
MONAQ: Multi-Objective Neural Architecture Querying for Time-Series
Analysis on Resource-Constrained Devices

Anonymous ACL submission

Abstract001

The growing use of smartphones and IoT de-002
vices necessitates efficient time-series analy-003
sis on resource-constrained hardware, which004
is critical for sensing applications such as hu-005
man activity recognition and air quality predic-006
tion. Recent efforts in hardware-aware neural007
architecture search (NAS) automate architec-008
ture discovery for specific platforms; however,009
none focus on general time-series analysis with010
edge deployment. Leveraging the problem-011
solving and reasoning capabilities of large lan-012
guage models (LLM), we propose MONAQ, a013
novel framework that reformulates NAS into014
Multi-Objective Neural Architecture Querying015
tasks. MONAQ is equipped with multimodal016
query generation for processing multimodal017
time-series inputs and hardware constraints,018
alongside an LLM agent-based multi-objective019
search to achieve deployment-ready models020
via code generation. By integrating numerical021
data, time-series images, and textual descrip-022
tions, MONAQ improves an LLM’s understand-023
ing of time-series data. Experiments on fifteen024
datasets demonstrate that MONAQ-discovered025
models outperform both handcrafted models026
and NAS baselines while being more efficient.027

1 Introduction028

The widespread adoption of smartphones, IoT029

devices, and wearables has intensified the de-030

mand for efficient time-series analysis on resource-031

constrained devices, essential for smart manu-032

facturing, personalized healthcare (Samanta et al.,033

2024), and so on. These devices, often based on034

microcontroller units (MCU), are rapidly prolifer-035

ating, with over 250B units worldwide (Lin et al.,036

2020, 2021). Deep learning on such affordable,037

energy-efficient hardware can democratize AI, en-038

abling broad accessibility across diverse sectors.039

However, tiny deep learning faces unique chal-040

lenges due to stringent memory constraints. Typi-041

cal MCUs, with less than 512kB SRAM, and even042

higher-end devices like Raspberry Pi 4 struggle to 043

run conventional deep neural networks (Lin et al., 044

2022). Efficient AI inference demands innovative 045

methods to navigate these limitations. Moreover, 046

designing optimal network architectures and se- 047

lecting hyperparameters for such devices is time- 048

consuming and requires significant manual effort. 049

Hardware-aware neural architecture search (HW- 050

NAS) has emerged to automate this process, tailor- 051

ing architectures to specific tasks and hardware (Li 052

et al., 2021; Benmeziane et al., 2021a). 053

While NAS has advanced, it predominantly fo- 054

cuses on computer vision tasks and lacks generaliz- 055

ability for time-series analysis (White et al., 2023). 056

Time-series applications span classification (e.g., 057

human activity recognition) (Zhou et al., 2024c), 058

regression (e.g., environmental monitoring) (Tan 059

et al., 2021), and anomaly detection (e.g., industrial 060

systems) (Nam et al., 2023). Existing NAS frame- 061

works often target narrow use cases and fail to oper- 062

ate effectively within edge device constraints (Deng 063

et al., 2022; Trirat and Lee, 2024; Saha et al., 2024). 064

Furthermore, current HW-NAS frameworks are 065

frustrated by fixed search spaces and complex inter- 066

faces, making them less generalizable across tasks 067

and inaccessible to non-experts. Large language 068

models (LLM)-based NAS frameworks (Tornede 069

et al., 2024) aim to address these issues but still 070

rely on predefined search spaces and require user- 071

provided initial architectures, limiting flexibility 072

and usability (Chen et al., 2023; Dong et al., 2023; 073

Jawahar et al., 2024; Nasir et al., 2024). 074

In contrast, to eliminate these undesirable 075

user burdens, we reformulate the NAS problem 076

as a multi-objective neural architecture query- 077

ing (NAQ) problem by leveraging LLMs’ advance- 078

ments in reasoning and problem-solving. Unlike 079

existing LLM-based NAS frameworks (Figure 1a), 080

which require users to define a search space or an 081

initial set of architectures, NAQ only requires natu- 082

ral language queries from users, decoupling them 083

1

User-Defined
Search Space

LLM

Data
Description

task
descriptions

User

feedback
(experiment logs)

Run Experiments

Deployable
Model

Time
Series

(a) Existing LLM-based NAS.

task
descriptions

User

Data
Description

Time
Series

Time Series
Images

Multi-Agent
LLMs

Deployable
Model

MONAQ

Multimodal Query
Generation

Multimodal Query

(b) Our MONAQ.

Figure 1: Comparison between (a) existing LLM-based NAS and (b) our proposed MONAQ framework.

