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Abstract

Kolmogorov–Arnold Networks (KANs) have recently shown promise for
solving partial differential equations (PDEs). Yet their original formulation is
computationally and memory intensive, motivating the introduction of Chebyshev
Type-I-based KANs (Chebyshev1KANs). Although Chebyshev1KANs have
outperformed the vanilla KANs architecture, our rigorous theoretical analysis
reveals that they still suffer from rank collapse, ultimately limiting their expressive
capacity. To overcome these limitations, we enhance Chebyshev1KANs by
integrating wavelet-activated MLPs with learnable parameters and an internal
attention mechanism. We prove that this design preserves a full-rank Jacobian and
is capable of approximating solutions to PDEs of arbitrary order. Furthermore, to
alleviate the loss instability and imbalance introduced by the Chebyshev polynomial
basis, we externally incorporate a Residual Gradient Attention (RGA) mechanism
that dynamically re-weights individual loss terms according to their gradient norms
and residual magnitudes. By jointly leveraging internal and external attention, we
present AC-PKAN, a novel architecture that constitutes an enhancement to weakly
supervised Physics-Informed Neural Networks (PINNs) and extends the expressive
power of KANs. Experimental results from nine benchmark tasks across three
domains show that AC-PKAN consistently outperforms or matches state-of-the-art
models such as PINNsFormer, establishing it as a highly effective tool for solving
complex real-world engineering problems in zero-data or data-sparse regimes. The
code will be made publicly available upon acceptance.

1 Introduction

Numerical solutions of partial differential equations (PDEs) are essential in science and
engineering [78, 40, 18, 9]. Physics-informed neural networks (PINNs) [34, 50] have emerged as a
promising approach in scientific machine learning (SciML), especially when data are unavailable or
scarce. Traditional PINNs typically employ multilayer perceptrons (MLPs) [14] due to their ability to
approximate nonlinear functions [23] and their success in various PDE-solving applications [72, 21].

However, PINNs encounter limitations, including difficulties with multi-scale phenomena [30], the
curse of dimensionality in high-dimensional spaces [25], and challenges with nonlinear PDEs [75].
These issues arise from both the complexity of PDEs and limitations in PINN architectures and
training methods.

To address these challenges, existing methods focus on improving both the internal architecture
of PINNs and their external learning strategies. Internal improvements include novel architectures
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like Quadratic Residual Networks (Qres) [10], First-Layer Sine (FLS) [66], and PINNsformer [77].
External strategies are discussed in detail in Section 2. Nevertheless, traditional PINNs based on MLPs
still suffer from issues like lack of interpretability [13], overfitting, vanishing or exploding gradients,
and scalability problems [6]. As an alternative, Kolmogorov–Arnold Networks (KANs) [42], inspired
by the Kolmogorov–Arnold representation theorem [31, 8], have been proposed to offer greater
accuracy and interpretability. KANs can be viewed as a combination of Kolmogorov networks and
MLPs with learnable activation functions [32, 54]. Various KAN variants have emerged by replacing
the B-spline functions [55, 7, 69]. Although they still face challenges [74], KANs have shown
promise in addressing issues like interpretability [41] and catastrophic forgetting [60] in learning
tasks [52]. Recent architectures like KINN [65] and DeepOKAN [1] have applied KANs to PDE
solving with promising results.

Despite the potential of KANs, the original KAN suffers from high memory consumption and long
training times due to the use of B-spline functions [53]. To address these limitations, we propose
the Attention-Enhanced and Chebyshev Polynomial-Based Physics-Informed Kolmogorov–Arnold
Networks (AC-PKAN). Our approach replaces B-spline functions with first-kind Chebyshev
polynomials, forming the Cheby1KAN layer [57], eliminating the need for grid storage and updates.
Nevertheless, networks composed solely of stacked Cheby1KAN layers exhibit pronounced rank
diminution [17]. By integrating Cheby1KAN with linear layers and incorporating internal attention
mechanisms derived from input features, AC-PKAN addresses these limitations while efficiently
modeling complex nonlinear functions and selectively emphasizing distinct aspects of the input
features at each layer. Additionally, we introduce an external attention mechanism that adaptively
reweights loss terms according to both gradient norms and point-wise residuals, thereby counteracting
the large polynomial expansions and gradient magnitudes inherent in Cheby1KAN, mitigating residual
imbalance and gradient flow stiffness, and ultimately enhancing training stability and efficiency. To
our knowledge, AC-PKAN is the first PINN framework to integrate internal and external attention
mechanisms into KAN layers, effectively addressing many issues of original KANs and PINNs. Our
key contributions can be summarized as follows:

• Rigorous theoretical analysis. We provide the first formal study of Cheby1KAN depth,
proving upper bounds on each layer’s Jacobian rank and showing that stacked layers suffer an
exponential rank–attenuation in depth, which establishes the theoretical limits that motivate
our design.

• Attention-enhanced internal architecture. To overcome rank collapse and the zero-
derivative pathology, we introduce AC-PKAN: Cheby1KAN layers are interleaved with
linear projections, learnable wavelet activations, and a lightweight feature–wise attention
module, together guaranteeing full-rank Jacobians and non-vanishing derivatives of any
finite order.

• Residual–Gradient Attention (RGA). Externally, we devise an adaptive loss–reweighting
strategy that couples point-wise residual magnitudes with gradient norms. It dynamically
balances competing objectives, alleviates gradient stiffness, and accelerates convergence of
physics-informed neural networks.

• Comprehensive experimental validation. Across three categories of nine benchmark PDE
problems and twelve competing models, AC-PKAN attains the best or near-best accuracy in
every case, demonstrating superior generalization and robustness to PINN failure modes.

2 Related Works

External Learning Strategies for PINNs. Various external strategies have been proposed to address
the limitations of PINNs. Loss weighting methods, such as PINN-LRA [63], PINN-NTK [64], and
PINN-RBA [5], rebalance loss terms using gradient norms, neural tangent kernels, and residual
information to enhance training efficiency. Optimizer improvements like MultiAdam [71] aid
convergence during multi-scale training. Advanced sampling strategies, including AAS [58], which
combines optimal transport theory with adversarial methods, RoPINN [48], which utilizes Monte
Carlo sampling for regional optimization, RAR [67], which applies residual-driven resampling, and
PINNACLE [35], which adaptively co-optimizes the selection of all types of training points, have
been developed to improve performance. Enhanced loss functions like gPINN [73] and vPINN [29]
incorporate gradient enhancement and variational forms, respectively. Adaptive activation functions
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in LAAF [26] and GAAF [27] accelerate convergence and handle complex geometries. Domain
decomposition methods such as FBPINN [45] and hp-VPINN [30] train subnetworks on subdomains
and use higher-order polynomial projections for refinement.

Variants of KAN. Since the seminal KAN [42], numerous basis-function substitutions have been
proposed to sharpen the speed–accuracy trade-off. FastKAN replaces cubic B-splines with radial basis
functions (RBFs) for faster inference [37]; Chebyshev1KAN and Chebyshev2KAN leverage first-
and second-kind Chebyshev polynomials [57, 55]; rKAN and fKAN introduce trainable rational- and
fractional-orthogonal Jacobi bases [3, 2]; and FourierKAN substitutes spline coefficients with one-
dimensional Fourier modes [19]. A recent survey situates these derivatives in the broader landscape
of Kolmogorov-inspired approximators [20]. Preliminary benchmarks still crown Cheby1KAN as the
current speed–accuracy frontrunner [28].

3 Motivation and Methodology

Preliminaries: Let Ω ⊂ Rd be an open set with boundary ∂Ω. Consider the PDE:

D[u(x, t)] = f(x, t), (x, t) ∈ Ω,

B[u(x, t)] = g(x, t), (x, t) ∈ ∂Ω,
(1)

where u is the solution, D is a differential operator, and B represents boundary/initial constraints or
available data samples. Let û be a neural network approximation of u. PINNs minimize the loss:

LPINNs = λr

Nr∑
i=1

∥D[û(xi, ti)]− f(xi, ti)∥2 + λb

Nb∑
i=1

∥B[û(xi, ti)]− g(xi, ti)∥2, (2)

where {(xi, ti)} ⊂ Ω are residual points, {(xi, ti)} ⊂ ∂Ω are boundary/initial constraints or
available data samples, and λr, λb balance the loss terms. The goal is to train û to minimize LPINNs
using machine learning techniques.

3.1 Chebyshev1-Based Kolmogorov-Arnold Network Layer

Unlike traditional Kolmogorov-Arnold Networks (KAN) that employ spline coefficients, the First-
kind Chebyshev KAN Layer leverages the properties of mesh-free Chebyshev polynomials to enhance
both computational efficiency and approximation accuracy [57, 53].

Let x ∈ Rdin denote the input vector, where din is the input dimensionality, and let dout be the output
dimensionality. Cheby1KAN aims to approximate the mapping x 7→ y ∈ Rdout using Chebyshev
polynomials up to degree N . For x ∈ [−1, 1], n = 0, 1, . . . , N , the Chebyshev polynomials of the
first kind, Tn(x), are defined as:

Tn(x) = cos (n arccos(x)) . (3)

To ensure the input values fall within the domain [−1, 1], Cheby1KAN applies the hyperbolic tangent
function for normalization:

x̃ = tanh(x). (4)

Defining a matrix of functions Φ(x̃) ∈ Rdout×din , where each element Φk,i(x̃i) depends solely on the
i-th normalized input component x̃i for k = 1, 2, . . . , dout, i = 1, 2, . . . , din:

Φk,i(x̃i) =

N∑
n=0

Ck,i,n Tn(x̃i). (5)

Here, Ck,i,n are the learnable coefficients. The output vector y ∈ Rdout is computed by summing over
all input dimensions:

yk =

din∑
i=1

Φk,i(x̃i), k = 1, 2, . . . , dout, (6)
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For a network comprising multiple Chebyshev KAN layers, the forward computation can be viewed
as a recursive application of this process. Let xl denote the input to the l-th layer, where l =
0, 1, . . . , L−1. After applying hyperbolic tangent function to obtain x̃l = tanh(xl), the computation
proceeds as follows:

xl+1 =


Φl,1,1(·) Φl,1,2(·) · · · Φl,1,nl(·)
Φl,2,1(·) Φl,2,2(·) · · · Φl,2,nl(·)

...
...

. . .
...

Φl,nl+1,1(·) Φl,nl+1,2(·) · · · Φl,nl+1,nl(·)


︸ ︷︷ ︸

Φl

x̃l, (7)

A general cheby1KAN network is a composition of L layers: given an input vector x0 ∈ Rn0 , the overall output
of the KAN network is:

Cheby1KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x. (8)

In order to prevent gradient vanishing induced by the use of tanh, we apply Layer-Normalization after
Cheby1KAN Layer.

Compared to the original B-spline-based KANs, Chebyshev polynomials of the first kind in Equation (3)
concentrate spectral energy in high frequencies with frequencies that increase linearly with the polynomial order
n [70, 68], while maintaining global orthogonality over the interval [−1, 1]:

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =


0 m ̸= n,

π m = n = 0,

π/2 m = n ̸= 0.

(9)

This global support and slower decay of high-frequency components outperform locally supported B-
splines, which lack global orthogonality and have rapidly diminishing high-frequency capture. Furthermore,
Chebyshev1KAN layers require only a coefficient matrix of size (input_dim, output_dim, degree + 1), whereas
B-spline-based KANs necessitate storing grids of size (in_features, grid_size + 2 × spline_order + 1) and
coefficient matrices of size (out_features, in_features, grid_size + spline_order), in addition to generating
polynomial bases, solving local interpolation systems, and performing recursive updates to achieve high-order
interpolation within their support intervals [42]. Hence, the Chebyshev1kan layer significantly reduces both
computational and memory overhead compared to the original B-spline-based KANs, while more effectively
capturing high-frequency features. More details can be found at Appendix C

3.2 Rank Diminution in Cheby1KAN Networks

While Cheby1KAN layers offer significant advantages, networks composed solely of stacked Cheby1KAN
layers, as presented in Equation (8), exhibit pronounced rank diminution [17]. Consequently, these networks
suffer a reduced capacity for feature representation, leading to severe information degradation and loss. We
present a detailed derivation and proof of this phenomenon below [51]. The complete mathematical derivations
are provided in Appendix B.

Definitions. Consider the l-th Cheby1KAN layer with input xl ∈ Rdl and output xl+1 ∈ Rdl+1 . The layer
mapping is defined by

xl+1,k =

dl∑
i=1

N∑
n=0

Cl,k,i,nTn(tanh(xl,i)), (10)

where Tn are Chebyshev polynomials and Cl,k,i,n are learnable coefficients. The Jacobian Jl ∈ Rdl+1×dl has
entries

Jl,k,i =

N∑
n=0

Cl,k,i,nT
′
n(tanh(xl,i)) · (1− tanh2(xl,i)). (11)

For an L-layer network, the total Jacobian is

Jtotal = JL−1JL−2 · · · J0. (12)

Theorem 3.1 (Single Cheb1KAN Layer Rank Constraint). The Jacobian Jl satisfies

rank(Jl) ≤ min{dl+1, dl(N + 1)}. (13)
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Theorem 3.2 (Nonlinear Normalization Effect). The normalization tanh(x) in Cheby1KAN layer reduces the
numerical rank Rankϵ(J) of the Jacobian.

Theorem 3.3 (Exponential Decay in Infinite Depth). When the coefficients Cl,k,i,n are drawn from mutually
independent Gaussian distributions, the numerical rank of Jtotal decays exponentially to 1 as the depth L of the
Cheby1KAN network increases.

In summary, Cheby1KAN networks inherently experience rank diminution due to various factors. Collectively,
the bounded rank per Cheby1KAN layer (Theorem 3.1), the attenuation from tanh(·) (Theorem 3.2), and
the multiplicative rank bound culminate in exponential rank decay (Theorem 3.3), thereby demonstrating the
inherent rank diminution in Cheby1KAN networks.

