while vision-only questions show limited improvement (see
Table 2). This phenomenon is also observed in the Math-
Vista dataset (Figure 2), where we visualize performance
changes relative to the baseline for each sub-domain dataset
using a heatmap. Notably, datasets that directly require
math-related and text-dominant capabilities, such as
geometric reasoning, algebraic reasoning and textbook
question answering, exhibit consistent improvements.
However, domains requiring extensive visual processing
(e.g., visual question answering and figure question answer-
ing) show slight performance degradation. Vision-only and
vision-dominant tasks consist of questions embedded in fig-
ures, which require robust image perception to accurately
recognize the question before employing knowledge-recall
and reasoning to derive the answer. The inability of model
merging to improve these tasks raises a critical question: if
the bottleneck lies in image perception, then enhancing the
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Model Method MathVista MathVerse Benchmarks MMStar DM MV
All General Math Overall T-D T-L V-I V-D V-O All Math

LLaVA

Baseline 37.4 51.7 25.4 20.1 25.9 20.8 21.1 16.5 16.0 43.8 30.0 22.7 13.8
+Dart-Uniform 38.2 49.8 28.3 ↑2.9 23.6 ↑3.5 32.0 25.6 25.4 19.3 17.4 42.5 31.2 ↑1.2 24.5 ↑1.8 15.8 ↑2.0

+MAmmoTH-1 36.7 50.0 25.4 ↑0.0 21.1 ↑1.0 26.9 23.1 22.6 16.6 16.4 44.1 30.8 ↑0.8 22.6 ↓0.1 15.8 ↑2.0

+MAmmoTH-2 37.4 51.1 25.7 ↑0.3 20.6 ↑0.5 26.0 22.0 22.8 16.4 16.1 43.8 30.0 ↑0.0 22.5 ↓0.2 14.1 ↑0.3

+Magpie-v0.3 36.8 49.7 25.9 ↑0.5 20.7 ↑0.6 26.8 22.2 22.2 16.6 15.5 44.1 30.8 ↑0.8 22.7 ↑0.0 16.4 ↑2.6

+DeepSeek-R1-Distill 38.1 51.1 27.0 ↑1.6 21.2 ↑1.1 28.4 22.7 22.5 17.3 15.1 43.7 33.2 ↑3.2 24.3 ↑1.6 15.1 ↑1.3

+Dart-prop 38.0 48.7 28.9 ↑3.5 23.7 ↑3.6 30.7 24.8 25.5 19.8 17.4 43.6 33.6 ↑3.6 24.5 ↑1.8 14.8 ↑1.0

Table 2: The performance of LLaVA-Next-LLaMA3-8B model with merged task vectors across math-related Benchmarks:
MathVista (All, General, and Math-related categories), MathVerse (Overall, Text-Dominant, Text-Lite, Vision-Integrated,
Vision-Dominant, and Vision-Only categories), MMStar (All and Math split), DynaMath (annotated as DM), MathVision
(annotated as MV). We include both variants of Dart (Tong et al., 2024) for comparison. We bold the highest value in each
benchmark, and the gray row indicates the best task vectors on average.

Model Method MathVista MathVerse Benchmarks MMStar DM MV
All General Math Overall T-D T-L V-I V-D V-O All Math

Idefics

Baseline 51.8 57.0 47.4 19.4 24.4 21.3 20.7 19.7 11.0 49.5 39.6 21.8 17.1
+MetaMath 53.2 57.8 49.3 ↑1.9 20.0 ↑0.6 25.3 22.3 21.1 18.7 12.4 48.1 39.2 ↓0.4 22.7 ↑0.9 11.8 ↓5.3

+Dart-Prop 51.6 58.0 46.1 ↓1.3 20.0 ↑0.6 26.3 21.8 21.6 18.9 11.2 48.4 39.6 ↑0.0 22.7 ↑0.9 14.8 ↓2.3

+Dart-Uniform 51.6 57.0 47.0 ↓0.4 20.5 ↑1.1 27.3 22.6 21.1 19.5 12.2 47.9 38.4 ↓1.2 22.7 ↑0.9 14.8 ↓2.3

