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Abstract

This paper studies the generalization performance of iterates obtained by Gradient
Descent (GD), Stochastic Gradient Descent (SGD) and their proximal variants in
high-dimensional robust regression problems. The number of features is compa-
rable to the sample size and errors may be heavy-tailed. We introduce estimators
that precisely track the generalization error of the iterates along the trajectory of
the iterative algorithm. These estimators are provably consistent under suitable
conditions. The results are illustrated through several examples, including Huber
regression, pseudo-Huber regression, and their penalized variants with non-smooth
regularizer. We provide explicit generalization error estimates for iterates gener-
ated from GD and SGD, or from proximal SGD in the presence of a non-smooth
regularizer. The proposed risk estimates serve as effective proxies for the actual
generalization error, allowing us to determine the optimal stopping iteration that
minimizes the generalization error. Extensive simulations confirm the effectiveness
of the proposed generalization error estimates.

1 Introduction

Consider the linear model:
y =Xb∗ + ε, (1)

where y ∈ Rn is the response vector, X ∈ Rn×p is the design matrix, b∗ ∈ Rp is the unknown
regression vector, and ε ∈ Rn is the noise vector that we assume independent ofX . The entries of ε
may be heavy-tailed, for instance our working assumptions allow for infinite second moment.

For the estimation of b∗, we consider the following regularized optimization problem

b̂ ∈ argmin
b∈Rp

1

n

n∑
i=1

ρ(yi − x⊤
i b) + g(b), (2)

where ρ : R → R is a data-fitting loss and g : Rp → R is a regularization function. In the
present robust regression setting, typical examples of ρ include the Huber [14] loss ρ(r; δ) =

δ2
∫ |r/δ|
0

min(1, x) dx, the Pseudo-Huber loss ρ(r; δ) = δ2(
√
1 + (r/δ)2 − 1) or other Lipschitz

loss functions to combat the possible heavy-tails of the additive noise. Typical examples of penalty
functions include the L1/Lasso [27] penalty g(b) = λ∥b∥1, group-Lasso penalty [29] for grouped
variables, or their non-convex variants including for instance SCAD [12] or MCP [30].

In order to solve the optimization problem (2), practitioners resort to iterative algorithms, for instance
gradient descent, accelerated gradient descent, stochastic gradient descent, and the corresponding
proximal methods [20] in the presence of a non-smooth regularizer. Let the algorithm starts with

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



some initializer b̂1 ∈ Rp (typically b̂1 = 0) followed by consecutive iterates b̂2, b̂3, . . . , where b̂t

is typically obtained, for gradient descent and its variants as will be detailed below, from b̂t−1 and
by applying an additive correction involving the gradient of the objective function. Our goal of this
paper is to quantify the predictive performance of each iterate b̂t.

We assume throughout that the covariance E[xix
⊤
i ] = Σ of the feature vectors is finite. We measure

the predictive performance of b̂t using the out-of-sample error

E
[(
x⊤
newb̂

t − x⊤
newb

∗
)2

| (xi, yi)i∈[n]

]
= ∥Σ1/2(b̂t − b∗)∥2

where xnew is a new feature vector, independent of the data (xi, yi)i∈[n] and has the same distribution
as xi. The above squared metric is used because the noise εi (and thus yi) is allowed to have infinite
variance, and in this case the squared prediction error E[(x⊤

newb̂
t − ynew)

2 | (xi, yi)i∈[n]] = +∞
irrespective of the value of b̂t.

The paper proposes to estimate the out-of-sample error ∥Σ1/2(b̂t − b∗)∥2 of the t-th iterate using the
right-hand side of the approximation

∥Σ1/2(b̂t − b∗)∥2 + ∥ε∥2/n ≈
∥∥∥(y −Xb̂t) +

t−1∑
s=1

wt,sSsψ(y −Xb̂s)
∥∥∥2/n, (3)

where ψ : Rn → R is the derivative of ρ acting component-wise on each coordinate in Rn and
Ss is a diagonal matrix of the form Ss =

∑
i∈Is

eie
⊤
i where Is ⊂ [n] is the batch for the s-th

stochastic gradient update and ei ∈ Rn is the i-th canonical basis vector. Here the wt,s are quantities,
introduced in Section 3.3 below, that can be computed from data and do not require the knowledge of
Σ. The approximation (3) is made rigorous in Theorem 3.6, where the right-hand side is proved to be
consistent (i.e., the difference between the two sides of the inequality converges to 0 in probability)
for a first set of weights (ws,t)s<t, and in Theorem 3.7 where a second set of weights are proposed.

Because the right-hand side of (3) is observable from the data and the iterates (b̂s)s≤t are computed
from the iterative algorithm, the approximation (3) lets us compare the out-of-sample error of iterates
b̂t at different time t up to the additive term ∥ε∥2/n (which does not depend on t nor on the choice
of the iterative scheme or the choice of loss and penalty). It also lets us compare different tuning
parameters, for instance learning rate, multiplicative parameter of the penalty function, batch size in
Stochastic Gradient Descent (SGD). The right-hand side of (3) can serve as the criteria to choose the
iteration number or tuning parameters that achieves the smallest out-of-sample error.

1.1 Related literature

Estimation of prediction risk of regression estimates has received significant attention in the last
few decades. One natural avenue to estimate the generalization performance is to use V -fold cross-
validation or leave-one-out schemes. In the proportional regime of interest here, where dimension
p and sample size n are of the same order, V -fold cross-validation with finite V , e.g., V = 5, 10 is
known to fail at consistently estimate the risk of the estimator trained on the full dataset [23, Figure
1]; this is simply explained because training with the biased sample size n(V − 1)/V may behave
differently than training with the full dataset. Leave-one-out schemes, or drastically increasing V ,
requires numerous refitting and is thus computationally expensive.

This motivates computationally efficient estimates of the risk of an estimator trained on the full dataset
without sample-splitting, including Approximate Leave-One-out (ALO) schemes [23] that do not rely
on sample-splitting and refitting; see [1] and the references therein for recent developments. For ridge
regression and other estimators constructed from the square loss, the Generalized Cross-Validation
(GCV) [28] has been shown be to be effective, and it avoids data-splitting and refitting; it only
needs to fit the full data once and then adjust the training error by a multiplicative factor larger than
1. Beyond ridge regression, the extension of GCV using degrees-of-freedom has been studied for
Lasso regression [2, 3, 18, 9], and alternatives were developed for robust M-estimators [3, 4]. While
ALO or GCV and its extensions are good estimators of the predictive risk of a solution b̂ to the
optimization problem (2), they are not readily applicable to quantify the prediction risk of iterates
b̂t obtained by widely-used iterative algorithms such as gradient descent (GD), stochastic gradient
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descent (SGD) or their proximal variants: ALO and GCV focus on estimating the final (t→ +∞)

iterate of the algorithm, when a solution b̂ in (2) is found. Our goal in the present paper is to develop
risk estimation methodologies along the trajectory of the algorithm.

Luo et al. [17] developed methods to estimate the cross-validation error of iterates that solves an
empirical risk minimization problem. Their approach requires the Hessian of the objective function
to be well-conditioned (i.e., the smallest and largest eigenvalues are bounded) along all iterates.
This condition is not satisfied for the regression problems we consider in this paper, such as high-
dimensional robust regression with a Lasso penalty. In the context of least squares problems with
both p and n being large, [7] studied the fundamental limits on the performance of first order
methods, showing that these are dominated by a specific Approximate Message Passing algorithm.
Paquette et al. [19] demonstrated that the dynamics of Stochastic Gradient Descent (SGD) become
deterministic in the large sample and dimensional limit, providing explicit expressions for these
dynamics when the design matrix is isotropic. Our work differs from [19] in two key ways: First,
we address a more general regression problem incorporating a non-smooth regularizer, thereby
considering both SGD and proximal SGD; second, we offer explicit risk estimates for each iteration,
rather than focusing solely on the theoretical dynamics of the iterates. Celentano et al. [8] and [13]
characterize the dynamical mean-field dynamics of iterative schemes, and identify that the limiting
process involves a “memory” kernel, describing how the dynamics of early iterates affect later ones.

Most recently, and most closely related to the present paper, [5] proposed risk estimate for iterates b̂t
obtained by running gradient descent and proximal gradient descent methods for solving penalized
least squares optimizations. However, [5] focuses exclusively on the square loss for ρ in (3), which
is not readily applicable to robust regression with heavy tailed noise for which the Huber or other
robust losses must be used. Bellec and Tan [5] is further restricted to gradient updates using the full
dataset, which does not cover stochastic gradient descent. While several proof techniques used in the
present paper are inspired by [5], we will explain in Remark 3.8 that directly generalizing [5] to SGD
in robust regression leads to a poor risk estimate for small batch sizes. The proposal of the present
paper leverages out of batch samples to overcome this issue.

For gradient descent for the square loss and without penalty, Patil et al. [21] demonstrates both the
failure of GCV along the trajectory and the success of computationally expensive leave-one out
schemes, and develops a proposal to reduce the computational cost. Finally, let us mention the
works [10, 16] that characterize the dynamics of the iterates in phase retrieval and matrix sensing
problems, assuming that a fresh batch of observations (independent of all previous updates) is used at
each iteration. This is different from the usual SGD setting studied in the present paper where the
observations used during a stochastic gradient update may be reused in future stochastic gradient
updates, creating intricate probabilistic dependence between gradient updates at different iterations.

Robust regression is highly valuable in real data analysis due to its ability to handle heavy-tailed noise
effectively, and we will see below that the use of stochastic gradient updates and data-fitting loss
functions different from the square loss require estimates that have a drastically different structure
that in the square loss case. The present paper develops generalization error estimates in situations
where no consistent estimate have been proposed: (1) we develop generalization error estimates
along the trajectory of iterative algorithms aimed at solving (2) for robust loss functions including the
pseudo-Huber loss; (2) the estimates are applicable not only to gradient updates involving the full
dataset (gradient descent and its variants), but also to SGD and proximal SGD where a random batch
is used for each update.

2 Problem setup

The paper studies iterative algorithms aimed at solving the optimization problem (2). We consider
the algorithm that generates iterates b̂t for t = 1, 2, ..., T according to the following iteration:

b̂t+1 = ϕt

(
b̂t +

ηt
|It|
X⊤Stψ(y −Xb̂t)

)
, (4)

where St ∈ Rn×n is the diagonal matrix St =
∑

i∈It
eie

⊤
i for It ⊂ [n] the t-th batch (independent

of (X,y)), where ϕt : Rp 7→ Rp and ψ : Rn 7→ Rn are two functions and ηt is the step size.
Typically, ψ : Rn → Rn is the componentwise application of ρ′ (where ρ is the data-fitting loss in
(2)), and the matrix St ∈ Rn×n is diagonal with elements in {0, 1} encoding the observations i ∈ [n]
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used in the t-th stochastic gradient update. The presence of St and possibly nonlinear function ψ
is such that the above iteration scheme is not covered by previous related works including [5, 21],
which only tackle St = In (full batch gradient updates) and ψ : Rn → Rn the identity map (ρ in (2)
restricted to be the square loss). The iterative scheme (4), on the other hand, covers SGD with robust
loss functions.

In the next section, we first provide a few examples of algorithms encompassed in the general
iteration (4). This includes Gradient Descent (GD), Stochastic Gradient Descent (SGD), and their
corresponding proximal methods [20], Proximal GD and Proximal SGD. GD and SGD are widely
used in practice, while the proximal methods are particularly useful for solving the optimization
problem (2) with non-smooth regularizers.

2.1 Robust regression without penalty

If there are no penalties in (2), i.e., g(b) = 0, then the minimization problem becomes

b̂ ∈ argmin
b∈Rp

1

n

n∑
i=1

ρ(yi − x⊤
i b).

To solve this problem, provided ρ is differentiable, one may use gradient descent (SGD) and stochastic
gradient descent (SGD).

Example 2.1 (GD). The GD method consists of the following iteration:

b̂t+1 = b̂t + ηt

nX
⊤ψ(y −Xb̂t), (5)

where ψ is the derivative of ρ acting component-wise on its argument, and ηt is the step size (also
known as learning rate). For the least squares loss ρ(x) = x2/2, we have ψ(u) = u.

Example 2.2 (SGD). Suppose at t-th iteration, we use the batch It ⊂ [n] to compute the gradient,

b̂t+1 = b̂t +
ηt
|It|

∑
i∈It

xiψ(yi − x⊤
i b̂

t) = b̂t +
ηt
|It|
X⊤Stψ(y −Xb̂t), (6)

where St =
∑

i∈It
eie

⊤
i and ei is the i-th canonical vector in Rn. If It = [n] for each t, then

|It| = n and St = In, hence this SGD method reduces to the GD method in (5).

2.2 Robust regression with Lasso penalty

Regularized regression is useful for high-dimensional regression problems where p is larger than
n. We consider the Lasso penalty g(b) = λ∥b∥1 to fight for the curse of dimensionality and obtain
sparse estimates (our working assumptions, on the other hand, do not assume that the ground truth b∗
is sparse). While GD and SGD are not directly applicable to solve the optimization problem (2) with
Lasso penalty due to ∥ · ∥1 lacking differentiability at 0, Proximal Gradient Descent (Proximal GD)
[20] and Stochastic Proximal Gradient Descent (Proximal SGD) can be used to solve this optimization
with Lasso penalty.