from the architecture search process. This approach084

reduces reliance on human expertise while enhanc-085

ing accessibility and flexibility in the model design086

process. It allows users to focus on addressing the087

actual problems in their datasets, leaving the com-088

plex search configurations to the LLM. However,089

achieving efficient NAQ poses two key challenges.090

(1) How to find high-performing architectures091

without user-defined search spaces? Without user-092

defined configurations, enhancing the capability093

of LLMs to directly design high-performing net-094

work architectures becomes crucial. Recent stud-095

ies (Hong et al., 2024; Xi et al., 2025) suggest096

that multi-agent LLMs improve problem-solving097

through collaboration among agents specialized in098

different tasks, while mitigating limitations found099

in single-agent LLMs, such as bias and halluci-100

nation. Building on these insights, we address101

this challenge by introducing an LLM agent-based102

multi-objective search module (Figure 1b). How-103

ever, having multiple agents interact with each104

other can incur computational overhead. There-105

fore, instead of following the traditional setup in106

LLM-based NAS, which searches for architectures107

through runtime execution feedback (Figure 1a)—108

a process that demands significant training time109

and resource consumption—we leverage the pre-110

trained knowledge of LLMs during the evaluation111

step. As a result, this module enables specialized112

LLM agents to autonomously design search spaces113

and evaluate candidate models adaptively based on114

specific hardware constraints, eliminating the need115

for runtime execution. A coding-specialized LLM116

subsequently generates deployable architectures,117

ensuring low search costs and high flexibility.118

(2) How to make LLM agents accurately un-119

derstand time-series data and user requirements?120

Even though communication between agents can121

enhance problem-solving skills, LLMs still have122

inherent limitations in understanding time series.123

Unlike existing methods that rely solely on tex-124

tual descriptions (Figure 1a) , we propose a mul- 125

timodal query generation module that generates 126

multimodal queries (Figure 1b) by leveraging both 127

natural language and raw time series. This module 128

processes input time series and natural language 129

queries, including constraints such as hardware 130

specifications and device names, and outputs multi- 131

modal data with time-series images that represent 132

the original user query from both data and model- 133

ing perspectives. This comprehensive, multimodal 134

approach enables LLMs to better understand the in- 135

put time series and user queries (Kong et al., 2025). 136

By integrating these components, we present 137

MONAQ, the first multi-agent LLM-based NAQ 138

framework with an open-ended search space for 139

time-series analysis on resource-constrained de- 140

vices. Our contributions are as follows. 141

• We propose a novel LLM-based NAQ framework 142

that creates constraint-aware architectures from 143

user queries and datasets, tailored for time-series 144

analysis on resource-constrained devices. 145

• We devise a multimodal query generation module 146

to improve LLM understanding of time series 147

through multi-objective queries with time-series 148

images and introduce a multi-agent LLM module 149

to reduce search costs via training-free search 150

with specialized agents. 151

• Through extensive experiments on on-device 152

time-series analysis, including classification and 153

regression, we show that the models found by 154

MONAQ outperform the second-best baseline by 155

at least 8% on classification and 3% on regression 156

tasks with significantly smaller, faster models. 157

2 Related Work 158

On-Device Time-Series Analysis Time-series 159

analysis on resource-constrained devices, such as 160

IoT and wearables, has gained importance due 161

to the need for real-time processing with lim- 162

ited computational and energy resources (Trirat 163

et al., 2024b). Common approaches include CNNs, 164

2

RNNs (e.g., LSTMs), and Transformers (Kara165

et al., 2024). While CNNs excel at extracting local166

context, they struggle with long-term dependen-167

cies (Hussein et al., 2024). RNNs and LSTMs168

address these drawbacks but are hindered by se-169

quential processing, increasing latency. Transform-170

ers (Wen et al., 2023) enable parallel processing171

and capture long-term dependencies but are often172

unsuitable for edge devices due to high computa-173

tional demands. Lightweight models like attention174

condensers, CNN-RNN hybrids (e.g., DeepCon-175

vLSTM (Ordóñez and Roggen, 2016)), and low-176

resource architectures like TinyHAR (Zhou et al.,177

2022) and MLP-HAR (Zhou et al., 2024c) balance178

performance with resource efficiency.179

Hardware-Aware NAS (HW-NAS) Despite180

these advancements, HW-NAS for time-series data181

remains largely underexplored. MicroNAS (King182

et al., 2023) introduces time-series-specific183

search spaces for microcontrollers, while TinyT-184

NAS (Saha et al., 2024) supports efficient CPU185

operations. However, these methods often rely on186

fixed search spaces, requiring significant expertise.187

Given these challenges, there is a growing need for188

NAS frameworks with natural language interfaces,189

allowing users to describe their desired architec-190

ture in plain language rather than through direct191

programming (Tornede et al., 2024). Leveraging192

LLMs in this context can make HW-NAS more193

user-friendly and adaptable across a wider range194

of applications, leading to democratize NAS pro-195

cesses for better accessibility and adaptability.196

LLMs for NAS LLMs have shown potential in197

automating NAS by leveraging pre-trained knowl-198

edge to generate diverse, high-performing archi-199

tectures (Zheng et al., 2023; Dong et al., 2023;200

Wang et al., 2023; Jawahar et al., 2024; Nasir et al.,201

2024; Wang et al., 2024a; Zhou et al., 2024b; Chen202

et al., 2023; Trirat et al., 2024a). However, cur-203

rent LLM-based NAS frameworks face challenges204

with time-series data due to their limited under-205

standing of raw numerical inputs (Merrill et al.,206

2024) and their reliance on runtime feedback and207

user-defined search spaces, which are often time-208

consuming and require intricate configurations. To209

address these issues, we introduce neural architec-210

ture querying, enabling users to specify require-211

ments directly through natural language prompts212

for a given time-series dataset. Our approach re-213

moves the need for complex configurations and214

simplifies the architecture search process.215

3 MONAQ: Multimodal NAQ with LLMs 216

3.1 Problem Formulation 217

Let X denote a d-variate time series with obser- 218

vations (x1, . . . ,xT) where xt ∈ Rd and Y de- 219

note target variables. The target variables can be 220

a set of integer values Y = (y1, . . . , yT), yt ∈ Z 221

(e.g., classification) or a set of real values Y = 222

(y1, . . . , yT), yt ∈ R (e.g., regression). Let S be 223

a search space designed by an LLM and M = 224

{Mi}Ci=1 denote a set of C candidate models sam- 225

pled from S. Each model Mi is a set of model 226

configurations, e.g., layer types, number of hid- 227

den units, and activation functions. Then, let E 228

denote an LLM responsible for evaluating each 229

Mi. Finally, given a time series X and user task 230

description with constraints T , we aim to find the 231

model M⋆ that satisfies the constraints in T on both 232

downstream task performance and model complex- 233

ity metrics using the LLM E . 234

Neural Architecture Querying: Given a training 235

time series with its labels {Xtrain,Ytrain} and a nat- 236

ural language task description with constraints T , 237

select the model M⋆ that satisfies all constraints in 238

T . Formally, we solve 239

M⋆ = argmax
M∈M

E(T ,Xtrain,ytrain). (1) 240

Note that the NAQ problem differs from NAS 241

primarily from the user’s perspective—that is, 242

whether the user is part of NAS’s components (e.g., 243

search space and search method). Existing (LLM- 244

based) NAS frameworks require users to define a 245

search space, provide initial architectures, or even 246

describe how to search, either via code or natu- 247

ral language, which demands significant technical 248

expertise. In contrast, NAQ eliminates this require- 249

ment by allowing users to input high-level, natural 250

language task descriptions and constraints based 251

solely on domain- (or data-) specific problems as 252

a query. This reformulation simplifies the process, 253

making architecture discovery accessible to non- 254

experts while maintaining efficiency. Figure 2 il- 255

lustrates the overview of MONAQ. 256

3.2 Multimodal Query Generation 257

In this subsection, we describe how to generate a 258

multimodal query as the input to an LLM. 259

Query Rewriting First, we rewrite the user task 260

description into an organized form, such as a JSON 261

with specific key-value pairs, representing a multi- 262

objective query that encompasses both data and 263

3

task descriptions

User

Time SeriesData
Description

search space

Design Agent Deployable
Model

Time Series
Images

(a) Multimodal Query Generation

Numerical Time Series

Textual Description

Time Series Images
Im

ag
e

G
en

er
at

io
n

Q
ue

ry
 R

ew
rit

in
g

Data Aspects

Hardware Constraints

Inference Latency

Performance Metrics

Modeling Aspects

M
ul

tim
od

al
 Q

ue
ry

(b) LLM Agent-Based Multi-Objective Search

candidate
models

Search Agent

feedback

Evaluation Agent

selected models

Code Agent

Figure 2: Overall procedure of our framework. MONAQ first receives a user prompt and a time series with
descriptions. It then generates time-series images and processes all required information through the multimodal
query generation module (§3.2) to create an organized multimodal query. This query is subsequently shared across
different specialized agents within the LLM agent-based multi-objective search module (§3.3). Once all agents
successfully complete their tasks, the final model is returned to the user.

modeling aspects, thereby making it easier for264

LLMs to understand. This query rewriting pro-265

cess is designed to address potentially ambiguous266

or ill-structured user queries. The full prompt for267

the query rewriting is presented in §C.1.268

Data Aspect Query To enhance the LLM’s un-269

derstanding of time series, given the limited con-270

text window size, we first create a representative271

time series from the training set, as providing all272

time-series samples is both impractical and unnec-273

essarily costly. Specifically, we use one time series274

per class for classification tasks and one time series275

per range for regression tasks. These representa-276

tive time series are then used to construct queries277

for the subsequent search process, serving as input278

queries for multimodal LLMs.279

• Numerical Time Series. As validated by Fons280

et al. (2024), we adopt csv formatting with a281

fixed length for the representative numerical time282

series, as it provides structural information that283

helps LLMs better understand numerical values.284

Specifically, we compute the timestamp-wise av-285

erage of all time series in the training set to gen-286

erate the representative numerical time series.287

• Textual Descriptions. Since time-series val-288

ues alone may not provide sufficient information289

about the dataset’s source or the potential sig-290

nificance of each observation, we provide both291

dataset-level and feature-level descriptions to the292

LLMs. These descriptions help the models cap-293

ture the context related to the application domain294

and the specific setting of the given dataset.295

• Time Series Images. As shown in recent stud-296

ies (Li et al., 2023; Merrill et al., 2024; Chow297

et al., 2024; Zhuang et al., 2024; Cai et al., 2024;298

Liu et al., 2024), LLMs demonstrate a better un-299

derstanding of time series when it is provided in300

the form of images. This is due to the discernible301

trends and seasonal patterns in time-series im-302

Time Series (Entire Training Set)

class "n"

class "s"

class "t"Image
Generation

Figure 3: Examples of representative time series images
containing two-channel ECG signals.

ages, which LLMs may struggle to capture when 303

relying solely on limited numerical values. Fol- 304

lowing Li et al. (2023); Zhuang et al. (2024), we 305

represent each variable as a line chart and stack 306

these charts into a single image. Unlike existing 307

studies, as described earlier, we compute only the 308

timestamp-wise average of all full-length time 309

series to generate an image that represents a sam- 310

ple for each class or label range, along with its 311

standard deviation. This approach reduces costs 312

while preserving the key characteristics of each 313

class or range. Examples of the resulting images 314

from bivariate time series are shown in Figure 3. 315

Using numerical time series, textual descriptions, 316

and time series images, we prompt the LLM to 317

rewrite queries into the JSON format with keys 318

name, description, features, context, and 319

patterns, representing various aspects of the data. 320

Modeling Aspect Query For the modeling as- 321

pect, we ask the LLM to rewrite the user query with 322

a focus on key considerations for building efficient 323

models in resource-constrained environments. 324

• Hardware Constraints. The hardware con- 325

4

task descriptions

User

Time SeriesData
Description

+
Time Series

Images

Q
ue

ry
 R

ew
rit

in
g

+

"I have a dataset of ECG records and want to build a classification model to
categorize ECG signals into three types of atrial fibrillation. The model

should be deployable on wearable devices, such as Fitbit trackers."

{..., 'data_aspects': {'name': 'PhysioNet ECG Dataset',
 'description': 'The dataset consists of two-channel ECG recordings
created from data used in the Computers in Cardiology Challenge 2004.
It includes 5-second segments of atrial fibrillation, with each signal
sampled at 128 samples per second.',
 'features': 'The dataset contains two 1-D ECG signals per instance.
The class labels are: n (non-terminating AF), s (self-terminating AF
after at least one minute), and t (terminating immediately within one
second).',
 'context': 'The dataset was part of an open competition aimed at
developing automated methods for predicting spontaneous termination of
atrial fibrillation.',
 'patterns': "The time series plots show distinct patterns for each
class. Class 'n' shows more prolonged irregularities, class 's' shows
moderate irregularities, and class 't' shows quick
stabilization."}, ... }

{...,
{...},
'model_aspects': {

'name': 'ECG Classification Model',
'hardware_specs': {

'device_name': 'Fitbit Tracker',
'ram': '512000',
'flash': '2000000'

},
'MAC': '1000000',
'parameters': '50000',
'latency': '100',
'performance': 'High accuracy for

classification of AF types'}
}

Figure 4: A complete example of multimodal query generation results, showing data and modeling aspects.

straints can be specified directly by the user or326

through the name of the target device.327

• Inference Latency. Similarly, if the user pro-328

vides specific requirements, we instruct the LLM329

to adhere to them; otherwise, we instruct the330

LLM to rewrite the query to account for possible331

latency based on the hardware constraints.332

• Model Complexity. Likewise, if the user does333

not specify any constraints regarding model size334

or complexity, we instruct the LLM to infer po-335

tential limitations based on hardware constraints.336

The number of parameters corresponds to the337

model size in bytes, representing the FLASH338

memory required to store the model during de-339

ployment. The number of multiply-accumulate340

operations (MACs) or floating-point operations341

per second (FLOPs) must also be considered, as342

they indicate the peak memory (RAM) usage dur-343

ing inference on the target device.344

• Performance Metrics. As a multi-objective345

search, we aim to optimize both task performance346

and efficiency for a target device. Users can ei-347

ther specify the metric(s), such as accuracy or348

root mean squared error, in the query, or the LLM349

can infer them from the downstream task.350

Similar to the data aspect query, we prompt the351

LLM to rewrite queries into a structured JSON352

format with the keys name, hardware_specs, MAC,353

parameters, latency, and performance, which354

represent various aspects of the model design condi-355

tions. Figure 4 shows a complete resulting example356

of the multimodal query generation process.357

3.3 LLM Agent Based Multi-Objective Search358

In this module, we leverage the full potential of359

LLMs through task specialization and collabora-360

tive problem-solving. As multi-agent LLM systems361

decompose complex tasks into manageable compo-362

nents, they enhance both accuracy and reasoning363

capabilities compared to single-agent systems (Guo364

et al., 2024b; Wang et al., 2024b). Through itera-365

tive communication, agents systematically evaluate366

trade-offs, refine architectural designs, and address367

challenges. Specifically, MONAQ harnesses multi-368

agent collaboration to bypass extensive training, 369

capitalizing on LLMs’ reasoning abilities for effi- 370

cient architecture evaluation and selection. 371

Below, we provide brief descriptions of the 372

agents built for this module. Full prompts of agent 373

specifications are presented in §C.2. 374

Design Agent (Adesign) is responsible for con- 375

structing and refining the potential search space 376

based on the extracted multimodal query. 377

Search Agent (Asearch) is instructed to perform 378

tasks related to architecture search and model de- 379

sign. The resulting designs produced by this agent 380

are sent to the Evaluation Agent for evaluation and 381

verification against the given multimodal query. 382

Evaluation Agent (Aeval) is an LLM prompted for 383

doing performance evaluation tasks (E in Eq. (1)) 384

related to expected model performance, model pro- 385

filing, and candidate ranking (when multiple mod- 386

els are suggested by Asearch). 387

Code Agent (Acode) is an LLM prompted for im- 388

plementing the solution verified by the Evaluation 389

Agents. The Code Agent is responsible for writ- 390

ing effective code for actual runtime execution and 391

returning the deployable model to the user. 392

Finally, as presented in Figure 2b, after obtaining 393

the multimodal query from the multimodal query 394

generation stage, Adesign takes the organized mul- 395

timodal query as its input and designs the search 396

space S for Asearch. Asearch then generates (a set) 397

of candidate models (M in Eq. (1)) to be evalu- 398

ated by Aeval. If the suggested candidates pass the 399

evaluation, based on the given constraints T , the se- 400

lected network is forwarded to Acode, which writes 401

the code to produce a deployable model for the 402

user. Otherwise, MONAQ repeats the process by 403

informing Asearch with feedback from Aeval un- 404

til the search budget is exhausted or a satisfactory 405

model M⋆ is found. 406

4 Experiments 407

To verify the effectiveness of MONAQ, we con- 408

duct extensive experiments on two main on-device 409

analysis tasks: classification and regression. Addi- 410

tionally, we perform ablation and hyperparameter 411

5

MLP

LSTM

CNN

TCN

D-CNN
DS-CNN

ConvLSTM

TENet(6)

Grid Search Random Search

TinyTNAS

GPT-4o-mini

GPT-4o

MONAQ (Ours)

0.4

0.5

0.6

0.7

0.8

-500 1500 3500 5500 7500

A
cc

u
ra

cy

Latency (ms)

Model Size

500kB
1000kB
2000kB

Figure 5: Performance comparison of our MONAQ and
the baselines in average accuracy, inference latency, and
model complexity (size) for classification tasks.