+MAmmoTH-1 53.0 58.5 48.3 ↑0.9 20.4 ↑1.0 26.0 22.5 21.3 19.8 12.1 48.3 40.8 ↑1.2 23.2 ↑1.4 16.8 ↓0.3

+MAmmoTH-2 52.8 58.3 48.1 ↑0.7 18.4 ↓1.0 25.6 22.7 20.7 19.4 12.4 48.5 40.0 ↑0.4 24.0 ↑2.2 16.8 ↓0.3

InternVL Baseline 65.6 67.0 64.4 43.1 54.1 47.5 44.8 43.8 25.3 67.3 75.2 38.7 23.7
+Dart-Uniform 66.1 67.2 65.2 ↑0.8 44.3 ↑1.2 53.9 48.1 46.3 44.5 28.6 67.5 74.8 ↓0.4 39.6 ↑0.9 25.3 ↑1.6

Table 3: The performance of Idefics2-8B model and InternVL2-LLaMA3-76B model with merged task vector across math-
related Benchmarks: MathVista (All, General, and Math-related categories), MathVerse (Overall, Text-Dominant, Text-Lite,
Vision-Integrated, Vision-Dominant, and Vision-Only categories), MMStar (All and Math split), DynaMath (annotated as
DM) and MathVision (annotated as MV). For benchmarks with Math subsets, only the Math score is included in the average
score calculation. We bold the highest value in each benchmark, and the gray row indicates the best task vectors on average.

textual component through model merging may fail to yield
performance gains.

Merging with math models brings inference time scaling
ability. We hypothesize that the reasoning ability trans-
ferred to VLMs is primarily reflected in the improvement
of chain-of-thought capabilities. To support this hypothesis,
we analyze answer lengths before and after merging with
Dart, highlighting significant shifts in task-specific behav-
iors. As shown in Figure 3, the performance improvement
exhibits a nearly linear relationship with the increase in an-
swer length, indicating that merging enables VLMs to scale
inference time effectively. When looking closer at the spe-
cific tasks, chain-of-thought-intensive tasks such as “geome-
try problem solving”, “geometry reasoning”, and “algebraic
reasoning” experienced a substantial increase in average
prediction length, exceeding 250% of the original answer
length. In contrast, changes in visual-intensive tasks like
“figure question answering” and “visual question answering”
were relatively modest, with nearly the same original answer

length, even showing a decrease in performance. These re-
sults suggest that merging with a math-focused model like
Dart not only enhances the detail and depth of responses in
reasoning-intensive tasks but also maintains efficiency and
stability in perception-driven tasks, highlighting the adapt-
ability of the merged framework across diverse domains.
We show the details in Figure 9.

5. Merging as Interpretability Tool – Dive into
the inner parameter space of LLaVA

In this section, we leverage model merging as an analytical
tool to decompose and understand the internal mechanics
of VLMs. By analyzing parameter modifications during
the merging process, we aim to identify and isolate distinct
parameter subspaces responsible for specific capabilities,
such as visual perception and reasoning. We conduct a
fine-grained analysis of LLaVA on the MathVista (Lu et al.,
2024) dataset, which categorizes the examples into “Gen-
eral VQA” and “Math VQA”. We hypothesize that “General
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Figure 3: The relationship between answer length change
(characters) and accuracy improvement after merging (The
x-axis represents the relative change from the original an-
swer, while the y-axis shows the absolute change in accu-
racy), classified by task and skills.

VQA” primarily evaluates perception ability and knowledge
recall, while “Math VQA” assesses perception ability and
reasoning ability.

Mask Out We begin by using the masking out technique
to assess the influence of each module. Specifically, for
each layer, we replace the parameters of the MLP and at-
tention modules with those from alternative modules (e.g.,
a uniform distribution or parameters from another model)
to evaluate the absolute and relative impact of each module.
Our hypothesis is that a greater performance drop when
masking a particular module indicates its higher impor-
tance for the task, while a smaller drop suggests a more
trivial effect on the task.