Example 2.3 (Proximal GD). For g(b) = λ∥b∥1 in (2), the Proximal GD gives the following
iterations:

b̂t+1 = softληt

(
b̂t + ηt

nX
⊤ψ(y −Xb̂t)

)
,

where softθ(·) applies the soft-thresholding u 7→ sign(u)(|u| − θ)+ component-wise.

Example 2.4 (Proximal SGD). Similar to the Proximal GD, the Proximal SGD consists of the
following iterations:

b̂t+1 = softληt

(
b̂t + ηt

|It|X
⊤Stψ(y −Xb̂t)

)
.

Let ρ′ : Rn → Rn be the function applies the derivative of ρ : R → R to each of its component, i.e.,
ρ′(u) = (ρ′(u1), ..., ρ

′(un))
⊤. Then the above examples can be summarized in the following table

with different definition of ψ, ϕt, and St.
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Table 1: Specification of ψ,ϕt,St for each algorithm
GD SGD Proximal GD Proximal SGD

ψ(u) ρ′(u) ρ′(u) ρ′(u) ρ′(u)
ϕt(v) v v softληt

(v) softληt
(v)

St In St In St

To define the proposed estimators of the generalization error, we further define the following Jacobian
matrices:

Dt =
∂ψ(r)

∂r

∣∣
r=y−Xb̂t ∈ Rn×n, D̃t =

∂ϕt(v)

∂v

∣∣
v=b̂t+

ηt

|It|X
⊤Stψ(y−Xb̂t) ∈ Rp×p.

Then, we have D̃t = Ip for GD and SGD, and D̃t =
∑

j∈Ŝt
eje

⊤
j for Proximal GD and Proximal

SGD based on soft-thresholding, where Ŝt = {j ∈ [p] : e⊤j b̂
t+1 ̸= 0}.

3 Main results

Assumption 3.1. The design matrixX has i.i.d. rows from Np(0,Σ) for some positive definite matrix
Σ satisfying 0 < λmin(Σ) ≤ 1 ≤ λmax(Σ) and ∥Σ∥op∥Σ−1∥op ≤ κ. We assume Var[x⊤

i b
∗] ≤ δ2,

that is, the signal of the model (1) is bounded from above.
Assumption 3.2. The noise ε is independent of X and has i.i.d. entries from a fixed distribution
independent of n, p, with E[|εi|] ≤ δ, that is, bounded first moment.
Assumption 3.3. The data fitting loss ρ : R → R is convex, continuously differentiable and its
derivative ψ is 1-Lipschitz and |ψ(x)| ≤ δ for all x ∈ R. The function ϕt is 1-Lipschitz and satisfies
ϕt(0) = 0. The matrices St =

∑
i∈It

eie
⊤
i , and |It| ≥ c0n for some positive constant c0 ∈ (0, 1].

Let ηmax = maxt∈[T ] ηt.

Huber loss and Psuedo-Huber loss all satisfy Assumption 3.3.
Assumption 3.4. The data fitting loss ρ is twice continuously differentiable with positive second
derivative.
Assumption 3.5. The sample size n and feature dimension p satisfy p/n ≤ γ for a constant
γ ∈ (0,∞).

3.1 Intuition regarding the estimates of the generalization error

This subsection provides the intuition behind the definition of the estimates define below. For the
sake of clarify, and in this subsection only, assume that

Σ = Ip, ε = 0, ηt/|It| = 1/n. (7)

With the above working assumptions, the validity of the estimates defined below relies on the
probabilistic approximation

∥b̂t − b∗∥2 ≈ 1

n

n∑
i=1

(
−x⊤

i (b̂
t − b∗) +

p∑
j=1

e⊤j
∂b̂t

∂xij

)2

,

which was developed in [3] for risk estimation purposes, but outside the context of iterative algorithms.
Above, ej ∈ Rp is the j-th canonical basis vector. In the present noiseless case with ε = 0, the
first term inside the squared norm in the right-hand side is equal to the residual yi − x⊤

i b̂
t, so that

the above display resembles (3). Taking this probabilistic approximation for granted, to study the
second term in the right-hand side, we must understand the derivatives of b̂t with respect to the
entries (xij)i∈[n],j∈[p] ofX . In (4), each iterate is a relatively simple function of the previous ones,
with the simplifications (7) this is b̂t+1 = ϕt(b̂

t +X⊤Stψ(y −Xb̂t)/n). For t = 1, given that b̂1

is a constant initialization, ∂
∂xij

b̂2 = D̃1eje
⊤
i S1ψ(y −Xb̂1)/n− D̃1X

⊤S1D1ei(b̂
1 − b∗)j/n.

We find in the proof, that when summing these quantities over j ∈ [p], the second term involving
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(b̂1 − b∗)j is negligible, and the same negligibility holds at later iterations with terms involving
(b̂t − b∗)j (or any (b̂s − b∗)j , s ≤ t). By performing a similar simple calculation at the next iteration,
and ignoring these terms, we find with f1i = e⊤i S1ψ(y −Xb̂1) and f2i = e⊤i S2ψ(y −Xb̂2) by
the chain rule
p∑

j=1

e⊤j
∂b̂2

∂xij
≈ Tr

[D̃1

n

]
︸ ︷︷ ︸

w2,1

f1i ,

p∑
j=1

e⊤j
∂b̂3

∂xij
≈ Tr

[D̃2

n

]
︸ ︷︷ ︸

w3,2

f2i +Tr
[
D̃2(X

⊤S2D2X/n− Ip)D̃1/n
]

︸ ︷︷ ︸
w3,1

f1i .

This reveals the weights (ws,t)s<t in (3) at iteration t = 2 and t = 3. We could continue this further by
successive applications of the chain rule, although for later iterations this unrolling of the derivatives,
capturing the interplay between the JacobiansDt, D̃t and the stochastic gradient matrix St, becomes
increasingly complex. This recursive unrolling of the derivatives can be performed numerically at the
same time as the computation of the iterates. On the other hand, for the mathematical proof, for the
formal definition of the weights in (3) and for the proposed estimates of the generalization error, the
matrix notation defined in the next subsection exactly captures this unrolling of the derivatives.

3.2 Formal matrix notation to capture recursive derivatives

We now set up the matrix notation that captures this recursive unrolling of the derivatives by the
chain rule. Throughout, T is the final number of iterations. Define three block diagonal matrices D ∈
RnT×nT , D̃ ∈ RpT×pT , and S ∈ RnT×nT by D =

∑T
t=1

(
(ete

⊤
t )⊗Dt

)
, D̃ =

∑T
t=1

(
(ete

⊤
t )⊗D̃t

)
,

and S =
∑T

t=1

(
(ete

⊤
t )⊗ St

)
. Now we are ready to introduce the following matrices of size T × T :

W =

p∑
j=1

(IT ⊗ e⊤j )(IT ⊗Σ1/2)Γ(IT ⊗Σ1/2)(IT ⊗ ej), (8)

Â =

n∑
i=1

(IT ⊗ e⊤i )D(IT ⊗X)Γ(IT ⊗X⊤)(IT ⊗ ei), (9)

K̂ =

T∑
t=1

Tr(Dt)ete
⊤
t −

n∑
i=1

(IT ⊗ e⊤i )D(IT ⊗X)Γ(IT ⊗X⊤)SD(IT ⊗ ei), (10)

where Γ = M−1L(Λ⊗ Ip)D̃ ∈ RpT×pT , L =
∑T

t=2

(
(ete

⊤
t−1)⊗ Ip

)
, Λ =

∑T
t=1

ηt

|It|ete
⊤
t ,

M =


Ip
−P1 Ip

. . . . . .
−PT−1 Ip

 and Pt = D̃t

(
Ip − ηt

|It|X
⊤StDtX

)
.

Although notationally involved, the purpose of these matrices is just to formalize the recursive
computation of the derivatives by the chain rule mentioned in Section 3.1.

3.3 Main results: estimating the generalization error consistently

For each iterate b̂t, define the target rt (generalization error) and its estimate r̂t by

rt
def
= ∥Σ1/2(b̂t − b∗)∥2 + ∥ε∥2

n
, r̂t =

1

n

∥∥∥(y −Xb̂t) +
t−1∑
s=1

wt,sSsψ(y −Xb̂s)
∥∥∥2, (11)

where wt,s := e⊤t Wes and W ∈ RT×T is the matrix defined in (8). The following shows that
|r̂t − rt| →P 0 (convergence to 0 in probability) under suitable assumptions.
Theorem 3.6 (Proved in Appendix C.1). Let Assumptions 3.1, 3.3 and 3.5 be fulfilled. Then ∀ϵ > 0,

P
(
|r̂t − rt| > ϵ

)
≤ max

{
1,
C(T, γ, ηmax, c0, δ, κ)

ϵ

}( 1√
n
+ E

[
min

{
1,

∥ε∥
n

}])
. (12)

If additionally Assumption 3.2 holds then E[min{1, ∥ε∥n }] → 0, so that, as n, p → +∞ while
(T, γ, ηmax, c0, δ, κ, ϵ) are held fixed, the right-hand side converges to 0 and r̂t − rt converges to 0
in probability.
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This establishes that r̂t is consistent at estimating rt. The statement E[min{1, ∥ε∥/n}] → 0 is
equivalent to ∥ε∥2/n2 →P 0 (convergence in probability), and is proved in [22] under the assumption
that E|εi| < +∞ with εi i.i.d. from a fixed distribution; this allows Var[εi] = +∞ as long as the first
moment is finite. The expression ofW involves Σ, which is typically unknown in practice. Our next
result provides a consistent estimate ofW using quantities that do not require the knowledge of Σ.

We propose to estimate W by W̃ def
= K̂−1Â where K̂ and Â are the T × T matrices defined in

(9)-(10). We define another estimate r̃t by replacingW in (11) with W̃ = K̂−1Â:

r̃t =
1

n

∥∥∥(y −Xb̂t) +
t−1∑
s=1

w̃t,sSsψ(y −Xb̂s)
∥∥∥2,

where w̃t,s = e
⊤
t W̃es.

Theorem 3.7 (Proved in Appendix C.3). Under Assumptions 3.1 and 3.3 to 3.5, for any ϵ > 0,

P
(
|r̃t − rt| > ϵ

)
≤ 2e−n/18 +max

{
1, C(T,γ,ηmax,c0,δ,κ)

ϵ

}[
1√
n
+ E[min(1, ∥ε∥n )]

]
.

If additionally Assumption 3.2 holds then E[min{1, ∥ε∥n }] → 0, so that, as n, p → +∞ while
(T, γ, ηmax, c0, δ, κ, ϵ) are held fixed, the right-hand side converges to 0 and r̃t − rt converges to 0
in probability.

This establishes the consistency of r̃t. The simulations presented next confirm that the two estimates
r̃t and r̂t both are accurate estimates of rt. The estimate r̃t has the advantage of not relying on the
knowledge of Σ and are recommended in practice.
Remark 3.8. We highlight that directly generalizing the approach in [5] would lead to the approx-
imation Ã ≈ K̃W , where Ã and K̃ are given in (23) and (26), respectively. From Ã ≈ K̃W ,
obtaining an estimate ofW requires inverting K̃. However, this inversion fails for SGD for small
(but still very realistic) batch sizes of order 0.1n in simulations (see Figure 4). The matrix K̃ is
lower triangular, and the reason for the lack of invertibility of K̃ can be seen in the diagonal terms
equal to Tr[StDt] in (26), where St ∈ {0, 1}n×n is the diagonal matrix with 1 in position (i, i) if
and only if the i-th observation is used in the t-th batch. This diagonal element of K̃ can easily be
small (or even 0) for small batches, if the batch only contains observations such that (Dt)ii is 0 or
small. Let r̃sub

t denote the estimate of the same form as r̃t but using the weight matrix K̃−1Ã instead.
Simulation results in Figure 4 confirm that r̃sub

t is suboptimal compared to our proposed r̃t. For
SGD and proximal SGD, we solved this issue regarding the invertibility of K̃ by using out-of-batch
samples in the construction of K̂ and Â, in order to avoid St in the diagonal elements of K̂ in
equation (31). This is the key to making these estimators work for SGD and proximal SGD, and
this use of out-of-batch samples is new compared to [5] (which only tackles the square loss with
full-batch gradients).
Remark 3.9. The constant C(T, γ, ηmax, c0, δ, κ) in the above results is not explicit. Inspection
of the proof reveals that the dependence of this constant in T is currently TT , allowing T of
order log(n)/ log log n before the bound becomes vacuous. Improving this dependence in T appears
challenging and possibly out of reach of current tools, even for the well-studied Approximate Message
Passing (AMP) algorithms. The papers [25, 24] feature for instance the same log(n)/ log log n
dependence for approximating the risk of AMP. The preprint [15] offers the latest advances on the
dependence on T in the bounds satisfied by AMP. It allows T ≍ poly(n) while still controlling certain
AMP related quantities, although for the risk [15, equations (16)-(17)] the condition required on T
is still logarithmic in n. This suggests that advances on this front are possible, at least for isotropic
design and specific loss and regularizer such as those studied in [15]: Lasso or Robust M-estimation
with no regularizer. Since these latest advances in [15] are obtained for specific estimates (Lasso or
Robust M-estimation with no regularizer), it may be possible to follow a similar strategy and improve
our bounds for specific examples of iterative algorithms closer to AMP, or algorithms featuring only
separable losses and penalty. We leave such improvements for specific examples for future work, as
the goal of the current paper is to cover a general framework allowing iterations of the form (4) with
little restriction on the nonlinear functions except being Lipschitz.
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4 Simulation

In this section, we present numerical experiments to assess the performance of the proposed risk
estimates. All necessary code for reproducing these experiments is provided in the supplementary
material and is publicly available in the GitHub repository https://github.com/kaitan365/
SGD-generlization-errors. Our goal is to compare the performance of the proposed risk
estimates with the true risk rt for different regression methods and iterative algorithms.