studies. The source code is available at https:412

//anonymous.4open.science/r/MONAQ.413

4.1 Setup414

Tasks and Datasets As summarized in Table 3,415

we select ten datasets for two downstream tasks416

commonly used in on-device time-series analy-417

sis, including classification and regression. These418

datasets are publicly available and represent vari-419

ous real-world applications, including healthcare,420

wearable devices, and environmental IoTs. For421

each task, we prepare a set of natural language422

task descriptions (see Table 4) as the input to LLM-423

based methods to represent user requirements along424

with a skeleton script (see §B.1).425

Evaluation Metrics In terms of model perfor-426

mance, for the classification tasks, we adopt the427

accuracy metric, while for the regression tasks, we428

use the root mean squared error (RMSE) metric.429

For model complexity, we measure model size (i.e.,430

FLASH storage size), peak memory usage during431

inference (i.e., RAM), the number of MAC op-432

erations, and inference latency using the MLTK433

library1 as suggested by Saha et al. (2024). Model434

complexity results are based on a deterministic sim-435

ulation on an EFR32xG24 at 78MHz with 1536kB436

of FLASH and 256kB of RAM.437

Comparison Baselines As we address the novel438

problem of NAQ for time-series analysis on439

resource-constrained devices, no existing baselines440

are available for direct comparison. Thus, we441

compare MONAQ against manually designed mod-442

els based on TFLite-supported operations: MLP,443

LSTM, and CNN; hand-crafted lightweight mod-444

els: temporal convolutional network (Bai et al.,445

2018) (TCN), depthwise convolution (D-CNN),446

1https://siliconlabs.github.io/mltk

20

50

100

MLP
LSTM

CNN

TCN

D-CNN

DS-CNN

ConvLSTM

TENet(6)

Grid Search
Random Search

TinyTNAS
GPT-4o-mini

GPT-4o

MONAQ (Ours)
0

10

20

30

40

50

60

70

-500 500 1500 2500 3500

R
M

SE

Latency (ms)

Model Size

20kB
50kB

100kB

Figure 6: Performance comparison of our MONAQ and
the baselines in terms of average RMSE, inference la-
tency, and model complexity (size) for regression tasks.

depthwise separable convolution (Zhang et al., 447

2017) (DS-CNN), convolutional LSTM (Ordóñez 448

and Roggen, 2016) (ConvLSTM), and 6-layer 449

TENet (Li et al., 2020) (TENet(6)); state-of-the- 450

art HW-NAS for time series: TinyTNAS (Saha 451

et al., 2024); traditional NAS methods: grid search 452

and random search (Lindauer and Hutter, 2020) 453

in TinyTNAS’s search space; and general-purpose 454

LLMs: GPT-4o-mini and GPT-4o (Achiam et al., 455

2023) with zero-shot prompting (see §B.2). 456

Implementation Details Due to the need 457

for complex problem-solving and reasoning 458

skills, unless stated otherwise, we use GPT- 459

4o (gpt-4o-2024-08-06) as the backbone model 460

for all agents and LLM-based baselines to ensure 461

an impartial performance evaluation. All exper- 462

iments are conducted on an Ubuntu 20.04 LTS 463

server equipped with an Intel(R) Xeon(R) Gold 464

6326 CPU @ 2.90GHz. To execute the generated 465

models, we use the same environment provided by 466

Guo et al. (2024a), which includes all necessary 467

libraries in the skeleton scripts. Finally, all models 468

are converted and quantized using TFLite Micro 469

before calculating the model complexity metrics. 470

4.2 Main Results 471

Overall As in Figures 5 and 6, the models found 472

by our proposed MONAQ framework, on average, 473

significantly outperform baselines across multiple 474

benchmarks. The center of each circle indicates 475

downstream task performance and latency, while its 476

diameter indicates model size. Compared to mod- 477

els with similar performance to MONAQ (such as 478

CNNs and GPT-4o), the models found by MONAQ 479

exhibit significantly greater efficiency in terms of 480

model complexity. These findings demonstrate that 481

MONAQ achieves a better balance between down- 482

stream task performance and model complexity. 483

6

https://anonymous.4open.science/r/MONAQ
https://anonymous.4open.science/r/MONAQ
https://anonymous.4open.science/r/MONAQ
https://siliconlabs.github.io/mltk

Classification The full results in Table 5 (Ap-484

pendix) demonstrate that the models discovered by485

MONAQ achieve improvements over the baselines486

ranging from 9.1% to 72.1% in classification tasks,487

outperforming strong baselines, such as TinyTNAS,488

GPT-4o, and CNNs. In terms of model complexity,489

MONAQ significantly reduces memory consump-490

tion across tasks compared to DS-CNN and TENet,491

while also lowering computational costs (MAC)492

and achieving competitive latency on average. This493

result highlights its efficiency and effectiveness494

across different datasets.495

Regression Similarly, Table 6 (Appendix) shows496

that the models discovered by MONAQ achieve497

an error reduction of 6.3–83.2% compared to the498

baselines on regression tasks. On average, MONAQ499

outperforms all other methods, including state-of-500

the-art approaches, e.g., TinyTNAS, TENet, and501

D-CNN. Besides, MONAQ significantly reduces502

computational costs, while maintaining accuracy503

and offering competitive latency across datasets.504

Irregular Time Series To evaluate MONAQ’s505

robustness on irregular and noisy time series com-506

mon in real-world settings, we test it on five more507

datasets. As shown in Table 7 (Appendix), MONAQ508

consistently achieves strong performance in both509

classification (average accuracy of 0.916) and re-510

gression (average RMSE of 102.409) tasks, while511

also being highly efficient. It uses significantly less512

RAM, energy, and latency than several baselines.513

4.3 Ablation Studies514

To understand the contribution of each component,515

we conduct ablation studies by removing critical el-516

ements proposed in MONAQ. Tables 1 and 2 show517

the downstream performance and model complex-518

ity across different configurations.519

Query Rewriting (Table 1) Removing the query520

rewriting module results in a significant drop in521

classification accuracy (from 0.746 to 0.651) and522

an increase in regression RMSE (from 9.902 to523

11.994), indicating its critical role in enhancing524

predictive performance. Although this variant re-525

duces latency and memory usage, the performance526

loss confirms that query rewriting is vital for main-527

taining output quality.528

Agent Contributions (Table 1) The ablation of529

individual agents reveals their distinct roles. Ex-530

cluding Adesign leads to the higher latency and531

FLASH usage, while removing Aeval and Asearch532

Variations Classification Regression

Latency (ms) Accuracy FLASH (kB) Latency (ms) RMSE FLASH (kB)

MONAQ 127.260 0.746 257.742 24.729 9.902 10.582

w/o Query Rewriting 206.871 0.651 17.186 14.623 11.994 10.155

w/o Adesign 863.358 0.647 518.762 95.654 13.512 33.243
w/o Aeval 540.411 0.641 4775.661 26.335 12.783 109.627
w/o Aeval & Asearch 601.313 0.643 5907.363 188.123 11.261 665.110
Only Acode 579.876 0.612 4158.205 21.530 12.274 99.638

Table 1: Ablation study results on query rewriting and
various agent combinations.

together results in both degraded accuracy and the 533

largest model size. The baseline variant using only 534

Acode performs worst across most metrics, with 535

accuracy dropping to 0.612 and RMSE rising to 536

12.274. Despite low latency, its inefficiency in 537

memory usage and poor predictive quality empha- 538

size the necessity of agent collaboration. 539

Multimodal Query Generation (Table 2) Com- 540

bining multiple query modalities improves perfor- 541

mance across downstream tasks. For classification 542

tasks, accuracy increases as more modalities are 543

included. For instance, in the single-agent setup, 544

accuracy ranges from 0.628 to 0.679, depending 545

on the modality combination. In regression tasks, 546

RMSE decreases from 13.944 to 12.681 as query 547

modalities expand. While multimodal inputs boost 548

performance, they introduce higher latency and 549

FLASH usage, especially in the single-agent setup. 550

Multi-Agent Based Search (Table 2) The multi- 551

agent architecture significantly outperforms the 552

single-agent model across all metrics. In classifi- 553

cation tasks, interaction between agents (i.e., feed- 554

back) dramatically leads to the reduction in infer- 555

ence latency (e.g., 519ms in the single-agent model 556

vs. 149ms in the multi-agent model), while accu- 557

racy improves due to the combination of modalities. 558

The accuracy reaches 0.746, surpassing the single- 559

agent model’s peak value of 0.679. FLASH usage 560

decreases with multi-agent search, even for com- 561

plex queries. For regression tasks, the multi-agent 562

search achieves superior accuracy, with RMSE 563

values as low as 9.902 compared to the single- 564

agent model’s range of 12.562–13.944. Latency 565

and FLASH usage are also significantly reduced. 566

Consequently, multi-agent search not only reduces 567

latency and memory usage but also enhances down- 568

stream performance. 569

Overall, we notice that multimodal query gener- 570

ation improves accuracy but increases complexity, 571

especially in single-agent setups, whereas multi- 572

agent-based search addresses these challenges by 573

enhancing both aspects, thereby balancing down- 574

stream performance and model complexity. 575

7

Agents Query Modality Classification Regression

Numerical Time Series Textual Descriptions Time Series Images Latency (ms) Accuracy FLASH (kB) Latency (ms) RMSE FLASH (kB)

Single
(GPT-4o Backbone)

✓ 519.159 0.679 3349.453 23.797 13.944 125.445
✓ 1017.267 0.665 4126.024 42.779 13.227 134.901

✓ 593.541 0.690 5971.792 35.859 12.562 193.926
✓ ✓ 807.459 0.628 4926.157 40.485 13.556 137.581
✓ ✓ ✓ 557.665 0.629 3871.910 22.726 12.681 90.398

Multiple
(GPT-4o Backbone)

✓ 149.320 0.434 12.066 54.270 12.284 10.611
✓ 170.461 0.440 15.198 110.751 12.084 12.560

✓ 280.198 0.661 15.638 13.661 11.653 7.885
✓ ✓ 205.623 0.517 16.035 28.049 13.207 13.875
✓ ✓ ✓ 127.260 0.746 257.742 24.729 9.902 10.582

Table 2: Ablation study results of multimodal query generation and multi-agent based search components.

9.6
9.8
10
10.2
10.4
10.6

0

0.2

0.4

0.6

0.8

1 3 5 7 9

RM
SE

Ac
cu

ra
cy

Candidates / Round

Accuracy RMSE

9
9.5
10
10.5
11
11.5

0

0.2

0.4

0.6

0.8

1 2 3 4 5

RM
SE

Ac
cu

ra
cy

Search Budget (# Rounds)

Accuracy RMSE

0

5

10

15

0

0.2

0.4

0.6

0.8
RM

SE

Ac
cu

ra
cy

LLM Backbone

Accuracy RMSE

(a) LLM Backbones.

9.6
9.8
10
10.2
10.4
10.6

0

0.2

0.4

0.6

0.8

1 3 5 7 9

RM
SE

Ac
cu

ra
cy

Candidates / Round

Accuracy RMSE

9
9.5
10
10.5
11
11.5

0

0.2

0.4

0.6

0.8

1 2 3 4 5
RM

SE

Ac
cu

ra
cy

Search Budget (# Rounds)

Accuracy RMSE

0

5

10

15

0

0.2

0.4

0.6

0.8

RM
SE

Ac
cu

ra
cy

LLM Backbone

Accuracy RMSE

(b) Number of Candidates.