Locate the perception ability in the parameter space
We first analyze the impact of supervised fine-tuning (SFT)
of LLaVA compared to the pretrain LLaMA, by progres-
sively masking out LLaVA’s parameters and replacing them
with LLaMA’s parameters, layer by layer for each module.
Our hypothesis is that LLaVA’s SFT training improves the
model’s perception ability, and we use the Masking Out
technique to identify key regions where perception abil-
ity is located. 1 and 3 at Figure 4 shows that, from a
layer-wise perspective, masking out the early layers has a
greater impact on general VQA tasks than masking the later
layers, suggesting that perception abilities are primarily
located in the early layers. We also observe that while
general VQA performance declines after masking out, Math
VQA performance improves consistently. This implies that
LLaVA’s SFT enhances perceptual abilities at the cost of rea-
soning capabilities, which motivates our efforts to improve
reasoning ability in VLMs.

Locate the chain-of-thought reasoning ability in the
parameter space As shown in Table 2, LLaVA’s per-

formance on math reasoning tasks significantly improves
through merging. Furthermore, we demonstrate in §4 that
this improvement stems from the infused inference-time
scaling ability. To pinpoint where these infused chain-of-
thought abilities reside in the parameter space, we masked
the parameters of the “Dart-Merged LLaVA” using those
from the original LLaVA model. 2 and 4 at Figure 4 indi-
cates that masking the later layers has a more pronounced
impact on math-related tasks, suggesting that the later five
or more layers are crucial for math reasoning. Moreover,
merging with a math-focused model boosts math reason-
ing abilities while only minimally affecting general VQA
performance. This implies that integrating a math model
with small weights incurs only a slight trade-off in VQA ca-
pabilities while yielding significant gains for math-specific
questions. Overall, these findings suggest that perception
and chain-of-thought reasoning abilities occupy distinct
regions within the LLaVA parameter space and can be
largely disentangled.

Expore the threshold of the absolute ability of LLaVA
for each module In previous experiments, we masked in-
dividual modules using those from another model to compar-
atively evaluate specific capabilities. To precisely quantify
the role of each module—such as attention or MLP layers—
in VLMs for both general VQA and math VQA tasks, we
replace each module’s weights with a uniform distribution
(i.e., assigning each parameter a value of 1/N , where N is
the size of the weight matrix’s first dimension). This substi-
tution introduces significant noise, effectively disabling the
module’s functionality. By measuring the resulting perfor-
mance drop, we can assess each layer’s absolute contribution
to the model’s performance on both tasks.

Figure 5 shows the performance drops of disabling LLaVA
( 5 and 7 ) and Dart-Merged LLaVA ( 6 and 8 ). The
first observation is that 1) early-to-middle layers are more
crucial for both general and math-related tasks in the
LLaVA model, as evidenced by the significant drops, i.e.,
25% absolute accuracy drop in general tasks and 10% in
math-targeted VQA (highlighted in red gray square). This
suggests that the early-to-middle layers play unique and in-
dispensable roles in VLMs, this is intuitive since early layers
handle perception, and accurately perceiving the image is a
prerequisite for answering correctly while the later layers
are less important and more robust to noise. Secondly, math-
targeted VQA shows a smaller performance drop than
general VQA after masking out parameters, due to its
inherently weak math reasoning ability. When certain pa-
rameters are masked out, general visual question answering
(VQA) tasks (left side of 5 and 7 ) exhibit a larger perfor-
mance decrease than math-related questions (right side of
5 and 7 ). This can be explained by the LLaVA model’s
limited knowledge of math tasks and its inherent weak rea-
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Where is the percep+on ability located? Where is the reasoning ability located?