We generate the dataset (X,y) from the linear model (1), that is, y = Xb∗ + ε. Here, the rows
ofX ∈ Rn×p are sampled from a centered multivariate normal distribution with covariance matrix
Σ = Ip. The noise vector ε consists of i.i.d. entries drawn from a t distribution with two degrees of
freedom so that the noise variance is infinite. The true regression vector b∗ ∈ Rp is chosen with p/20
nonzero entries, set to a constant value such that the signal strength ∥b∗∥2 equals 10.

We explore two scenarios of the (n, p) pairs and corresponding iterative algorithms:

(i) (n, p) = (10000, 5000): In this configuration, with nmuch larger than p, we examine Huber
regression and Pseudo-Huber regression (without penalty or soft-thresholding). Both the
gradient descent (GD) and stochastic gradient descent (SGD) algorithms are implemented
for each type of regression.

(ii) (n, p) = (10000, 12000): Here, we investigate Huber regression and Pseudo-Huber regres-
sion with an L1 penalty, λ∥b∥1 (λ = 0.002) and corresponding soft-thresholding step. For
each penalized regression, we employ the Proximal Gradient Descent (Proximal GD) and
Stochastic Proximal Gradient Descent (Proximal SGD) algorithms.

In all algorithms, we start with the initial vector b̂1 = 0p and proceed with a fixed step size
η = (1 +

√
p/n∗)

−2 where n∗ = n for GD and proximal GD, and n∗ = n/5 for SGD and
proximal SGD. We run each algorithm for T = 100 steps. For SGD and Proximal SGD, batches
It ⊂ {1, 2, . . . , n} are randomly sampled without replacement and independently of (X,y, (Is)s̸=t),
each with cardinality |It| = n

5 .

A crucial component of the proposed risk estimates r̂t and r̃t involve the weight matricesW and W̃ .
The matrixW is defined in Theorem 3.6, and W̃ = K̂−1Â is defined in Theorem 3.7. We employ
Hutchinson’s trace approximation to computeW , Â, and K̂. This implementation is computationally
efficient. We refer readers to [5, Section 4] for more details.

Recall that we have proposed two estimates for rt = ∥Σ1/2(b̂t − b∗)∥2 + ∥ε∥2/n, one is r̂t in
Theorem 3.6 which requires knowing Σ = E[xix

⊤
i ], and the other is r̃t in Theorem 3.7 which does

not need Σ. Since the quantity ∥ε∥2/n remains constant along the algorithm trajectory, we only
focus on the estimation of ∥Σ1/2(b̂t − b∗)∥2. We repeat each numerical experiment 100 times and
present the aggregated results in Figures 1, 2 and 3.

In Figure 1, we focus on the scenario with (n, p) = (10000, 5000), and plot the actual risk ∥Σ1/2(b̂t−
b∗)∥2, and its two estimates r̂t − ∥ε∥2/n and r̃t − ∥ε∥2/n along with the 2 standard error bar for
GD and SGD algorithms applied to both Huber and Pseudo Huber regression. In Figure 2, we focus
on the scenario with (n, p) = (10000, 12000), and present the risk curves for the Proximal GD
and Proximal SGD algorithms applied to both L1-penalized Huber regression and Pseudo-Huber
regression.

Figure 1 and Figure 2 confirm the three curves are in close agreement, indicating that the proposed
estimates r̂t −∥ε∥2/n and r̃t −∥ε∥2/n are consistent estimates of the actual risk ∥Σ1/2(b̂t − b∗)∥2.
The two estimates closely capture the risk ∥Σ1/2(b̂t−b∗)∥2 over the entire trajectory of the algorithms.
For GD and Proximal GD, the risk curves exhibit a U-shape, first decreasing and then increasing,
and the estimates r̂t and r̃t closely capture this pattern. This suggests that the proposed estimates are
reliable and can be used to monitor the risk of the iterates and find the optimal iteration (the iteration
minimizing the generalization error) along the trajectory of the algorithm.

Additional experiments: varying step sizes for different iterations. We also conduct simulations
to investigate the accuracy of the proposed risk estimates in a setting with varying step size. We
consider two types of step sizes: 1). ηt = 1 if t is odd, and ηt = 0 if t is even; 2). ηt = 1 if t is odd,
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(a) Risk curves of GD for Huber regression
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(b) Risk curves of SGD for Huber regression
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(c) Risk curves of GD for Pseudo-Huber re-
gression
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(d) Risk curves of SGD for Pseudo-Huber
regression

Figure 1: Risk curves for Huber and Pseudo-Huber regression with GD and SGD algorithms for
the scenario (n, p) = (10000, 5000). Upper row: Huber regression, Lower row: Pseudo-Huber
regression. Left column: GD, Right column: SGD.

and ηt = 0.5 if t is even. While the above choices of step size are not preferred in practice, here the
goal is show that the proposed risk estimates is able to accurately capture the dynamics of the risk
even when the step size changes along the trajectory of the algorithm. For instance, the first choice of
step size should produce a risk curve that is flat when t is even. The results are presented in Figure 3,
illustrating that the risk estimates accurately capture the flat segments of the true risk curve.

Additional experiments: the estimate r̃subt is suboptimal. We compare the performance of r̃subt
with our proposed estimates in Huber regression with (n, p, T ) = (4000, 1000, 20) and batch size
|It| = n/10 and ηt = 0.2 for all t ∈ [T ]. It is clear from Figure 4 that r̃t is more accurate than the
suboptimal estimator r̃subt , especially when t increases.
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(a) Risk curves of proximal GD for Huber
regression
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(b) Risk curves of proximal SGD for Huber
regression
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(c) Proximal GD for Pseudo-Huber regres-
sion
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(d) Proximal SGD for Pseudo-Huber regres-
sion

Figure 2: Risk curves for L1-penalized Huber and Pseudo-Huber regression with Proximal GD and
Proximal SGD algorithms for the scenario (n, p) = (10000, 12000). Upper row: L1-penalized
Huber regression, Lower row: L1-penalized Pseudo-Huber regression. Left column: Proximal GD,
Right column: Proximal SGD.

5 Discussion

This paper proposes a novel risk estimate for the generalization error of iterates generated by the
proximal GD and proximal SGD algorithms in robust regression. The proposed risk estimates
accurately capture the predictive risk of the iterates along the trajectory of the algorithms, and are
provably consistent (Theorems 3.6 and 3.7). Three matrices in RT×T in (8)-(10) reveal the interplay
between the squared risk, the residuals and the gradients, so that the approximation (3) holds. This
structure is different from the square loss case studied in [5] where only two matrices (inverse of each
other) are sufficient.

Let us mention some open questions along with potential future research directions. The first question
regards the probabilistic model: we currently assume Gaussian features xi, and it would be of interest
to study the extension in which our consistency results are universal, allowing non-Gaussian feature
distributions. Second, it is of interest to extend the current estimates to more general optimization
problems of the form (2) with non-smooth data-fitting loss, for instance the Least Absolute Deviation
loss ∥y −Xb∥1. In this case the gradient does not exist at the origin, which calls for different
algorithms than the GD and SGD variants presented here, for instance the Alternating Direction
Method of Multipliers (ADMM) [6]. It is of independent interest to derive the risk estimates for
iterates obtained by such primal-dual methods.
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Supplementary Material of “Estimating Generalization Performance
Along the Trajectory of Proximal SGD in Robust Regression”

A Additional simulation results

The following figures illustrate the proposed risk estimates accurately estimate the trajectory of the
risk even when the step size changes at every step.
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(a) ηt = 1 if t is odd, and ηt = 0 if t is even.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration number t

2

4

6

8

10

Va
lu

e

1/2(bt b * ) 2

rt
2/n

rt
2/n

(b) ηt = 1 if t is odd, and ηt = 0.5 if t is even.

Figure 3: Risk curves for SGD applied to Huber regression with (n, p) = (3000, 1000) using different
choices of step sizes. Left panel: ηt = 1 if t is odd, and ηt = 0 if t is even. Right panel: ηt = 1 if t
is odd, and ηt = 0.5 if t is even.

Figure 4 compares the performance of the proposed estimators r̂t, r̃t and the estimator r̃subt general-
ized directly from [5]. It confirms that our proposed estimators outperforms r̃subt .
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(b) Pseudo-Huber regression

Figure 4: Risk curves for SGD applied to Huber and pseudo-Huber regression with (n, p, T ) =
(4000, 1000, 20), |It| = n/10 and ηt = 0.2 for all t.
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B Auxiliary Results

Throughout, we define

E = [ε, ..., ε] ∈ Rn×T , F = [S1ψ(y −Xb̂1), ...,STψ(y −Xb̂T )] ∈ Rn×T , (13)

H = Σ1/2[b̂1 − b∗, ..., b̂T − b∗] ∈ Rp×T , R = [y −Xb̂1, ...,y −Xb̂T ] ∈ Rn×T . (14)

Note that in the above E,H are not observable since ε and b∗ are unknown. However, F andR are
observable and can be easily computed once the iterates (b̂t)t∈[T ] are calculated.

B.1 Change of variables

In this section, we conduct the change of variable to simplify the proof. Specifically, we view the
linear model y =Xb∗ + ε as a model with design matrixG and the regression vector θ∗, i.e.

y =Xb∗ + ε =XΣ−1/2︸ ︷︷ ︸
G

Σ1/2b∗︸ ︷︷ ︸
θ∗

+ε.

This way, the design matrixG has i.i.d. entries from standard normal distribution. Using the same
argument in [5, Appendix D], we can show that the matricesH,F , Â, K̂ remains the same under the
change of variable. Therefore, we can prove the main results using the model with design matrixG
and the regression vector θ∗. In other words, we assume without of loss of generality that the design
matrixX has i.i.d. N(0, 1), or equivalently that the independent rows ofX are normally distributed
with covariance Σ = Ip. We prove the main results using Σ = Ip, and the results for general Σ
follow by this change of variable with the constant C(T, γ, ηmax, c0, δ) appearing in the bounds
depending additionally on κ (the upper bound of the condition number of Σ from Assumption 3.1).

B.2 Derivative formulae

In this section, we present derivative formulae that will be useful in later proofs. The following
formulas differ from [5] due to the use of robust loss functions and the application of SGD with
random batches at each iteration. The formulae are also significantly more complex than in the case
of regularized M-estimators [3, 4].

Lemma B.1 (Proved in Appendix D.1). Let (b̂t)t∈[T ] be the iterates generated from the recursion (4)
and the initial value b̂1 is independent ofX . Then the derivative of b̂t with respect toX is given by

∂b̂t

∂xij
= (e⊤t ⊗ Ip)Γ

[
((F⊤ei)⊗ ej)− (IT ⊗X⊤)SD((H⊤ej)⊗ ei)

]
, (15)

where Γ = M−1L(Λ⊗ Ip)D̃, L =
∑T

t=2

(
(ete

⊤
t−1)⊗ Ip

)
, Λ =

∑T
t=1

ηt

|It|ete
⊤
t , and

M =


Ip
−P1 Ip

. . .
. . .

−PT−1 Ip

 where Pt = D̃t(Ip − ηt

|It|X
⊤StDtX).

RecallF = [S1ψ(y−Xb̂1), ...,STψ(y−Xb̂T )], we have Flt = e
⊤
l Stψ(y−Xb̂t). The following

two corollaries are a direct consequence of Lemma B.1.
Lemma B.2 (Proved in Appendix D.2 ). Under the same conditions of Lemma B.1. Let Flt =

e⊤l Fet = e
⊤
l Stψ(y −Xb̂t), we have

∂Flt

∂xij
= Dlt

ij +∆lt
ij , (16)

where

Dlt
ij = −e⊤l StDteie

⊤
j Het + ((e⊤j H)⊗ e⊤i )DS(IT ⊗X)Γ⊤(IT ⊗X⊤)SD(et ⊗ el),

∆lt
ij = −((e⊤i F )⊗ e⊤j )Γ⊤(IT ⊗X⊤)SD(et ⊗ el).
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Lemma B.3 (Proved in Appendix D.3). Let F̃ = [ψ(y−Xb̂1), ...,ψ(y−Xb̂T )] and F̃l,t = e
⊤
l F̃ et.

Under the same conditions of Lemma B.1. We have

∂F̃l,t

∂xij
= D̃lt

ij + ∆̃lt
ij , (17)

where

D̃lt
ij = −e⊤l Dteie

⊤
j Het + ((e⊤j H)⊗ e⊤i )DS(IT ⊗X)Γ⊤(IT ⊗X⊤)D(et ⊗ el),

∆̃lt
ij = −((e⊤i F )⊗ e⊤j )Γ⊤(IT ⊗X⊤)D(et ⊗ el).

