
TinyAgent: Quantization-aware Model Compression and Adaptation for
On-device LLM Agent Deployment

Blind Author Review 1

Abstract
Deploying LLMs on edge devices is challenging
due to stringent memory resources and compute
constraints. In edge applications, existing deploy-
ment solutions for LLM agents disaggregate the
fine-tuning process for domain-specific adapta-
tion and the post-training model compression pro-
cess. As a result, it requires extensive experi-
mentation to find a readily available model com-
pression technique that minimizes a fine-tuned
model’s performance loss while satisfying a target
hardware’s memory constraints. To address this
problem, we propose TinyAgent, which optimizes
the deployment workflow by using a quantization-
aware model compression technique for special-
ized decision-making LLM agents under resource-
constrained environments. Our approach takes
into account both deployment-time hardware con-
straints and challenges in post-training quanti-
zation during fine-tuning. Experimental results
demonstrate that our approach not only achieves
8× less memory usage to make LLM inference
possible across a variety of edge devices, but also
consistently speeds up LLM inference by up to
4.5× without compromising accuracy.

1. Introduction
The recent global explosion of connected Internet of Things
(IoT) devices presents opportunities to integrate LLM agents
interactively with users on a massive scale. LLM agents
are specialized instances of LLMs designed to perform
specific tasks autonomously. Deploying LLM agents to
edge devices will require both domain-specific adaptation
in the form of fine-tuning and LLM model compression
to fit the models in memory. Various techniques like in-
struction fine-tuning (Wei et al., 2021) and RLHF (Ziegler
et al., 2019) are developed to align LLMs with human
preferences and application-specific behaviors to serve spe-
cialized roles (Python coder, disk storage manager, etc.)
in a system. Deploying LLM-based autonomous agents
holds significant potential for sectors requiring real-time
processing and decision-making capabilities, such as health-

care, smart cities, and industrial automation (Wang et al.,
2024). However, conventional workflows for deploying
instruction-aligned LLMs are not flexible enough to adapt
to resource constraints, while ensuring sufficient internal
domain-specific knowledge. Typical solutions require accel-
erator clusters in cloud services, potentially exposing user
data to service providers, and are growingly energy ineffi-
cient. On-device deployment solutions, on the other hand,
require no data transfer to the cloud and better protect user
privacy with specialized models running on energy-efficient
hardware at the edge.

Running LLM inference, even with smaller-scale models
such as LLaMA2-7B (Touvron et al., 2023) or LLaMA3-
8B (Meta, 2024) requires up to 18GB of memory. This
presents a formidable challenge for on-device deployment
since they have limited computational resources and mem-
ory capacities. For example, Nvidia Jetson TX2, with only
8GB of LPDDR4 host memory and 32GB of flash memory,
cannot accommodate all model weights not to mention the
commonly used KV cache (Pope et al., 2023). Therefore,
the challenge of deploying LLM agents can be character-
ized as two-fold. The first challenge lies in compressing
full-sized LLMs to fit edge devices. To be viable for de-
ployment, the storage requirements of LLM models must be
significantly reduced to satisfy given resource and memory
limitations (Dhar et al., 2024). The second challenge is en-
suring that each LLM agent retains internal domain-specific
knowledge to conduct sophisticated decision making. With-
out adequate LLM fine-tuning, LLM agents might suffer
from insufficient internal knowledge. As a result, this will
sacrifice the collaborative performance of the LLM agents
as a whole. Therefore, these two challenges necessitate
innovative frameworks that compress and fine-tune LLM
agents at the same time.

We address these open challenges by proposing TINYA-
GENT, a novel integration of TrimLLM, a LLM compression
method using progressive layer-dropping techniques (Hu
et al., 2024) with activation-aware weight quantization
(AWQ) (Lin et al., 2023) in a hardware-aware manner to ad-
dress memory bottleneck challenges during LLM agent de-
ployment. TrimLLM’s layer-dropping technique, combined
with AWQ Quantization, allows for a significant reduction

1

in model size with minimal compromise in performance.