Mask 
MLP 

layers

Mask 
A:en+on 

layers

Finding 1: Perception Ability mainly lies in Early Layers Finding2: Reasoning Ability mainly lies in Later Layers

Figure 4: LLaVA → LLaMA ( 1 and 3 ): the accuracy changes after replacing the parameters of each MLP ( 1 ) and
Attention ( 3 ) layer of the LLaVA model with parameters from LLaMA. We find that masking out the early layers has
a greater impact on general VQA tasks than masking the later layers, suggesting that perception abilities gained from
LLaVA-sft training are primarily located in the early layers. Dart-Merged LLaVA → LLaVA ( 2 and 4 ): the
accuracy changes after replacing each MLP ( 2 ) and Attention layer ( 4 ) of the Dart-Merged LLaVA model to that of
LLaVA. A significant drop in accuracy in math-targeted VQA tasks is observed from 5 layer onwards. (highlighted in
blue), suggesting that the reasoning ability is mainly located on these layers.

soning abilities compared to the abilities demonstrated in
VQA tasks (e.g., perception and world knowledge). In other
words, the model’s limited mathematical reasoning ability
makes it less sensitive to parameter alterations, which also
enhances our motivation to incorporate external reasoning
ability into it.

Merging with Reasoning Models Enhances Almost All
Layers’ Math Reasoning Ability As shown in Figure 5,
after merging with Dart (right side of 6 and 8 ), we observe
that nearly all layers—highlighted by the blue mask—drop
more in math reasoning tasks compared to the base LLaVA
(right side of 5 and 7 ), where fewer layers are influenced.
This suggests that reasoning ability has been successfully
integrated into all layers without substantially affecting the
layer distribution of perception ability. Several qualitative
examples supporting this are presented in Figure 6. The first
and third examples illustrate how the model better perceives
key entities and makes decisions through chain-of-thought
reasoning. However, for general VQA tasks, we also see
reduced activation in the early layers, indicating a slight loss
in world knowledge due to the model merging.

6. Related Work
VLMs Large Vision-Language Models (VLMs) consist
of three main components: a visual encoder for pro-
cessing images, such as CLIP (Radford et al., 2021) or
SigLip (Zhai et al., 2023); a language model (e.g., a LLaMA
model (Dubey et al., 2024) or a Mistral model (Jiang et al.,
2023)) for processing textual inputs and image features to
generate responses; and a projector, typically implemented
as multilayer perceptron (MLP), to bridge the gap between
the visual and language components. This module maps fea-
tures from the visual space to the language space, facilitating
interaction between the two modalities.

Model Merging Model merging offers a “free lunch” by
repurposing fine-tuned models for downstream tasks (Worts-
man et al., 2022; Ilharco et al., 2023; Zhang et al., 2023). It
creates a new model through simple arithmetic on existing
parameters, requiring no extra training or inference cost.

Several model merging techniques have been proposed to
improve performance, such as calculating different weights
for model parameters using data and internal model acti-
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Where is the Overall ability = 
percep2on + world knowledge + reasoning ability located?

A<er merging,  Math ability for all layers improves!

Mask 
MLP 

layers

Mask 
ADen2on 

layers

Finding 3: Early-to-Middle layers are indispensable while later layers 
are more robust to noise. 

Finding 4: Contribution of the middle-to-late MLP layers and 
almost all attention layers to math reasoning has increased. 

Figure 5: LLaVA → 1/N ( 5 and 7 ): the accuracy changes after replacing the parameters of each MLP ( 5 ) and Attention
( 7 ) layer of the LLaVA model with 1

N , where N is the first dimension of the weight matrix. The highlighted red area shows
that early-to-middle layers are more crucial for both general and math-related tasks in the LLaVA model, as evidenced by
the significant drops, i.e., 0.25 absolute accuracy drop in general tasks and 0.10 in math-targeted VQA. Dart-Merged
LLaVA → 1/N ( 6 and 8 ): the accuracy changes after replacing the parameters of each MLP ( 6 ) and Attention ( 8 ) layer
of the Dart-Merged LLaVA model with 1

N . Comparing before and after merging when applied masking out, we observe a
larger drop in accuracy in math-targeted VQA tasks across all layers (highlighted in blue), suggesting that the contribution
of all most all layers to math reasoning has increased.