Definition B.4. Define the matrices Υ1 ∈ Rp×T , Υ2 ∈ Rn×T , Υ3 ∈ RT×T , Υ4 ∈ RT×T ,
Υ5 ∈ RT×T by the identities

∀j ∈ [p],

n∑
i=1

∂e⊤i F

∂xij
= −e⊤j HK̃⊤ − e⊤j Υ1, (18)

∀i ∈ [n],

p∑
j=1

∂e⊤j H

∂xij
= e⊤i FW

⊤ − e⊤i Υ2, (19)

n∑
i=1

p∑
j=1

∂F⊤eie
⊤
j H

∂xij
= −K̃H⊤H + F⊤FW⊤ −Υ3, (20)

n∑
i=1

p∑
j=1

∂H⊤X⊤eie
⊤
j H

∂xij
= (nIT − Ã)H⊤H +H⊤X⊤FW⊤ −Υ4, (21)

n∑
i=1

p∑
j=1

∂F⊤eie
⊤
j X

⊤F̃

∂xij
= −K̃H⊤X⊤F̃ + pF⊤F̃ − F⊤F Â⊤ −Υ5, (22)

where the matrices K̃, Â, Ã,W are defined as follows

Ã =

n∑
i=1

(IT ⊗ e⊤i )(IT ⊗X)Γ(IT ⊗X⊤)SD(IT ⊗ ei), (23)

Â =

n∑
i=1

(IT ⊗ e⊤i )D(IT ⊗X)Γ(IT ⊗X⊤)(IT ⊗ ei), (24)

W =

p∑
j=1

(IT ⊗ e⊤j )Γ(IT ⊗ ej), (25)

K̃ =

T∑
t=1

Tr(StDt)ete
⊤
t −

n∑
i=1

(IT ⊗ e⊤i )SD(IT ⊗X)Γ(IT ⊗X⊤)SD(IT ⊗ ei). (26)

The matrices Υ1,Υ2, . . . are negligible in the sense that their Frobenius norms are of smaller orders
compared to their preceding terms in (18)–(22). We provide the bounds in next lemma, which is
obtained by deriving alternative expressions for Υ1, ...,Υ5 in Appendix D.4.

Lemma B.5 (Proved in Appendix D.6). Under the same conditions of Theorem 3.6 with Σ = Ip, we
have

max
k∈{1,3,4}

E[∥Υk∥2op | ε] ≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2),

E[∥Υ2∥2op | ε] ≤ n−1C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2),

E[∥Υ5∥2op | ε] ≤ n2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).
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We further define a few matrices of size T × T :

Θ1 = F⊤XH + K̃H⊤H − F⊤FW⊤,

Θ2 = n−1[F⊤XX⊤F̃ + K̃H⊤X⊤F̃ − pF⊤F̃ + F⊤F Â⊤],

Θ3 =H⊤X⊤XH − (nIT − Ã)H⊤H −H⊤X⊤FW⊤,

Θ4 =
p

n
F⊤F̃ − 1

n
(K̃H⊤ + F⊤X)(K̂H⊤ + F̃⊤X)⊤,

Θ5 = nH⊤H − (WF⊤ −H⊤X⊤)(WF⊤ −H⊤X⊤)⊤,

Θ6 = ∥E∥−1
F (E⊤XH −E⊤FW⊤).

(27)

The next lemma provides the moment bounds for the Frobenius norm of these matrices.
Lemma B.6 (Proved in Appendix D.7). Under the same conditions of Theorem 3.6, we have

max
k∈{1,2,3}

E[∥Θk∥2F | ε] ≤ nC(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2), (28)

max
k∈{4,5}

E[∥Θk∥F | ε] ≤ n1/2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2), (29)

E[∥Θ6∥2F | ε] ≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2), (30)

almost surely, where E[· | ε] is the conditional expectation given ε.

We are able to prove the main theorems using Lemma B.6.

C Proof of main results

C.1 Proof of Theorem 3.6

It suffices to prove this theorem for the case Σ = Ip. When Σ ̸= Ip, the result can be derived using
a change of variables argument, as outlined in Appendix B.1. By basic algebra, we have

Θ5 + ∥E∥F(Θ6 +Θ⊤
6 )

= nH⊤H − (XH − FW⊤)⊤(XH − FW⊤) +E⊤(XH − FW⊤) + (XH − FW⊤)⊤E

= nH⊤H +E⊤E − (E −XH + FW⊤)⊤(E −XH + FW⊤)

= nH⊤H +E⊤E − (R+ FW⊤)⊤(R+ FW⊤).

Notice that rt = ∥b̂t−b∗∥2+ ∥ε∥2/n is the t-th diagonal entry of (H⊤H+E⊤E/n), and r̂t is the
t-th diagonal entry of (R+ FW⊤)⊤(R+ FW⊤)/n. Since ∥E∥F =

√
T∥ε∥, using the previous

display that conditionally on ε, we have

E
[∣∣r̂t − rt

∣∣ | ε] ≤ n−1E
[
∥Θ5∥F + 2∥E∥F∥Θ6∥F | ε

]
= n−1E

[
∥Θ5∥F + 2

√
T∥ε∥∥Θ6∥F | ε

]
.

Using the moment bounds of Θ5 and Θ6 in Lemma B.6, we have

E
[∣∣r̂t − rt

∣∣ | ε] ≤ C(T, γ, ηmax, c0, δ)√
n

(
1 +

∥ε∥√
n

)
.

Furthermore, if E[|εi|] is finite, we have by [22] that ∥ε∥/n→P 0 (convergence in probability) if ε
has i.i.d. entries with a fixed distribution independent of n. Under this assumption, the right-hand side
of the previous display converges to 0 in probability. By enlarging the constant if necessary, assume
C(T, γ, ηmax, c0, δ) ≥ 1. To obtain a quantitative bound, by the conditional version of Markov’s
inequality, for any ϵ > 0, and almost surely with respect to ε that

P
(
|r̂t − rt| > ϵ | ε

)
≤ min

{
1,
C(T, γ, ηmax, c0, δ)

ϵ

( 1√
n
+

∥ε∥
n

)}
≤ max

{
1,
C(T, γ, ηmax, c0, δ)

ϵ

}
min

{
1,

1√
n
+

∥ε∥
n

}
.
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Taking expectation with respect to ε, we obtain

P
(
|r̂t − rt| > ϵ

)
≤ max

{
1,
C(T, γ, ηmax, c0, δ)

ϵ

}
E
[
min

{
1,

1√
n
+

∥ε∥
n

}]
≤ max

{
1,
C(T, γ, ηmax, c0, δ)

ϵ

}( 1√
n
+ E

[
min

{
1,

∥ε∥
n

}])
with E[min{1, ∥ε∥n }] → 0 (equivalently, ∥ε∥/n →P 0) if the entries of ε are i.i.d. with a fixed
distribution independent of n with E[|εi|] < +∞ by [22]. This finishes the proof of Theorem 3.6.

C.2 Operator norm bound on K̂

We first recall the definition of K̂ from (10) in the main text:

K̂ =

T∑
t=1

Tr(Dt)ete
⊤
t −

n∑
i=1

(IT ⊗ e⊤i )D(IT ⊗X)Γ(IT ⊗X⊤)SD(IT ⊗ ei). (31)

Define two events: Ω1 = {X ∈ Rn×p : ∥X∥op/
√
n ≤ 2 +

√
p/n} and Ω2 = {|{i ∈ [n] : |εi| ≤

M}| ≥ 2n
3 }, where M is a large enough constant such that P(|εi| > M) ≤ 1/6.

Lemma C.1. Under the same conditions of Theorem 3.6 with Σ = Ip, we have in the event
Ω∗ = Ω1 ∩ Ω2 that

n∥K̂−1∥op ≤ C(T, γ, ηmax, c0, δ, ∥b∗∥).

Furthermore, Ω∗ has probability at least 1− e−n/18 − e−n/2.

Proof of Lemma C.1. Under Assumptions 3.1 and 3.5, we know that P(Ω1) ≥ 1− e−n/2 from [11].
In the event Ω1, we have by Lemma D.2 that

∥XH∥2F/n ≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2) := C∗.

Markov’s inequality further implies

|{i ∈ [n] : ∥x⊤
i H∥2 > 3C∗}| ≤ n/3.

In other words, |{i ∈ [n] : ∥x⊤
i H∥2 ≤ 3C∗}| ≥ 2n

3 . Recall that M is such that P(|εi| > M) ≤ 1/6.
By Hoeffding’s inequality, we have

P
( 1

n

n∑
i=1

1{|εi| > M} ≥ P(|εi| > M) + a
)
≤ e−2na2

.

Taking a = 1/6, we have P
(
1
n

∑n
i=1 1{|εi| > M} ≥ P(|εi| > M) + 1/6

)
≤ e−n/18. Furthermore,

using |{i ∈ [n] : |εi| > M}| =
∑n

i=1 1{|εi| > M}, we have{
|{i ∈ [n] : |εi| > M}| ≥ n/3|

}
=
{ 1

n

n∑
i=1

1{|εi| > M} ≥ 1/6 + 1/6
}

⊆
{ 1

n

n∑
i=1

1{|εi| > M} ≥ P(|εi| > M) + 1/6
}
.

Therefore,

P
(
|{i ∈ [n] : |εi| > M}| ≥ n/3

)
≤ e−n/18.

Equivalently, we have P(|{i ∈ [n] : |εi| ≤ M}| ≥ 2n
3 ) ≥ 1 − e−n/18. That is, at least 2n

3 of the
entries of ε are bounded by M with probability at least 1− e−n/18.

Recall that Ω2 = {|{i ∈ [n] : |εi| ≤M}| ≥ 2n
3 }, then P(Ω2) ≥ 1− e−n/18. Hence, P(Ω1 ∩ Ω2) ≥

1− e−n/18 − e−n/2. In the event Ω1 ∩ Ω2, the set

Î = {i ∈ [n] : |εi| ≤M, ∥x⊤
i H∥2 ≤ 3C∗}

17



has size at least n
3 . For any i ∈ Î and t ∈ [T ], we have

|yi − x⊤
i b̂

t| = |εi − x⊤
i Het| ≤ |εi|+ |x⊤

i Het| ≤M +
√

3C∗. (32)

By the definition ofDt, under Assumption 3.4, we have

Tr(Dt) =

n∑
i=1

ρ′′(yi − x⊤
i b̂

t)

>
∑
i∈Î

ρ′′(yi − x⊤
i b̂

t) since ρ′′ ≥ 0 by convexity

≥ |Î| min
u:|u|≤M+

√
3C∗

ρ′′(u) due to (32)

≥ n/3 min
u:|u|≤M+

√
3C∗

ρ′′(u) := c∗n since Î has size at least n/3.

Here c∗ is a constant depending on ρ,M,C∗ only.

By the definition of K̂ in (31), K̂/n is a lower triangular matrix with diagonal entries equal to
Tr(Dt)/n. It is invertible if and only if all its diagonal entries are non-zero. Therefore, in the event
Ω1 ∩ Ω2, we have K̂/n is invertible.

Let Λ̂ =
∑T

t=1 Tr(Dt)ete
⊤
t . Then it is diagonal, ∥Λ̂−1∥op = maxt∈[T ] Tr[Dt]

−1 ≤ (c∗n)
−1 and

K̂ = Λ̂− L̂ (33)

where L̂ =
∑n

i=1(IT⊗e⊤i )D(IT⊗X)Γ(IT⊗X⊤)SD(IT⊗ei).Here L̂ is a strictly lower triangular
matrix. Using the upper bound of ∥Γ∥op in Lemma D.4, we have ∥L̂∥op ≤ nC(T, γ, ηmax, c0) in
the event Ω1. Now we rewrite K̂−1 as

K̂−1 = (K̂Λ̂−1Λ̂)−1 = Λ̂−1(K̂Λ̂−1)−1 = Λ̂−1(IT − L̂Λ̂−1)−1.

Notice that L̂Λ̂−1 ∈ RT×T is a strictly lower triangular matrix, thus

(IT − L̂Λ̂−1)−1 =

∞∑
k=0

(L̂Λ̂−1)k =

T−1∑
k=0

(L̂Λ̂−1)k.

By the triangle inequality,

∥(IT − L̂Λ̂−1)−1∥op ≤
T−1∑
k=0

∥L̂Λ̂−1∥kop ≤ C(T, γ, ηmax, c0, δ, ∥b∗∥).

Therefore, in the event Ω1 ∩ Ω2 which has probability P(Ω1 ∩ Ω2) ≥ 1− e−n/18 − e−n/2,

∥K̂−1∥op ≤ ∥Λ̂−1∥op∥(IT − L̂Λ̂−1)−1∥op ≤ n−1C(T, γ, ηmax, c0, δ, ∥b∗∥).

Lemma C.2. Under the same conditions of Theorem 3.7 with Σ = Ip, we have

∥K̂∥op ≤ n(1 + ∥X∥2op∥Γ∥op), ∥Â∥op ≤ n∥X∥2op∥Γ∥op, ∥W ∥op ≤ n∥Γ∥op.