9.6
9.8
10
10.2
10.4
10.6

0

0.2

0.4

0.6

0.8

1 3 5 7 9

RM
SE

Ac
cu

ra
cy

Candidates / Round

Accuracy RMSE

9
9.5
10
10.5
11
11.5

0

0.2

0.4

0.6

0.8

1 2 3 4 5

RM
SE

Ac
cu

ra
cy

Search Budget (# Rounds)

Accuracy RMSE

0

5

10

15

0

0.2

0.4

0.6

0.8

RM
SE

Ac
cu

ra
cy

LLM Backbone

Accuracy RMSE

(c) Search Budgets.

Figure 7: Comparison between (a) LLM backbones, (b) number of candidates per round, and (c) search budget on
model performance, as measured by accuracy (higher is better) and RMSE (lower is better).

4.4 Hyperparameter Studies576

To understand the behavior of our framework under577

various settings, we further evaluate MONAQ with578

different hyperparameter configurations as follows.579

LLM Backbones We evaluate MONAQ using580

both closed-source and open-source LLM back-581

bones. The results in Figure 7a indicate that582

the choice of backbone has a noticeable impact583

on performance. Accuracy is higher for GPT-584

4o and Gemini-2.0-Flash, while RMSE is lower,585

suggesting better overall predictive performance.586

This trend underscores the importance of advanced587

LLMs in enhancing downstream performance.588

Number of Candidates As the number of candi-589

dates per round increases, there is a clear upward590

trend in accuracy, while RMSE shows a correspond-591

ing decrease. Figure 7b suggests that expanding592

the candidate pool improves the model’s ability to593

identify optimal solutions. However, the gains be-594

gin to plateau beyond a certain point, indicating595

diminishing returns for very large candidate pools.596

Search Budgets Figure 7c shows that as the597

search budget increases, both accuracy and RMSE598

improve steadily. This trend indicates that addi-599

tional iterations allow the search process to con-600

verge more effectively on better solutions. How-601

ever, the rate of improvement diminishes after a602

moderate number of rounds, suggesting that be-603

yond a certain budget, the incremental benefit may604

not justify the added computational cost.605

0.02

9.66

0.02

11.61

0.02

16.48

0.02

35.02

0.03

43.17

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Money ($)

Time (s)

Query Rewriting Search Space Design Model Search Model Evaluation Code Generation

Cl
as

si
fic

at
io

n

0.02

8.14

0.01

12.72

0.01

17.05

0.02

28.08

0.03

40.45

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Money ($)

Time (s)

Re
gr

es
si

on

Figure 8: Average time and monetary cost breakdown
for classification (upper) and regression (lower) tasks.

4.5 Resource Cost 606

As we use closed-source LLMs, we analyze the 607

resource costs in terms of time and money. Fig- 608

ure 8 presents the average time and monetary costs 609

across different datasets for a single run. On av- 610

erage, it takes around 200 seconds and costs 0.20 611

USD (using GPT-4o) to search for a single model 612

that will be deployable after training. We also dis- 613

cuss the search cost comparison in §F. 614

5 Conclusions 615

This paper proposes a novel NAS framework, 616

MONAQ, which reformulates NAS problems as 617

multi-objective neural architecture querying tasks, 618

using multimodal time-series inputs and hardware 619

constraints as queries to LLMs. To enhance the 620

LLM’s understanding of time series, we introduce a 621

multimodal query generation module and improve 622

search efficiency via a multi-agent based search. 623

Extensive experiments on 15 datasets show that the 624

models discovered by MONAQ outperform hand- 625

crafted baselines while achieving greater efficiency. 626

8

Limitations627

While the proposed MONAQ framework demon-628

strates significant advancements in resource-629

constrained time-series analysis, there are a few630

limitations to consider.631

First, the reliance on large language models632

(LLM) for neural architecture querying introduces633

a dependency on the availability of advanced634

LLMs, which can incur high computational costs635

during the search process. Although MONAQ by-636

passes the training of candidate models, the mul-637

timodal query generation and multi-agent search638

process may still be computationally intensive for639

scenarios requiring real-time or low-latency archi-640

tecture optimization.641

Second, the framework assumes well-defined642

user constraints and task descriptions, which may643

limit its applicability in ambiguous or ill-structured644

deployment scenarios.645

Third, MONAQ’s effectiveness in handling646

highly noisy or irregular time-series data has not647

been extensively validated, which could impact its648

performance in applications like industrial anomaly649

detection. Future work could focus on expanding650

the robustness of the framework across broader651

datasets and enhancing the adaptability of its archi-652

tecture discovery process to dynamic and uncertain653

deployment environments.654

References655

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama656
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,657
Diogo Almeida, Janko Altenschmidt, Sam Altman,658
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-659
cal report. arXiv preprint arXiv:2303.08774.660

Anthony Bagnall, Hoang Anh Dau, Jason Lines,661
Michael Flynn, James Large, Aaron Bostrom, Paul662
Southam, and Eamonn Keogh. 2018. The uea663
multivariate time series classification archive, 2018.664
arXiv:1811.00075.665

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018.666
An empirical evaluation of generic convolutional and667
recurrent networks for sequence modeling. arXiv668
preprint arXiv:1803.01271.669

Hadjer Benmeziane and Kaoutar El Maghraoui. 2024.670
Are large language models good neural architecture671
generators for edge? In IEEE EDGE, pages 162–672
165.673

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza674
Ouarnoughi, Smail Niar, Martin Wistuba, and675

Naigang Wang. 2021a. Hardware-aware neural ar- 676
chitecture search: Survey and taxonomy. In IJCAI, 677
pages 4322–4329. 678

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza 679
Ouarnoughi, Smail Niar, Martin Wistuba, and 680
Naigang Wang. 2021b. A comprehensive survey 681
on hardware-aware neural architecture search. arXiv 682
preprint arXiv:2101.09336. 683

Han Cai, Ligeng Zhu, and Song Han. 2019. Proxyless- 684
NAS: Direct neural architecture search on target task 685
and hardware. In ICLR. 686

Yifu Cai, Arjun Choudhry, Mononito Goswami, and 687
Artur Dubrawski. 2024. Timeseriesexam: A 688
time series understanding exam. arXiv preprint 689
arXiv:2410.14752. 690

Angelica Chen, David Dohan, and David So. 2023. Evo- 691
prompting: Language models for code-level neural 692
architecture search. In NeurIPS. 693

Winnie Chow, Lauren Gardiner, Haraldur T Hallgríms- 694
son, Maxwell A Xu, and Shirley You Ren. 2024. To- 695
wards time series reasoning with llms. arXiv preprint 696
arXiv:2409.11376. 697

Difan Deng, Florian Karl, Frank Hutter, Bernd Bischl, 698
and Marius Lindauer. 2022. Efficient automated deep 699
learning for time series forecasting. In ECML PKDD. 700

Haoyuan Dong, Yang Gao, Haishuai Wang, Hong Yang, 701
and Peng Zhang. 2023. Heterogeneous graph neu- 702
ral architecture search with gpt-4. arXiv preprint 703
arXiv:2312.08680. 704

Elizabeth Fons, Rachneet Kaur, Soham Palande, Zhen 705
Zeng, Svitlana Vyetrenko, and Tucker Balch. 2024. 706
Evaluating large language models on time series fea- 707
ture understanding: A comprehensive taxonomy and 708
benchmark. In EMNLP. 709

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, 710
Yi Chang, and Jun Wang. 2024a. DS-agent: Auto- 711
mated data science by empowering large language 712
models with case-based reasoning. In ICML. 713

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, 714
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi- 715
angliang Zhang. 2024b. Large language model based 716
multi-agents: A survey of progress and challenges. 717
In IJCAI, pages 8048–8057. 718

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 719
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 720
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 721
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 722
and Jürgen Schmidhuber. 2024. MetaGPT: Meta pro- 723
gramming for a multi-agent collaborative framework. 724
In ICLR. 725

Dina Hussein, Lubah Nelson, and Ganapati Bhat. 2024. 726
Sensor-aware classifiers for energy-efficient time 727
series applications on iot devices. arXiv preprint 728
arXiv:2407.08715. 729

9

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS730
Lakshmanan, and Dujian Ding. 2024. Llm perfor-731
mance predictors are good initializers for architecture732
search. In Findings of ACL.733

Denizhan Kara, Tomoyoshi Kimura, Shengzhong Liu,734
Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang,735
Yizhuo Chen, Yigong Hu, and Tarek Abdelzaher.736
2024. FreqMAE: Frequency-aware masked autoen-737
coder for multi-modal iot sensing. In Proceedings of738
the ACM on Web Conference 2024, pages 2795–2806.739

Tobias King, Yexu Zhou, Tobias Röddiger, and Michael740
Beigl. 2023. Micronas: Memory and latency con-741
strained hardware-aware neural architecture search742
for time series classification on microcontrollers.743
arXiv preprint arXiv:2310.18384.744

Yaxuan Kong, Yiyuan Yang, Shiyu Wang, Chenghao745
Liu, Yuxuan Liang, Ming Jin, Stefan Zohren, Dan746
Pei, Yan Liu, and Qingsong Wen. 2025. Position:747
Empowering time series reasoning with multimodal748
llms. Preprint, arXiv:2502.01477.749

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang,750
Yang Zhao, Haoran You, Qixuan Yu, Yue Wang,751
Cong Hao, and Yingyan Lin. 2021. HW-NAS-Bench:752
Hardware-aware neural architecture search bench-753
mark. In International Conference on Learning Rep-754
resentations.755

Ximin Li, Xiaodong Wei, and Xiaowei Qin. 2020.756
Small-footprint keyword spotting with multi-scale757
temporal convolution. In Interspeech, pages 1987–758
1991.759

Zekun Li, Shiyang Li, and Xifeng Yan. 2023. Time760
series as images: Vision transformer for irregularly761
sampled time series. In NeurIPS.762

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and763
Song Han. 2021. MCUNetV2: Memory-efficient764
patch-based inference for tiny deep learning. In765
NeurIPS, pages 2346–2358.766

Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang767
Gan, and Song Han. 2020. MCUNet: Tiny deep768
learning on iot devices. In NeurIPS, pages 11711–769
11722.770

Ji Lin, tinLigeng Zhu, Wei-Ming Chen, Wei-Chen771
Wang, Chuang Gan, and Song Han. 2022. On-device772
training under 256kb memory. In NeurIPS, pages773
22941–22954.774

Marius Lindauer and Frank Hutter. 2020. Best practices775
for scientific research on neural architecture search.776
JMLR, 21(243):1–18.777

Haoxin Liu, Chenghao Liu, and B Aditya Prakash. 2024.778
A picture is worth a thousand numbers: Enabling779
llms reason about time series via visualization. arXiv780
preprint arXiv:2411.06018.781

Mike A Merrill, Mingtian Tan, Vinayak Gupta, Thomas 782
Hartvigsen, and Tim Althoff. 2024. Language mod- 783
els still struggle to zero-shot reason about time series. 784
In Findings of EMNLP, pages 3512–3533. 785