To demonstrate the efficacy of our solution, we chose a
LLM agent application for video-monitoring memory man-
agement for several reasons. First, it exemplifies a typical
memory-hungry edge application with stringent resource
constraints, making it an ideal candidate for testing our
quantization-aware model compression techniques. Sec-
ond, video-monitoring applications require continuous and
adaptive decision-making, where LLM agents can signifi-
cantly enhance performance and efficiency. By combining
TrimLLM’s layer-dropping technique and AWQ in TinyA-
gent, each LLM agent is able to retain their respective inter-
nal knowledge domain such as python coding or memory
management, while making LLM agent inference efficient
enough to be viable across a variety of edge device. In
comparison to conventional rule-based memory manage-
ment systems, which might trigger low video frame rates
whenever a memory usage limit is exceeded, our LLM agent
system is more adaptive and responsive to real-time changes
in memory usage.

Quantization-aware
TrimLLM

Fine-tuned &
compressed
LLM Agents

Streaming-mode ManagerDisk-storage Manager

Coder Agent

External driveEdge device
main memory

mv <main-memory> <ext drive>

Low Storage
Space

Reduce streaming
quality

Run bash-script
save to
main memory

CPU & Memory Log

top -o MEM

Log bash-script

Input

AWQ Quantization

Model Compression

LLM Agent Application

Figure 1. Proposed workflow for TinyAgent. Our system is built
on top of AIOS (Mei et al., 2024), a framework of LLM operating
system, for video-monitoring application.

2. Related Work
Layer Dropping. Previous studies have explored the poten-
tial of layer-dropping by compressing a foundational model
during the pre-training phase (Zhang & He, 2020) to ex-
pedite training and enhance efficiency. Recent works also
find there exits layer-wise sparsity in LLM where not all
layers are needed for task-specific use cases (Men et al.,
2024; Gromov et al., 2024). TrimLLM (Hu et al., 2024) is
the state-of-the-art layer-dropping compression technique,
which selectively drops less important layers during a fine-

tuning process, and allows LLMs to adapt to specialized
knowledge domains simultaneously. TinyAgent builds on
top of TrimLLM and improves it by taking hardware con-
straints and PTQ challenges into consideration when spe-
cializing LLM agents to perform domain-specific tasks.

Post-training Quantization. PTQ is particularly effec-
tive for LLMs deployed in edge devices, optimizing infer-
ence speed under constrained computational and memory
resources. AWQ (Lin et al., 2023), or Activation-aware
Weight Quantization, optimizes weights bit-widths by selec-
tively using INT4 representations (instead of FP16 floating
point formats) in specific layers of LLM models. Specifi-
cally, AWQ is based on the observation that not all weights
contribute equally to the performance of LLMs, a finding
similar to what previously discussed in Xiao et al. (2023a).
Therefore, by optimizing only non-critical layers, AWQ en-
ables model compression while minimizing accuracy loss.

Pruning. Latest pruning algorithms for LLMs exploit either
structured and unstructured sparsity at different levels of
granularity (Liu et al., 2023; Sun et al., 2023; Frantar &
Alistarh, 2023; Ma et al., 2023; Syed et al., 2023; Ashkboos
et al., 2024; Xia et al., 2023). TinyAgent does not use
pruning techniques, because it is hard to achieve measured
speedup on edge devices without sparsity-aware kernels
or computational units, not to mention the relatively large
pruning configuration search space for accuracy vs. memory
saving trade off given a hardware memory constraint.

LLM Agent Powered Applications. Many LLM agents
applications have already demonstrated robust reasoning
capabilities in specific domains, such as robotics and soft-
ware engineering. For example, chatDev (Qian et al., 2023)
could facilitate nuanced task delegation, while manually
assigning distinct profiles to each agent. TidyBot (Wu et al.,
2023) could design personalized household cleaning tasks,
while adhering to user’s preference on object placement and
orientation. On a more general level, the widely received au-
toGPT (Yang et al., 2023) breaks down a wide range of tasks
into subroutines for effective execution. However, it is im-
portant to note that these existing LLM agent deployments
are limited to cloud deployment and, therefore, not exposed
to the resource constraints of on-device deployment.