Q1:  According 
to the table, 
what was the 
rate of change 
between August 
and September? 
(Unit: minutes 
per month)

The rate of change between August and 
September is 14 - 17 = -3 minutes per 
month.

The rate of change between August and 
September is 7 minutes per month.

Perception Chain-of-thought

ours

base

ours

base

Q1:  In the figure 
above, the ratio of 
the length of line 
AB to the length 
of line AC is 2 : 5. 
If AC = 25, what is 
the length of line 
AB? 

The correct answer is (C) 15.

 The ratio of the length of line AB to the length of 
line AC is 2 : 5, which means that for every 2 
units of AB, there are 5 units of AC. If AC = 25, 
then AB is 2/5 of AC, which is 25 \* 2/5 = 10. The 
correct answer is: 
(B) 10

0.5

Q1:  According 
to the table, 
what was the 
rate of change 
between August 
and September? 
(Unit: minutes 
per month)

Perception

ours

base

The fraction of females facing the camera is 
4/5. 

Figure 6: Qualitative study: three examples that can be fixed by merging with Dart (Tong et al., 2024).

vations (Matena & Raffel, 2022; Jin et al., 2023). Some
approaches initially sparsify the models to reduce conflicts
across different functions (Yadav et al., 2023; Yu et al.,
2024b). Recently, Layer Swapping (Bandarkar et al., 2024)

was introduced, retains specific layers while merging oth-
ers to enhance transfer learning. Despite their differences,
simple averaging is often preferred for its simplicity and
robustness. As model scales grow, performance gaps among
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merging techniques shrink (Yadav et al., 2024), making
linear merging a natural choice.

Merging for VLMs Although much prior research has
focused on merging vision models for tasks such as image
recognition and scene understanding (Ilharco et al., 2023;
Yang et al., 2023), the composition for VLMs remain insuffi-
ciently explored, particularly in terms of transferring special-
ized skills across modalities. Recently, REMEDY (Anony-
mous, 2025) proposes a practical merging recipe, which
merges projector and front-layer modules of VLMs, focus-
ing on multitasking and transfer in low-shot settings across
various VQA types. Additionally, Sakana AI demonstrates
the potential for multilingual capabilities in VLMs by trans-
ferring Japanese comprehension and generation abilities
from an expert LLM to VLMs (Akiba et al., 2024). How-
ever, a key challenge lies in transferring reasoning skills
across modalities. Our study addresses this by integrating
the reasoning capabilities of LLMs into VLMs with a com-
prehensive analysis.

7. Conclusion
In this paper, we investigate the use of model merging meth-
ods to bridge the intelligence of cross-modalities, specif-
ically transitioning from pure textual modality to vision-
textual modalities. By incorporating various math-specific
LLMs into different VLMs through model merging, we
demonstrate that this approach effectively enhances the rea-
soning capabilities of VLMs. Our experimental results in-
dicate an improvement of up to 12% in performance on
math reasoning tasks compared to the baseline. And by
employing model merging as an interpretability tool, we
further unlock the parameter space of VLM. We find that
for VLMs trained solely on image-text pairs, the abilities
of perception and reasoning can be decomposed within the
parameter space. Specifically, perception ability resides in
the early layers, while reasoning ability is concentrated in
the later layers. This decomposition further validates our
experimental results.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning Interpretability. There are many po-
tential societal consequences of our work, none of which
we feel must be specifically highlighted here.

References
Akiba, T., Shing, M., Tang, Y., Sun, Q., and Ha, D.

Evolutionary optimization of model merging recipes.
ArXiv preprint, abs/2403.13187, 2024. URL https:
//arxiv.org/abs/2403.13187.

Anonymous. REMEDY: Recipe merging dynamics in
large vision-language models. In The Thirteenth In-
ternational Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=iX7eHHE5Tx.

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin,
J., Zhou, C., and Zhou, J. Qwen-vl: A versatile vision-
language model for understanding, localization, text read-
ing, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Bandarkar, L., Muller, B., Yuvraj, P., Hou, R., Singhal, N.,
Lv, H., and Liu, B. Layer swapping for zero-shot cross-
lingual transfer in large language models. ArXiv preprint,
abs/2410.01335, 2024. URL https://arxiv.org/
abs/2410.01335.