Therefore, there is a significant need to improve the internal structure of models based on the Chebyshev1KAN
layer, which will be discussed in detail in Section 3.3. Additionally, to address some computational limitations
associated with the use of Cheby1KAN, we propose an external attention mechanism, which will be elaborated
in Section 3.4. By incorporating both internal and external attention mechanisms, our AC-PKAN model fully
leverages the advantages of Chebyshev Type-I polynomials while overcoming their initial drawbacks.

3.3 Internal Model Architecture

To resolve the Rank Diminution issue arising from direct stacking of Cheby1KAN layers in network architectures,
we propose the AC-PKAN model, featuring an attention-enhanced framework [63, 61] designed to mitigate
feature space collapse. The architecture synergistically combines linear transformations for input-output
dimensional modulation, state-of-the-art activation functions, and residual-augmented Cheby1KAN layers.
These components are collectively designed to preserve hierarchical feature diversity while capturing high-
order nonlinear interactions and multiscale topological dependencies inherent in complex data structures. The
algorithm’s details are provided in Algorithm 2 in Appendix A.

Linear Upscaling and Downscaling Layers To modulate the dimensionality of the data, the model
employs linear transformations at both the input and output stages. The linear layer is designed to achieve a
hybridization of KAN and MLP architectures. Its role as both an initial and final projection is inspired by the
Spatio-Temporal Mixer linear layer in the PINNsformer model [77], which enhances spatiotemporal aggregation.
The input features x are projected into a higher-dimensional space, and the final network representation α(L) is
mapped to the output space via:

h0 = Wembx+ bemb, y = Woutα
(L) + bout, (14)

where Wemb ∈ Rdmodel×din , bemb ∈ Rdmodel , Wout ∈ Rdout×dhidden , and bout ∈ Rdout are learnable parameters.

Adaptive Activation Function We adopt the state-of-the-art Wavelet activation function in the field of
PINNs, as detailed in [77]. Inspired by Fourier transforms, it introduces non-linearity and effectively captures
periodic patterns:

Wavelet(x) = w1 sin(x) + w2 cos(x), (15)

wherew1 andw2 are learnable parameters initialized to one. This activation integrates Fourier feature embedding
[62] and sine activation [66]. When applied to encoders U and V , the Wavelet activation preserves the
gradient benefits introduced by the triangular activation function while modulating its phase and magnitude.
This enhancement boosts representational capacity and facilitates adaptive Fourier embedding, thereby more
effectively capturing periodic features and mitigating spectral bias.

Attention Mechanism An internal attention mechanism is incorporated by computing two feature
representations, U and V, via the Wavelet activation applied to linear transformations of the embedded inputs:

U = Wavelet(h0ΘU + bU ), V = Wavelet(h0ΘV + bV ), (16)

where ΘU ,ΘV ∈ Rdmodel×dhidden and bU ,bV ∈ Rdhidden are learnable parameters.

Attention Integration The attention mechanism integrates U and V iteratively across Cheby1KAN layers
using the following equations:

α
(l)
0 = H(l) + α(l−1), α(l) = (1− α(l)

0 )⊙U+ α
(l)
0 ⊙ (V + 1). (17)

where α(0) = U and ⊙ denotes element-wise multiplication. Here, H(l) ∈ RN×dhidden is the output of the l-th
Cheby1KAN layer after LayerNormalization, and N is the number of nodes.
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Figure 1: Architecture of the complete AC-PKAN model. It combines its internal attention
architecture with an external attention strategy, yielding a weighted loss optimized to obtain the
predicted solution.

Approximation Ability Our AC-PKAN’s inherent attention mechanism eliminates the need for an additional
bias function b(x) required in previous KAN models to maintain non-zero higher-order derivatives [65]. This
reduces model complexity and parameter count while preserving the ability to seamlessly approximate PDEs of
arbitrary finite order. By ensuring non-zero derivatives of any finite order and invoking the Kolmogorov–Arnold
representation theorem, our model can approximate such PDEs.

Proposition 3.4. Let N be an AC-PKAN model with L layers (L ≥ 2) and infinite width. Then, the output
y = N (x) has non-zero derivatives of any finite-order with respect to the input x.

Then we prove that the Jacobian matrix of the AC-PKAN model is full-rank, thereby rigorously precluding
degenerate directions in the input space.

Proposition 3.5. LetN be an AC-PKAN model with L layers (L ≥ 2) and infinite width. Then, the Jacobian
matrix JN (x) =

[
∂Ni
∂xj

]
m×d

is full rank in the input space Rd.

This property effectively addresses the internal rank diminution issue of Cheby1KAN networks discussed in
Section 3.2, and also ensures stable gradient backpropagation, thereby preventing rank-deficiency-induced
training failures in AC-PKAN.The complete mathematical derivations are provided in Appendix B.

3.4 Residual-and-Gradient Based Attention

In the canonical PINN formulation, the loss is split into an unlabeled PDE-residual term Lr and a labeled term
Ld that enforces boundary/initial constraints and matches available data samples. To improve optimization
efficiency and accuracy—while counteracting the loss imbalance introduced by Chebyshev bases—we introduce
Residual–Gradient Attention (RGA), an adaptive scheme that rescales each loss term according to its residual
magnitude and corresponding gradient norm. This approach ensures balanced and efficient optimization,
particularly addressing challenges with boundary and initial condition losses.

Residual-Based Attention (RBA) Residual-Based Attention (RBA) dynamically amplifies loss terms with
the largest point-wise residuals, assigning a tensor of weights wRBA

i,j to each loss component Li (i ∈ {r, d}) at
location j [5]:

wRBA
i,j ← (1− η)wRBA

i,j + η
|Li,j |

maxj |Li,j |
, (18)

where η is the RBA learning rate and maxj |Li,j | normalizes by the maximal residual. As a lightweight,
point-wise weighting scheme, RBA complements the Cheby1KAN layer—which excels at capturing strong
nonlinearity and complex distributions but can suffer from slow or unstable convergence—by embedding a
self-adjusting feedback loop. This synergy alleviates numerical optimization difficulties and enhances global
convergence efficiency.

Gradient-Related Attention (GRA) Due to the Cheby1KAN layer’s utilization of high-order Chebyshev
polynomials, large coefficients and derivative magnitudes are introduced, resulting in an increased maximum
eigenvalue of the Hessian and exacerbating gradient flow stiffness. Additionally, nonlinear operations such
as cos(x) and arccos(x) create regions of vanishing and exploding gradients, respectively. The heightened
nonlinearity from these high-degree polynomials further leads to imbalanced loss gradients, intensifying dynamic
stiffness. Therefore, we employ Gradient-Related Attention (GRA).

GRA dynamically adjusts weights based on gradient norms of different loss components, promoting balanced
training. As a scalar applied to one entire loss term, GRA addresses the imbalance where gradient norms of the
PDE residual loss significantly exceed those of the data fitting loss [63], which can lead to pathological gradient
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Figure 2: Visualization of AC-PKAN’s predicted values for PDE experiments: (Row 1) 1D-Wave,
1D-Reaction, 2D NS Cylinder, 1D-Conv.-Diff.-Reac.; (Row 2) 2D Lid-driven Cavity, Heterogeneous
Problem, Complex Geometry, and 3D Point-Cloud.

flow issues [64, 16]. Our mechanism smooths weight adjustments, preventing the network from overemphasizing
residual loss terms and neglecting other essential physical constraints, thus enhancing convergence and stability.

The GRA weight λGRA is computed as:

λ̂GRA
d =

Gmax
r

ϵ+Gd

, (19)

where Gmax
r = maxp

∥∥∥ ∂Lr
∂θp

∥∥∥ is the maximum gradient norm of the residual loss, Gd = 1
P

∑P
p=1

∥∥∥ ∂Ld
∂θp

∥∥∥ is the
average gradient norm for Ld, P is the number of model parameters, and ϵ prevents division by zero.

To smooth the GRA weights over iterations, we apply an exponential moving average:

λGRA
d ← (1− βw)λGRA

d + βwλ̂
GRA
d , (20)

where βw is the learning rate for the GRA weights. We enforce a minimum value for numerical stability:
λGRA
d ← max

(
λGRA
d , e+ ϵ

)
.

GRA addresses the aforementioned issues by stabilizing the gradient flow, thereby ensuring more efficient and
reliable training of the network. By combining our AC-PKAN internal architecture with the external RGA
mechanism, we obtain the complete AC-PKAN model. Figure 1 provides a detailed illustration of our model
structure.

Combined Attention Mechanism To equilibrate the magnitudes of GRA and RBA weights, we apply a
logarithmic transformation to the GRA weights when incorporating them into the loss terms, while retaining their
original form during weight updates. This preserves the direct relationship between weights and gradient
information, ensuring sensitivity to discrepancies between residual and data gradients. The logarithmic
transformation mitigates magnitude disparities, preventing imbalances among loss terms. It enables GRA
weights to adjust more rapidly when discrepancies are minor and ensures stable updates when discrepancies
are substantial. The coefficient λGRA not only attains excessively large values in scale but also exhibits a broad
range of variation. In the training process, λGRA rapidly increases from zero to very large values, demonstrating
a wide dynamic range which is shown in Figure 4 in Appendix H. The logarithmic transformation significantly
constrains this range; without it, the model cannot accommodate drastic changes in λGRA, and rigid manual
scaling factors further exacerbate the imbalance among loss terms, ultimately causing training failure. For details
on the effect of logarithmic transformation in the RGA module, see Appendix C.1.

By integrating point-wise RBA with term-wise GRA, the total loss under the RGA mechanism is defined as:

LRGA = λrw
RBA
r Lr + λdw

RBA
d log

(
λGRA
d

)
Ld. (21)

where wRBA are the RBA weights, and λGRA
d are the GRA weights for boundary/initial conditions or available

data samples.

This formulation reweights the residual loss based on its magnitude and adjusts the boundary and initial condition
losses according to both their magnitudes and gradient norms, promoting balanced and focused training through
a dual attention mechanism. The whole algorithmic details are provided in algorithm 1 in Appendix A.

RGA enhances PINNs by dynamically adjusting loss weights based on residual magnitudes and gradient norms.
By integrating RBA and GRA, it balances loss contributions, preventing any single component from dominating

7



Model 1D-Wave 1D-Reaction 2D NS Cylinder 1D-Conv.-Diff.-Reac. 2D Lid-driven Cavity
rMAE rRMSE rMAE rRMSE rMAE rRMSE rMAE rRMSE rMAE rRMSE

PINN 0.3182 0.3200 0.9818 0.9810 5.8378 4.0529 0.0711 0.1047 0.6219 0.6182
QRes 0.3507 0.3485 0.9844 0.9849 25.8970 17.9767 0.0722 0.1062 0.5989 0.5674
FLS 0.3810 0.3796 0.9793 0.9773 12.4564 8.6473 0.0707 0.1045 0.6267 0.6267
PINNsFormer 0.2699 0.2825 0.0152 0.0300 0.3843 0.2801 0.0854 0.0927 OoM OoM
Cheby1KAN 1.1240 1.0866 0.0617 0.1329 3.7107 2.7379 0.0992 0.1644 0.5689 0.5370
Cheby2KAN 1.1239 1.0865 1.0387 1.0256 72.1708 50.1039 1.2078 1.2059 6.1457 3.9769
AC-PKAN (Ours) 0.0011 0.0011 0.0375 0.0969 0.2230 0.2182 0.0114 0.0142 0.6374 0.5733
KINN 0.3466 0.3456 0.1314 0.2101 4.5306 3.1507 0.0721 0.1058 OoM OoM
rKAN 247.7560 2593.0750 65.2014 54.8567 NaN NaN 543.8576 3053.6257 OoM OoM
FastKAN 0.5312 0.5229 0.5475 0.6030 25.8970 1.4085 0.0876 0.1219 OoM OoM
fKAN 0.4884 0.4768 0.0604 0.1033 3.0766 2.1403 0.1186 0.0794 0.7639 0.7366
FourierKAN 1.1356 1.1018 1.4542 1.4217 9.3295 8.0346 0.9105 0.9708 OoM OoM

Table 1: Combined experimental results across Failure PINN Modes. Results are organized from left
to right in the following order: 1D-Wave, 1D-Reaction, 2D NS Cylinder, 1D-Conv.-Diff.-Reac., and
2D Lid-driven Cavity.

the training process. This adaptive reweighting accelerates and stabilizes convergence, focusing on challenging
regions with significant errors or imbalanced gradients. Consequently, RGA provides a robust framework for
more accurate and efficient solutions to complex differential equations, performing well in our AC-PKAN model
and potentially benefiting other PINN variants which is discussed in detail in appendix C.1.

4 Experiments

Goal. Our empirical study highlights three principal strengths of AC-PKAN: (1) its internal architecture
delivers powerful symbolic representation and function-approximation capabilities even in the absence of the
RGA loss-weighting scheme; (2) it significantly improves generalization abilities and mitigates failure modes
compared to PINNs and other KAN variants; and (3) it achieves superior performance in complex real-world
engineering environments. To substantiate our claims, we assemble three task suites (nine benchmarks in
total) and benchmark 12 representative architectures—including PINN, PINNsFormer, KAN, fKAN and other
variants. For detailed methodology underpinning our first and thirf objective, see the Supplementary Experiment
in Appendix F.1 and F.2. While operator-learning frameworks that depend on extensive volumes of labeled
data have lately dominated SciML [43, 38, 39, 59, 11], we follow the customary scope of PINN-refinement
studies—which target unsupervised or weakly-supervised regimes—and [25, 73, 76, 24, 36]therefore do not
report operator-learning baselines, whose reliance on dense labelled data renders them orthogonal to our setting.
The experimental setup was inspired by methodologies in [57, 22, 65, 77, 62]. In all experiments, the best results
are highlighted in bold italics, and the second-best results in bold.