LLM Deployment Optimizations. Several approaches
were proposed to address memory issues during LLM edge
deployment. Dhar et al. (2024) and Edge-MoE (Yi et al.,
2023) involve partially storing ”secondary” weights in exter-
nal storage, while maintaining ”primary” weights in main
memory. Somewhat similarly, Yin et al. (2024) manages
KV cache in chunks to further optimize LLM contextual
memory management. Therefore, previous works have not
explored compressing the model itself prior to deployment
in edge devices. Other hardware-aware (Dao et al., 2022;
Sun et al., 2024; Zhang et al., 2024; Ye et al., 2024b) and

2

system (Kwon et al., 2023; Xiao et al., 2023b; Ye et al.,
2024a) optimizations are also orthogonal to our proposed
method to further optmize deployment-time throughput.

3. TINYAGENT

Our deployment workflow begins by compressing the LLM
model by executing quantization-aware TrimLLM tech-
niques and AWQ sequentially on the cloud using GPUs.
Once the model is compressed, we are ready to deploy our
finalized and fine-tuned LLM as our LLM agents in applica-
tions like the security camera monitoring at the edge.

The proposed model compression technique first determines
the minimum number of layers to drop from a pre-trained
model like LLaMA3 (Meta, 2024). After identifying the
target device’s memory limitations, TinyAgent uses Trim-
LLM’s techniques to iteratively compress the model until
two criteria are met: (1) model size is reduced to smaller
than the memory constraint, (2) a noticeable performance
degradation (> 1%) is detected. Therefore, TinyAgent’s
design is well-suited for edge devices due to its ability to
customize models for specific knowledge domain uses.

To meet the two criteria, the next step is to use a calibra-
tion dataset and an activation-based metric to efficiently
compute the importance score for each layer and elimi-
nate non-essential layers as TrimLLM does (appendix A.1).
TinyAgent makes the best use of TrimLLM’s adaptability
by taking a target device’s hardware memory constraint into
account during model adaptation (appendix A.2). The target
device’s memory constraint can therefore be translated into
a model size that the LLM will be compressed into.

For the second part of model compression, we specifically
chose AWQ quantization as our PTQ technique, because
it enables effective model compression without significant
accuracy loss. We sequentially apply AWQ quantization
after TrimLLM, not only to further minimize model size but,
more importantly, because TrimLLM performs fine-tuning
during its compression process, which involves updates to
the model’s weights. This sequential order of execution will
avoid inherent limitations of low-precision general matrix
multiplication (GEMM) in INT4 after PTQ, which will
impede the efficacy of TrimLLM and lead to significant
performance degradation.

However, when applying AWQ with distribution-shifted
calibration dataset, a TrimLLM trained with the above tech-
niques could result in overflow problem when grid searching
the scaling factor. Upon further examination, we find that
fine-tuning on the initial and last few layers can exacerbate
the well-observed outlier phenomenon in LLM quantiza-
tion (Dettmers et al., 2022; Xiao et al., 2023a). The initial
and last few layers are often times retained during Trim-
LLM’s training process and incur even larger outliers when

Figure 2. Number of NaNs per layer (up) and activation’s Forbe-
nius norm per layer (bottom) when applying AWQ to TrimLLM.
We see a strong correlation between the ”size” of each activation
tensor measured by Forbenius norm and the number of NaN occurs.
In TrimLLM, outliers emerging from activation tensors with lager
”sizes”are will be pushed to larger values.

middle layers are dropped. This effectively makes the al-
ready significant outlier problem even worse (Figure 2) and
TrimLLM more dataset-sensitive during the quantization
phase.

To address this, we propose a simple yet effective solution
by freezing the initial and later layers during TrimLLM
training to prevent activation outliers from becoming ex-
cessively large. By adapting this technique, NaN values
disappear when applying AWQ to a model fine-tuned on
MedMCQA (Pal et al., 2022), with PubMedQA (Jin et al.,
2019) as the calibration dataset.

4. Experiments and Results
QA Benchmarks. In this section, we test TinyAgent’s ef-
ficacy when applying AWQ to TrimLLM. The accuracy,
memory consumption, and inference latency of the com-
pressed models are reported in Table 1, considering the
LLaMA-7B model across a variety of benchmarks, includ-
ing: ScienceQA (Johannes Welbl, 2017), MedMCQA (Pal
et al., 2022), and FinanceQA (Bharti, 2023) respectively.