Youngeun Nam, Patara Trirat, Taeyoon Kim, Youngseop 786
Lee, and Jae-Gil Lee. 2023. Context-aware deep 787
time-series decomposition for anomaly detection in 788
businesses. In ECML PKDD, page 330–345. 789

Muhammad Umair Nasir, Sam Earle, Julian Togelius, 790
Steven James, and Christopher Cleghorn. 2024. Ll- 791
matic: neural architecture search via large lan- 792
guage models and quality diversity optimization. In 793
GECCO, pages 1110–1118. 794

Francisco Javier Ordóñez and Daniel Roggen. 2016. 795
Deep convolutional and lstm recurrent neural net- 796
works for multimodal wearable activity recognition. 797
Sensors, 16(1):115. 798

Md Hafizur Rahman and Prabuddha Chakraborty. 2024. 799
Lemo-nade: Multi-parameter neural architecture dis- 800
covery with llms. arXiv preprint arXiv:2402.18443. 801

Bidyut Saha, Riya Samanta, Soumya K Ghosh, and 802
Ram Babu Roy. 2024. Tinytnas: Gpu-free, time- 803
bound, hardware-aware neural architecture search 804
for tinyml time series classification. arXiv preprint 805
arXiv:2408.16535. 806

Riya Samanta, Bidyut Saha, Soumya K Ghosh, and 807
Ram Babu Roy. 2024. Optimizing tinyml: The im- 808
pact of reduced data acquisition rates for time series 809
classification on microcontrollers. arXiv preprint 810
arXiv:2409.10942. 811

Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, 812
and Geoffrey I Webb. 2021. Time series extrinsic 813
regression. DMKD, pages 1–29. 814

Alexander Tornede, Difan Deng, Theresa Eimer, Joseph 815
Giovanelli, Aditya Mohan, Tim Ruhkopf, Sarah 816
Segel, Daphne Theodorakopoulos, Tanja Tornede, 817
Henning Wachsmuth, and Marius Lindauer. 2024. 818
AutoML in the age of large language models: Current 819
challenges, future opportunities and risks. TMLR. 820

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. 821
2024a. Automl-agent: A multi-agent llm frame- 822
work for full-pipeline automl. arXiv preprint 823
arXiv:2410.02958. 824

Patara Trirat and Jae-Gil Lee. 2024. PASTA: Neural 825
architecture search for anomaly detection in multi- 826
variate time series. IEEE Transactions on Emerging 827
Topics in Computational Intelligence, pages 1–16. 828

Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun 829
Nam, Jihye Na, Minyoung Bae, Joeun Kim, 830
Byunghyun Kim, and Jae-Gil Lee. 2024b. Universal 831
time-series representation learning: A survey. arXiv 832
preprint arXiv:2401.03717. 833

10

https://arxiv.org/abs/2502.01477
https://arxiv.org/abs/2502.01477
https://arxiv.org/abs/2502.01477
https://arxiv.org/abs/2502.01477
https://arxiv.org/abs/2502.01477
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf

Haishuai Wang, Yang Gao, Xin Zheng, Peng Zhang,834
Hongyang Chen, Jiajun Bu, and Philip S Yu. 2023.835
Graph neural architecture search with gpt-4. arXiv836
preprint arXiv:2310.01436.837

Jialiang Wang, Shimin Di, Hanmo Liu, Zhili Wang, Ji-838
achuan Wang, Lei Chen, and Xiaofang Zhou. 2024a.839
Computation-friendly graph neural network design840
by accumulating knowledge on large language mod-841
els. arXiv preprint arXiv:2408.06717.842

Yanlin Wang, Wanjun Zhong, Yanxian Huang, Ensheng843
Shi, Min Yang, Jiachi Chen, Hui Li, Yuchi Ma, Qianx-844
iang Wang, and Zibin Zheng. 2024b. Agents in845
software engineering: Survey, landscape, and vision.846
arXiv preprint arXiv:2409.09030.847

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen,848
Ziqing Ma, Junchi Yan, and Liang Sun. 2023. Trans-849
formers in time series: A survey. In IJCAI.850

Colin White, Mahmoud Safari, Rhea Sukthanker,851
Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta852
Dey, and Frank Hutter. 2023. Neural architecture853
search: Insights from 1000 papers. arXiv preprint854
arXiv:2301.08727.855

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yi-856
wen Ding, Boyang Hong, Ming Zhang, Junzhe Wang,857
Senjie Jin, Enyu Zhou, and 1 others. 2025. The858
rise and potential of large language model based859
agents: A survey. Science China Information Sci-860
ences, 68(2):121101.861

Yundong Zhang, Naveen Suda, Liangzhen Lai, and862
Vikas Chandra. 2017. Hello edge: Keyword863
spotting on microcontrollers. arXiv preprint864
arXiv:1711.07128.865

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen866
Qian, Chang Xu, and Samuel Albanie. 2023. Can867
gpt-4 perform neural architecture search? arXiv868
preprint arXiv:2304.10970.869

Ao Zhou, Jianlei Yang, Yingjie Qi, Tong Qiao, Yumeng870
Shi, Cenlin Duan, Weisheng Zhao, and Chunming871
Hu. 2024a. Hgnas: Hardware-aware graph neural872
architecture search for edge devices. IEEE TC, pages873
1–14.874

Xun Zhou, Liang Feng, Xingyu Wu, Zhichao Lu, and875
Kay Chen Tan. 2024b. Design principle transfer in876
neural architecture search via large language models.877
arXiv preprint arXiv:2408.11330.878

Yexu Zhou, Tobias King, Haibin Zhao, Yiran Huang,879
Till Riedel, and Michael Beigl. 2024c. Mlp-har:880
Boosting performance and efficiency of har models881
on edge devices with purely fully connected layers.882
In ISWC, pages 133–139.883

Yexu Zhou, Haibin Zhao, Yiran Huang, Till Riedel,884
Michael Hefenbrock, and Michael Beigl. 2022. Tiny-885
har: A lightweight deep learning model designed for886
human activity recognition. In ISWC, page 89–93.887

Jiaxin Zhuang, Leon Yan, Zhenwei Zhang, Ruiqi 888
Wang, Jiawei Zhang, and Yuantao Gu. 2024. See 889
it, think it, sorted: Large multimodal models are few- 890
shot time series anomaly analyzers. arXiv preprint 891
arXiv:2411.02465. 892

11

https://doi.org/10.1109/TC.2024.3449108
https://doi.org/10.1109/TC.2024.3449108
https://doi.org/10.1109/TC.2024.3449108

A Extended Related Work893

A.1 On-Device Time-Series Analysis894

Time-series analysis on resource-constrained de-895

vices, such as IoT and wearables, has gained im-896

portance due to the need for real-time processing897

with limited computational and energy resources898

(Trirat et al., 2024b). Common approaches include899

CNNs, RNNs (e.g., LSTMs), and Transformers900

(Kara et al., 2024). While CNNs excel at extracting901

local context, they struggle with long-term depen-902

dencies (Hussein et al., 2024). RNNs and LSTMs903

address these drawbacks but are hindered by se-904

quential processing, increasing latency. Transform-905

ers (Wen et al., 2023) enable parallel processing906

and capture long-term dependencies but are often907

unsuitable for edge devices due to high computa-908

tional demands. Lightweight models like attention909

condensers, CNN-RNN hybrids (e.g., DeepCon-910

vLSTM (Ordóñez and Roggen, 2016)), and low-911

resource architectures like TinyHAR (Zhou et al.,912

2022) and MLP-HAR (Zhou et al., 2024c) balance913

performance with resource efficiency.914

A.2 Hardware-Aware NAS (HW-NAS)915

Optimizing neural networks for hardware con-916

straints, such as memory and latency, is challenging917

and traditionally required extensive domain exper-918

tise. HW-NAS addresses this issue by incorporat-919

ing hardware efficiency metrics into the search pro-920

cess (Li et al., 2021; Benmeziane et al., 2021b,a).921

ProxylessNAS (Cai et al., 2019) optimizes latency922

and energy consumption on edge devices, while923

the MCUNet family (Lin et al., 2020, 2021, 2022)924

enhances efficiency for microcontrollers. More re-925

cent methods, e.g., HGNAS (Zhou et al., 2024a),926

integrate lookup tables and predictors for resource-927

efficient searches.928

Despite these advancements, HW-NAS for time-929

series data remains largely underexplored. Mi-930

croNAS (King et al., 2023) introduces time-series-931

specific search spaces for microcontrollers, while932

TinyTNAS (Saha et al., 2024) supports efficient933

CPU operations. However, these methods often934

rely on fixed search spaces, requiring significant ex-935

pertise. Given these challenges, there is a growing936

need for NAS frameworks with natural language937

interfaces, allowing users to describe their desired938

architecture in plain language rather than through939

direct programming (Tornede et al., 2024). Lever-940

aging LLMs in this context can make HW-NAS941

more user-friendly and adaptable across a wider942

range of applications, leading to democratize NAS 943

processes for better accessibility and adaptability. 944

A.3 LLMs for NAS 945

LLMs have shown potential in automating NAS by 946

leveraging pre-trained knowledge to generate di- 947

verse, high-performing architectures (Zheng et al., 948

2023; Dong et al., 2023; Wang et al., 2023; Ben- 949

meziane and El Maghraoui, 2024; Jawahar et al., 950

2024; Nasir et al., 2024; Wang et al., 2024a; Zhou 951

et al., 2024b; Rahman and Chakraborty, 2024; 952

Chen et al., 2023; Trirat et al., 2024a). GENIUS 953

(Zheng et al., 2023) improves convolution-based 954

architectures through feedback, while GPT4GNAS 955

(Wang et al., 2023) uses GPT-4 to design graph 956

neural networks. LLMatic (Nasir et al., 2024) com- 957

bines LLMs with quality-diversity algorithms, gen- 958

erating architectures that balance diversity and per- 959

formance across various metrics and thus achieving 960

competitive results with fewer evaluations. These 961

frameworks suggest a shift toward using LLMs not 962

only as code generators but also as sophisticated 963

tools for automating NAS. 964

However, current LLM-based NAS frameworks 965

face challenges with time-series data due to 966

their limited understanding of raw numerical in- 967

puts (Merrill et al., 2024; Kong et al., 2025) and 968

their reliance on runtime feedback and user-defined 969

search spaces, which are often time-consuming and 970

require intricate configurations. To address these 971

issues, we introduce neural architecture query- 972

ing, enabling users to specify requirements directly 973

through natural language prompts for a given time- 974

series dataset. Our approach removes the need for 975

complex configurations and simplifies the architec- 976

ture search process. 977

B Details of Experimental Setup 978

This section outlines the detailed experimental 979

setup used in this paper, including the dataset de- 980

scriptions (Table 3), complete instruction prompts 981

(Table 4), and full-pipeline skeleton scripts (§B.1) 982

for experiments. 983

B.1 Skeleton Code for LLM-based NAS 984

The following listings show the skeleton codes us- 985

ing for experiments in §4. The scripts include the 986

entire pipeline from data loading to model conver- 987

sion and quantization. Only the modeling parts are 988

blank for the LLM to fill in. 989

12

Datasets Length Feature Dims
(# Sensors) # Train # Test # Classes Application Domain Missing Values

Classification (Bagnall et al., 2018; Li et al., 2023)

AtrialFibrillation 640 2 15 15 3 Health Monitoring No
BinaryHeartbeat 18530 1 204 205 2 Health Monitoring No
Cricket 1197 6 108 72 12 Human Activity Recognition No
Fault Detection (A) 5120 1 10912 2728 3 Industrial System Monitoring No
UCI-HAR 206 3 7352 2947 6 Human Activity Recognition No

P12 233 36 9590 2398 2 Health Monitoring Yes
P19 401 34 31042 7761 2 Health Monitoring Yes
PAMAP2 4048 17 4266 1067 8 Human Activity Recognition Yes

Regression (Tan et al., 2021)

AppliancesEnergy 144 24 96 42

N/A

Energy Monitoring No
BenzeneConcentration 240 8 3433 5445 Environment Monitoring Yes
BIDMC32SpO2 4000 2 5550 2399 Health Monitoring No
FloodModeling 266 1 471 202 Environment Monitoring No
LiveFuelMoistureContent 365 7 3493 1510 Environment Monitoring No

HouseholdPowerConsumption1 1440 5 746 694 Energy Monitoring Yes
HouseholdPowerConsumption2 1440 5 746 694 Energy Monitoring Yes

Table 3: Summary of benchmark datasets.