Proof of Lemma C.2. By the definition of K̂ in (31), using ∥D∥op ≤ 1 and ∥S∥op ≤ 1, we have

∥K̂∥op ≤ ∥Λ̂∥op + ∥L̂∥op ≤ n(1 + ∥X∥2op∥Γ∥op).

Similarly, by the definition of Â in (24), we have

∥Â∥op ≤ n∥X∥2op∥Γ∥op.

Last, by the definition ofW in (25), we have ∥W ∥op ≤ n∥Γ∥op.
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Lemma C.3. Under the same conditions of Theorem 3.6 with Σ = Ip, we have

E[∥F⊤F (Â− K̂W )⊤∥F | ε] ≤ n3/2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2),

E[∥R⊤F (Â− K̂W )⊤∥F | ε] ≤ n2(∥ε∥n + 1√
n
)C(T, γ, ηmax, c0)(δ

2 + ∥b∗∥2).

Proof of Lemma C.3. First, using the definitions of Θ1,Θ2,Θ4 in (27), we have

n−1F⊤F (Â− K̂W )⊤ = n−1Θ1K̂
⊤ +Θ2 +Θ4. (34)

Hence,

E[∥F⊤F (Â− K̂W )⊤∥F | ε]

= E[∥(Θ1K̂
⊤ + nΘ2 + nΘ4)∥F | ε] by (34)

≤ E[∥Θ1∥2F | ε]1/2E[∥K̂∥2op | ε]1/2 + nE[∥Θ2∥F + ∥Θ4∥F | ε] by the Cauchy-Schwarz inequality

≤ n3/2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

Here the last line uses the upper bounds of E[∥Θk∥F | ε] from Lemma B.6, and the bound of
E[∥K̂∥op | ε] follows from Lemma C.2 and the bound of ∥Γ∥op from Lemma D.4. This proves the
first inequality.

For the second inequality, we define

Θ̌1 =
R⊤XH + ǨH⊤H −R⊤FW⊤

∥E∥F/
√
n+ 1

,

Θ̌2 =
R⊤XX⊤F̃ + ǨH⊤X⊤F̃ − pR⊤F̃ +R⊤F Â⊤

n(∥E∥F/
√
n+ 1)

,

Θ̌4 =
pR⊤F̃ − (ǨH⊤ +R⊤X)(K̂H⊤ + F̃⊤X)⊤

n(∥E∥F/
√
n+ 1)

,

where Ǩ = nIT −
∑n

i=1(IT ⊗ (e⊤i X))Γ(IT ⊗X⊤)SD(IT ⊗ (X⊤ei)). Using similar argument
that proves Lemma B.6, we can obtain the following bound of Θ̌1, Θ̌2, Θ̌4.

max
k∈{1,2}

E[∥Θ̌k∥2F | ε] ≤ nC(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2), (35)

E[∥Θ̌4∥F | ε] ≤ n1/2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2). (36)

By the definitions of Θ̌1, Θ̌2, Θ̌4, we have

(∥E∥F/
√
n+ 1)[n−1Θ̌1K̂

⊤ + Θ̌2 + Θ̌4] = n−1R⊤F (Â− K̂W )⊤.

Therefore, conditional on ε, we have

E[∥R⊤F (Â− K̂W )⊤∥F | ε] = (∥E∥F/
√
n+ 1)E[∥Θ̌1K̂

⊤ + nΘ̌2 + nΘ̌4∥F | ε]
≤ n3/2(∥E∥F/

√
n+ 1)C(T, γ, ηmax, c0)(δ

2 + ∥b∗∥2).
This finishes the proof of Lemma C.3.

C.3 Proof of Theorem 3.7

In the event Ω∗ = Ω1 ∩ Ω2, we know from Lemma C.1 that K̂ is invertible and ∥K̂−1∥op ≤ n−1C.
Define W̃ = K̂−1Â. UsingR+ FW̃⊤ = R+ FW⊤ + F (W̃ −W )⊤, we have

(R+ FW̃⊤)⊤(R+ FW̃⊤)− (R+ FW⊤)⊤(R+ FW⊤)

= (R+ FW⊤)⊤F (W̃ −W )⊤ + (W̃ −W )F⊤(R+ FW⊤) + (W̃ −W )F⊤F (W̃ −W )⊤.

We have by the triangle inequality

∥(R+ FW̃⊤)⊤(R+ FW̃⊤)− (R+ FW⊤)⊤(R+ FW⊤)∥F
≤ 2∥(R+ FW⊤)⊤F (W̃ −W )⊤∥F + ∥(W̃ −W )F⊤F (W̃ −W )∥F
≲ ∥R⊤F (W̃ −W )⊤∥F + ∥WF⊤F (W̃ −W )⊤∥F + ∥(W̃ −W )F⊤F (W̃ −W )∥F.
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Recall that in the event Ω∗, we have ∥K̂−1∥op ≤ n−1C. Using Â − K̂W = K̂(W̃ −W ) and
Lemma C.3, we have

E
[
I(Ω∗)∥(R+ FW̃⊤)⊤(R+ FW̃⊤)− (R+ FW⊤)⊤(R+ FW⊤)∥F

∣∣ ε]
≲ E

[
I(Ω∗)∥R⊤F (W̃ −W )⊤∥F

∣∣ ε]
+ E

[
I(Ω∗)∥WF⊤F (W̃ −W )⊤∥F

∣∣ ε]
+ E

[
I(Ω∗)∥(W̃ −W )F⊤F (W̃ −W )⊤∥F

∣∣ ε]
= E

[
I(Ω∗)∥R⊤F (Â− K̂W )⊤(K̂⊤)−1∥F

∣∣ ε]
+ E

[
I(Ω∗)∥WF⊤F (Â− K̂W )⊤(K̂⊤)−1∥F

∣∣ ε]
+ E

[
I(Ω∗)∥K̂−1(Â− K̂W )F⊤F (Â− K̂W )⊤(K̂⊤)−1∥F

∣∣ ε].
According to Lemma C.3 and the bound of ∥K̂−1∥op in Lemma C.1, the first conditional expectation
is bounded from above by

n(∥ε∥n + 1√
n
)C(T, γ, ηmax, c0)(δ

2 + ∥b∗∥2).

Using the bound of ∥K−1∥op in Lemma C.1, the bound of ∥W ∥op in Lemma C.2, and the bound of
E[∥F⊤F (Â− K̂W )⊤∥F | ε] in Lemma C.3, the second conditional expectation is bounded from
above by

n1/2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

Similarly, the third conditional expectation is bounded from above by

n1/2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

In summary, we have

n−1E[I(Ω∗)∥(R+ FW̃⊤)⊤(R+ FW̃⊤)− (R+ FW⊤)⊤(R+ FW⊤)∥F | ε]

≤ 1√
n

(∥ε∥√
n
+ 1

)
C(T, γ, ηmax, c0)(δ

2 + ∥b∗∥2).

Since r̃t and r̂t are the t-th diagonal entries of (R+FW̃⊤)⊤(R+FW̃⊤)/n and (R+FW⊤)⊤(R+
FW⊤)/n, respectively, we have

E[I(Ω∗)|r̃t − r̂t| | ε]

≤ E
[
I(Ω∗)∥(R+ FW̃⊤)⊤(R+ FW̃⊤)− (R+ FW⊤)⊤(R+ FW⊤)∥F

∣∣ ε]
≤ 1√

n

(∥ε∥√
n
+ 1

)
C(T, γ, ηmax, c0)(δ

2 + ∥b∗∥2).

Using the same argument in the proof of Theorem 3.6, we have for any ϵ > 0,

P
(
I(Ω∗)|r̃t − r̂t| > ϵ | ε

)
≤ min

(
1, C(T,γ,ηmax,c0,δ)

ϵ ( 1√
n
+ ∥ε∥

n )
)

≤ max{1, C(T,γ,ηmax,c0,δ)
ϵ }min(1, 1√

n
+ ∥ε∥

n ).

Taking expectation with respect to ε, we have

P
(
I(Ω∗)|r̃t − r̂t| > ϵ

)
≤ max{1, C(T,γ,ηmax,c0,δ)

ϵ }E[min(1, 1√
n
+ ∥ε∥

n )].

Using the union bound and P(Ω∗) ≥ 1− e−n/18 − e−n/2 ≥ 1− 2e−n/18, we obtain

P
(
|r̃t − r̂t| > ϵ

)
≤ 2e−n/18 +max{1, C(T,γ,ηmax,c0,δ)

ϵ }
[

1√
n
+ E[min(1, ∥ε∥n )]

]
.

Using the triangle inequality and the tail probability of |r̂t − rt| in Theorem 3.6, we have

P
(
|r̃t − rt| > ϵ

)
≤ 2e−n/18 +max{1, C(T,γ,ηmax,c0,δ)

ϵ }
[

1√
n
+ E[min(1, ∥ε∥n )]

]
.
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D Proof of results in Appendix B.2

D.1 Proof of Lemma B.1

By assumption, we know b̂1 is independent ofX and b̂t+1 = ϕt

(
b̂t+ ηt

|It|X
⊤Stψ(y−Xb̂t)

)
from

(4). Recall thatDt =
∂ψ(u)
∂u

∣∣
u=y−Xb̂t and D̃t =

∂ϕt(v)
∂v

∣∣
v=b̂t+

ηt

|It|X
⊤Stψ(y−Xb̂t). Let a dot denote

the derivative with respect to xij . By product rule and chain rule and using y−Xb̂t = ε−X(b̂t−b∗),
we have

ḃt+1 = D̃t

[
ḃt +

ηt
|It|

(
Ẋ⊤Stψ(y −Xb̂t)−X⊤StDt(Ẋ(b̂t − b∗) +Xḃt)

)]
= D̃t

[
ḃt +

ηt
|It|

(
Ẋ⊤Ft −X⊤StDt(ẊHt +Xḃ

t)
)]
,

where the last line uses Ft = Stψ(y −Xb̂t) and Ht = b̂
t − b∗. Arranging terms gives

−D̃t(Ip − ηt

|It|X
⊤StDtX)ḃt + ḃt+1 = ηt

|It|D̃t(Ẋ
⊤Ft −X⊤StDtẊHt).

Let Pt = D̃t(Ip − ηt

|It|X
⊤StDtX) and at =

ηt

|It|D̃t(Ẋ
⊤Ft −X⊤StDtẊHt), we can rewrite

the above recursion of ḃt as a linear system:
Ip
−P1 Ip

. . . . . .
−PT−1 Ip


︸ ︷︷ ︸

M


ḃ1

ḃ2

...
ḃT

 =


0
Ip 0

. . . . . .
Ip 0


︸ ︷︷ ︸

L


a1

a2

...
aT


︸ ︷︷ ︸
a

.

Solving the above system, we have ḃt = (e⊤t ⊗ Ip)M−1La. Since Ẋ = ∂X
∂xij

= eie
⊤
j , at can be

further simplified as
at =

ηt

|It|D̃t

(
eje

⊤
i Ft −X⊤StDteie

⊤
j Ht

)
.

Using D =
∑T

t=1

(
(ete

⊤
t ) ⊗ Dt

)
, D̃ =

∑T
t=1

(
(ete

⊤
t ) ⊗ D̃t

)
, S =

∑T
t=1

(
(ete

⊤
t ) ⊗ St

)
, and

Λ =
∑T

t=1
ηt

|It|ete
⊤
t , we have

a = (Λ⊗ Ip)D̃
[
vec(eje

⊤
i F )− (IT ⊗X⊤)SD vec(eie

⊤
j H)

]
= (Λ⊗ Ip)D̃

[
((F⊤ei)⊗ ej)− (IT ⊗X⊤)SD((H⊤ej)⊗ ei)

]
.

Plugging this expression for a into ḃt = (e⊤t ⊗ Ip)M−1La gives

∂b̂t

∂xij
= (e⊤t ⊗ Ip)M−1L(Λ⊗ Ip)D̃[((F⊤ei)⊗ ej)− (IT ⊗X⊤)SD((H⊤ej)⊗ ei)].

This finishes the proof of Lemma B.1.

D.2 Proof of Lemma B.2

By definition, Flt = e
⊤
l Stψ(y −Xb̂t). By the chain rule of differentiation, we have

∂Flt

∂xij
= e⊤l

∂Stψ(y −Xb̂t)
∂xij

= −e⊤l StDt(eie
⊤
j Het +X

∂b̂t

∂xij
).

Notice that (et ⊗ (DtSt)) = DS(et ⊗ In). The desired formula then follows by plugging in the
expression of ∂b̂t

∂xij
in Lemma B.1.

D.3 Proof of Lemma B.3

The desired identity follows by

∂F̃lt

∂xij
= e⊤l

∂ψ(y −Xb̂t)
∂xij

= −e⊤l Dt(eie
⊤
j Het +X

∂b̂t

∂xij
)

and the expression of ∂b̂t

∂xij
in Lemma B.1.
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D.4 Alternative expressions for the matrices defined in Definition B.4

This section derives alternative expressions for the matrices Υ1, ...,Υ5 defined in Definition B.4.