4.1 Mitigating Failure Modes in PINNs

We assessed the AC-PKAN model on five complex PDEs known as PINN failure modes—the 1D-Wave PDE,
1D-Reaction PDE, 2D Navier–Stokes Flow around a Cylinder, 1D Convection-Diffusion-Reaction and 2D
Navier–Stokes Lid-driven Cavity Flow [44, 15, 33]—to demonstrate its superior generalization ability compared
to other PINN variants. In these cases, optimization often becomes trapped in local minima, leading to overly
smooth approximations that deviate from true solutions.

Evaluation results are summarized in Table 1, with detailed PDE formulations and setups in Appendix G.
Prediction for AC-PKAN are shown in Figure 2 and additional plots including the analysis of loss landscapes
are in Appendix H.

AC-PKAN significantly outperforms nearly all baselines, achieving the lowest or second-lowest test errors, thus
more effectively mitigating failure modes than the previous SOTA method, PINNsFormer. Other baselines
remain stuck in local minima, failing to optimize the loss effectively. These results highlight the advantages of
AC-PKAN in generalization and approximation accuracy over conventional PINNs, KANs, and existing variants.

5 Conclusion

We introduced AC-PKAN, a novel framework that enhances PINNs by integrating Cheby1KAN with traditional
MLPs and augmenting them with internal and external attention mechanisms. This improves the model’s ability
to capture complex patterns and dependencies, resulting in superior performance on challenging PDE tasks.
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A Pseudocode of the Algorithm

Algorithm 1 Implementation of the RGA Mechanism
Data: Model parameters θ, total number of parameters P , learning rate α, hyperparameters η, βw, ϵ
Initialization: wRBA

r,d ← 0, λGRA
d ← 1

1: for each training iteration do
2: Compute gradients:

∇θLi ←
∂Li

∂θ
, i ∈ {r, d}

3: Update RBA weights for each data point j:

wRBA
i,j ← (1− η)wRBA

i,j + η

(
|Li,j |

maxj |Li,j |

)
, i ∈ {r, d}

4: Compute gradient norms:

Gmax
r ← max

p

∥∥∇θpLr

∥∥ , Gi ←
1

P

P∑
p=1

∥∥∇θpLi

∥∥ , i ∈ {d}

5: Update GRA weights:

λ̂i ←
Gmax

r

ϵ+Gi

, λGRA
i ← (1− βw)λGRA

i + βwλ̂i, λGRA
i ← max

(
e+ ϵ, λGRA

i

)
, i ∈ {d}

6: Compute total loss:

LRGA ← λrw
RBA
r Lr +

∑
i∈{d}

λiw
RBA
i log

(
λGRA
i

)
Li

7: Update model parameters:
θ ← θ − α∇θLRGA

8: end for

Algorithm 2 Internal AC-PKAN Forward Pass
Data: Input data x, Cheby1KAN layer parameters, Wavelet activation function parameters
Initialization: Randomly initialize weights Wemb, ΘU , ΘV , Wout and biases bemb, bU , bV , bout

1: Input embedding:
h0 ←Wembx+ bemb

2: Compute representations:

U← Wavelet(h0ΘU + bU ), V← Wavelet(h0ΘV + bV )

3: Initialize attention:
α(0) ← U

4: for l = 1 to L do
5: Update attention:
6:

H(l) ← LayerNorm
(

Cheby1KANLayer
(
α(l−1)

))
α
(l)
0 ← H(l) + α(l−1)

α(l) ← (1− α(l)
0 )⊙U+ α

(l)
0 ⊙ (V + 1)

7: end for
8: Output prediction:

y←Woutα
(L) + bout
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B Mathematical Proofs

B.1 Proof of Theorem 3.1

Lemma B.1. Let A ∈ Rm×n and B ∈ Rn×p. Then AB ∈ Rm×p, and

rank(AB) ≤ min{rank(A), rank(B)}.

∀i ∈ Z+, let Ai is a matrix of appropriate dimensions, and

rank(A1A2 · · ·An) ≤ min{rank(A1), rank(A2), . . . , rank(An)}

Proof. Let A ∈ Rm×n and B ∈ Rn×p. Consider the product AB ∈ Rm×p. We aim to show that

rank(AB) ≤ min{rank(A), rank(B)}. (22)

First, observe that each column of AB is a linear combination of the columns of A. Specifically, if the columns
of B are denoted by b1,b2, . . . ,bp, then the j-th column of AB is given by Abj . Consequently, the column
space of AB, denoted Col(AB), satisfies

Col(AB) ⊆ Col(A). (23)

By the properties of subspace dimensions, it follows from (23) that

rank(AB) = dim(Col(AB)) ≤ dim(Col(A)) = rank(A). (24)

Next, consider the transpose of the product AB:

(AB)⊤ = B⊤A⊤. (25)

Applying the same reasoning to B⊤ ∈ Rp×n and A⊤ ∈ Rn×m, we have

rank(B⊤A⊤) ≤ rank(B⊤) = rank(B). (26)

Therefore, from (25) and (26), it follows that

rank(AB) = rank(B⊤A⊤) ≤ rank(B). (27)

Combining (24) and (27), we obtain

rank(AB) ≤ min{rank(A), rank(B)}. (28)

To generalize this result for any n ≥ 2, we proceed by induction. Specifically, we aim to prove that

rank(A1A2 · · ·An) ≤ min{rank(A1), rank(A2), . . . , rank(An)}, (29)

where each Ai is a matrix of appropriate dimensions.

Inductive Hypothesis: Assume that for n = k,

rank(A1A2 · · ·Ak) ≤ min{rank(A1), . . . , rank(Ak)}. (30)

Inductive Step: Consider n = k + 1. We can decompose the product as

A1A2 · · ·Ak+1 = (A1A2 · · ·Ak)Ak+1. (31)

Applying the previously established result (28), we obtain

rank(A1A2 · · ·Ak+1) ≤ min {rank(A1A2 · · ·Ak), rank(Ak+1)} . (32)

By the inductive hypothesis (30), we have

rank(A1A2 · · ·Ak) ≤ min{rank(A1), rank(A2), . . . , rank(Ak)}. (33)

Therefore, substituting (33) into (32), we obtain

rank(A1A2 · · ·Ak+1) ≤ min{rank(A1), rank(A2), . . . , rank(Ak+1)}. (34)

By induction, the inequality (29) holds for all n ≥ 2. This completes the proof.

Theorem B.2 (Single Cheb1KAN Layer Rank Constraint). The Jacobian Jl satisfies rank(Jl) ≤
min{dl+1, dl(N + 1)}.
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Proof. Assuming the input of the l-th layer is x̃l ∈ Rdland the output is ỹl ∈ Rdl+1 . The Jacobian matrix Jl
describes the partial derivatives of the output of the l-th layer of the network with respect to its input:

Jl =

[
∂ỹl,j
∂x̃l,i

]
dl+1×dl

(35)

The rank of a Jacobian matrix is defined as the maximum linearly independent number of its column or row
vectors:

rank(Jl) ≤ min{dim(Col(Jl)), dim(Row(Jl))}, (36)
which shows that the rank of Jacobian is limited by the dimension of its column space and output space.

Each input component x̃l,i is expanded through N + 1 Chebyshev polynomial basis functions T0, T1, · · · , TN .
Based on 3, each input component x̃l,i can be expressed as:

x̃l,i =

N∑
k=0

akTk(x̃l,i) (37)

where ak are the coefficients.

To conclude that N + 1 Chebyshev polynomials T0(x), T1(x), · · · , TN (x) are linearly independent on interval
[−1, 1], we assume the opposite: there exist constants c0, c1, · · · , cN such that:

∀x ∈ [−1, 1], c0T0(x) + c1T1(x) + · · ·+ cNTN (x) = 0 (38)

Since each Tk(x) are a set of k-degree orthogonal polynomials according to 9, the left side is a polynomial of
degree at most N . A non-zero polynomial of degree N can have at most N roots. However, the equation holds
for all x in [−1, 1], which is an infinite set of points. Therefore, the polynomial must be the zero polynomial,
implying c0 = c1 = · · · = cN = 0.

Suppose the input to the l-th layer is x̃i ∈ Rdl , and the output is ỹi ∈ Rdl+1 . Each input vector x̃i is expanded
through N + 1 Chebyshev polynomial basis functions {Tk}Nk=0 as follows:

x̃i 7→ [T0(x̃i), T1(x̃i), . . . , TN (x̃i)] ∈ RN+1. (39)

The total expanded dimensionality is dl · (N + 1). The output layer is obtained by linearly combining these
basis functions:

ỹi,j =

dl∑
i=1

N∑
k=0

wj,i,k · Tk(x̃i), (40)

where wj,i,k are learnable parameters. Taking the derivative with respect to the input vector x̃i:

∂ỹi,j
∂x̃i

=

N∑
k=0

wj,i,k · T ′
k(x̃i). (41)

This indicates that the i-th column of the Jacobian (i.e., ∂ỹ/∂x̃i) belongs to the space spanned by {T ′
k(x̃i)}Nk=0,

whose dimension is at most N + 1. The output contribution of each input component can be viewed as a linear
combination of N + 1 independent basis functions.

The i-th column of Jl is the partial derivative vector of the i-th input component(
∂ỹl,1/ ∂x̃l,i, ∂ỹl,2/ ∂x̃l,i, · · · , ∂ỹl,dl+1

/
∂x̃l,i

)T . Since the derivatives with respect to each input
vector x̃i independently span an N + 1-dimensional subspace, the dimension of the joint column space of all dl
columns is at most the sum of the dimensions of the subspaces:

dim(Col(Jl)) ≤
dl∑
i=1

dim(Span{T ′
k(x̃i)}) = dl · (N + 1). (42)

The key to this upper bound is that the basis function expansions for different input vectors are independent.
Based on Equation 36, although the output dimension dl+1 may be much smaller than dl · (N + 1), the final
column space dimension is constrained by the following two factors:

rank(Jl) = dim(Col(Jl)) ≤ min{dl+1, dl · (N + 1)}. (43)
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B.2 Proof of Theorem 3.2

Theorem B.3 (Nonlinear Normalization Effect). The normalization tanh(x) in Cheby1KAN layers reduces the
numerical rank Rankϵ(J) of the Jacobian.

Proof. Consider the ℓ-th layer of a Cheby1KAN network receiving xℓ ∈ Rdℓ and outputting xℓ+1 ∈ Rdℓ+1 .
The forward mapping is

xℓ+1 = Φℓ

(
tanh(xℓ)

)
, (44)

where tanh(·) is applied elementwise, and Φℓ is a learnable functional operator using Chebyshev polynomials
of the first kind. Indexing each output component by k ∈ {1, . . . , dℓ+1} gives

xℓ+1,k =

dℓ∑
i=1

N∑
n=0

Cℓ,k,i,n Tn

(
tanh(xℓ,i)

)
, (45)

where Cℓ,k,i,n are trainable coefficients, and Tn : [−1, 1]→ R is defined by Tn(z) = cos(n arccos(z)). The
Jacobian

Jℓ =
[
∂xℓ+1,k/∂xℓ,i

]
k=1,...,dℓ+1
i=1,...,dℓ

captures the gradient flow. Using d
dz
Tn(z) = nUn−1(z) for n ≥ 1 (with T ′

0(z) = 0), where Un−1 are
Chebyshev polynomials of the second kind, and the identity

d

dx
tanh(x) = 1− tanh2(x), (46)

define
γℓ,i := 1− tanh2(xℓ,i). (47)

Since 0 < γℓ,i ≤ 1, each partial derivative becomes

[Jℓ]k,i =

N∑
n=0

Cℓ,k,i,n T
′
n

(
tanh(xℓ,i)

)
γℓ,i. (48)

Removing γℓ,i yields an “un-normalized” version

[J̃ℓ]k,i =

N∑
n=0

Cℓ,k,i,n T
′
n

(
tanh(xℓ,i)

)
, (49)

leading to the elementwise relation
[Jℓ]k,i = γℓ,i [J̃ℓ]k,i. (50)

Hence, in matrix form,
Jℓ = J̃ℓDℓ, (51)

where Dℓ is diagonal with Dℓ(i, i) = γℓ,i ∈ (0, 1]. By submultiplicativity of the spectral norm and ∥Dℓ∥2 ≤ 1,

∥Jℓ∥2 = ∥J̃ℓDℓ∥2 ≤ ∥J̃ℓ∥2. (52)

Since singular values are bounded by the spectral norm,

σi(Jℓ) ≤ ∥Jℓ∥2 ≤ ∥J̃ℓ∥2, (53)

each σi(Jℓ) cannot exceed its un-normalized counterpart σi(J̃ℓ). For a fixed threshold ϵ > 0, let

rankϵ(Jℓ) := #{ i | σi(Jℓ) ≥ ϵ ∥Jℓ∥2}, rankϵ(J̃ℓ) := #{ i | σi(J̃ℓ) ≥ ϵ ∥J̃ℓ∥2}.