Chen, L., Li, J., Dong, X., Zhang, P., Zang, Y., Chen, Z.,
Duan, H., Wang, J., Qiao, Y., Lin, D., et al. Are we
on the right way for evaluating large vision-language
models? ArXiv preprint, abs/2403.20330, 2024a. URL
https://arxiv.org/abs/2403.20330.

Chen, Z., Wu, J., Wang, W., Su, W., Chen, G., Xing, S.,
Zhong, M., Zhang, Q., Zhu, X., Lu, L., et al. Internvl:
Scaling up vision foundation models and aligning for
generic visual-linguistic tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24185–24198, 2024b.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., and Liu..., A. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/
2501.12948.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. ArXiv preprint,
abs/2407.21783, 2024. URL https://arxiv.org/
abs/2407.21783.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L.,
Hajishirzi, H., and Farhadi, A. Editing models with task
arithmetic. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=6t0Kwf8-jrj.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. ArXiv preprint,
abs/2310.06825, 2023. URL https://arxiv.org/
abs/2310.06825.

9

https://arxiv.org/abs/2403.13187
https://arxiv.org/abs/2403.13187
https://openreview.net/forum?id=iX7eHHE5Tx
https://openreview.net/forum?id=iX7eHHE5Tx
https://arxiv.org/abs/2410.01335
https://arxiv.org/abs/2410.01335
https://arxiv.org/abs/2403.20330
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/pdf?id=6t0Kwf8-jrj
https://openreview.net/pdf?id=6t0Kwf8-jrj
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825


Bring Reason to Vision: Understanding Perception and Reasoning through Model Merging

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=FCnohuR6AnM.
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A. The checkpoints used in experiments
We show all the checkpoints we use for experiments in Table 4.

Category Huggingface ckpt Task Vectors Huggingface ckpt of task vectors

LLaVA-Next lmms-lab/llama3-llava-next-8b

MAmmoTH1 EtashGuha/llama3-mammoth-dcft
MAmmoTH2 TIGER-Lab/MAmmoTH2-8B
Magpie-v0.3 Magpie-Align/Llama-3-8B-Magpie-Align-SFT-

v0.3
Dart-Uniform hkust-nlp/dart-math-llama3-8b-uniform
Dart-Prop hkust-nlp/dart-math-llama3-8b-prop2diff
DeepSeek-R1-Distill deepseek-ai/DeepSeek-R1-Distill-Llama-8B

Idefics2-8B HuggingFaceM4/idefics2-8b

MAmmoTH TIGER-Lab/MAmmoTH-7B-Mistral
MAmmoTH2 TIGER-Lab/MAmmoTH2-7B
MetaMath meta-math/MetaMath-Mistral-7B
Dart-Uniform hkust-nlp/dart-math-mistral-7b-uniform
Dart-Prop hkust-nlp/dart-math-llama3-8b-prop2diff

InternVL2 OpenGVLab/InternVL2-Llama3-76B Dart-Prop hkust-nlp/dart-math-llama3-70b-prop2diff

Table 4: All the huggingface checkpoints we use in our experiments

B. More analysis for MathVista
MathVista includes various metadata, such as “Task” and “Task&Skills”, allowing the dataset to be classified into subsets
using different methods. We present MathVista’s performance improvement after merging with Dart (Tong et al., 2024)
across different “Tasks” (there are in total 5 tasks in MathVista) at Figure 7, along with the correlation between answer
length and accuracy improvement for each task. We can see that two figures both show consistent pattern with findings at
Section 4. Figure 7 suggests that the math-specialized task vectors primarily benefit math reasoning tasks, but may hinder
performance on knowledge-intensive general VQA tasks. Figure 8 shows that merging with Dart enhances the model’s
inference-time scaling ability.

Figure 7: The accuracy difference after merging across several subtasks in
MathVista for LLaVA.