3

Table 1. Performance comparison and inference-time memory usage of LLaMA-7B variants when applying AWQ to TrimLLM on
domain-specific tasks. The numerical values are percentage in accuracy. Throughputs are measured on A100 GPU, NVIDIA Jetson TX2,
Raspberry Pi4 4GB and Pi5 8GB with sequence length 512 and batch size 1. Symbol ’-’ means the same numerical numbers across
different hardware. ’OOM’ refers to out-of-memory error due to limited RAM on the target device. For LLaMA-7B-TINYAGENT, we use
quantization-aware layer dropping with 50% model compression ratio.

models SciQ MedMCQA FinanceQA Hardware Throughput (tokens/s) Final Mem (↓)
LLaMA-7B

w/o training 89.7 22.4 33.6 A100 42.3 16GB (100%)
+ Full-FT 95.6 54.6 45.1 A100 42.3 100%
+ Full-FT - - - Jetson TX2 OOM 100%
+ Full-FT - - - Raspberry Pi5 OOM 100%

+ Full-FT, LLM.int8 93.6 52.0 44.9 A100 29.6 > 50%
+ Full-FT, LLM.int8 - - - Jetson TX2 0.8 > 50%
+ Full-FT, LLM.int8 - - - Raspberry Pi5 8GB < 0.1 > 50%

+ Full-FT, AWQ-int4 93.0 50.7 42.1 A100 115.3 > 25%
+ Full-FT, AWQ-int4 - - - Jetson TX2 1.6 > 25%
+ Full-FT, AWQ-int4 - - - Raspberry Pi5 8GB 0.9 > 25%

LLaMA-7B-TINYAGENT (50%)

w/o PT compression 94.2 53.1 43.6 A100 103.1 ≥ 50%
w/o PT compression - - - Jetson TX2 5.7 ≥ 50%
w/o PT compression - - - Raspberry Pi5 8GB 2.5 ≥ 50%
w/o PT compression - - - Raspberry Pi4 4GB OOM ≥ 50%

+ AWQ-int4 91.5 49.2 40.5 A100 188.7 > 13%
+ AWQ-int4 - - - Jetson TX2 6.7 > 13%
+ AWQ-int4 - - - Raspberry Pi5 8GB 3.1 > 13%
+ AWQ-int4 - - - Raspberry Pi4 4GB 1.4 > 13%

The results show that TinyAgent not only enables LLMs
to be deployed on edge devices including NVIDIA Jetson
TX2, Raspberry Pi4 4GB, Pi5 8GB, with as much as 8×
model compression ratio in terms of memory consumption,
but also consistently achieve up to 7.1× inference speedup
on Jetson TX2 and 4.5× speedup on A100 in compari-
son with the other SOTA LLM compression baselines with
< 1% loss in accuracy across many datasets. This perfor-
mance improvement is becuase TinyAgent accelerates by
reducing model depth, saving significant number of MACs,
whereas many SOTA model compression techniques includ-
ing LLM.int8 (Dettmers et al., 2022) and AWQ (Lin et al.,
2023) rely heavily on specialized low-precision computa-
tional units for acceleration.

LLM Agent Application. In the video-monitoring applica-
tion, the streaming rate and memory usage were analyzed
with and without LLM agents. In conventional rule-based
memory management, the streaming rate decreases step-
wise as memory thresholds are crossed (Fig. 4a). The avail-
able flash and host memory (Fig. 4b) and external disk
memory (Fig. 4c) deplete rapidly. With LLM agents, the
streaming rate adjusts dynamically based on available mem-
ory, checking and adjusting every 200 seconds (Fig. 4d),
resulting in smoother memory management (Figs. 4e, f).
This simulation shows that without LLM agents, the sys-
tem runs out of memory in 2000 seconds, while with LLM

agents, the system extends the operation time to 4600 sec-
onds.