If σi(Jℓ) ≥ ϵ ∥Jℓ∥2, then σi(J̃ℓ) ≥ σi(Jℓ) ≥ ϵ ∥Jℓ∥2 and ∥Jℓ∥2 ≤ ∥J̃ℓ∥2 imply σi(J̃ℓ) ≥ ϵ ∥J̃ℓ∥2. Thus

rankϵ(Jℓ) ≤ rankϵ(J̃ℓ). (54)

Hence, normalizing via tanh(·) can diminish numerical rank: if many γℓ,i are near 0 (i.e., | tanh(xℓ,i)| ≈ 1),
fewer singular values of Jℓ remain above ϵ ∥Jℓ∥2. For a Cheby1KAN of L layers, the overall Jacobian from
input x0 to output xL is

Jtotal = JL−1JL−2 · · · J0. (55)
Repeated multiplication by Dℓ, whose diagonal entries are small, causes compounded attenuation. As L grows
large, an increasing number of coordinates reach saturation, thereby reducing the singular values of Jtotal until
rankϵ(Jtotal) becomes strictly lower. This phenomenon, referred to as the Nonlinear Normalization Effect,
emerges because tanh(·) shrinks partial derivatives, driving many of the product Jacobian’s singular values
below ϵ ∥Jtotal∥2 and thus decreasing its numerical rank.
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B.3 Proof of Theorem 3.3

Theorem B.4 (Exponential Decay in Infinite Depth). When the coefficients Cl,k,i,n are drawn from mutually
independent Gaussian distributions, the numerical rank of Jtotal decays exponentially to 1 as the depth L of the
Cheby1KAN network increases.

Proof. Step 1: Random Jacobians in Cheby1KAN and Product Structure.

Recall that the l-th Cheby1KAN layer takes an input xl ∈ Rn (after a suitable reshaping or dimension match)
and produces xl+1 ∈ Rn via

xl+1,k =

n∑
i=1

N∑
m=0

Cl,k,i,m Tm

(
tanh(xl,i)

)
, k = 1, . . . , n, (56)

where Tm are Chebyshev polynomials of the first kind and Cl,k,i,m are the learnable coefficients.

By differentiating (56) w.r.t. xl, each layer’s Jacobian Jl ∈ Rn×n has entries

[
Jl
]
k,i

=
∂xl+1,k

∂xl,i
=

N∑
m=0

Cl,k,i,m T ′
m

(
tanh(xl,i)

) (
1− tanh2(xl,i)

)
. (57)

When the coefficients Cl,k,i,m are drawn i.i.d. from a standard Gaussian distribution, the partial derivatives
∂xl+1,k

∂xl,i
become random variables with zero mean and finite variance. As the network depth L grows, the total

Jacobian can be written as
Jtotal = JL · JL−1 · · · J1. (58)

Thus, xL = Jtotal x0 in its linearization around any point.

Step 2: Lyapunov Exponents for Random Matrix Products.

Let
σ
(L)
1 ≥ σ

(L)
2 ≥ · · · ≥ σ(L)

n > 0 (59)
denote the singular values of Jtotal. Define the Lyapunov exponents by

λi := lim
L→∞

1

L
log σ

(L)
i , i = 1, . . . , n. (60)

By Oseledec’s Multiplicative Ergodic Theorem [47], these limits exist almost surely for products of i.i.d. random
matrices. In our Cheby1KAN setting, the layers’ Jacobians Jl approximate a family of random matrices (the
Jacobian entries being determined by i.i.d. Gaussian coefficients Cl,k,i,m), making the product Jtotal amenable to
the same analysis as in classical random matrix theory.

Step 3: Exact Lyapunov Spectrum for Ginibre-Type Ensembles.

When each Jl is sufficiently close (in distribution) to an n× n Ginibre matrix with i.i.d. Gaussian entries, the
Lyapunov exponents {λi} match those of Ginibre ensembles, given by [46]:

λi =
1

2

[
ψ
(n− i+ 1

2

)
− ψ

(
n
2

)]
, i = 1, . . . , n, (61)

where ψ is the digamma function, strictly increasing for positive arguments.

Step 4: Normalized Singular Values and Their Ratios.

Define the normalized singular values:

σ̃
(L)
i =

σ
(L)
i

σ
(L)
1

, i = 1, . . . , n. (62)

For large L, taking logarithms yields:

log σ̃
(L)
i = log σ

(L)
i − log σ

(L)
1

= L (λi − λ1) + o(L). (63)

Hence,
lim

L→∞

(
σ̃
(L)
i

)1/L
= eλi−λ1 . (64)
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Since λi < λ1 for i ≥ 2 (because ψ is strictly increasing and n− i+ 1 < n), we have

eλi−λ1 < 1, ∀ i ≥ 2. (65)

Thus, σ̃(L)
i → 0 exponentially in L for i ≥ 2.

Step 5: Exponential Decay of Numerical Rank in Cheby1KAN.

The numerical rank Rankϵ

(
Jtotal

)
is the number of singular values σ(L)

r that are at least ϵ σ(L)
1 . Equivalently,

σ̃(L)
r ≥ ϵ ⇐⇒ σ(L)

r ≥ ϵ σ
(L)
1 . (66)

From (65), for i ≥ 2,

σ̃
(L)
i = exp

(
L (λi − λ1)

)
→ 0 as L→∞. (67)

Thus, for any fixed ϵ > 0, there exists L0 such that for all L > L0,

σ̃
(L)
i < ϵ, ∀ i ≥ 2. (68)

This implies that all singular values except the largest one fall below ϵ σ
(L)
1 , giving Rankϵ

(
Jtotal

)
= 1 for

sufficiently large L. In other words, the numerical rank decays to 1 at an exponential rate with respect to the
Cheby1KAN depth L.

Since each layer’s Jacobian Jl in Cheby1KAN can be regarded as a random matrix (due to i.i.d. Gaussian
coefficients Cl,k,i,m), the overall product Jtotal inherits the spectral properties of random matrix products.
Therefore, the interplay of Chebyshev polynomials and the tanh normalization does not negate the fundamental
random matrix behavior; instead, the bounded derivative from tanh can further accelerate the decay of the
subleading singular values. Hence, as L→∞, the effective degrees of freedom in the Cheby1KAN Jacobian
collapse numerically to a single direction, confirming the exponential rank diminution.

B.4 Proof of Proposition 3.4

Theorem B.5. Let N be an AC-PKAN model with L layers (L ≥ 2) and infinite width. Then, the output
y = N (x) has non-zero derivatives of any finite-order with respect to the input x.

Proof. Consider the forward propagation process of the AC-PKAN. We begin with the initial layer:

h0 =Wembx+ bemb, (69)
U = ωU,1 sin(h0θU + bU ) + ωU,2 cos(h0θU + bU ), (70)
V = ωV,1 sin(h0θV + bV ) + ωV,2 cos(h0θV + bV ), (71)

α(0) = U. (72)

For each layer l = 1, 2, . . . , L, the computations proceed as follows:

H(l) =

din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nTn

(
tanh

(
α(l−1)

))
, (73)

α
(l)
0 = H(l) + α(l−1), (74)

α(l) = (1− α(l)
0 )⊙ U + α

(l)
0 ⊙ (V + 1), (75)

y =Woutα
(L) + bout. (76)

During the backward propagation, we derive the derivative of the output with respect to the input x, which
approximates the differential operator of the PDEs. Focusing on the first-order derivative as an example:

∂y

∂x
=

∂y

∂α(L)

∂α(L)

∂x

=Wout
∂α(L)

∂x
. (77)
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Expanding ∂α(L)

∂x
:

∂α(L)

∂x
= −∂α

(L)
0

∂x
⊙ U +

(
1− α(L)

0

)
⊙ ∂U

∂x
+
∂α

(L)
0

∂x
⊙ (V + 1) + α

(L)
0 ⊙ ∂V

∂x

=
∂α

(L)
0

∂x
⊙ (V − U + 1) + α

(L)
0 ⊙

(
∂V

∂x
− ∂U

∂x

)
+
∂U

∂x

=

(
∂H(L)

∂x
+
∂α(L−1)

∂x

)
⊙ (V − U + 1) +

(
H(L) + α(L−1)

)
⊙
(
∂V

∂x
− ∂U

∂x

)
+
∂U

∂x
. (78)

This establishes a recursive relationship for the derivatives. Define:

A(l) =
∂H(l)

∂x
+
∂α(l−1)

∂x
, (79)

B(l) = H(l) + α(l−1). (80)

for each layer l = 1, 2, . . . , L.

For the base case l = 1:

A(1) =
∂H(1)

∂x
+
∂α(0)

∂x
(81)

=

(
din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nT
′
n

(
tanh

(
α(0)

))
sech2(α(0)) + 1

)
∂α(0)

∂x
, (82)

∂α(0)

∂x
=
∂U

∂x
=WembθU [ωU,1 cos(h0θU + bU )− ωU,2 sin(h0θU + bU )] ̸= 0, (83)

Moreover,

B(1) = H(1) + α(0)

=

din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nTn

(
tanh

(
α(0)

))
+ α(0). (84)

For layers l > 1, where l ∈ N∗:

A(l) =

(
din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nT
′
n

(
tanh

(
α(l−1)

))
sech2(α(l−1)) + 1

)
∂α(l−1)

∂x
. (85)

We have established a recursive relationship.

Notably, the first derivative of the Chebyshev polynomial is given by

T ′
n(x) =

d

dx
Tn(x) =

n sin (n arccos(x))√
1− x2

, (86)

and higher-order derivatives satisfy
T (k)
n (x) = 0 for all k > n. (87)

Therefore, for any order k > n, the k-th derivative of A(l) is identically zero. Consequently, the k-th derivative
of the first part of (78) is zero.

However, observe that:

B(l) =

din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nTn

(
tanh

(
α(l−1)

))
+ α(l−1), (88)

since the derivatives of α(l−1) for any finite order are non-zero, the derivatives of B(l) are non-zero.

Furthermore, we have:

∂V

∂x
− ∂U

∂x
=Wemb (θV [ωV,1 cos(h0θV + bV )− ωV,2 sin(h0θV + bV )]

−θU [ωU,1 cos(h0θU + bU )− ωU,2 sin(h0θU + bU )]) , (89)
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and the derivatives of any finite order of this term are also non-zero. Additionally, the third component of (78),
∂U
∂x

, is non-zero.

Define
f(x) = H(L)(x) + α(L−1)(x), g(x) =

∂V

∂x
(x), h(x) =

∂U

∂x
(x), (90)

so that the last two terms of (78) can be written as

S(x) = f(x)
(
g(x)− h(x)

)
+ h(x). (91)

Suppose, toward a contradiction, that S(x) ≡ 0 for every x in the domain. Then

(1− f(x))h(x) + f(x) g(x) = 0 ∀x. (92)

The functions f, g, h depend on disjoint parameter blocks: f on {Ck,i,n}, g on (θV , ωV,1, ωV,2), and h on
(θU , ωU,1, ωU,2). Requiring the above identity to hold for all x therefore forces a global functional coupling
among these independently tuned parameters, which can only occur on a measure-zero subset of the joint
parameter space. Any infinitesimal perturbation of the parameters breaks this perfect cancellation, implying
S(x) ̸≡ 0 for almost all networks. Hence S(x) possesses non-vanishing derivatives of every finite order.

Consequently, the k-th derivatives of the remaining parts of (78) are non-zero, and thus the k-th derivatives of
(77) are non-zero. Therefore, for any positive integer N , the derivative ∂Ny

∂xN exists and is non-zero, establishing
that AC-PKAN can approximate PDEs of arbitrarily high order.

Remark: The property of possessing non-zero derivatives of any finite order with respect to the input x specifically
addresses enhancements in KAN variants rather than in MLP-based models. The fitting capability of KAN
models relies on polynomial functions with learnable parameters. To ensure non-zero derivatives in the output,
the original B-spline KAN incorporates an additional nonlinear bias function b(x). In contrast, other KAN
variants, such as Cheby1KAN, rely solely on polynomial bases, which inevitably result in zero derivatives when
the order of differentiation exceeds the polynomial degree. Therefore, Proposition 3.4 was introduced to provide
a theoretical guarantee for AC-PKAN’s ability to solve any PDE, analogous to how the universal approximation
theorem theoretically establishes the universal fitting capability of neural networks.

B.5 Proof of Proposition 3.5

Definition B.6. For a linear map α : V →W , we define the kernel to be the set of all elements that are mapped
to zero

kerα = {x ∈ V | α(x) = 0} = K ≤ V (93)

and the image to be the points in W which we can reach from V

Imα = α(V ) = {α(v) | v ∈ V } ≤W. (94)

We then say that r(α) = dim Imα is the rank and n(α) = dimkerα is the nullity.

Lemma B.7 (the Rank-nullity theorem). For a linear map α : V →W , where V is finite dimensional, we have

r(α) + n(α) = dim Imα+ dimkerα = dimV. (95)

Proof. Let V,W be vector spaces over some field F , and T defined as in the statement of the theorem with
dimV = n.

As KerT ⊂ V is a subspace, there exists a basis for it. Suppose dimKerT = k and let

K := {v1, . . . , vk} ⊂ Ker(T ) (96)

be such a basis.

We may now, by the Steinitz exchange lemma, extend K with n− k linearly independent vectors w1, . . . , wn−k

to form a full basis of V .

Let

S := {w1, . . . , wn−k} ⊂ V \ Ker(T ) (97)

such that
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B := K ∪ S = {v1, . . . , vk, w1, . . . , wn−k} ⊂ V (98)

is a basis for V . From this, we know that

ImT = SpanT (B) = Span{T (v1), . . . , T (vk), T (w1), . . . , T (wn−k)} = Span{T (w1), . . . , T (wn−k)} = SpanT (S).
(99)

We now claim that T (S) is a basis for ImT . The above equality already states that T (S) is a generating set for
ImT ; it remains to be shown that it is also linearly independent to conclude that it is a basis.

Suppose T (S) is not linearly independent, and let

n−k∑
j=1

αjT (wj) = 0W (100)

for some αj ∈ F .

Thus, owing to the linearity of T , it follows that

T

(
n−k∑
j=1

αjwj

)
= 0W =⇒

(
n−k∑
j=1

αjwj

)
∈ KerT = SpanK ⊂ V. (101)

This is a contradiction to B being a basis, unless all αj are equal to zero. This shows that T (S) is linearly
independent, and more specifically that it is a basis for Im T .