We first study Υ1 in (18). Using F =
∑T

t=1 Fete
⊤
t , we have by Lemma B.2

n∑
j=1

∂e⊤i F

∂xij
=

n∑
i=1

T∑
t=1

∂Fit

∂xij
e⊤t =

n∑
i=1

T∑
t=1

Dit
ije

⊤
t +

n∑
i=1

T∑
t=1

∆it
ije

⊤
t . (37)

Now we compute the two terms in the right-hand side of (37). For the first term, using the expression
of Dlt

ij in Lemma B.2,∑
i,t

Dit
ije

⊤
t

=− e⊤j H
T∑

t=1

Tr(StDt)ete
⊤
t +

∑
i,t

((e⊤j H)⊗ e⊤i )DS(IT ⊗X)Γ⊤(et ⊗ (X⊤DtStei))e
⊤
t

=− e⊤j H
T∑

t=1

Tr(StDt)ete
⊤
t + e⊤j H

n∑
i=1

(IT ⊗ e⊤i )DS(IT ⊗X)Γ⊤(IT ⊗X⊤)DS(IT ⊗ ei)

=− e⊤j HK̃⊤ by (26).

Next, we compute the second term in the right-hand side of (37). Using the expression of ∆lt
ij in

Lemma B.2, ∑
i,t

∆it
ije

⊤
t = −

∑
i,t

((e⊤i F )⊗ e⊤j )Γ⊤(et ⊗ (X⊤DtStei))e
⊤
t

= −e⊤j
∑
i

((e⊤i F )⊗ Ip)Γ⊤(IT ⊗X⊤)DS(IT ⊗ ei)︸ ︷︷ ︸
Υ1

.

The identity (18) then follows by substituting the above two expressions into (37).

To study Υ2 in (19), we use a similar procedure. Using the mixed property of Kronecker product and
the fact that the transpose of a scalar remains the same, we have

p∑
j=1

∂e⊤j H

∂xij
=

p∑
j=1

T∑
t=1

∂e⊤j b̂
t

∂xij
e⊤t =

∑
j,t

e⊤j (e
⊤
t ⊗ Ip)Γ((F⊤ei)⊗ ej)e⊤t

−
∑
j,t

e⊤j (e
⊤
t ⊗ Ip)Γ(IT ⊗X⊤)SD((H⊤ej)⊗ ei)e⊤t by (15)

= e⊤i F
∑
j

(IT ⊗ e⊤j )Γ⊤(IT ⊗ ej)

−
∑
j,t

((e⊤j H)⊗ e⊤i )DS(IT ⊗X)Γ⊤(et ⊗ ej)e⊤t

= e⊤i F
∑
j

(IT ⊗ e⊤j )Γ⊤(IT ⊗ ej)

− e⊤i
∑
j

((e⊤j H)⊗ In)DS(IT ⊗X)Γ⊤(IT ⊗ ej)

= e⊤i FW
⊤ − e⊤i Υ2,

whereW =
∑

j(IT ⊗ e⊤j )Γ(IT ⊗ ej) and Υ2 =
∑

j((e
⊤
j H)⊗ In)DS(IT ⊗X)Γ⊤(IT ⊗ ej).
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To study Υ3 in (20), we use the product rule of differentiation and (18)-(19):

n∑
i=1

p∑
j=1

∂F⊤eie
⊤
j H

∂xij
=

n∑
i=1

p∑
j=1

∂F⊤

∂xij
eie

⊤
j H + F⊤

n∑
i=1

p∑
j=1

ei
∂e⊤j H

∂xij

=−
∑
j

(K̃H⊤ej +Υ⊤
1 ej)e

⊤
j H + F⊤

∑
i

ei(e
⊤
i FW

⊤ − e⊤i Υ2)

=− K̃H⊤H + F⊤FW⊤ − (Υ⊤
1H + F⊤Υ2)︸ ︷︷ ︸

Υ3

.

For Υ4 in (21), by the product rule,

n∑
i=1

p∑
j=1

∂H⊤X⊤eie
⊤
j H

∂xij

=
∑
i,j

∂H⊤

∂xij
X⊤eie

⊤
j H +H⊤

∑
i,j

eje
⊤
i eie

⊤
j H +H⊤X⊤

∑
i,j

eie
⊤
j

∂H

∂xij

=
∑
i,j

∂H⊤

∂xij
X⊤eie

⊤
j H + nH⊤H +H⊤X⊤(FW⊤ −Υ2) by (19).

We then compute the first term of the last line as follows

∑
i,j

∂H⊤

∂xij
X⊤eie

⊤
j H

=
∑
i,j,t

ete
⊤
t

∂H⊤

∂xij
X⊤eie

⊤
j H

=
∑
i,j,t

et

( ∂b̂t
∂xij

)⊤
X⊤eie

⊤
j H

=
∑
i,j,t

ete
⊤
i X

∂b̂t

∂xij
e⊤j H

=−
∑
i,j,t

ete
⊤
i X(e⊤t ⊗ Ip)Γ(IT ⊗X⊤)SD((H⊤ej)⊗ ei)e⊤j H + Υ̃1 by (15)

=−
∑
i

(IT ⊗ (e⊤i X))Γ(IT ⊗X⊤)SD(IT ⊗ ei)H⊤H + Υ̃1

=− ÃH⊤H + Υ̃1 by (23),

where

Υ̃1 =
∑
i,j,t

ete
⊤
i X(e⊤t ⊗ Ip)Γ((F⊤ei)⊗ ej)e⊤j H =

∑
i

(IT ⊗ e⊤i X)Γ((F⊤ei)⊗ Ip)H.

Combining the above pieces, we have

n∑
i=1

p∑
j=1

∂H⊤X⊤eie
⊤
j H

∂xij
= −ÃH⊤H + Υ̃1 + nH⊤H +H⊤X⊤(FW⊤ −Υ2)

= (nIT − Ã)H⊤H +H⊤X⊤FW⊤ − (H⊤X⊤Υ2 − Υ̃1)︸ ︷︷ ︸
Υ4

.

This provides an alternative expression for Υ4 in (21).
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Last, we study Υ5 in (22). We have

n∑
i=1

p∑
j=1

∂F⊤eie
⊤
j X

⊤F̃

∂xij
=

∑
i,j

[∂F⊤ei
∂xij

e⊤j X
⊤F̃ + F⊤eie

⊤
j eje

⊤
i F̃ + F⊤eie

⊤
j X

⊤ ∂F̃

∂xij

]
= −(K̃H⊤ +Υ⊤

1 )X
⊤F̃ + pF⊤F̃ +

∑
i,j

F⊤eie
⊤
j X

⊤ ∂F̃

∂xij
.

It remains to compute the third term in the last display. Using the fact that F̃ =∑n
l=1

∑T
t=1 ele

⊤
l F̃ ete

⊤
t , we have by Lemma B.3 that

∂F̃

∂xij
=

∑
l,t

el
∂e⊤l F̃ et
∂xij

e⊤t =
∑
l,t

el(D̃
lt
ij + ∆̃lt

ij)e
⊤
t .

Using

D̃lt
ij = −e⊤l Dteie

⊤
j Het + ((e⊤j H)⊗ e⊤i )DS(IT ⊗X)Γ⊤(IT ⊗X⊤)D(et ⊗ el),

∆̃lt
ij = −((e⊤i F )⊗ e⊤j )Γ⊤(IT ⊗X⊤)D(et ⊗ el),

we find∑
i,j

F⊤eie
⊤
j X

⊤ ∂F̃

∂xij
=

∑
i,j,l,t

F⊤eie
⊤
j X

⊤el
∂e⊤l F̃ et
∂xij

e⊤t

=
∑
i,j,l,t

F⊤eie
⊤
j X

⊤el∆̃
lt
ije

⊤
t +

∑
i,j,l,t

F⊤eie
⊤
j X

⊤elD̃
lt
ije

⊤
t .

We now compute the two terms in the above display. For the first term, we have∑
i,j,l,t

F⊤eie
⊤
j X

⊤el∆̃
lt
ije

⊤
t

=
∑
i,j,l,t

F⊤eie
⊤
j X

⊤el
[
−((e⊤i F )⊗ e⊤j )Γ⊤(IT ⊗X⊤)D(et ⊗ el)

]
e⊤t

=− F⊤F

n∑
l=1

(IT ⊗ (e⊤l X))Γ⊤(IT ⊗X⊤)D(IT ⊗ el)

=− F⊤F Â⊤ by (24).

For the second term, we have∑
i,j,l,t

F⊤eie
⊤
j X

⊤elD̃
lt
ije

⊤
t

=
∑
i,j,l,t

F⊤eie
⊤
j X

⊤el[−e⊤l Dteie
⊤
j Het + ((e⊤j H)⊗ e⊤i )DS(IT ⊗X)Γ⊤(et ⊗ (X⊤Dtel))]e

⊤
t

=−
T∑

t=1

F⊤DtXHet +

n∑
l=1

(e⊤l XH ⊗ F⊤)DS(IT ⊗X)Γ⊤(IT ⊗X⊤)D(IT ⊗ el)︸ ︷︷ ︸
Υ̃2

.

Thus, we have established

∑
i=1

p∑
j=1

∂F⊤eie
⊤
j X

⊤F̃

∂xij
= −K̃H⊤X⊤F̃ + pF⊤F̃ − F⊤F Â⊤ − (Υ⊤

1X
⊤F̃ − Υ̃2)︸ ︷︷ ︸
Υ5

.

This provides an alternative expression for Υ5 in (22).
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D.5 Preparation results for proving Lemmas B.5 and B.6

Lemma D.1 (Moment bounds forH,F , F̃ ). Under Assumptions 3.1, 3.3 and 3.5 with Σ = Ip. Let
H,F be defined in (13), we have for any finite integer k,

E[∥X/
√
n∥2kop] ≤ C(γ, k),

E[∥H∥2kF | ε] ≤ C(T, γ, c0, ηmax, k)(δ
2 + ∥b∗∥)2k,

E[∥F /
√
n∥2kF | ε] ≤ E[∥F̃ /

√
n∥2kF | ε] ≤ C(T, k)δ2k.

Proof of Lemma D.1. For the first inequality, according to Assumption 3.1 and Σ = Ip, X has
i.i.d. standard normal entries. By [11, Theorem II.13], there exists a random variable z ∼ N(0, 1)
such that ∥X∥op ≤

√
n +

√
p + z almost surely. Under Assumption 3.5 that p/n ≤ γ, we have

E[∥X/
√
n∥kop] ≤ C(γ, k) for any finite integer k.

For the second inequality, since ∥H∥2F =
∑T

t=1∥b̂t−b∗∥2, it suffices to bound ∥b̂t−b∗∥2 for each t ∈
[T ]. Define the sequence of scalars at

def
= max{∥b̂t∥, δ}. Since b̂t = ϕt−1(b̂

t−1 + ηt

nt
X⊤Stψ(y −

Xb̂t−1)) where nt := |It|. Note that ∥ψ(yIt −XItb)∥ ≤
√
|It|δ by Assumption 3.3, we have

∥b̂t − 0∥ = ∥b̂t − ϕt−1(0)∥ since ϕt−1 = 0

≤ ∥b̂t−1 + ηt

|It|X
⊤Stψ(y −Xb̂t−1)∥ since ϕt is 1-Lipschitz

= ∥b̂t−1 + ηt

|It|X
⊤
Itψ(yIt −XIt b̂

t−1)∥

≤ ∥b̂t−1∥+ ηt√
|It|

∥XIt∥opδ by the triangle inequality

≤ ∥b̂t−1∥+ ηmax√
c0n

∥X∥opδ by |It| ≥ c0n

≤ at−1 +
ηmax√

c0
∥X/

√
n∥opat−1

= (1 + ηmax√
c0

∥X/
√
n∥op)at−1.

Since at = max{∥b̂t∥, δ} and δ ≤ at−1, we have

at ≤ (1 + ηmax√
c0

∥X/
√
n∥op)at−1.

Notice a1 = δ since b̂1 = 0p, we obtain

at ≤ (1 + ηmax√
c0

∥X/
√
n∥op)t−1δ.

Hence, using the inequality ∥b̂t − b∗∥2 ≤ 2∥b̂t∥2 + 2∥b∗∥2, we have

∥H∥2F ≲
T∑

t=1

(∥b̂t∥2 + ∥b∗∥2)

≤
T∑

t=1

[
(1 + ηmax√

c0
∥X/

√
n∥op)2t−2δ2 + ∥b∗∥2

]
≤ T (δ2 + ∥b∗∥2)(1 + ηmax√

c0
∥X/

√
n∥op)2T . (38)

Taking conditional expectation on both sides given ε, the desired moment bound forH follows from
the moment bound for ∥X/

√
n∥op.

For the third inequality, since |ψ(x)| ≤ δ from Assumption 3.3, we have ∥ψ(u)∥ ≤ nδ2 for any
u ∈ Rn. By the definitions of F and F̃ , we have

∥F ∥2F ≤ ∥F̃ ∥2F =

T∑
t=1

∥ψ(y −Xb̂t)∥2 ≤ Tnδ2.

Since the above display holds for any ε, it implies the desired conditional moment bounds for
F , F̃ .
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Lemma D.2 (Frobenius norm bound forXH). Under Assumptions 3.1, 3.3 and 3.5, we have

∥XH∥2F ≤ C(T, γ, ηmax, c0)n(δ
2 + ∥b∗∥2)

with probability at least 1− exp(−n/2).

Proof of Lemma D.2. By [11, Theorem II.13], under Assumption 3.1 with Σ = Ip, we have

P(∥X/
√
n∥op ≤ 2 +

√
γ) ≥ 1− exp(−n/2).