B.2 Prompt for Zero-Shot LLM Baselines 990

Prompt for Zero-Shot LLM Baselines

You are a helpful intelligent assistant. Now, please help solve the following time-series {} task by building a Tensorflow/
Keras model.

[Task for '{}' dataset]
{}
[{}.py] ```python
{}
```
Start the python code with "```python". Focus only on completing the get_model() function while returning the remaining parts

of the script exactly as provided.
Ensure the code is complete, error-free, and ready to run without requiring additional modifications.
Note that we only need the actual complete python code without textual explanations.

991

B.2.1 Code for Classification Task 992

Skeleton Code for Classification

# import utilitiy packages
import os, sys, gc, warnings, logging, shutil
import json, time, glob, math

# determine GPU number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # hide INFO and WARNING messages

# define paths to model files
MODELS_DIR = "models/"
MODEL_TF = MODELS_DIR + "model.pb"
MODEL_NO_QUANT_TFLITE = MODELS_DIR + "model_no_quant.tflite"
MODEL_TFLITE_MICRO = MODELS_DIR + "model.cc"
SEED = 7

os.makedirs(MODELS_DIR, exist_ok=True)

logging.disable(logging.WARNING)
logging.disable(logging.INFO)
warnings.filterwarnings("ignore")

# import basic libraries
import random

import tensorflow as tf
import pandas as pd
import numpy as np

993

13



from tensorflow import keras

# Set a "seed" value, so we get the same random numbers each time we run this notebook for reproducible results.
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)

from utils.data_loader import load_dataset
from utils.data_desc import AVAILABEL_DATASETS, CLS_DATASETS, REG_DATASETS
from utils import quantize_model, brief_profile_model

# Do not change this
from sklearn.metrics import accuracy_score

N_EPOCHS = 100
BATCH_SIZE = 32
task = "classification"

keras.backend.clear_session()

data_name = os.path.basename(__file__).split(".")[0] # or replace with the user given dataset name

# 1. Loading the Target Dataset
X_train, y_train, X_test, y_test, class_names = load_dataset(data_name, task)
print("Experiment on:", data_name, X_train.shape)
seq_length = X_train.shape[1]
n_features = X_train.shape[2]
n_classes = len(class_names) # Number of output classes

# 2. Design the Model
def get_model():

# TODO: Define a Tensorflow/Keras compatible model based on the given configurations
# Note that your model will be converted to a TFLite Micro model
return your_model

model = get_model()
model.compile(

optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
es = keras.callbacks.EarlyStopping(monitor="val_accuracy", mode="max", patience=10, restore_best_weights=True)

# 3. Train the Model
model.fit(X_train, y_train, epochs=N_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[es])

# 4. Evaluate the Model and Save Results (Do not change this)
y_pred = model.predict(X_test)
y_pred = y_pred.argmax(1)
acc = accuracy_score(y_test, y_pred)

# 5. Convert model to TFLite model
quantized_model = quantize_model(model, X_train)
# Save the model to disk
MODEL_TFLITE = MODELS_DIR + f"{model.name}_{task}_{data_name}.tflite"
open(MODEL_TFLITE, "wb").write(quantized_model)

# 6. Profile the converted model with a simulator
print(model.name, data_name)
print(acc)
brief_profile_model(MODEL_TFLITE)

del model
keras.backend.clear_session()
gc.collect()

994

B.2.2 Code for Regression Task995

Skeleton Code for Regression

# import utilitiy packages
import os, sys, gc, warnings, logging, shutil
import json, time, glob, math

# determine GPU number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # hide INFO and WARNING messages

# define paths to model files
MODELS_DIR = "models/"

996

14



MODEL_TF = MODELS_DIR + "model.pb"
MODEL_NO_QUANT_TFLITE = MODELS_DIR + "model_no_quant.tflite"
MODEL_TFLITE_MICRO = MODELS_DIR + "model.cc"
SEED = 7

os.makedirs(MODELS_DIR, exist_ok=True)

logging.disable(logging.WARNING)
logging.disable(logging.INFO)
warnings.filterwarnings("ignore")

# import basic libraries
import random

import tensorflow as tf
import pandas as pd
import numpy as np

from tensorflow import keras

# Set a "seed" value, so we get the same random numbers each time we run this notebook for reproducible results.
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)

from utils.data_loader import load_dataset
from utils.data_desc import AVAILABEL_DATASETS, CLS_DATASETS, REG_DATASETS
from utils import quantize_model, brief_profile_model

# Do not change this
from sklearn.metrics import root_mean_squared_error

N_EPOCHS = 100
BATCH_SIZE = 32
task = "regression"

keras.backend.clear_session()

data_name = os.path.basename(__file__).split(".")[0] # or replace with the user given dataset name

# 1. Loading the Target Dataset
X_train, y_train, X_test, y_test = load_dataset(data_name, task)
print("Experiment on:", data_name, X_train.shape)
seq_length = X_train.shape[1]
n_features = X_train.shape[2]

# 2. Design the Model
def get_model():

# TODO: Define a Tensorflow/Keras compatible model based on the given configurations
# Note that your model will be converted to a TFLite Micro model
return your_model

model = get_model()
model.compile(optimizer="adam", loss="mean_squared_error", metrics=keras.metrics.RootMeanSquaredError(name="rmse", dtype=None)

)
es = keras.callbacks.EarlyStopping(monitor="val_rmse", mode="min", patience=10, restore_best_weights=True)

# 3. Train the Model
model.fit(X_train, y_train, epochs=N_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[es])

# 4. Evaluate the Model and Save Results (Do not change this)
y_pred = model.predict(X_test)
rmse = root_mean_squared_error(y_test, y_pred)

# 5. Convert model to TFLite model
quantized_model = quantize_model(model, X_train)
# Save the model to disk
MODEL_TFLITE = MODELS_DIR + f"{model.name}_{task}_{data_name}.tflite"
open(MODEL_TFLITE, "wb").write(quantized_model)

# 6. Profile the converted model with a simulator
print(model.name, data_name)
print(rmse)
brief_profile_model(MODEL_TFLITE)

del model
keras.backend.clear_session()
gc.collect()

997

15



Task Dataset Instruction Prompt

BinaryHeartbeat I need a model to classify heartbeat signals, intended for deployment on an edge device
with 1 MB of storage and 128 KB of RAM. Since this is a critical healthcare task, the
model must be highly accurate while maintaining a very low inference latency of under
100 ms.

AtrialFibrillation I have a dataset of ECG records and want to build a classification model to categorize
ECG signals into three types of atrial fibrillation. The model should be deployable on
wearable devices, such as Fitbit trackers.

Cricket I want a model that can classify cricket umpire signals based on 3-axis accelerometer
data from both hands. Since this model needs to run in real-time on a device during
competitions, it should be as compact as possible while maintaining acceptable accuracy.

Time-Series
Classification

FaultDetection (A) We have a time series dataset collected from an electromechanical drive system. Create
a model for deployment on edge devices to identify types of damage in rolling bearings.

UCI-HAR I have 3-axis body linear acceleration signals collected for human activity recognition. I
need a classifier that can run on wearable devices with 1 MB of RAM and 2 MB of flash
storage. The inference latency should not exceed 500 ms.

P12 I want a model to predict patient mortality, which is a binary classification task, based on
irregularly sampled sensor observations and clinical data. The model should be small
enough for deployment on a smart watch.

P19 We have clinical data and want to predict whether sepsis will occur within the next 6
hours. The dataset includes irregularly sampled sensors, consisting of vital signs and
laboratory values for each patient. The model should be small enough for deployment
on a smart watch.

PAMAP2 Let’s build a model to classify the physical activities of human subjects wearing three
inertial measurement units. The classifier should run on wearable devices with 1 MB of
RAM and 2 MB of flash storage.

AppliancesEnergy I have an IoT device collecting appliance energy data from a house. Please develop
a predictive model to forecast the total energy consumption in kWh for the house.
Additionally, the model should be compact enough to be deployed on a ZigBee wireless
sensor network.

LiveFuelMoistureContent Build a regression model to predict the moisture content in vegetation. The model should
be deployable on a small device with 512 KB of RAM and 1 MB of storage. As this will
be used in a smart farming context, the prediction speed should be under 1000 ms.

BenzeneConcentration We aim to develop a model to predict benzene concentrations in an Italian city based on
air quality measurements. This model will be deployed on IoT sensors using the Arduino
Nano 33 BLE, so it should be compact and achieve a very low error rate, ideally with an
RMSE of 1.00 or lower.

Time-Series
Regression

BIDMC32SpO2 Our company has a project to deploy a predictive model on wearable devices, such as
fitness trackers, to estimate blood oxygen saturation levels using PPG and ECG data.
Please create a lightweight model suitable for deployment on these devices. The model
should use no more than 32KB of RAM and be no larger than 64KB in size.

FloodModeling I have an IoT sensor monitoring rainfall events. Could you develop a model to predict
the maximum water depth for flood modeling? The model should be lightweight enough
to run on the sensor and provide real-time predictions.

HouseholdPowerConsumption1 We have a project to predict total active power consumption in a household. Can you
develop an accurate model that can be deployed on a smart home device to predict total
active power consumption?

HouseholdPowerConsumption2 We have a project to predict total reactive power consumption in a household. Can you
develop an accurate model that can be deployed on a smart home device to predict total
reactive power consumption?

Table 4: User instructions (i.e., task description) for experiments.

C Full Prompts for MONAQ998

C.1 Multi-Objective Query Rewriting999

Prompt for Multi-Objective Query Rewriting

Please carefully analyze the user's task descriptions based on your understanding of the following input:
[User Input Prompt]
{user_prompt}

After fully understanding the task descriptions and constraints, extract and organize the information in the specified format
below.

Please respond as the following JSON object and make sure your JSON object is in a valid form.
```json
{
"task_description": "", // Clearly describe the user's requirements and the problem they are addressing
"data_aspects": {