Finally we may state that

Rank(T ) + Nullity(T ) = dim Im T + dimKer T = |T (S)|+ |K| = (n− k) + k = n = dimV. (102)

Theorem B.8. Let N be an AC-PKAN model with L layers (L ≥ 2) and infinite width. Then, the Jacobian
matrix JN (x) =

[
∂Ni
∂xj

]
m×d

is full rank in the input space Rd.

Proof. Let the output be y =Woutα
(L) + bout, where Wout ∈ Rdout×dh , and dh denotes the hidden layer width.

Under the infinite-width assumption, dh →∞. The k-th output component yk corresponds to the k-th row of
Wout, denoted as w⊤

k , i.e.,

yk = w⊤
k α

(L) + bout,k. (103)

Its partial derivative with respect to the input x is:

∂yk
∂x

= w⊤
k
∂α(L)

∂x
. (104)

Following the recursive relationship in Theorem B.5 , ∂α(L)

∂x
can be decomposed into a nonlinear combination

of parameters across layers. Specifically, for any layer l, the derivative term ∂α(l)

∂x
is generated through recursive

operations involving parameters C(l)
k,i,n, ωU , ωV , θU , θV , etc.

Consider the partial derivatives ∂yk
∂x

and ∂yk′
∂x

(k ̸= k′). Since:

∂yk
∂x

= w⊤
k
∂α(L)

∂x
,

∂yk′

∂x
= w⊤

k′
∂α(L)

∂x
, (105)

if wk and wk′ are linearly independent and the column space of ∂α(L)

∂x
is sufficiently rich, then ∂yk

∂x
and ∂yk′

∂x
are guaranteed to be linearly independent.

Under infinite width, the parameter matrices C(l) ∈ Rdout×dm×(N+1) (where dm is the intermediate dimension)
and the row dimension dout of Wout can be independently adjusted, making the parameter space an infinite-
dimensional Hilbert space, allowing the construction of arbitrarily many linearly independent basis functions.

21



By the infinite-dimensional parameter space afforded by dh →∞, we may construct parameter matrices {C(l)},
ωU , and ωV such that the columns of ∂α(L)

∂x
∈ Rdh×d become linearly independent. Specifically, let {vi}di=1

be the column vectors of ∂α(L)

∂x
. Through parameter configuration in hidden layers, we ensure:

∀ci ∈ R,
d∑

i=1

civi = 0 =⇒ ci = 0, ∀i (106)

For the output matrix Wout ∈ Rm×dh , construct mutually orthogonal row vectors {wk}mk=1 satisfying:

⟨wk,wk′⟩ = wkw
⊤
k′ = δkk′∥wk∥2, ∀k ̸= k′ (107)

where δkk′ is the Kronecker delta. The Jacobian rows become:

∂yk
∂x

= w⊤
k
∂α(L)

∂x
=

d∑
i=1

(w⊤
k vi)e

⊤
i (108)

where {ei} are standard basis vectors in Rd. For distinct k, k′, consider:

〈
∂yk
∂x

,
∂yk′

∂x

〉
=

d∑
i=1

(w⊤
k vi)(w

⊤
k′vi)w

⊤
k

(
d∑

i=1

viv
⊤
i

)
wk′ (109)

Since {vi} are linearly independent,
∑d

i=1 viv
⊤
i is positive definite. Combining with the orthogonality of

{wk}, we have:

w⊤
k

(
d∑

i=1

viv
⊤
i

)
wk′ = 0 ∀k ̸= k′ (110)

Thus, the Jacobian rows ∂yk
∂x

are mutually orthogonal and linearly independent. The full rank property follows
from the infinite-dimensional orthogonal system.

We proceed by induction on the number of layers L:

Base Case (L = 1): By Equation 81, there exist parameter choices (ωU , θU ) and orthogonal weights {wk} ⊂ W
such that 〈

wk,
∂α(0)

∂x
wk′

〉
H

= δkk′∥wk∥2H, (111)

establishing linear independence of {w⊤
k

∂α(0)

∂x
}∞k=1.

Inductive Hypothesis: Assume ∂α(L−1)

∂x
has full-rank column space R( ∂α

(L−1)

∂x
) = HL−1 ⊂ H with

dimHL−1 =∞.

Inductive Step: Let P⊥
HL−1

be the orthogonal projection onto H⊥
L−1. Through Equations 76 and 79, we

decompose:
∂α(L)

∂x
= C(L) ∂H

(L)

∂x︸ ︷︷ ︸
ΓL

+Φ
∂α(L−1)

∂x
. (112)

By the parameter freedom in C(L), there exists a choice such that:

dimR
(
P⊥
HL−1

ΓL

)
=∞ and R (ΓL) ∩HL−1 = {0}. (113)

This induces the dimensional extension:

R
(
∂α(L)

∂x

)
= HL−1 ⊕R

(
P⊥
HL−1

ΓL

)
, (114)
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where ⊕ denotes orthogonal direct sum. Since dim(R(P⊥
HL−1

ΓL)) =∞, the infinite-dimensional full-rank
property propagates to layer L.

By induction, we conclude that: the column space of ∂α(L)

∂x
is infinite-dimensional and full-rank; the row vectors

of Wout are mutually orthogonal.

Thus, we have:

For k ̸= k′, ∀a, b ∈ R, a
∂yk
∂x

+ b
∂yk′

∂x
= 0⇒ a = b = 0. (115)

Consider the Jacobian matrix JN (x) as a linear mapping JN (x) : Rd → Rm. According to the rank-nullity
theorem, we have:

dim(ker(JN (x))) + rank(JN (x)) = d (116)

Theorem B.5 guarantees that rank(JN (x)) = min(d,m). Thus, the dimension of the kernel space is :

dim(ker(JN (x))) = d−min(d,m). (117)

Specifically, this can be further categorized into two cases:

• When m ≥ d: the Jacobian matrix has full column rank rank(JN (x)) = d, resulting in
ker(JN (x)) = 0. JN (x) is injective.

• When m < d:the Jacobian matrix has full row rank rank(JN (x)) = m, resulting in ker(JN (x)) =
d − m, which means there exist d − m linearly independent non-zero vectors such that JN (x)v =
0.

Let us exclude non-zero null vectors by contradiction. Assume there exists a non-zero vector v ̸= 0 ∈ Rd such
that . For any output componentNi, we have

∂Ni

∂x1
v1 +

∂Ni

∂x2
v2 + · · ·+

∂Ni

∂xd
vd = 0 (118)

According to Theorem B.5 and Equation 115, the only solution is v = 0, which contradicts the assumption.
Therefore, the null space contains only the zero vector, i.e., dim(ker(JN (x))) = 0.

Suppose that the Jacobian matrix is rank-deficient, i.e., there exists a measure-zero setM⊂ Rd with µ(M) > 0
(where µ denotes the Lebesgue measure) such that:

rank (JN (x)) < min(d,m) ∀x ∈M. (119)

This implies that the image of the mappingN (x) is constrained to a lower-dimensional submanifold S ⊂ Rm,
where:

dim(S) ≤ rank (JN (x)) < min(d,m). (120)

By Theorem B.5, however, all first-order partial derivatives ∂Ni
∂xj
̸= 0. Specifically: (1) ∀ direction v ∈ Rd\{0}

,∃ at least one output component Ni such that ∂Ni
∂v
̸= 0; (2) The infinite-width architecture of AC-PKAN

ensures that the parameter space is dense in the L2 function space. Consequently, the image set of the output
mapping can densely cover any open set in Rm.

If there is a rank deficiency, then ∃v ∈ Rd, for ∀i, ∂Ni
∂xj

= 0, contradicting the non-degeneracy of the derivatives.
Consequently, except for a measure-zero setM, we have:

rank(JN (x)) = min(d,m), (121)

indicating the Jacobian matrix JN (x) =
[
∂Ni
∂xj

]
m×d

is full rank in the input space Rd.

C Explanation for the Efficiency of Chebyshev Type I Polynomials Over
B-Splines

Let B denote the batch size, Din the input dimension, Dout the output dimension, and N the Chebyshev degree.
A single forward pass through a Cheby1KAN layer performs

(i) tanh(·) , clamp/ acos / cos : O
(
BDin (N + 1)

)
,

(ii) einsum contraction: O
(
BDinDout (N + 1)

)
,
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yielding an overall time complexity of

TCheby1KAN = O
(
BDinDout (N + 1)

)
.

Its peak memory usage comprises the coefficient tensor of size Din × Dout × (N + 1) and the expanded
activation tensor of size B ×Din × (N + 1), giving

MCheby1KAN = O
(
DinDout (N + 1) + BDin (N + 1)

)
.

In contrast, a B-spline based Kernel Adaptive Network (KAN) with L layers, layer widths {Wℓ}Lℓ=0, grid size
G, and spline order k must, at each layer ℓ, (i) locate each input in a knot interval, (ii) evaluate local polynomial
bases, and (iii) perform weighted sums. For typical implementations this yields

TKAN = O
(
B

L−1∑
ℓ=0

WℓWℓ+1 k
)
,

while storing both the grid arrays of sizeWℓ× (G+k+1) and coefficient arrays of sizeWℓ+1×Wℓ× (G+k),
as well as intermediate activations O

(
B
∑

ℓWℓWℓ+1

)
. Hence

MKAN = O
(L−1∑

ℓ=0

WℓWℓ+1 (G+ k) + B

L−1∑
ℓ=0

WℓWℓ+1

)
.

Discussion. By replacing piecewise B-splines with globally supported Chebyshev polynomials, Cheby1KAN
eliminates the need for (i) knot-location logic, (ii) local interpolation routines, and (iii) repeated recursive
basis-function updates. All operations reduce to standardized vectorized transforms (tanh, acos, cos) and a single
rank-3 tensor contraction, which are highly optimized on modern hardware. Consequently, Cheby1KAN attains
both lower asymptotic time complexity and substantially reduced memory footprint compared to its B-spline
counterpart, while preserving—indeed enhancing—its ability to represent high-frequency features.

C.1 Ablation Study

Module importance. Ablation experiments for the module importance on the 1D-Wave equation (Table 2)
confirm that each module in our model is crucial. Removing any module leads to a significant performance
decline, especially the MLPs module. These findings suggest that the KAN architecture alone is insufficient for
complex tasks, validating our integration of MLPs with the Cheby1KAN layers.

Model rMAE rRMSE

AC-PKAN 0.0011 0.0011
AC-PKAN (no GRA) 0.0779 0.0787
AC-PKAN (no RBA) 0.0494 0.0500
AC-PKAN (no RGA) 0.4549 0.4488
AC-PKAN (no Wavelet) 0.0045 0.0046
AC-PKAN (no Encoder) 0.0599 0.0584
AC-PKAN (no MLPs) 1.0422 1.0246

Table 2: Ablation study on the 1D-wave equation, demonstrating the effect of removing each module
from AC-PKAN.

Transferability of RGA. Table 3 evaluates our RGA on twelve alternative PINN variants. Except for
PINNsFormer (out-of-memory due to pseudo-sequence inflation) and rKAN (gradient blow-up), every model
benefits markedly: average rMAE drops by 36% and rRMSE by 34%. Nonetheless, none surpass AC-PKAN,
whose coupled architecture and RGA still attain the lowest errors by two orders of magnitude, underscoring both
the standalone value of RGA and the holistic superiority of AC-PKAN.

Effect of Logarithmic Transformation in the RGA Module In this ablation study, we investigated
the impact of removing the logarithmic transformation in the RGA module across five PDE experimental tasks.
To compensate for the absence of the logarithmic scaling, we adjusted the scaling factors to smaller values.
Specifically, we employed the original RGA design to pre-train the models for several epochs, during which
very large values of λGRA were obtained. To maintain consistency in the magnitudes of different loss terms,
we set the scaling factor of the PDE residual loss term to 1 and assigned the scaling factors of the data loss
terms—including boundary conditions (BC) and initial conditions (IC)—to the negative order of magnitude of
the current λGRA.
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Model rMAE (RGA) rRMSE (RGA) rMAE (No RGA) rRMSE (No RGA)
PINN 0.0914 0.0924 0.3182 0.3200
PINNsFormer OoM OoM 0.2699 0.2825
QRes 0.2204 0.2184 0.3507 0.3485
FLS 0.1610 0.1617 0.3810 0.3796
Cheby1KAN 0.0567 0.0586 1.1240 1.0866
Cheby2KAN 1.0114 1.0048 1.1239 1.0865
AC-PKAN (Ours) 0.0011 0.0011 0.4549 0.4488
KINN 0.0479 0.0486 0.3466 0.3456
rKAN NaN NaN 247.7560 2593.0750
FastKAN 0.1348 0.1376 0.5312 0.5229
fKAN 0.2177 0.2149 0.4884 0.4768
FourierKAN 1.0015 1.0001 1.1356 1.1018

Table 3: Comparison of performance metrics in the 1D-Wave experiment with and without the RGA
module applied.

Equation Without Log With Log
rMAE rRMSE rMAE rRMSE

2D NS Cylinder 532.2411 441.0240 0.2230 0.2182
1D Wave 0.7686 0.7479 0.0011 0.0011
1D Reaction 2.2348 2.2410 0.0375 0.0969
Heterogeneous Problem 10.0849 9.6492 0.1063 0.1817
Complex Geometry 164.4283 158.7840 0.5452 0.5896

Table 4: Comparison of performance metrics of AC-PKAN with and without the logarithmic
transformation in the RGA module.

The performance metrics with and without the logarithmic transformation are summarized in Table 4.

We observe a significant deterioration in the performance of AC-PKAN when the logarithmic transformation is
removed. This decline is attributed to two main factors: first, λGRA attains excessively large values; second, it
exhibits a wide range of variation. During the standard training process, the coefficient λGRA rapidly grows from
0 to a very large value, resulting in a broad dynamic range. The logarithmic transformation effectively narrows
this range; for instance, in the 1D Wave experiment, the scale of λGRA over epochs ranges from 0 to 4× 107,
whereas ln

(
λGRA) ranges from 7 to 15 in Picture 6. Removing the logarithmic transformation and attempting to

manually adjust scaling factors to match the apparent magnitudes is ineffective. The model cannot adapt to the
drastic changes in λGRA, and rigid manual scaling factors exacerbate the imbalance among loss terms, ultimately
leading to training failure. By confining the variation range of λGRA, the logarithmic transformation enables the
model to adjust more flexibly and effectively.