Using ∥XH∥2F ≤ ∥X∥2op∥H∥2F and the bound (38), we have

∥XH∥2F ≤ nC(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2)

holds with probability at least 1− exp(−n/2).

Lemma D.3 (Operator norm bound for M). Under Assumptions 3.1, 3.3 and 3.5, we have

∥M−1∥op ≤ C(T )(1 + ξ)T ,

where ξ = ηmax

c0n
∥X∥2op.

Proof of Lemma D.3. By the definition of M in Lemma B.1, we have

M =


Ip
−P1 Ip

. . . . . .
−PT−1 Ip

 where Pt = D̃t(Ip − ηt

|It|X
⊤StDtX).

Hence, we can write M = IpT −A, whereA is the lower triangular matrix with off-diagonal blocks
P1, ...,PT−1. Using the matrix identity (I −A)−1 =

∑∞
k=0A

k and noticing Ak = 0 for k ≥ T ,
we have

M−1 =

T−1∑
k=0


0
P1 0

. . . . . .
PT−1 0


k

.

Taking operator norm on both sides, we obtain

∥M−1∥op ≤
T−1∑
k=0

(

T−1∑
t=1

∥Pt∥op)k. (39)

Since Dt = ∂ψ(u)
∂u

∣∣
u=y−Xb̂t and ψ is 1-Lipschitz, we have ∥Dt∥op ≤ 1. By the definition that

St =
∑

i∈It
eie

⊤
i , we know ∥St∥op ≤ 1. Since |It| ≥ c0n and ηt ≤ ηmax for any t ∈ [T ], we have

∥Pt∥op ≤ 1 +
ηt
|It|

∥XIt∥2op ≤ 1 +
ηmax

c0n
∥X∥2op

def
= 1 + ξ.

Plugging this inequality into (39) gives

∥M−1∥op ≤
T−1∑
k=0

(T (1 + ξ))k ≤ C(T )(1 + ξ)T .

Lemma D.4. Under the same conditions as Lemma D.3, we have

∥Γ∥op ≤ n−1C(T, ηmax, c0)(1 + ξ)T ,

where ξ = ηmax

c0n
∥X∥2op.
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Proof of Lemma D.4. By the definition of Γ in Lemma B.1, we have Γ = M−1L(Λ⊗Ip)D̃. Notice
that Λ =

∑T
t=1

ηt

|It|ete
⊤
t , we have ∥Λ∥op = maxt∈[T ]

ηt

|It| ≤ n−1 ηmax

c0
using |It| ≥ c0n and

ηt ≤ ηmax. Since ϕ is 1-Lipschitz, we have ∥D̃∥op ≤ 1. By definition of L in Lemma B.1, we have
∥L∥op = 1. Using these upper bounds of ∥L∥op, ∥Λ∥op, ∥D̃∥op and the upper bound of ∥M−1∥op
in Lemma D.3, we obtain

∥Γ∥op ≤ ∥M−1∥op∥L∥op∥Λ⊗ Ip∥op∥D̃∥op
≤ n−1C(T, ηmax, c0)(1 + ξ)T .

Lemma D.5 (Moment bounds for derivative ofH,F , F̃ ). Under Assumptions 3.1, 3.3 and 3.5 and
Σ = Ip, we have for any finite integer k,

E
[( n∑

i=1

p∑
j=1

∥∥∥ ∂H
∂xij

∥∥∥2
F

)k ∣∣∣ ε] ≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2)2k,

E
[( n∑

i=1

p∑
j=1

∥∥∥∂F /√n
∂xij

∥∥∥2
F

)k ∣∣∣ ε] ≤ E
[( n∑

i=1

p∑
j=1

∥∥∥∂F̃ /√n
∂xij

∥∥∥2
F

)k ∣∣∣ ε] ≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2)2k.

Proof of Lemma D.5. We first prove the first bound. By Lemma B.1, we have

∂b̂t

∂xij
= (e⊤t ⊗ Ip)Γ[((F⊤ei)⊗ ej)− (IT ⊗X⊤)SD((H⊤ej)⊗ ei)].

Hence, using ∂e⊤kHet
∂xij

=
∂e⊤k b̂

t

∂xij
, we have

∂e⊤kHet
∂xij

= (e⊤t ⊗ e⊤k )Γ[((F⊤ei)⊗ ej)− (IT ⊗X⊤)SD((H⊤ej)⊗ ei)]

= (e⊤t ⊗ e⊤k )Γ[(F⊤ ⊗ Ip)(ei ⊗ ej)− (IT ⊗X⊤)SD(H⊤ ⊗ In)(ej ⊗ ei)].

Using the above equality,
∑

i,j,t,k[(e
⊤
t ⊗ e⊤k )A(ej ⊗ ei)]2 = ∥A∥2F for A ∈ RpT×np, and the

triangle inequality, we have
n∑

i=1

p∑
j=1

∥∥∥ ∂H
∂xij

∥∥∥2
F
=

n∑
i=1

p∑
j=1

p∑
k=1

T∑
t=1

(
∂e⊤kHet
∂xij

)2

≲ ∥Γ(F⊤ ⊗ Ip)∥2F + ∥Γ(IT ⊗X⊤)SD(H⊤ ⊗ In)∥2F
≤ p∥Γ∥2op∥F ∥2F + n∥Γ∥2op∥X∥2op∥S∥2op∥D∥2op∥H∥2F
≤ p∥Γ∥2op∥F ∥2F + n∥Γ∥2op∥X∥2op∥H∥2F
≤ C(T, γ, ηmax, c0)(1 + ξ)2T ∥F ∥2F/n+ C(T, γ, ηmax, c0)(1 + ξ)2T ∥X∥2op/n∥H∥2F,

where the last inequality uses Lemma D.4. Taking the conditional expectation on both sides given ε,
the desired moment bound follows from the moment bounds ofX,H,F in Lemma D.1.

Now we prove the second bound. By definition, the t-th column of F is Ft = Stψ(y −Xb̂t), it can
be written using the t-th column of F̃ as Ft = StF̃t. Since ∥St∥op ≤ 1, we have

∥ ∂F
∂xij

∥2F =
∑
t

∥ ∂Ft

∂xij
∥2 ≤

∑
t

∥ ∂F̃t

∂xij
∥2 = ∥ ∂F̃

∂xij
∥2F.

By Lemma B.3, we have ∂e⊤l F̃ et
∂xij

= D̃lt
ij + ∆̃lt

ij where

D̃lt
ij = −e⊤l Dteie

⊤
j Het + ((e⊤j H)⊗ e⊤i )DS(IT ⊗X)Γ⊤(IT ⊗X⊤)D(et ⊗ el),

= ((e⊤j H)⊗ e⊤i )[−IpT +DS(IT ⊗X)Γ⊤(IT ⊗X⊤)]D(et ⊗ el),
∆̃lt

ij = −((e⊤i F )⊗ e⊤j )Γ⊤(IT ⊗X⊤)D(et ⊗ el).
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Using
∑

i,j,t,k[(e
⊤
j ⊗ e⊤i )A(et ⊗ el)]2 = ∥A∥2F for A ∈ Rnp×nT and the triangle inequality, we

have

n∑
i=1

p∑
j=1

∥ ∂F̃
∂xij

∥2F

=

n∑
i=1

p∑
j=1

n∑
l=1

T∑
t=1

(D̃lt
ij + ∆̃lt

ij)
2

≲ ∥(H ⊗ In)[−IpT +DS(IT ⊗X)Γ⊤(IT ⊗X⊤)]D∥2F + ∥(F ⊗ Ip)Γ⊤(IT ⊗X⊤)D∥2F
≲ n∥H∥2F(1 + ∥X∥4op∥Γ∥2op) + ∥F ∥2F∥Γ∥2op∥X∥2op,

where the last inequality uses ∥D∥op ≤ 1 and ∥S∥op ≤ 1. Taking the conditional expectation on
both sides given ε, the desired moment bound follows from the bound of Γ in Lemma D.4 and the
moment bounds ofX,H,F in Lemma D.1.

D.6 Proof of Lemma B.5

Bound of Υ1. By the expression for the matrix Υ1 ∈ Rp×T obtained in Appendix D.4,

Υ1 =

n∑
i=1

((e⊤i F )⊗ Ip)Γ⊤(IT ⊗X⊤)DS(IT ⊗ ei)

=

n∑
i=1

T∑
t=1

((e⊤i Fete
⊤
t )⊗ Ip)Γ⊤(IT ⊗X⊤)DS(IT ⊗ ei)

=

n∑
i=1

T∑
t=1

(e⊤t ⊗ Ip)Γ⊤(IT ⊗X⊤)DS(IT ⊗ ei)e⊤i Fet

=

T∑
t=1

(e⊤t ⊗ Ip)Γ⊤(IT ⊗X⊤)DS(IT ⊗ (Fet)).

By the triangle inequality and ∥D∥op ∨ ∥S∥op ≤ 1, ∥Υ1∥op ≤ T∥Γ∥op∥X∥op∥F ∥F. Using the
bound of ∥Γ∥op in Lemma D.4, the moment bound of ∥X∥op, ∥F ∥F in Lemma D.1 gives

E[∥Υ1∥2op | ε] ≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

Bound of Υ2. By the expression for the matrix Υ2 ∈ Rn×T obtained in Appendix D.4, we have

Υ2 =

p∑
j=1

((e⊤j H)⊗ In)DS(IT ⊗X)Γ⊤(IT ⊗ ej)

=

p∑
j=1

T∑
t=1

((e⊤j Hete
⊤
t )⊗ In)DS(IT ⊗X)Γ⊤(IT ⊗ ej)

=

p∑
j=1

T∑
t=1

(e⊤t ⊗ In)DS(IT ⊗X)Γ⊤(IT ⊗ ej)e⊤j Het

=

T∑
t=1

(e⊤t ⊗ In)DS(IT ⊗X)Γ⊤(IT ⊗ (Het)).

By the triangle inequality and ∥D∥op ∨ ∥S∥op ≤ 1, ∥Υ2∥op ≤ T∥Γ∥op∥X∥op∥H∥F. Similar to the
moment bound of ∥Υ1∥op, we obtain

E[∥Υ2∥2op | ε] ≤ C(T, γ, ηmax, c0)n
−1(δ2 + ∥b∗∥2).
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Bound of Υ3. By the expression for the matrix Υ3 ∈ RT×T obtained in Appendix D.4, we have
Υ3 = (Υ⊤

1H + F⊤Υ2). It directly follows that

∥Υ3∥op ≤ ∥Υ1∥op∥H∥F + ∥F ∥F∥Υ2∥op.

Using the triangle inequality and the moment bounds of ∥H∥F, ∥F ∥F in Lemma D.1 and the moment
bounds of ∥Υ1∥op, ∥Υ2∥op we just obtained, we have

E[∥Υ3∥2op | ε] ≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

Bound of Υ4. By the expression for the matrix Υ4 ∈ RT×T obtained in Appendix D.4, we have

Υ4 =H⊤X⊤Υ2 − Υ̃1,

where Υ̃1 =
∑

i(IT ⊗ e⊤i X)Γ((F⊤ei)⊗ Ip)H . We can rewrite Υ̃1 as

Υ̃1 =

n∑
i=1

(IT ⊗ e⊤i X)Γ((F⊤ei)⊗ Ip)H

=

n∑
i=1

T∑
t=1

(IT ⊗ e⊤i X)Γ((ete
⊤
t F

⊤ei)⊗ Ip)H

=

n∑
i=1

T∑
t=1

(IT ⊗ (e⊤t F
⊤eie

⊤
i X))Γ(et ⊗ Ip)H

=

T∑
t=1

(IT ⊗ (e⊤t F
⊤X))Γ(et ⊗ Ip)H.

We have by the triangle inequality,

∥Υ̃1∥op ≤ T∥Γ∥op∥X∥op∥F ∥F∥H∥F.

By the triangle inequality and the upper bound of ∥Υ2∥op, we have

∥Υ4∥op ≤ ∥Υ2∥op∥X∥op∥H∥F + ∥Υ̃1∥op ≤ T∥Γ∥op∥X∥2op∥H∥2F + T∥Γ∥op∥X∥op∥F ∥F∥H∥F.

Squaring both sides and taking conditional expectation, we have

E[∥Υ4∥2op | ε] ≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2),

thanks to the upper bound of ∥Γ∥op in Lemma D.4 and the moment bounds of ∥X∥op, ∥F ∥F, ∥H∥F
in Lemma D.1.

Bound of Υ5. By the expression for the matrix Υ5 ∈ RT×T obtained in Appendix D.4, we have
Υ5 = Υ⊤

1X
⊤F̃ − Υ̃2, where

Υ̃2 = −
T∑

t=1

F⊤DtXHet +

n∑
l=1

(e⊤l XH ⊗ F⊤)DS(IT ⊗X)Γ⊤(IT ⊗X⊤)D(IT ⊗ el).

By the triangle inequality,

∥Υ̃2∥op ≤ T∥X∥op∥F ∥F∥H∥F + ∥X∥3op∥Γ∥op∥F ∥F∥H∥F.