Conclusion
In this paper, we present a novel framework for deploying
large language model (LLM) agents on edge devices by
integrating TrimLLM’s layer-dropping and AWQ. Our key
contribution involves compressing the model in a hardware-
aware way by taking a target device’s hardware memory con-
straints into account during model adaptation. During post-
training quantization, we identified and addressed the layer-
dropping exacerbation problem in a quantization-aware way
by freezing the initial and later layers, preventing exces-
sive activation outliers and preserving model performance.
Our experimental results show our deployment workflow
achieves significant memory saving and inference speedup
in LLM inference across various edge devices. By achiev-
ing such results, we demonstrated the effectiveness of our
framework in a LLM-agent powered video-monitoring mem-
ory management application across a variety of resource-
constrained hardware platforms showcasing the practicality
and effectiveness of LLM agents in real-time, resource-
constrained environments.

4

Impact Statement
The implementation of LLM agents in edge devices facil-
itates more sophisticated and immediate data processing.
This can lead to improved responsiveness and accuracy in
critical applications such as medical diagnostics and emer-
gency response systems, where rapid decision-making is
essential.

By reducing the memory and computing requirements, this
research extends the benefits of advanced AI technologies to
regions and sectors where access to cutting-edge hardware
is limited. This democratization of technology can help
bridge the digital divide, providing more equitable access
to AI benefits. Ultimately, our contribution will narrow the
divide for deploying edge intelligence in large-scale and
real-world IoT applications.

References
Aghajanyan, A., Zettlemoyer, L., and Gupta, S. Intrin-

sic dimensionality explains the effectiveness of language
model fine-tuning. arXiv preprint arXiv:2012.13255,
2020.

Ashkboos, S., Croci, M. L., do Nascimento, M. G., Hoefler,
T., and Hensman, J. Slicegpt: Compress large language
models by deleting rows and columns, 2024.

Bharti, G. gbharti/finance-alpaca, 2023. URL
https://huggingface.co/datasets/
gbharti/finance-alpaca. Accessed: 2023-
09-20.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dhar, N., Deng, B., Lo, D., Wu, X., Zhao, L., and Suo,
K. An empirical analysis and resource footprint study
of deploying large language models on edge devices. In
Proceedings of the 2024 ACM Southeast Conference on
ZZZ, pp. 69–76, 2024.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. 2023.

Gromov, A., Tirumala, K., Shapourian, H., Glorioso, P., and
Roberts, D. A. The unreasonable ineffectiveness of the
deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Hu, L., Kailkhura, B., Rosing, T., and Zhang, H. Trim-
llm: Progressive layer dropping for domain-specific llms.
2024.

Jin, Q., Dhingra, B., Liu, Z., Cohen, W. W., and Lu, X.
Pubmedqa: A dataset for biomedical research question
answering. arXiv preprint arXiv:1909.06146, 2019.

Johannes Welbl, Nelson F. Liu, M. G. Crowdsourcing mul-
tiple choice science questions. 2017.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. arXiv preprint
arXiv:2305.11627, 2023.

Mei, K., Li, Z., Xu, S., Ye, R., Ge, Y., and Zhang, Y. Aios:
Llm agent operating system. arXiv e-prints, pp. arXiv–
2403, 2024.

Men, X., Xu, M., Zhang, Q., Wang, B., Lin, H., Lu, Y., Han,
X., and Chen, W. Shortgpt: Layers in large language mod-
els are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

Meta. Introducing meta llama 3: The most capable openly
available llm to date, May 2024. URL https://ai.
meta.com/blog/meta-llama-3/.

Pal, A., Umapathi, L. K., and Sankarasubbu, M. Medmcqa:
A large-scale multi-subject multi-choice dataset for medi-
cal domain question answering. In Conference on Health,
Inference, and Learning, pp. 248–260. PMLR, 2022.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J.,
Liu, Z., and Sun, M. Communicative agents for software
development. arXiv preprint arXiv:2307.07924, 2023.