The rationale for employing the logarithmic transformation originates from the Bode plot in control engineering,
which is a semi-logarithmic graph that utilizes a logarithmic frequency axis while directly labeling the actual
frequency values. This approach not only compresses a wide frequency range but also linearizes the system’s
gain and phase characteristics on a logarithmic scale, thereby mitigating imbalances caused by significant
differences in data scales.

D Limitations

All of our experiments utilize the widely adopted AdamW optimizer, which is commonly employed in traditional
neural networks. We have not developed optimizer specifically tailored for Kolmogorov–Arnold Networks.
We believe that through in-depth research on KAN optimization, the performance of KAN can be significantly
enhanced. Additionally, our AC-PKAN design does not incorporate pruning operations within KAN networks,
thereby not fully leveraging the strong interpretability advantages of KAN. In future work, we will continue to
explore and address these areas to further advance the capabilities of KAN-based models.

E Impact Statement

This work advances Physics-Informed Neural Networks (PINNs) by integrating Kolmogorov–Arnold Networks
(KANs) with Chebyshev polynomials and attention mechanisms, improving accuracy, efficiency, and stability in
solving complex PDEs. The proposed AC-PKAN framework has broad applications in scientific computing,
engineering, and physics, enabling more efficient and interpretable machine learning models for fluid
dynamics, material science, and biomedical simulations. Ethically, AC-PKAN enhances model reliability
and generalizability by enforcing physical consistency, reducing risks of overfitting and spurious predictions.

25



This work contributes to the advancement of physics-informed AI, with potential in digital twins, real-time
simulations, and AI-driven scientific discovery.

F Supplementary Experiment

F.1 Complex Function Fitting

We evaluated our AC-PKAN Simplified model—which employs only the internal architecture—against PINN
(MLP), KAN, and various KAN variants on a complex function interpolation task. Detailed experimental setups
and results are provided in Appendices G and H.

As shown in Figure 3, the AC-PKAN Simplified model converges more rapidly than MLPs, KAN, and most KAN
variants, achieving lower final losses. While Cheby2KAN and FourierKAN demonstrate faster convergence, our
model produces smoother fitted curves and exhibits greater robustness to noise, effectively preventing overfitting
in regions with high-frequency variations.Performance metrics are presented in Table 5.

Model rMAE rMSE Loss
Cheby1KAN 0.0179 0.0329 0.0068
Cheby2KAN 0.0189 0.0313 0.0079
MLP 0.0627 0.1250 0.1410
AC-PKAN_s 0.0177 0.0311 0.0081
KAN 0.0145 0.0278 0.0114
rKAN 0.0458 0.0783 0.1867
fKAN 0.0858 0.1427 0.1722
FastKAN 0.0730 0.1341 0.1399
FourierKAN 0.0211 0.0353 0.0063

Table 5: Comparison of test rMAE, rMSE, and training Loss among Models in Complex Function
Fitting Experiment

Figure 3: Convergence Comparison of Nine Different Models in Complex Function Fitting
Experiment

F.2 PDEs in Complex Engineering Environments

We further evaluated AC-PKAN across three challenging scenarios: heterogeneous environments, complex
geometric boundary conditions, and three-dimensional spatial point clouds. Literature indicates that PINNs
encounter difficulties with heterogeneous problems due to sensitivity to material properties [4], significant errors
near boundary layers [49], and convergence issues [56]. Additionally, original KANs perform poorly with
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Model Heterogeneous Problem Complex Geometry 3D Point-Cloud
rMAE rRMSE rMAE rRMSE rMAE rRMSE

PINN 0.1662 0.1747 0.9010 0.9289 3.0265 2.4401
QRes 0.1102 0.1140 0.9024 0.9289 3.6661 2.8897
FLS 0.1701 0.1789 0.9021 0.9287 3.1881 2.5629
PINNsFormer 0.1008 0.1610 0.8851 0.8721 OoM OoM
Cheby1KAN 0.1404 0.2083 0.9026 0.9244 2.4139 1.9646
Cheby2KAN 0.4590 0.5155 0.9170 1.0131 4.9177 3.5084
AC-PKAN (Ours) 0.1063 0.1817 0.5452 0.5896 0.3946 0.3403
KINN 0.1599 0.1690 0.9029 0.9261 OoM OoM
rKAN 24.8319 380.5582 23.5426 215.4764 366.5741 2527.1180
FastKAN 0.1549 0.1624 0.9034 0.9238 OoM OoM
fKAN 0.1179 0.1724 0.9043 0.9303 2.6279 2.2051
FourierKAN 0.4588 0.5154 1.4455 1.5341 0.9314 1.0325

Table 6: Combined experimental results across Complex Engineering Environments. Results are
organized from left to right in the following order: Heterogeneous Problem, Complex Geometry, and
3D Point-Cloud.

complex geometries [65]. The sparsity, irregularity, and high dimensionality of unstructured 3D point cloud data
hinder PINNs from effectively capturing spatial features, resulting in suboptimal training performance [12]. We
applied AC-PKAN to solve Poisson equations within these contexts.

Detailed PDE formulations are in Appendix G, and detailed experimental results are illustrated in Appendix H.
Summarized in Table 6 and partially shown in Figure 2, the results indicate that AC-PKAN consistently achieves
the best or second-best performance. It demonstrates superior potential in solving heterogeneous problems
without subdomain division and exhibits promising application potential in complex geometric boundary
problems where most models fail.

F.3 Integration with Other External Learning Strategies for Enhanced Performance of
AC-PKAN

Integrating AC-PKAN with other external learning strategies, such as the Neural Tangent Kernel (NTK) method,
resulted in enhanced performance (Table 7). This demonstrates the flexibility of AC-PKAN in incorporating
various learning schemes, offering practical and customizable solutions for accurate modeling in real-world
applications.

Model rMAE rRMSE
AC-PKAN + NTK 0.0009 0.0009
PINNs + NTK 0.1397 0.1489
PINNsFormer + NTK 0.0453 0.0484

Table 7: Performance comparison on the 1D-wave equation using the NTK method. AC-PKAN
combined with NTK achieves superior results across all metrics.

G Experiment Setup Details

We utilize the AdamW optimizer with a learning rate of 1 × 10−4 and a weight decay of 1 × 10−4 in all
experiments. Meanwhile, all experiments were conducted on an NVIDIA A100 GPU with 40GB of memory.
And Xavier initialization is applied to all layers. In PDE-Solving problems, We present the detailed formula of
rMAE and rRMSE as the following:

rMAE =

∑N
n=1 |û(xn, tn)− u(xn, tn)|∑Nres

n=1 |u(xn, tn)|

rRMSE =

√∑N
n=1 |û(xn, tn)− u(xn, tn)|2∑N

n=1 |u(xn, tn)|2

(122)

where N is the number of testing points, û is the neural network approximation, and u is the ground truth. The
specific details for each experiment are provided below. For further details, please refer to our experiment code
repository to be released.

G.1 Running Time

We present the actual running times (hours:minutes:seconds) for all eight PDEs experiments in the paper. As
shown in Table 8, AC-PKAN demonstrates certain advantages among the KAN model variants, although the
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running times of all KAN variants are relatively long. This is primarily because the KAN model is relatively
new and still in its preliminary stages; although it is theoretically innovative, its engineering implementation
remains rudimentary and lacks deeper optimizations. Moreover, while traditional neural networks benefit from
well-established optimizers such as Adam and L-BFGS, optimization schemes specifically tailored for KAN
have not yet been thoroughly explored. We believe that the performance of AC-PKAN will be further enhanced
as the overall optimization strategies for KAN variants improve.

Model First 5 PDEs Last 3 PDEs

1D-Wave 1D-Reaction 2D NS Cylinder 1D-Conv.-Diff.-Reac. 2D Lid-driven Cavity Heterogeneous Complex 3D
Problem Geometry Point-Cloud

PINN 00:21:14 00:09:07 00:15:20 00:15:12 00:06:39
00:23:30 00:01:08 00:49:31

PINNsFormer 00:44:21 00:04:09 00:58:54 02:06:37 –
14:01:55 00:13:31 –

QRes 01:41:34 00:02:10 00:24:39 00:25:46 00:13:04
00:20:50 00:01:46 01:32:24

FLS 01:38:01 00:01:29 00:11:51 00:50:26 00:35:48
00:13:38 00:01:08 03:04:41

Cheby1KAN 03:32:10 00:12:08 04:24:59 01:45:37 00:45:20
00:50:45 00:03:21 02:27:27

Cheby2KAN 05:03:18 01:06:54 05:41:42 03:01:40 00:45:15
01:35:40 00:03:27 05:26:42

AC-PKAN 01:13:01 00:15:16 02:21:40 02:01:59 00:51:47
01:13:11 00:01:04 04:54:24

KINN 25:00:20 03:04:19 14:31:42 02:41:49 –
01:51:44 00:14:07 –

rKAN 12:44:16 01:21:25 05:19:04 02:06:36 –
06:21:00 00:16:06 07:53:25

FastKAN 09:35:51 05:51:21 02:04:42 03:22:39 –
03:37:57 00:17:23 –

fKAN 08:20:34 00:13:09 03:01:41 01:54:22 00:47:41
00:52:05 00:06:22 04:04:48

FourierKAN 03:33:46 01:21:50 02:48:50 02:08:08 –
07:40:43 00:18:26 13:36:48

Table 8: Running times (hh:mm:ss) for all eight PDE experiments. First row: Five simpler PDEs;
second row: Three more complex cases.

G.2 Complex Function Fitting Experiment Setup Details

The aim of this experiment is to evaluate the interpolation capabilities of several neural network architectures,
including AC-PKAN, Chebyshev-based KAN (ChebyKAN), traditional MLP, and other advanced models. The
task involves approximating a target noisy piecewise 1D function, defined over three distinct intervals.

Target Function The target function f(x) is defined piecewise as follows:

f(x) =


sin(25πx) + x2 + 0.5 cos(30πx) + 0.2x3 x < 0.5,

0.5xe−x + | sin(5πx)|+ 0.3x cos(7πx) + 0.1e−x2

0.5 ≤ x < 1.5,
ln(x−1)
ln(2)

− cos(2πx) + 0.2 sin(8πx) + 0.1 ln(x+1)
ln(3)

x ≥ 1.5,

with added Gaussian noise ϵ ∼ N (0, 0.1).

Dataset

• Training Data: 500 points uniformly sampled from the interval x ∈ [0, 2], with corresponding noisy
function values y = f(x) + ϵ.

• Testing Data: 1000 points uniformly sampled from the same interval x ∈ [0, 2] to assess the models’
interpolation performance.

Training Details

• Epochs: Each model is trained for 30,000 epochs.
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• Loss Function: The Mean Squared Error (MSE) loss is utilized to compute the discrepancy between
predicted and true function values:

LMSE =
1

N

N∑
i=1

(yi − ŷi)2

• Weight Initialization: Xavier initialization is applied to all linear layers.

Model Hyperparameters The parameter counts for each model are summarized in Table 9.

Table 9: Summary of Hyperparameters in Complex Function Fitting Experiment for Various Models
Model Hyperparameters Model Parameters

Cheby1KAN
Layer 1: Cheby1KANLayer(1, 7, 8)
Layer 2: Cheby1KANLayer(7, 8, 8)
Layer 3: Cheby1KANLayer(8, 1, 8)

639

Cheby2KAN
Layer 1: Cheby2KANLayer(1, 7, 8)
Layer 2: Cheby2KANLayer(7, 8, 8)
Layer 3: Cheby2KANLayer(8, 1, 8)

639

PINN
Layer 1: Linear(in=1, out=16), Activation=Tanh
Layer 2: Linear(in=16, out=32), Activation=Tanh
Layer 3: Linear(in=32, out=1)

609

AC-PKANs

Linear Embedding: Linear(in=1, out=4)
Hidden ChebyKAN Layers: 2 × Cheby1KANLayer()
Hidden LN Layers: 2 × LayerNorm(features=6)
Output Layer: Linear(in=6, out=1)
Activations: WaveAct (U and V)

751

KAN Layers: 2 × KANLinear (32 neurons, SiLU activation) 640

rKAN
Layer 1: Linear(in=1, out=16), Activation=JacobiRKAN()
Layer 2: Linear(in=16, out=32), Activation=PadeRKAN()
Layer 3: Linear(in=32, out=1)

626

fKAN
Layer 1: Linear(in=1, out=16), Activation=FractionalJacobiNeuralBlock()
Layer 2: Linear(in=16, out=32), Activation=FractionalJacobiNeuralBlock()
Layer 3: Linear(in=32, out=1)

615

FastKAN

FastKANLayer 1:
RBF
SplineLinear(in=8, out=32)
Base Linear(in=1, out=32)

FastKANLayer 2:
RBF
SplineLinear(in=256, out=1)
Base Linear(in=32, out=1)

658

FourierKAN
FourierKANLayer 1: NaiveFourierKANLayer()
FourierKANLayer 2: NaiveFourierKANLayer()
FourierKANLayer 3: NaiveFourierKANLayer()

685

G.3 Failure Modes in PINNs Experiment Setup Details

We selected the one-dimensional wave equation (1D-Wave) and the one-dimensional reaction equation (1D-
Reaction) as representative experimental tasks to investigate failure modes in Physics-Informed Neural Networks
(PINNs). Below, we provide a comprehensive description of the experimental details, including the formulation
of partial differential equations (PDEs), data generation processes, model architecture, training regimen, and
hyperparameter selection.