Figure 8: The relationship between answer
length change and accuracy improvement
after merging, classified by task.

C. Different merging methods perform generally comparable
We are interested in whether different merging methods affect the performance of reasoning ability transfer. To investigate
this, we employ TIES (Yadav et al., 2023), Dare merging (Dare-TIES and Dare-Linear) (Yu et al., 2024b), and Layer
Swapping (Bandarkar et al., 2024), which are popular merging methods in practice, to compare their performance with that
of linear merging. We adopt the hyperparameter search strategy as linear merging, parameterized by (α1, α2), where α1 is
tuned for the VLM vector and α2 for the Math LLM task vector, to obtain the most comparable checkpoints on benchmarks
emphasizing visual and textual reasoning.

As shown in Figure 10, we present results of each configuration for TIES merging on both the visual- and text-dominant tasks,
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Figure 9: The relationship between answer length
change and accuracy improvement after merging, classi-
fied by task.

Figure 10: Performance comparison of TIES and lin-
ear merging methods across MathVerse-Text-Dominant)
and MathVision benchmarks. Baseline presents the re-
sult of LLaVA-Next-LLaMA3-8B. Linear shows the re-
sult of merging Dart-prop vector with hyperparameters
of (0.9, 0.1). Performance reached by TIES merging
with the same two task vectors are labeled as the hyper-
parameter pair used.

Method Weights MathVision MathVerse-Text-Dominant

Baseline - 13.8 25.9
Linear (0.9, 0.1) 14.8 30.7
TIES (1.6, 0.2) 14.5 31.4
Dare-TIES (1.0, 0.2) 17.8 22.7
Dare-Linear (1.2, 0.2) 17.4 21.7
Swap5Layers (0.9, 0.1) 15.1 29.6

Table 5: Performance comparison of different merging methods on MathVision and MathVerse-Text-Dominant datasets.

MathVision and MathVerse-Text-Dominant, accordingly. Compared to the performance yielded by linear merging, most
combinations of TIES trade off gains in one domain against losses in the other. Additionally, the constraint of α1 + α2 = 1
is commonly dropped in practice because of sparsification during TIES merging process. As a result, TIES merging requires
more hyperparameter tuning to achieve comparable performance in a expanded searching space.

We also expand our experiments on the other methods and results shown in Table 5. The results performs comparably to
TIES merging, consistent with our finding that different merging methods yield similar performance, with none significantly
outperforming simple averaging. This supports our choice to adopt the linear merging method. This finding is also consistent
with the previous finding in Yadav et al. (2024) that different merging methods tend to exhibit similar behaviors at larger
scales. Given this, we chose not to focus extensively on exploring alternative merging methods but instead to explore more
about the interpretability and composition of the model’s internal abilities.

D. Additional results demonstrating generalization from logical to mathematical reasoning
To investigate whether reasoning skills from other domains, such as logical reasoning, can generalize to multi-modal math
reasoning, we fine-tune LLaMA3-8B on LogiCoT (Liu et al., 2023)—a logical chain-of-thought dataset—and merge it
with LLaVA. As shown in Table 6, this logic-focused model improves performance on math reasoning tasks, suggesting
generalization capabilities across the reasoning domains and highlighting the potential for transferring reasoning skills from
textual to multi-modal settings.
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Model Method MathVista MathVerse Benchmarks MV
All General Math Overall T−D T−L V−I V−D V−O

LLaVA Baseline 37.4 51.7 25.4 20.1 25.9 20.8 21.1 16.5 16.0 13.8
+logic 37.0 ↓0.4 49.1 ↓2.6 26.7 ↑1.3 23.5 ↑3.4 30.5 ↑4.6 25.0 ↑4.2 26.4 ↑5.3 20.3 ↑3.8 15.1 ↓0.9 11.2 ↓2.6

Table 6: Performance (%) of LLaVA before and after merging with the LLM fine-tuned on logical training data (Liu et al.,
2023) on MathVista, MathVerse and MathVision benchmarks. Arrows denote absolute change from the baseline.