5

https://huggingface.co/datasets/gbharti/finance-alpaca
https://huggingface.co/datasets/gbharti/finance-alpaca
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

Sun, H., Chen, Z., Yang, X., Tian, Y., and Chen, B. Tri-
force: Lossless acceleration of long sequence generation
with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Syed, A., Guo, P. H., and Sundarapandiyan, V. Prune and
tune: Improving efficient pruning techniques for massive
language models. 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,
Chen, Z., Tang, J., Chen, X., Lin, Y., et al. A survey on
large language model based autonomous agents. Frontiers
of Computer Science, 18(6):1–26, 2024.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Wu, J., Antonova, R., Kan, A., Lepert, M., Zeng, A., Song,
S., Bohg, J., Rusinkiewicz, S., and Funkhouser, T. Tidy-
bot: Personalized robot assistance with large language
models. Autonomous Robots, 47(8):1087–1102, 2023.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. arXiv preprint arXiv:2310.06694, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023a.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023b.

Yang, H., Yue, S., and He, Y. Auto-gpt for online decision
making: Benchmarks and additional opinions. arXiv
preprint arXiv:2306.02224, 2023.

Ye, Z., Chen, L., Lai, R., Zhao, Y., Zheng, S., Shao, J., Hou,
B., Jin, H., Zuo, Y., Yin, L., Chen, T., and Ceze, L. Ac-
celerating self-attentions for llm serving with flashinfer,
February 2024a. URL https://flashinfer.ai/
2024/02/02/introduce-flashinfer.html.

Ye, Z., Lai, R., Lu, B.-R., Lin, C.-Y., Zheng, S., Chen,
L., Chen, T., and Ceze, L. Cascade inference: Mem-
ory bandwidth efficient shared prefix batch decoding,
February 2024b. URL https://flashinfer.ai/
2024/02/02/cascade-inference.html.

Yi, R., Guo, L., Wei, S., Zhou, A., Wang, S., and Xu,
M. Edgemoe: Fast on-device inference of moe-based
large language models. arXiv preprint arXiv:2308.14352,
2023.

Yin, W., Xu, M., Li, Y., and Liu, X. Llm as a system service
on mobile devices. arXiv preprint arXiv:2403.11805,
2024.

Zhang, M. and He, Y. Accelerating training of transformer-
based language models with progressive layer dropping.
Advances in Neural Information Processing Systems, 33:
14011–14023, 2020.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36, 2024.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

6

https://flashinfer.ai/2024/02/02/introduce-flashinfer.html
https://flashinfer.ai/2024/02/02/introduce-flashinfer.html
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://flashinfer.ai/2024/02/02/cascade-inference.html

A. Appendix
A.1. TrimLLM Layer-wise Importance Score

Sensitivity-based Scoring. The first method is a performance scanning based on a small calibration dataset. Before each
time a layer is to be dropped, a small subset of the fine-tuning dataset’s validation set is sampled as the calibration dataset.
For each layer, its importance score is the reciprocal of the model’s performance after dropping the layer. Calibration
scanning gives the importance score of any layer i and the expression is presented in Equation 1, where ai ∈ [0, 100] is
the accuracy of the model after dropping the i-th layer and δ is a small positive number such that 100

1+δ2 is the maximum
importance score when ai = 0.

si,scan =
100− ai

(1 + δ2) + (1 + δ) ai
(1)

Activation-based Scoring. The second method is to make activation-norm comparison on different layers’ activations.
Recent studies (Dettmers et al., 2022; Xiao et al., 2023a) have shown preserving information carried by activations is critical
to model’s performance when it comes to model compression techniques.

In our work, our goal is to only preserve activations that are meaningful to the knowledge domain of interest. We can drop
the rest to trade the model’s generality for efficiency and specialization. A new metric is therefore needed to quantify the
importance of an activation.

Our assumptions consist of two parts: (1) there exists a feature space X and a corresponding low intrinsic dimension (Agha-
janyan et al., 2020). (2) activation tensors are dense with mostly small-magnitude elements and a few large-magnitude
outliers based on widely recognized observations (Dettmers et al., 2022; Xiao et al., 2023a).

Among common matrix norms including the ℓ2,1 norm, the Forbenius norm and the nuclear norm, at the same numerical
value, nuclear norm should be the best metrics for directly measuring the rank of a matrix which is defined as the sum of
the singular values of the matrix: ||W ||∗ =

∑
i σi. The nuclear norm is a convex surrogate for the rank function and is

often used in rank minimization problems. However, The nuclear norm introduces extra computational overhead because
it requires the computation of the SVD of the matrix. Computing the SVD is computationally intensive, especially for
large matrices, as it has a complexity of O(min(nm2,mn2)) for m× n matrix. As a result, we use the Forbenius norm to
approximate the nuclear norm. By expanding the Forbenius norm with SVD, it follows: ||W ||F =

√∑
i σ

2
i .