Using the moment bounds of ∥Υ1∥op, ∥X∥op, ∥F ∥F, ∥F̃ ∥F, ∥H∥F, we have

E[∥Υ5∥2op | ε] ≤ n2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

D.7 Proof of Lemma B.6

We first state three useful lemmas.
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Lemma D.6 (Adopted from Lemma E.10 of [26]). Let U ,V : Rn×p → Rn×T be two locally
Lipschitz functions of Z with i.i.d. N (0, 1) entries, then

E
[∥∥∥U⊤ZV −

p∑
j=1

n∑
i=1

∂

∂zij

(
U⊤eie

⊤
j V

)∥∥∥2
F

]
≤ E∥U∥2F∥V ∥2F + E

∑
ij

[
2∥V ∥2F

∥∥∥∥ ∂U∂zij
∥∥∥∥2
F

+ 2∥U∥2F

∥∥∥∥ ∂V∂zij
∥∥∥∥2
F

]
.

Lemma D.7 (Adopted from Lemma F.5 of [5]). Let U ,V : Rn×p → Rn×T be two locally Lipschitz
functions of Z with i.i.d. N(0, 1) entries. Provided the following expectations are finite, we have

E
[∥∥∥pU⊤V −

p∑
j=1

( n∑
i=1

∂ijU
⊤ei −U⊤Zej

)( n∑
i=1

∂ije
⊤
i V − e⊤j Z⊤V

)∥∥∥
F

]
≤ (1 + 2

√
p)
(
E[∥U∥4F]1/2 + E[∥V ∥4F]1/2 + E[∥U∥4∂ ]1/2 + E[∥V ∥4∂ ]1/2

)
,

where ∂ijU = ∂U/∂zij and ∥U∥∂ = (
∑n

i=1

∑p
j=1 ∥∂ijU∥2F)1/2.

We will use the above two lemmas, conditionally on ε, to bound the conditional moments of
Θ1,Θ2,Θ3,Θ4 and Θ5 given ε.

Bound of Θ1. By the definition of Θ1, we have

F⊤XH −
∑
i,j

∂F⊤eie
⊤
j H

∂xij
= F⊤XH + K̃H⊤H − F⊤FW⊤ +Υ3 by (20)

= Θ1 +Υ3.

Applying Lemma D.6 conditionally on ε to (Z,U ,V ) = (X,F ,H) gives

E[∥Θ1∥2F | ε] ≲ E
[∥∥∥F⊤XH −

∑
i,j

∂F⊤eie
⊤
j H

∂xij

∥∥∥2 | ε
]
+ E[∥Υ3∥2F | ε]

≲ E[∥F ∥2F∥H∥2F | ε] + E
∑
ij

[
∥H∥2F∥

∂F

∂xij
∥2F + ∥F ∥2F∥

∂H

∂xij
∥2F | ε

]
+ E[∥Υ3∥2F | ε]

≤ nC(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2),

where the last line uses the moment bounds of ∥F ∥F, ∥H∥F in Lemma D.1, the moment bounds of
∥ ∂H
∂xij

∥F, ∥ ∂F
∂xij

∥F in Lemma D.5, the moment bound of ∥Υ3∥op in Lemma B.5.

Bound of Θ2. By the definition of Θ2, we have by (21)

F⊤XX⊤F̃ −
∑
i,j

∂F⊤eie
⊤
j X

⊤F̃

∂xij
= F⊤XX⊤F̃ + K̃H⊤X⊤F̃ − pF⊤F̃ + F⊤F Â⊤ +Υ5

= nΘ2 +Υ5.

Applying Lemma D.6 conditionally on ε to (Z,U ,V ) = (X,F ,X⊤F̃ ) gives

n2E[∥Θ2∥2F | ε] ≲ E
[∥∥∥F⊤XX⊤F̃ −

∑
i,j

∂F⊤eie
⊤
j X

⊤F̃

∂xij

∥∥∥2 | ε
]
+ E[∥Υ5∥2F | ε]

≲ E[∥F ∥2F∥X⊤F̃ ∥2F | ε] + E
∑
ij

[
∥X⊤F̃ ∥2F∥

∂F

∂xij
∥2F + ∥F ∥2F∥

∂X⊤F̃

∂xij
∥2F | ε

]
+ E[∥Υ5∥2F | ε]

≲ E[∥F̃ ∥4F∥X∥2op | ε] + E
[
(1 + ∥X∥2op)∥F̃ ∥2F

∑
ij

∥ ∂F̃
∂xij

∥2F | ε
]
+ TE[∥Υ5∥2op | ε]

≤ n3C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).
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Here, the penultimate line uses ∥F ∥F ≤ ∥F̃ ∥F, ∥ ∂F
∂xij

∥F ≤ ∥ ∂F̃
∂xij

∥F, and ∥∂X⊤F̃
∂xij

∥F =

∥e⊤j e⊤i ∂F̃
∂xij

+X⊤ ∂F̃
∂xij

∥F ≤ ∥ ∂F̃
∂xij

∥F + ∥X∥op∥ ∂F̃
∂xij

∥F. The last line uses the moment bounds of

∥X∥op, ∥F̃ ∥F in Lemma D.1, the moment bound of ∥ ∂F̃
∂xij

∥F in Lemma D.5, the moment bound of
∥Υ5∥op in Lemma B.5.

Bound of Θ3. By the definition of Θ3, we have

H⊤X⊤XH −
∑
i,j

∂H⊤X⊤eie
⊤
j H

∂xij

=H⊤X⊤XH − (nIT − Ã)H⊤H −H⊤X⊤FW⊤ +Υ4 by (21)
=Θ3 +Υ4.

Applying Lemma D.6 conditionally on ε to (Z,U ,V ) = (X,XH,H) gives

E[∥Θ3∥2F | ε] ≲ E
[∥∥∥H⊤X⊤XH −

∑
i,j

∂H⊤X⊤eie
⊤
j H

∂xij

∥∥∥2 | ε
]
+ E[∥Υ4∥2F | ε]

≲ E[∥XH∥2F∥H∥2F | ε] + E
∑
ij

[
∥XH∥2F∥

∂H

∂xij
∥2F + ∥H∥2F∥

∂XH

∂xij
∥2F | ε

]
+ E[∥Υ4∥2F | ε]

≲ E[∥X∥2op∥H∥4F | ε] + E
[
(1 + ∥X∥2op)∥H∥2F

∑
ij

∥ ∂H
∂xij

∥2F | ε
]
+ TE[∥Υ4∥2op | ε]

≤nC(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

Here, the penultimate line uses ∥∂XH
∂xij

∥F = ∥eie⊤j ∂H
∂xij

+X ∂H
∂xij

∥F ≤ (1+∥X∥op)∥ ∂H
∂xij

∥F, and the

last line uses the moment bounds of ∥X∥op, ∥H∥F in Lemma D.1, the moment bounds of ∥ ∂H
∂xij

∥F
in Lemma D.5, the moment bound of ∥Υ4∥op in Lemma B.5.

Bound of Θ4. By definition, we have
n∑

i=1

∂F⊤ei
∂xij

= −(K̃H⊤ +Υ⊤
1 )ej and

n∑
i=1

∂F̃⊤ei
∂xij

= −(K̂H⊤ + Υ̃⊤
1 )ej .

Using
∑p

j=1 eje
⊤
j = Ip, we find

p∑
j=1

( n∑
i=1

∂F⊤ei
∂xij

− F⊤Xej
)( n∑

i=1

∂F̃⊤ei
∂xij

− F̃⊤Xej
)⊤

= (K̃H⊤ + F⊤X +Υ⊤
1 )(K̂H

⊤ + F̃⊤X + Υ̃⊤
1 ).

This further implies

pF⊤F̃ −
p∑

j=1

( n∑
i=1

∂F⊤ei
∂xij

− F⊤Xej
)( n∑

i=1

∂F̃⊤ei
∂xij

− F̃⊤Xej
)⊤

= nΘ4 +Υ⊤
1 (K̂H

⊤ + F̃⊤X) + (K̃H⊤ + F⊤X)Υ̃⊤
1 +Υ⊤

1 Υ̃
⊤
1︸ ︷︷ ︸

Υ̃4

.

Applying Lemma D.7 conditionally on ε to (Z,U ,V ) = (X,F , F̃ ),

nE[∥Θ4∥F | ε] ≲ E
[∥∥∥pF⊤F̃ −

p∑
j=1

( n∑
i=1

∂F⊤ei
∂xij

− F⊤Xej
)( n∑

i=1

∂F̃⊤ei
∂xij

− F̃⊤Xej
)⊤∥∥∥

F
| ε

]
+ E[∥Υ̃4∥F | ε]

≲ (1 + 2
√
p)
(
E[∥F ∥4F | ε]1/2 + E[∥F̃ ∥4F | ε]1/2 + E[∥F ∥4∂ | ε]1/2 + E[∥F̃ ∥4∂ | ε]1/2

)
+ TE[∥Υ̃4∥2op | ε]

≤ n3/2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

Here, the last inequality uses the moment bounds of ∥F ∥F, ∥F̃ ∥F in Lemma D.1, and the moment
bounds of ∥F ∥2∂ , ∥F̃ ∥2∂ in Lemma D.5, and the moment bound of ∥Υ̃4∥op in Lemma B.5.
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Bound of Θ5. By the identity (19), we have
n∑

i=1

( p∑
j=1

∂H⊤ej
∂xij

−H⊤X⊤ei
)( p∑

j=1

∂H⊤ej
∂xij

−H⊤X⊤ei
)⊤

= (WF⊤ −H⊤X⊤ −Υ⊤
2 )(WF⊤ −H⊤X⊤ −Υ⊤

2 )
⊤.

By the definition of Θ5, we have

nH⊤H −
n∑

i=1

( p∑
j=1

∂H⊤ej
∂xij

−H⊤X⊤ei
)( p∑

j=1

∂H⊤ej
∂xij

−H⊤X⊤ei
)⊤

=Θ5 +Υ⊤
2 (WF⊤ −H⊤X⊤)⊤ + (WF⊤ −H⊤X⊤)Υ2 −Υ⊤

2 Υ2︸ ︷︷ ︸
Υ̃5

.

Here Υ2 =
∑

j((e
⊤
j H)⊗ In)DS(IT ⊗X)Γ⊤(IT ⊗ ej).

Applying Lemma D.7 conditionally on ε to (Z,U ,V ) = (X⊤,H,H) (i.e., consider the mapping
from Rp×n to Rp×T : X⊤ 7→H) gives

E[∥Θ5∥F | ε]

≤ E
[∥∥∥nH⊤H −

n∑
i=1

( p∑
j=1

∂H⊤ej
∂xij

−H⊤X⊤ei
)( p∑

j=1

∂H⊤ej
∂xij

−H⊤X⊤ei
)⊤∥∥∥

F
| ε

]
+ E[∥Υ̃5∥F | ε]

≲ (1 + 2
√
p)
(
E[∥H∥4F | ε]1/2 + E[∥H∥4∂ | ε]1/2

)
+ TE[∥Υ̃5∥2op | ε]

≤ n1/2C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

Here, the last line use the moment bounds of ∥H∥F in Lemma D.1, the moment bound of ∥H∥2∂ in
Lemma D.5, and the moment bound of ∥Υ̃5∥op in Lemma B.5.

Bound of Θ6. Using (19), we have
n∑

i=1

p∑
j=1

∂E⊤eie
⊤
j H

∂xij
= E⊤(FW⊤ −Υ2).

It follows that

E⊤XH −
n∑

i=1

p∑
j=1

∂E⊤eie
⊤
j H

∂xij
= E⊤XH −E⊤(FW⊤ −Υ2)

= ∥E∥FΘ6 +E
⊤Υ2.

Thus, using Ẽ = E/∥E∥F, we have

Θ6 = Ẽ⊤XH −
n∑

i=1

p∑
j=1

∂Ẽ⊤eie
⊤
j H

∂xij
− Ẽ⊤Υ2.

Applying Lemma D.6 conditionally on ε to (Z,U ,V ) = (X, Ẽ,H)gives

E[∥Θ6∥2F | ε] ≲ E
[∥∥∥Ẽ⊤XH −

n∑
i=1

p∑
j=1

∂Ẽ⊤eie
⊤
j H

∂xij

∥∥∥2 | ε
]
+ E[∥Ẽ⊤Υ2∥2F | ε]

≲ E[∥Ẽ∥2F∥H∥2F | ε] + E
[
∥Ẽ∥2F∥

∂H

∂xij
∥2F | ε

]
+ E[∥Ẽ⊤Υ2∥2F | ε]

≤ E[∥H∥2F | ε] + E
[
∥ ∂H
∂xij

∥2F | ε
]
+ E[∥Υ2∥2op | ε]

≤ C(T, γ, ηmax, c0)(δ
2 + ∥b∗∥2).

Here, the last line uses the moment bound of ∥H∥F in Lemma D.1, the moment bounds of ∥ ∂H
∂xij

∥F in
Lemma D.5, and the moment bound of ∥Υ2∥op in Lemma B.5. This finishes the proof of Lemma B.6.
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For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All the code are provided in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The choices of step size for GD and SGD are provided in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the figures include the 2-standard error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It is provided in the README file of the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Given the theoretical nature of our work, it does not have any negative societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is of the theoretical nature, it does not invent any new models or
datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We write all the code by ourselves, and did not use other code or data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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