Model Method MathVista MathVerse Benchmarks MMStar DM MV
All General Math Overall T−D T−L V−I V−D V−O All Math

Qwen2-VL Baseline 61.2 69.6 54.1 31.8 35.9 31.4 31.5 33.1 26.9 59.9 59.2 34.4 21.1
+Qwen2-Math 60.2 68.0 53.5 ↓0.6 31.9 ↑0.1 37.1 31.7 31.5 32.5 26.7 59.5 58.4 ↓0.8 35.0 ↑0.6 21.7 ↑0.6

Table 7: Performance (%) of Qwen2-VL before and after augmenting with Qwen2-Math on MathVista, MathVerse
Benchmarks, MMStar, DM and MV. Arrows denote absolute change from the baseline.

E. More results on Qwen2-VL
To assess the generality of this approach, we further extend our experiments to a stronger vision–language model, Qwen2-
VL. In Table 7, we present the results of merging Qwen2-VL-7B-Instruct with Qwen2-Math-7B. The merged model
shows significant improvements on MathVerse, DynaMath and MathVision, but a performance drop on MathVista and
MMStar. This uneven pattern mirrors our observations with Idefics and InternVL, suggesting that VLMs already pretrained
on mathematics-focused text corpora—as is common in many state-of-the-art models today—derive less benefit from
integration with specialized reasoning modules (Laurençon et al., 2024).

F. More results on MM-Math

Model Method MM-Math

LLaVA

Baseline 0.61
+Dart-prop 0.71 ↑0.10
+Dart-uniform 0.86 ↑0.25
+MAmmoTH-1 0.68 ↑0.07
+MAmmoTH-2 1.46 ↑0.85
+Magpie-v0.3 1.30 ↑0.69
+DeepSeek-R1 0.27 ↓0.34
+Dart-keep-5layers 1.05 ↑0.44

Idefics

Baseline 4.00
+MetaMath 4.68 ↑0.68
+Dart-prop 2.63 ↓1.37
+Dart-uniform 2.73 ↓1.27
+MAmmoTH-1 4.03 ↑0.03
+MAmmoTH-2 3.80 ↓0.20

InternVL Baseline 22.70
+Dart-uniform 22.80 ↑0.10

Table 8: Addition experiment result on MM-Math.

In Table 8, we provide detailed results of our method applied to the MM-Math (Sun et al., 2024) benchmark, presenting
general improvement brought by model merging in visual reasoning.
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G. Significance Test
To evaluate whether the improvements from merging are significant, we conduct a significance test and mark in Table ??.
Merging general reasoning models like Mammoth2 and Magpie does not yield statistically significant enhancements,
exhibiting a pattern of marginal accuracy gains, as shown in Table 2 of our paper. In contrast, merging math-focused
LLMs, such as Dart-Prop, results in statistically significant improvements. This supports our conclusion that merging with
math-related models offers the greatest advantage.

Model Method MathVista MathVerse Benchmarks MMStar DM
Math Overall T-D T-L V-I V-D V-O Math

LLaVA

Baseline 25.4 20.1 25.9 20.8 21.1 16.5 16.0 30.0 22.7
+Dart-Uniform 28.3 ↑2.9 23.6 ↑3.5 32.0∗ 25.6∗ 25.4∗ 19.3∗ 17.4 31.6 ↑1.2 24.5 ↑1.8
+MAmmoTH-2 25.7 ↑0.3 20.6 ↑0.5 26.0 22.0 22.1∗ 16.4 16.1 30.0 ↑0.0 22.5 ↓0.2
+Magpie-v0.3 25.9 ↑0.5 20.7 ↑0.6 26.8 22.2 22.6 16.2 15.5 30.8 ↑0.8 22.7 ↑0.0
+Dart-prop 28.9 ↑3.5∗ 23.7 ↑3.6∗ 30.7∗ 24.8∗ 25.5∗ 19.5∗ 17.4∗ 33.6 ↑3.6∗ 24.5 ↑1.8∗

Table 9: Significant test results across the models and datasets. ∗ marks statistically significant improvements (p < 0.05).
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