Therefore, we choose the Forbenius norm to identify activations with high-rank representations and sparse domain-specific
knowledge. Dropping the one with highest norm is analogous to Forbenius norm minimization. Let {∥xj∥F } be the set of
Forbenius norm for all remaining layers in the model f (·). This activation-norm importance score can be expressed in the
form of Equation 2 such that si,norm ∈ (0, 100].

si,norm =
100min {∥xj∥F }

∥xi∥F
(2)

A.2. TINYAGENT Adaptability

On the flexibility side, as we can see from Figure 3, quantization and pruning offers a very limited set of operating points
corresponding to each of the bit precision scheme for each model. Since sparsity ratio in pruning can not be easily translated
into memory saving during inference, pruning oftentimes gives even fewer operating points in the trade-off space. In contrast,
the Pareto frontiers of TrimLLM span a wide range of operating points. As a result, TINYAGENT is more flexible and is
capable of fitting a model to a wide spectrum of hardware.

A.3. Benchmarking Baseline Inference Speed

From table 2, it can be seen that LLM inference speed with LLaMA-2-7B is very slow across different edge devices after
INT4 quantization. TINYAGENT offers a better solution by further compressing LLM agents when deploying them at the
edge with much higher throughtput (Table 2) and saves more space for memory-hungry application like the security camera
monitoring one elaborated in Section 4.

7

0.10.20.30.40.50.60.70.80.91.0
LLaMA-7B Remaining Model Size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Acc. on SciQ vs. Model Size Trade-off Space

Ours
full-FT performance
W8A8 quantization (LLM.int8)
W4A16 quantization (AWQ)
W4A16 quantization (GPTQ)
Sparse-GPT (2:4 sparse)
Wanda (2:4 sparse)

0.10.20.30.40.50.60.70.80.91.0
LLaMA-7B Remaining Model Size

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Acc. on MedMCQA vs. Model Size Trade-off Space

Ours
full-FT performance
W8A8 quantization (LLM.int8)
W4A16 quantization (AWQ)
W4A16 quantization (GPTQ)
Sparse-GPT (2:4 sparse)
Wanda (2:4 sparse)

RTX 3060: 12GB Pi5, TX2: 8GB

Figure 3. The Parento Frontier of LLaMA-7B-TINYAGENT on SciQ and MedMCQA. TINYAGENT has a much wider spectrum of
operating points to fit the model into different hardware with competitive performance. The layer dropping strategy employed is the best
strategy reported in TrimLLM.

Table 2. Inference performance of executing LLaMA-2 7B with INT4 quantization on different edge devices. Raspberry Pi 4B results are
referenced from Yi et al. (2023).

Devices Performance (Tokens/Second)
Raspberry Pi 4B 1GB 0.01
Raspberry Pi 4B 2GB 0.01
Raspberry Pi 4B 8GB 0.11
Raspberry Pi 5 8GB 0.28

A.4. TinyAgent Powered Security Camera Memory Management System

Comparisons between TinyAgent powered security camera memory management system and a rule-based system is shown
in Figure 4, where we see TinyAgent can adjust video streaming rate much more responsively to system memory usage,
allowing the application to run much longer than the rule-based system.

Figure 4. Video-monitoring Memory Management Performance

FPS Adaptation with Multiple Concurrent Applications. In practice, systems often run multiple applications simultane-

8

ously, making host memory availability unpredictable at times. Using LLM agents allows the video-monitoring application
to adapt the streaming rate in real-time based on fluctuating memory conditions. The equation used for dynamic streaming
rate adjustment is:

streaming rate(t) = max

(
a · main memory(t) + b · external memory(t)

c
,min rate

)
Here, main memory(t) is the available main memory at time t, which can be analyzed by LLM agents to make real-time
decisions. However, it requires intelligence to extract and interpret this information, especially when other applications are
running concurrently.

9