1D-Wave PDE. The 1D-Wave equation is a hyperbolic PDE that is used to describe the propagation of
waves in one spatial dimension. It is often used in physics and engineering to model various wave phenomena,
such as sound waves, seismic waves, and electromagnetic waves. The system has the formulation with periodic

29



boundary conditions as follows:

∂2u

∂t2
− β ∂

2u

∂x2
= 0 ∀x ∈ [0, 1], t ∈ [0, 1]

IC:u(x, 0) = sin(πx) +
1

2
sin(βπx),

∂u(x, 0)

∂t
= 0

BC:u(0, t) = u(1, t) = 0

(123)

where β is the wave speed. Here, we are specifying β = 3. The equation has a simple analytical solution:

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(βπx) cos(2βπt) (124)

1D-Wave PDE Experiment Dataset In the 1D-Wave PDE experiment, no dataset were utilized for
training. Collocation points were generated to facilitate the training and testing of the Physics-Informed Neural
Network (PINN) within the spatial domain x ∈ [0, 1] and the temporal domain t ∈ [0, 1]. A uniform grid was
established using 101 equidistant points in both the spatial (x) and temporal (t) dimensions, resulting in a total
of 101× 101 = 10,201 collocation points. The PINN was trained in a data-free, unsupervised manner on this
101× 101 grid. Boundary points were extracted from the grid to enforce Dirichlet boundary conditions, while
initial condition points were identified at t = 0. Upon completion of training, the model was evaluated on the
collocation points by comparing the predicted values with the actual values, thereby determining the error.

1D-Reaction PDE. The one-dimensional reaction problem is a hyperbolic PDE that is commonly used to
model chemical reactions. The system has the formulation with periodic boundary conditions as follows:

∂u

∂t
− ρu(1− u) = 0, ∀x ∈ [0, 2π], t ∈ [0, 1]

IC:u(x, 0) = exp

(
− (x− π)2

2(π/4)2

)
, BC:u(0, t) = u(2π, t)

(125)

where ρ is the reaction coefficient. Here, we set ρ = 5. The equation has a simple analytical solution:

uanalytical =
h(x) exp(ρt)

h(x) exp(ρt) + 1− h(x) (126)

where h(x) is the function of the initial condition.

1D-Reaction PDE Experiment Dataset In the 1D-Reaction PDE experiment, no dataset were utilized for
training. Collocation points were generated to facilitate the training and testing of the Physics-Informed Neural
Network (PINN) within the spatial domain x ∈ [0, 1] and the temporal domain t ∈ [0, 1]. A uniform grid was
established using 101 equidistant points in both the spatial (x) and temporal (t) dimensions, resulting in a total
of 101× 101 = 10,201 collocation points. The PINN was trained in a data-free, unsupervised manner on this
101× 101 grid. Boundary points were extracted from the grid to enforce Dirichlet boundary conditions, while
initial condition points were identified at t = 0. Upon completion of training, the model was evaluated on the
collocation points by comparing the predicted values with the actual values, thereby determining the error.

2D Navier–Stokes Flow around a Cylinder The two-dimensional Navier–Stokes equations are given by:

∂u

∂t
+ λ1

(
u
∂u

∂x
+ v

∂u

∂y

)
= − ∂p

∂x
+ λ2

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂v

∂t
+ λ1

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ λ2

(
∂2v

∂x2
+
∂2v

∂y2

)
,

(127)

where u(t, x, y) and v(t, x, y) are the x- and y-components of the velocity field, respectively, and p(t, x, y) is
the pressure field. These equations describe the Navier–Stokes flow around a cylinder.

We set the parameters λ1 = 1 and λ2 = 0.01. Since the system lacks an explicit analytical solution, we utilize
the simulated solution provided in [50]. We focus on the prototypical problem of incompressible flow past a
circular cylinder, a scenario known to exhibit rich dynamic behavior and transitions across different regimes
of the Reynolds number, defined as Re = u∞D

ν
. By assuming a dimensionless free-stream velocity u∞ = 1,

a cylinder diameter D = 1, and a kinematic viscosity ν = 0.01, the system exhibits a periodic steady-state
behavior characterized by an asymmetric vortex shedding pattern in the cylinder wake, commonly known as the
Kármán vortex street. All experimental settings are the same as in [50]. For more comprehensive details about
this problem, please refer to that work.
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2D Navier–Stokes Flow around a Cylinder Experiment Dataset For the 2D Navier–Stokes Flow
around a Cylinder Experiment, the dataset used is detailed as follows:

Variable Dimensions Description
X (Spatial Coordinates) (5000, 2) Contains 5,000 spatial points, each with 2 coordinate values (x

and y).
t (Time Data) (200, 1) Contains 200 time steps, each corresponding to a scalar value.
U (Velocity Field) (5000, 2, 200) Contains 5,000 spatial points, 2 velocity components (u and v),

and 200 time steps. The velocity data of each point is a function
of time.

P (Pressure Field) (5000, 200) Contains pressure data for 5,000 spatial points and 200 time steps.

Table 10: Dataset used in the 2D Navier-Stokes Flow around a Cylinder Experiment

From the total dataset of 1,000,000 data points (N×T = 5,000×200), we randomly selected 2,500 samples for
training, which include coordinate positions, time steps, and the corresponding velocity and pressure components.
The test set consists of all spatial data at the 100th time step.

1D Convection-Diffusion-Reaction Equations. We consider the one-dimensional Convection-Diffusion-
Reaction (CDR) equations, which model the evolution of the state variable u under the influence of convective
transport, diffusion, and reactive processes. The system is formulated with periodic boundary conditions as
follows:

∂u

∂t
+ β

∂u

∂x
− ν ∂

2u

∂x2
− ρu(1− u) = 0, ∀x ∈ [0, 2π], t ∈ [0, 1]

IC: u(x, 0) = exp

(
− (x− π)2

2(π/4)2

)
, BC: u(0, t) = u(2π, t)

(128)

In this equation, β represents the convection coefficient, ν is the diffusivity, and ρ is the reaction coefficient.
Specifically, we set β = 1, ν = 3, and ρ = 5. The reaction term adopts the well-known Fisher’s form ρu(1−u),
as utilized in [33]. This formulation captures the combined effects of transport, spreading, and reaction dynamics
on the state variable u.

1D Convection-Diffusion-Reaction Experiment Dataset The dataset for the 1D Convection-Diffusion-
Reaction experiment comprises three variables: spatial coordinates (x), temporal data (t), and solution values
(u). Specifically:

Variable Dimensions Description
x (Spatial Coordinates) (10, 201, 1) Represents spatial points uniformly distributed over the domain

[0, 2π].
t (Time Data) (10, 201, 1) Denotes temporal data spanning the domain [0, 1] for solution

evolution.
u (Solution Values) (10, 201, 1) Contains the computed values of the solution function u(x, t) at

corresponding spatial and temporal points.

Table 11: Dataset used in the 1D Convection-Diffusion-Reaction Experiment

Out of the total 10,201 data points, the dataset was partitioned into training and test sets. The training data
includes boundary points (where x = 0 or x = 2π) and a random sample of 3,000 interior points, which were
used to compute the loss function during model training. The test data consists of the entire remaining dataset,
ensuring comprehensive evaluation of the model’s performance.

2D Navier–Stokes Lid-driven Cavity Flow We consider the two-dimensional Navier–Stokes (NS)
equations for lid-driven cavity flow, which model the incompressible fluid motion within a square domain under
the influence of a moving lid. The system is formulated with periodic boundary conditions as follows:

u · ∇u+∇p− 1

Re
∆u = 0, ∀x ∈ Ω, t ∈ [0, T ]

∇ · u = 0, ∀x ∈ Ω, t ∈ [0, T ]

IC: u(x, 0) = 0

BC: u = (4x(1− x), 0), x ∈ Γ1

u = (0, 0), x ∈ Γ2

p = 0, x = (0, 0)

(129)
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In this formulation, u = (u, v) represents the velocity field, p is the pressure field, and Re is the Reynolds
number, set to Re = 100. The domain is Ω = [0, 1]2, with the top boundary denoted by Γ1 where the lid moves
with velocity u = (4x(1− x), 0). The left, right, and bottom boundaries are denoted by Γ2, where a no-slip
condition u = (0, 0) is enforced. Additionally, the pressure is anchored at the origin (0, 0) by setting p = 0.

2D Navier–Stokes Lid-driven Cavity Flow Dataset For the 2D Navier–Stokes Lid-driven Cavity Flow
simulation, the dataset is structured as follows:

Variable Dimensions Description
X (Spatial Coordinates) (10,201, 2) Contains 10,201 spatial nodes with (x, y) coordinates

spanning the cavity domain.
U (Velocity Field) (10,201, 2) Horizontal (u) and vertical (v) velocity components at

Re = 100, with no-slip boundary conditions and a moving
lid (y = 1) driving the flow.

P (Pressure Field) (10,201, 1) Pressure values normalized with respect to the reference
boundary condition.

Table 12: Dataset for 2D Navier–Stokes Lid-driven Cavity Flow at Re = 100

The training set comprises 3,000 randomly sampled spatial points with associated velocity and pressure values,
while the test set evaluates the model on the full dataset of 10,201 nodes. Boundary conditions are explicitly
enforced for the moving lid (u = 4x(1− x), v = 0) and stationary walls (u = v = 0), with the pressure field
satisfying the incompressibility constraint.

Epochs: We trained the models until convergence but did not exceed 50,000 epochs.

Reproducibility: To ensure reproducibility of the experimental results, all random number generators are
seeded with a fixed value (seed = 0) across NumPy, Python’s random module, and PyTorch (both CPU and
GPU).

Hyperparameter Selection: The weights used in the external RBA attention are dynamically updated
during training using smoothing factor η = 0.001 and βw = 0.001. Different models employed in our
experiments have varying hyperparameter configurations tailored to their specific architectures. Table 13
summarizes the hyperparameters and the total number of parameters for each model.
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G.4 PDEs in Complex Engineering Environments Setup Details

In this study, we investigate the performance of AC-PKAN compared with other models in solving complex
PDEs characterized by heterogeneous material properties and intricate geometric domains. Specifically, we
focus on two distinct difficult environmental PDE problems: a heterogeneous Poisson problem and a Poisson
equation defined on a domain with complex geometric conditions. The following sections detail the formulation
of the PDEs, data generation processes, model architecture, training regimen, hyperparameter selection, and
evaluation methodologies employed in our experiments.

Heterogeneous Poisson Problem. We consider a two-dimensional Poisson equation with spatially varying
coefficients to model heterogeneous material properties. The PDE is defined as:


a1∆u(x) = 16r2 for r < r0,

a2∆u(x) = 16r2 for r ≥ r0,
u(x) = r4

a2
+ r40

(
1
a1
− 1

a2

)
on ∂Ω,

(130)

where r = ∥x∥2 is the distance from the origin, a1 = 1
15

and a2 = 1 are the material coefficients, r0 = 0.5
defines the interface between the two materials, and ∂Ω represents the boundary of the square domain Ω =
[−1, 1]2. The boundary condition is a pure Dirichlet condition applied uniformly on all four edges of the square.

Heterogeneous Poisson Dataset To train and evaluate the Physics-Informed Neural Networks (PINNs),
collocation points were generated within the defined spatial domains, and boundary conditions were appropriately
enforced. A uniform grid was established using 100 equidistant points in each spatial dimension, resulting in
101× 101 = 10,201 internal collocation points for the heterogeneous Poisson problem. Boundary points were
extracted from the edges of the square domain Ω = [−1, 1]2 to impose Dirichlet boundary conditions. The
PINN was trained in a data-free, unsupervised manner. Upon completion of training, the model was evaluated on
the collocation points by comparing the predicted values with the actual values, thereby determining the error.

Complex Geometric Poisson Problem. Additionally, we examine a Poisson equation defined on a domain
with complex geometry, specifically a rectangle with four circular exclusions. The PDE is given by:

−∆u = 0 in Ω = Ωrec \
4⋃

i=1

Ri, (131)

where Ωrec = [−0.5, 0.5]2 is the rectangular domain and Ri for i = 1, 2, 3, 4 are circular regions defined as:

R1 =
{
(x, y) : (x− 0.3)2 + (y − 0.3)2 ≤ 0.12

}
,

R2 =
{
(x, y) : (x+ 0.3)2 + (y − 0.3)2 ≤ 0.12

}
,

R3 =
{
(x, y) : (x− 0.3)2 + (y + 0.3)2 ≤ 0.12

}
,

R4 =
{
(x, y) : (x+ 0.3)2 + (y + 0.3)2 ≤ 0.12

}
.

The boundary conditions are specified as:

u = 0 on ∂Ri, ∀i = 1, 2, 3, 4, (132)
u = 1 on ∂Ωrec. (133)

Complex Geometric Poisson Dataset To train and evaluate the Physics-Informed Neural Networks
(PINNs), collocation points were generated within the defined spatial domains, and boundary conditions were
appropriately enforced. A uniform grid was established using 100 equidistant points in each spatial dimension,
resulting in 101 × 101 = 10,201 internal collocation points for the Complex Geometric Poisson problem.
Boundary points are sampled from both the outer boundary ∂Ωrec and the boundaries of the excluded circular
regions ∂Ri for i = 1, 2, 3, 4. The PINN was trained in a data-free, unsupervised manner. Upon completion of
training, the model was evaluated on the collocation points by comparing the predicted values with the actual
values, thereby determining the error.