"name": "", // Dataset name, if provided
"description": "", // Complete description of the dataset
"features": "", // Details on features, properties, and characteristics of the dataset to consider for model building

1000

16

"context": "", // Relevant contextual information about the dataset
"patterns": "" // Observed patterns in the dataset to consider for model building, based on any provided numerical data

or images
},

"model_aspects": {
"name": "", // Suggested model name for the task, if provided by the user
"hardware_specs": {

"device_name": "", // Device name, if specified by the user, or inferred from hardware specifications
"ram": "", // Maximum RAM available (in bytes), which affects the model's MAC/FLOPs limit (you can also infer it

from the device name)
"flash": "", // Maximum FLASH storage (in bytes), which affects model size and parameter count (you can also infer

it from the device name)
},
"MAC": "", // Maximum MAC (Multiply-Accumulate) operations (or FLOPs) allowed for model compatibility with hardware

constraints
"parameters": "", // Maximum model parameters, in line with hardware constraints
"latency": "", // Desired inference latency in milliseconds (ms), or the maximum latency allowed based on hardware

limitations
"performance": "" // Expected model performance, such as accuracy for classification or RMSE for regression; specify

any target metric values to consider for model building
}

}
```

1001

C.2 Agent Specifications 1002

C.2.1 Manager Agent Prompt 1003

System Message for Manager Agent

You are an experienced senior project manager overseeing on-device time series analysis for resource-constrained devices. Your
primary responsibilities are as follows:

1. Receive requirements and inquiries from users regarding their task descriptions and potential target devices for deployment
.

2. Extract and clarify user requirements from both data and modeling perspectives, organizing these requirements and task-
specific constraints in an easy-to-understand format to enable other team members to execute subsequent processes based
on the information you have gathered.

3. Verify the suggested model whether it meets the user requirements and constraints.

1004

C.2.2 Design Agent Prompt 1005

System Message for Design Agent

You are the world's best data scientist of an on-device time series analysis for resource-constrained devices. You have the
following main responsibilities to complete.

1. Analyze user instructions and requirements.
2. Based on the requirements, design a neural network search space for resource-constrained devices.

1006

C.2.3 Search Agent Prompt 1007

System Message for Search Agent

You are the world's best machine learning research engineer specializing in on-device time series analysis for resource-
constrained devices. Your main responsibilities are as follows:

1. Analyze user instructions and requirements.
2. Understand the specified search space and constraints.
3. Based on your understanding, design optimal TensorFlow/Keras model configurations within the given constraints.

1008

C.2.4 Evaluation Agent Prompt 1009

System Message for Evaluation Agent

You are the world's best machine learning research engineer specializing in on-device time series analysis for resource-
constrained devices. Your main responsibilities are as follows:

1. Analyze user instructions and requirements.
2. Understand the specified model and constraints.
3. Based on your understanding, evaluate and measure the performance of TensorFlow/Keras model configurations under the given

constraints.

1010

17



C.2.5 Code Agent Prompt1011

1012

System Message for Code Agent

You are the world's best machine learning engineer specializing in on-device time series analysis for resource-constrained
devices. You have the following main responsibilities to complete.

1. Write accurate Python codes to build model in get_model() function based on the given instruction.
2. Run the model evaluation using the given Python functions and summarize the results for validation againts the user's

requirements.

1013

D Examples of Intermediate Results and Interpretability Analysis1014

To enhance interpretability, our MONAQ not only generates resource-aware architectures but also provides1015

a structured breakdown of design decisions through its intermediate outputs. These outputs allow1016

practitioners to trace how specific constraints and dataset features influence architectural choices. In this1017

section, we presents examples of intermediate results from the main steps of our framework, including1018

multimodal query generation (i.e., query rewriting) and multi-agent LLM responses.1019

D.1 Classification Tasks1020

The following shows the intermediate results from the UCI-HAR dataset on the classification task.1021

Example Results of UCI-HAR Dataset

User Input: I have 3-axis body linear acceleration signals collected for human activity recognition. I
need a classifier that can run on wearable devices with 1 MB of RAM and 2 MB of flash storage. The
inference latency should not exceed 500 ms.

Rewriting Result:
{
'task_description': 'The user needs a classifier for human activity recognition using 3-axis body linear acceleration signals.

The model must run on wearable devices with limited resources: 1 MB of RAM, 2 MB of flash storage, and an inference
latency not exceeding 500 ms.',

'data_aspects': {'name': 'UCR HAR Dataset',
'description': 'The dataset contains 3-axis body linear acceleration signals for human activity recognition, with six

balanced classes: walking, walking upstairs, walking downstairs, sitting, standing, and laying down.',
'features': 'The dataset includes three features: body accelerometer X-axis, Y-axis, and Z-axis. It is preprocessed to focus

on linear acceleration.',
'context': 'Data is collected from 30 healthy volunteers aged 19-48 years. The original dataset has 10299 instances, split

into training (70%) and testing (30%) sets, with separate subjects in each set.',
'patterns': 'The time series plots show distinct patterns for each activity class, with variations in acceleration values

across the X, Y, and Z axes.'},

'model_aspects': {'name': 'HAR Classifier',
'hardware_specs': {'device_name': 'Wearable Device',
'ram': '1048576',
'flash': '2097152'},
'MAC': 'Limited by RAM and flash constraints, exact value depends on model architecture.',
'parameters': 'Limited by RAM and flash constraints, exact value depends on model architecture.',
'latency': '500',
'performance': 'The model should achieve high accuracy in classifying the six activities while adhering to hardware

constraints.'}
}

Design Result:
To design a search space for a neural network suitable for human activity recognition on resource-constrained wearable devices

, we need to consider lightweight architectures that can be efficiently converted to TFLite. Here's a proposed search
space:

```python
{

"layer_type": ["Conv1D", "DepthwiseConv1D", "SeparableConv1D", "LSTM", "Dense"],
"Conv1D_kernel_size": [3, 5],
"Conv1D_filters": [8, 16],
"DepthwiseConv1D_kernel_size": [3, 5],
"SeparableConv1D_kernel_size": [3, 5],
"SeparableConv1D_filters": [8, 16],
"LSTM_units": [16, 32],
"Dense_units": [32, 64],
"activation": ["relu", "tanh"],

1022

18

"dropout_rate": [0.0, 0.2],
"pooling_type": ["max", "average"],
"pool_size": [2, 3],
"strides": [1, 2],
"batch_normalization": [True, False]