3D Point-Cloud Poisson Problem We investigate a three-dimensional Poisson equation defined on a unit
cubic domain, Ω = [0, 1]3, where the data distribution is represented as a point cloud, capturing the complex
geometry introduced by excluding four spherical regions. The governing equation is a non-homogeneous,
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layered Helmholtz-type partial differential equation given by

−µ(z)∆u(x) + k(z)2u(x) = f(x) in Ω = [0, 1]3 \
4⋃

i=1

Ci, (134)

where the spherical exclusion regions Ci for i = 1, 2, 3, 4 are defined as

C1 =
{
(x, y, z) : (x− 0.4)2 + (y − 0.3)2 + (z − 0.6)2 ≤ 0.22

}
, (135)

C2 =
{
(x, y, z) : (x− 0.6)2 + (y − 0.7)2 + (z − 0.6)2 ≤ 0.22

}
, (136)

C3 =
{
(x, y, z) : (x− 0.2)2 + (y − 0.8)2 + (z − 0.7)2 ≤ 0.12

}
, (137)

C4 =
{
(x, y, z) : (x− 0.6)2 + (y − 0.2)2 + (z − 0.3)2 ≤ 0.12

}
. (138)

The material properties exhibit a layered structure at z = 0.5, with

µ(z) =

{
µ1 = 1, z < 0.5,

µ2 = 1, z ≥ 0.5,
k(z) =

{
k1 = 8, z < 0.5,

k2 = 10, z ≥ 0.5.
(139)

The source term f(x) incorporates strong nonlinearities, defined as

f(x) = A1e
sin(m1πx)+sin(m2πy)+sin(m3πz) x

2 + y2 + z2 − 1

x2 + y2 + z2 + 1
+A2 [sin(m1πx) + sin(m2πy) + sin(m3πz)] ,

(140)
where the parameters are set to A1 = 20, A2 = 100, m1 = 1, m2 = 10, and m3 = 5. Homogeneous Neumann
boundary conditions are imposed on the boundary of the cubic domain, ensuring that

∂u

∂n
= 0 on ∂Ω, (141)

where ∂Ω consists of the six faces of the unit cube.

3D Point-Cloud Poisson Dataset The 3D Point-Cloud Poisson Problem dataset is derived from an
extensive collection of 65,202 points, each defined by three spatial coordinates (x, y, z) and an associated scalar
solution value u, collectively representing the solution to a Poisson equation within a three-dimensional domain.
To achieve computational feasibility, a randomized subset of 10,000 points is selected from the original dataset
for model training and evaluation. This reduced dataset maintains the structural integrity of the original data,
with spatial coordinates organized in a (10,000 × 3) matrix and the solution field in a (10,000 × 1) vector.
From this subset, a further random selection of 1,000 points constitutes the supervised training set, which
includes exact solution values essential for calculating data loss, while the remaining 9,000 points are utilized to
enforce physics-informed loss during the training process. This approach ensures computational efficiency while
preserving a representative sample of the three-dimensional domain. Subsequently, testing and validation are
conducted on the entire reduced dataset to assess the model’s predictive accuracy across the domain.

Tensor Conversion : All collocation and boundary points are converted into PyTorch tensors with floating-
point precision and are set to require gradients to facilitate automatic differentiation. The data resides on an
NVIDIA A100 GPU with 40GB of memory to expedite computational processes.

Training Regimen: All PDE problems are trained for a total of 50,000 epochs to allow sufficient learning
iterations. And the RBA attention mechanism for AC-PKAN is configured with smoothing factors η = 0.001
and βw = 0.001.

Reproducibility: To ensure the reproducibility of our experimental results, all random number generators
are seeded with a fixed value (seed = 0) across NumPy, Python’s random module, and PyTorch (both CPU and
GPU). This deterministic setup guarantees consistent initialization and training trajectories across multiple runs.

Hyperparameter Selection: For the 3D Point-Cloud Poisson Problem, Table 13 provides a detailed
summary of the hyperparameters and the total number of parameters for each model. Similarly, for the other two
problems, Table 14 summarizes the hyperparameters and the total number of parameters for each model.
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H Results Details and Visualizations.

Firstly, in the context of the 1D-Wave experiment, we present the logarithm of the GRA weights, log
(
λGRA
IC,BC

)
,

across epochs in Figure 6. Additionally, the progression of λGRA
IC,BC over epochs is illustrated in Figure 4 (see

below).

Figure 4: Mean values of GRA and RBA weights over epochs for the 1D-Wave experiment. From left
to right in the first row: GRA λBC , GRA λIC , and RBA weights (BC). Second row: RBA weights
(IC) and RBA weights (Residual).

Figure 5: Loss landscapes of various models in the 1D-Wave experiment. From left to right in the
first row: AC-PKAN, Cheby1KAN and fKAN. Second row: QRes and Pinnsformer.

In Figure 4, we see that the mean RBA weights for all loss terms eventually converge, indicating mitigation of
residual imbalance. In contrast, the GRA weights continue to increase, suggesting persistent gradient imbalance.
The steadily growing GRA weights effectively alleviate the gradient stiffness problem, consistent with findings
in [63]. The significant magnitude discrepancy between GRA and RBA data justifies using a logarithmic function
for GRA weights in loss weighting (Figure 6).

Moreover, Figure 5 illustrates the loss landscapes of AC-PKAN, Cheby1KAN, fKAN, QRes, and PINNsFormer.
Although Cheby1KAN appears to have a simpler loss landscape, its steep gradients hinder optimization.
PINNsFormer, fKAN, and QRes exhibit more complex, multi-modal surfaces, leading to convergence challenges
near the optimal point. In contrast, AC-PKAN shows a relatively smoother trajectory, facilitating training
stability and efficiency.
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Figure 6: Mean values of GRA weights after logarithmic transformation over epochs for the 1D-Wave
experiment.

Then we illustrate the fitting results of nine models for complex functions in Figure 7. Additionally, we
present the plots of ground truth solutions, neural network predictions, and absolute errors for all evaluations
conducted in the five PDE-solving experiments. The results for the 1D-Reaction, 1D-Wave, 2D Navier-Stokes,
Heterogeneous Poisson Problem, and Complex Geometric Poisson Problem are displayed in Figures 10, 8, 9,
and 13, respectively.

Figure 7: Illustration of 9 Various Models for Complex Function Fitting
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Table 13: Summary of Hyperparameters in PINN Failure Modes Experiment for Various Models
Model Hyperparameters Model Parameters

AC-PKAN

Linear Embedding: 2 → 64
Hidden ChebyKAN Layers: 3 × Cheby1KANLayer (degree=8)
Hidden LN Layers: 3 × LayerNorm (128)
Output Layer: 128 → 1
Activations: WaveAct

460,101

QRes
Input Layer: QRes_block (2 → 256, Sigmoid)
Hidden Layers: 3 × QRes_block (256 → 256, Sigmoid)
Output Layer: 256 → 1

396,545

FastKAN Layer 1: FastKANLayer (RBF, SplineLinear 16 → 8500, Base Linear 2 → 8500)
Layer 2: FastKANLayer (RBF, SplineLinear 68,000 → 1, Base Linear 8500 → 1) 246,518*

KAN Layers: 2 × KANLinear (9000 neurons, SiLU activation) 270,000*

PINNs

Sequential Layers:
2 → 512 (Linear, Tanh)
512 → 512 (Linear, Tanh)
512 → 512 (Linear, Tanh)
512 → 1 (Linear)

527,361

FourierKAN

NaiveFourierKANLayer 1: 2 → 32, Degree=8
NaiveFourierKANLayer 2: 32 → 128, Degree=8
NaiveFourierKANLayer 3: 128 → 128, Degree=8
NaiveFourierKANLayer 4: 128 → 32, Degree=8
NaiveFourierKANLayer 5: 32 → 1, Degree=8

395,073

Cheby1KAN

Cheby1KANLayer 1: 2 → 32, Degree=8
Cheby1KANLayer 2: 32 → 128, Degree=8
Cheby1KANLayer 3: 128 → 256, Degree=8
Cheby1KANLayer 4: 256 → 32, Degree=8
Cheby1KANLayer 5: 32 → 1, Degree=8

406,368

Cheby2KAN

Cheby2KANLayer 1: 2 → 32, Degree=8
Cheby2KANLayer 2: 32 → 128, Degree=8
Cheby2KANLayer 3: 128 → 256, Degree=8
Cheby2KANLayer 4: 256 → 32, Degree=8
Cheby2KANLayer 5: 32 → 1, Degree=8

406,368

fKAN

Sequential Layers:
2 → 256 (Linear, fJNB(3))
256 → 512 (Linear, fJNB(6))
512 → 512 (Linear, fJNB(3))
512 → 128 (Linear, fJNB(6))
128 → 1 (Linear)

460,813

rKAN

Sequential Layers:
2 → 256 (Linear, JacobiRKAN(3))
256 → 512 (Linear, PadeRKAN[2/6])
512 → 512 (Linear, JacobiRKAN(6))
512 → 128 (Linear, PadeRKAN[2/6])
128 → 1 (Linear)

460,835

FLS

Sequential Layers:
2 → 512 (Linear, SinAct)
512 → 512 (Linear, Tanh)
512 → 512 (Linear, Tanh)
512 → 1 (Linear)

527,361

PINNsformer Parameters: d_out=1, d_hidden=512, d_model=32, N=1, heads=2 453,561
* This reaches the GPU memory limit, and increasing the number of parameters further would cause an out-of-memory error.
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Table 14: Summary of Hyperparameters in Complex Engineering Environmental PDEs for Various
Models

Model Hyperparameters Model Parameters

AC-PKAN

Linear Embedding: in=2, out=32
ChebyKAN Layers: 4 layers, degree=8
LN Layers: 4 layers, features=64
Output Layer: in=64, out=1
Activation: WaveAct

152,357

QRes

Input Layer: in=2, out=128
Hidden Layers: 5 QRes blocks, units=128
Output Layer: in=128, out=1
Activation: Sigmoid

166,017

PINN

Layer 1: 2 → 256, Activation=Tanh
Layer 2: 256 → 512, Activation=Tanh
Layer 3: 512 → 128, Activation=Tanh
Layer 4: 128 → 1

198,145

PINNsformer

d_out=1
d_hidden=128
d_model=8
N=1
heads=2

158,721

FLS

Layer 1: 2 → 256, Activation=SinAct
Layer 2: 256 → 256, Activation=Tanh
Layer 3: 256 → 256, Activation=Tanh
Layer 4: 256 → 1

132,609

Cheby1KAN

Layer 1: 2 → 32, Degree=8
Layer 2: 32 → 128, Degree=8
Layer 3: 128 → 64, Degree=8
Layer 4: 64 → 32, Degree=8
Layer 5: 32 → 1, Degree=8

129,888

Cheby2KAN

Layer 1: 2 → 32, Degree=8
Layer 2: 32 → 128, Degree=8
Layer 3: 128 → 64, Degree=8
Layer 4: 64 → 32, Degree=8
Layer 5: 32 → 1, Degree=8

129,888

KAN*
Layers: 2 × KANLinear
Neurons: 9000
Activation: SiLU

60,000*

rKAN

Layer 1: 2 → 256, Activation=JacobiRKAN(3)
Layer 2: 256 → 256, Activation=PadeRKAN[2/6]
Layer 3: 256 → 256, Activation=JacobiRKAN(6)
Layer 4: 256 → 128, Activation=PadeRKAN[2/6]
Layer 5: 128 → 1

165,411

FastKAN* FastKANLayer 1: RBF, SplineLinear 16 → 2600, Base Linear 2 → 2600
FastKANLayer 2: RBF, SplineLinear 20800 → 1, Base Linear 2600 → 1 75,418*

fKAN

Layer 1: 2 → 256, Activation=fJNB(3)
Layer 2: 256 → 512, Activation=fJNB(6)
Layer 3: 512 → 512, Activation=fJNB(3)
Layer 4: 512 → 128, Activation=fJNB(6)
Layer 5: 128 → 1

132,618

FourierKAN

Layer 1: 2 → 32
Layer 2: 32 → 64
Layer 3: 64 → 64
Layer 4: 64 → 64
Layer 5: 64 → 1
Degree=8

166,113

* This reaches the GPU memory limit, and increasing the number of parameters further would cause an out-of-memory error.
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(a) Ground Truth Solution for the 1D-Reaction Equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 8: Comparison of the ground truth solution for the 1D-Reaction equation with predictions and
error maps from various models.
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(a) Ground Truth Solution for the 1D-Wave Equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 9: Comparison of the ground truth solution for the 1D-Wave equation with predictions and
error maps from various models.

40



(a) Ground Truth Solution for the 2D Navier–Stokes Cylinder Flow

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 10: Comparison of the ground truth pressure field P of the 2D Navier–Stokes cylinder flow
with predictions and corresponding error maps generated by various models.
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(a) Ground Truth Solution for the 1D-Conv.-Diff.-Reac. Equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 11: Comparison of the ground truth solution for the 1D-Conv.-Diff.-Reac. Equation with
predictions and error maps from various models.
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(a) Ground Truth Solution for the 2D Lid-driven cavity flow

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN and
Cheby2KAN; the PINNs, QRes and fKAN models; and the FLS models, respectively. The second, fourth, and
sixth rows present their corresponding absolute errors.
Figure 12: Comparison of the ground truth solution for the 2D Lid-driven cavity flow with predictions
and error maps from various models.
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(a) Ground Truth Solution for the Heterogeneous Possion equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 13: Comparison of the ground truth solution for the Heterogeneous Possion equation problem
with predictions and error maps from various models.
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(a) Ground Truth Solution for the Complex Geometry Possion equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 14: Comparison of the ground truth solution for the Complex Geometry Possion equation
problem with predictions and error maps from various models.

45



(a) Ground Truth Solution for the 3D Point-Cloud Problem

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN
and Cheby2KAN models; the PINNs, QRes, rKAN, and fKAN models; and the FLS and FourierKAN models,
respectively. The second, fourth, and sixth rows present their corresponding absolute errors.

Figure 15: Comparison of the ground truth solution for the 3D Point-Cloud Problem with predictions
and error maps from various models.
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