}
```

### Explanation:

- **Layer Types**:
- **Conv1D**: Efficient for extracting features from time-series data.
- **DepthwiseConv1D**: Reduces computation by applying a single convolutional filter per input channel.
- **SeparableConv1D**: Combines depthwise and pointwise convolutions for efficiency.
- **LSTM**: Captures temporal dependencies in time-series data.
- **Dense**: Used for final classification layers.

- **Kernel Sizes and Filters**:
- Smaller kernel sizes (3, 5) and filters (8, 16) are chosen to reduce memory usage and computational cost.

- **LSTM Units**:
- Limited to 16 and 32 to ensure the model fits within RAM constraints.

- **Dense Units**:
- Limited to 32 and 64 to balance complexity and resource usage.

- **Activation Functions**:
- **ReLU** and **tanh** are efficient and commonly used in neural networks.

- **Dropout Rate**:
- Provides regularization to prevent overfitting, with options for no dropout and a small rate (0.2).

- **Pooling Types and Sizes**:
- **Max** and **average pooling** help reduce dimensionality and computation.
- Pool sizes of 2 and 3 are typical for downsampling.

- **Strides**:
- Strides of 1 and 2 allow for control over the downsampling rate.

- **Batch Normalization**:
- Optional to stabilize training and potentially improve convergence.

This search space is designed to explore a variety of architectures while adhering to the constraints of the wearable device.
Each configuration can be implemented using TensorFlow/Keras and converted to TFLite for deployment.

Search Result:
["### Analysis of the Proposed Model\n\n#### Model Characteristics\n\n1. **Computational Complexity**:\n - **Conv1D Layer**: \

n - Parameters: \\(16 \\times (5 \\times 3 + 1) = 256\\)\n - FLOPs: Approximately 256 per time step.\n - **
DepthwiseConv1D Layer**:\n - Parameters: \\(3\\) (since it's depthwise, no additional filters).\n - FLOPs: Minimal, as
it only applies a single filter per input channel.\n - **SeparableConv1D Layer**:\n - Parameters: \\(16 \\times (3 \\
times 3 + 1) + 16 \\times 16 = 304\\)\n - FLOPs: Approximately 304 per time step.\n - **LSTM Layer**:\n - Parameters:
\\(4 \\times (16 \\times (16 + 1) + 16 \\times 16) = 2112\\)\n - FLOPs: High, due to recurrent connections.\n - **Dense
Layers**:\n - First Dense: \\(32 \\times (16 + 1) = 544\\)\n - Output Dense: \\(6 \\times (32 + 1) = 198\\)\n\n2. **
Memory Usage**:\n - Total Parameters: Approximately 3417.\n - Assuming 4 bytes per parameter, the memory usage is about
13.7 KB.\n\n3. **Inference Latency**:\n - The model is designed to achieve inference latency under 500 ms. Given the
lightweight architecture, this is feasible on most modern wearable devices.\n\n4. **Model Size**:\n - With quantization
(e.g., 8-bit), the model size can be reduced significantly, fitting well within the 2 MB flash constraint.\n\n####
Expected Performance\n\n1. **Accuracy**:\n - Based on similar architectures and datasets, an accuracy of around 85-90%
is expected for human activity recognition.\n\n2. **Complexity Metrics**:\n - **FLOPs**: Estimated at around 3-5 MFLOPs
per inference.\n - **Training Time**: Depends on the dataset size and hardware but should be manageable on a standard
GPU.\n - **Inference Speed**: Should be well within the 500 ms constraint on a typical wearable device processor.\n\n
#### Considerations\n\n- **TFLite Compatibility**: The model uses layers compatible with TensorFlow Lite, ensuring
smooth deployment on resource-constrained devices.\n- **Optimization**: Further optimizations such as pruning or
additional quantization can be applied to reduce size and latency further.\n\n### Conclusion\n\nThe proposed model
configuration is well-suited for the task of human activity recognition on wearable devices, balancing performance with
resource constraints effectively. It is expected to deliver high accuracy while adhering to the specified hardware
limitations.",

'### Model Analysis\n\n#### Computational Complexity and Memory Usage\n\n1. **Conv1D Layer**:\n - Parameters: \\(3 \\times 8
+ 8 = 32\\)\n - FLOPs: \\(32 \\times \\text{input length}\\)\n\n2. **SeparableConv1D Layer**:\n - Depthwise: \\(3 \\
times 16 = 48\\)\n - Pointwise: \\(16 \\times 16 = 256\\)\n - Total Parameters: \\(48 + 256 = 304\\)\n - FLOPs: \\(304
\\times \\text{input length}\\)\n\n3. **LSTM Layer**:\n - Parameters: \\(4 \\times ((16 + 1) \\times 16 + 16^2) =
2112\\)\n - FLOPs: Proportional to the sequence length and hidden units.\n\n4. **Dense Layer**:\n - Parameters: \\(16
\\times 32 + 32 = 544\\)\n - FLOPs: \\(544\\)\n\n5. **Final Dense Layer**:\n - Parameters: \\(32 \\times 6 + 6 = 198\\)
\n - FLOPs: \\(198\\)\n\n6. **Total Parameters**: \\(32 + 304 + 2112 + 544 + 198 = 3190\\)\n\n7. **Model Size**:
Assuming 4 bytes per parameter, the total size is approximately \\(3190 \\times 4 = 12,760\\) bytes (~12.5 KB).\n\n####
Inference Latency\n\n- The model is designed to run within a 500 ms constraint. Given the lightweight architecture and
efficient operations, it is expected to meet this requirement on modern wearable devices.\n\n#### Expected Performance

\n\n- **Accuracy**: Based on similar architectures and datasets, the model could achieve around 85-90% accuracy on the
UCR HAR dataset.\n- **Inference Speed**: With the given constraints, inference should be well within 500 ms.\n\n###
Conclusion\n\nThe proposed model is well-suited for deployment on resource-constrained wearable devices due to its
lightweight architecture. It balances computational efficiency with the ability to capture temporal patterns necessary
for human activity recognition. The estimated model size, parameter count, and FLOPs suggest it will fit within the RAM
and flash storage limits while maintaining acceptable inference latency and accuracy.',

1023

19



"### Model Analysis\n\n#### Computational Complexity\n1. **Conv1D Layer**:\n - Filters: 16, Kernel Size: 3\n - Input Shape:
Assuming input shape is (200, 3) for each axis.\n - Parameters: \\( (3 \\times 3 + 1) \\times 16 = 160 \\)\n - FLOPs:
Approximately \\( 200 \\times 16 \\times 3 = 9600 \\)\n\n2. **DepthwiseConv1D Layer**:\n - Kernel Size: 3\n -
Parameters: \\( 3 \\times 1 = 3 \\) (since it's depthwise)\n - FLOPs: Approximately \\( 100 \\times 3 = 300 \\)\n\n3.
**LSTM Layer**:\n - Units: 32\n - Parameters: \\( 4 \\times ((32 + 1) \\times 32 + 32^2) = 8448 \\)\n - FLOPs:
Approximately \\( 4 \\times 32 \\times (32 + 32) = 8192 \\)\n\n4. **Dense Layers**:\n - First Dense: \\( 32 \\times 32
+ 32 = 1056 \\) parameters\n - Output Dense: \\( 32 \\times 6 + 6 = 198 \\) parameters\n - FLOPs: Approximately \\( 32
\\times 32 + 32 \\times 6 = 1152 \\)\n\n#### Memory Usage\n- **Total Parameters**: \\( 160 + 3 + 8448 + 1056 + 198 =
9865 \\)\n- **Memory for Parameters**: Approximately 39 KB (assuming 4 bytes per parameter)\n- **Fits within 1 MB RAM**:
Yes\n\n#### Inference Latency\n- **Estimated Latency**: The model should comfortably run under 500 ms on a typical

wearable device processor, given its lightweight nature.\n\n#### Model Size\n- **Model Size**: Approximately 39 KB,
well within the 2 MB flash storage limit.\n\n### Expected Performance\n- **Accuracy**: Based on similar architectures,
expect around 90-95% accuracy on the UCR HAR dataset.\n- **Inference Speed**: Expected to be under 500 ms per inference
.\n- **Training Time**: On a typical machine, training might take a few hours depending on the hardware.\n\n###
Conclusion\nThe proposed model is well-suited for the resource-constrained environment of a wearable device. It
balances computational complexity, memory usage, and inference latency while maintaining high classification accuracy
for human activity recognition.",

'### Model Analysis\n\n#### Computational Complexity\n- **Conv1D Layer**: \n - Parameters: \\(3 \\times 8 = 24\\) per filter,
total \\(24 \\times 8 = 192\\).\n- **DepthwiseConv1D Layer**: \n - Parameters: \\(3 \\times 1 = 3\\) per input channel

.\n- **SeparableConv1D Layer**: \n - Depthwise: \\(3 \\times 1 = 3\\) per input channel.\n - Pointwise: \\(1 \\times 16
= 16\\) per filter, total \\(16 \\times 16 = 256\\).\n- **LSTM Layer**: \n - Parameters: \\(4 \\times (32 \\times (32

+ 1) + 32) = 4 \\times 1056 = 4224\\).\n- **Dense Layers**: \n - First Dense: \\(32 \\times 64 = 2048\\).\n - Output
Dense: \\(64 \\times 6 = 384\\).\n\n#### Total Parameters\n- Total parameters: \\(192 + 3 \\times 3 + 3 \\times 16 +
256 + 4224 + 2048 + 384 = 7112\\).\n\n#### Memory Usage\n- **RAM**: \n - Assuming float32 precision, each parameter
requires 4 bytes.\n - Total memory for parameters: \\(7112 \\times 4 \\approx 28.5\\) KB.\n - Additional memory for
activations and intermediate computations will be required, but should fit within the 1 MB RAM constraint.\n- **Flash
Storage**: \n - Model size: \\(28.5\\) KB, well within the 2 MB constraint.\n\n#### Inference Latency\n- Given the
lightweight architecture and efficient operations, inference latency is expected to be well under 500 ms on typical
wearable device hardware.\n\n### Performance Estimation\n\n#### Accuracy\n- Based on similar architectures and datasets,
expected accuracy is around 90-95% for human activity recognition tasks.\n\n#### Complexity Metrics\n- **FLOPs (

Floating Point Operations)**: \n - Estimated to be low due to small filter sizes and efficient layer choices.\n- **
Training Time**: \n - On a standard desktop GPU, training should take a few hours for convergence.\n- **Inference Speed
**: \n - Expected to be fast due to the small model size and efficient architecture.\n\n### Conclusion\nThe proposed
model configuration is well-suited for the given constraints of wearable devices. It balances complexity and
performance, ensuring efficient operation within the hardware limits while maintaining high classification accuracy for
human activity recognition.',

'### Model Analysis\n\n#### Computational Complexity\n- **Conv1D Layer**: \n - Filters: 16, Kernel size: 5\n - Parameters:
\\( (5 \\times 1 + 1) \\times 16 = 96 \\)\n \n- **SeparableConv1D Layer**:\n - Filters: 16, Kernel size: 3\n -
Depthwise parameters: \\( 3 \\times 1 = 3 \\)\n - Pointwise parameters: \\( 16 \\times 1 = 16 \\)\n - Total: \\( 3 + 16
= 19 \\)\n\n- **DepthwiseConv1D Layer**:\n - Kernel size: 3\n - Parameters: \\( 3 \\times 1 = 3 \\)\n\n- **LSTM Layer

**:\n - Units: 16\n - Parameters: \\( 4 \\times 16 \\times (16 + 1) = 1088 \\)\n\n- **Dense Layer**:\n - Units: 64\n -
Parameters: \\( 16 \\times 64 + 64 = 1088 \\)\n\n- **Output Layer**:\n - Units: 6\n - Parameters: \\( 64 \\times 6 + 6
= 390 \\)\n\n#### Total Parameters\n- Total parameters: \\( 96 + 19 + 3 + 1088 + 1088 + 390 = 2684 \\)\n\n#### Memory
Usage\n- **RAM**: \n - Model parameters: ~10.5 KB (assuming 4 bytes per parameter)\n - Intermediate activations and
batch normalization add additional memory usage, but the total should remain well under 1 MB.\n\n- **Flash Storage**:\n
- Model size: ~10.5 KB, easily fitting within 2 MB.\n\n#### Inference Latency\n- The model is designed to be

lightweight, with an expected inference latency well under 500 ms on typical wearable device processors.\n\n####
Performance Metrics\n- **Accuracy**: \n - Based on similar models and datasets, an accuracy of around 85-90% is
expected for the six-class classification task.\n\n- **FLOPs**:\n - Estimated to be low due to the use of lightweight
convolutional layers and a small LSTM.\n\n- **Inference Speed**:\n - Expected to be fast, meeting the 500 ms constraint
.\n\n### Conclusion\nThe proposed model configuration is well-suited for the given constraints of wearable devices. It
balances computational complexity, memory usage, and inference latency while maintaining high classification accuracy.
The use of efficient layers like SeparableConv1D and DepthwiseConv1D ensures that the model remains lightweight and
resource-efficient.']

Evaluation Result:
Based on the user requirements and constraints, the best model configuration for human activity recognition on resource-

constrained wearable devices is **Model Configuration #3**. This model balances computational complexity, memory usage,
and inference latency while maintaining high classification accuracy. It is well-suited for the given constraints of 1
MB RAM, 2 MB flash storage, and an inference latency not exceeding 500 ms.

### Selected Model Configuration

#### Model Configuration

```python
model_configuration = {

"layer_sequence": [
{"layer_type": "Conv1D", "filters": 16, "kernel_size": 3, "activation": "relu", "strides": 1, "batch_normalization":

True},
{"pooling_type": "max", "pool_size": 2},
{"layer_type": "DepthwiseConv1D", "kernel_size": 3, "activation": "relu", "strides": 1, "batch_normalization": True},
{"pooling_type": "average", "pool_size": 2},
{"layer_type": "LSTM", "units": 32, "activation": "tanh", "dropout_rate": 0.2},
{"layer_type": "Dense", "units": 32, "activation": "relu"},
{"layer_type": "Dense", "units": 6, "activation": "softmax"}

]
}
```

### Explanation

- **Conv1D Layer**:

1024

20



- **Filters**: 16 for sufficient representation capacity.
- **Kernel Size**: 3 for efficient feature extraction.
- **Activation**: ReLU for non-linear representation.
- **Batch Normalization**: True for stable training.
- **Strides**: 1 to preserve spatial resolution.

- **Pooling (MaxPooling)**:
- Reduces the dimensionality while maintaining important features.
- **Pool Size**: 2 for effective down-sampling.

- **Middle Layer (DepthwiseConv1D)**:
- **Kernel Size**: 3 and ReLU activation for efficient computation.

- **Pooling (AveragePooling)**:
- Further reduces features while averaging important patterns.
- **Pool Size**: 2.

- **Recurrent Layer (LSTM)**:
- **Units**: 32 to capture temporal patterns with sufficient granularity.
- **Activation**: Tanh is suitable for recurrent layers.
- **Dropout Rate**: 0.2 for regularization and preventing overfitting.

- **Dense Layer**:
- **Units**: 32 with ReLU for non-linear mapping.

- **Output Layer (Dense)**:
- **Units**: 6 to match the number of classes, with softmax activation for classification.

### Considerations

- **Resource Constraints**: This configuration is designed to fit within RAM and flash storage limits.
- **Latency**: The architecture focuses on being lightweight for quick inference within 500 ms.
- **Conversion to TFLite**: All operations used are supported by TensorFlow Lite.

This model configuration is expected to deliver high accuracy while adhering to the specified hardware limitations, making it
ideal for deployment on wearable devices for human activity recognition.

Code Result:
# import utilitiy packages
import os, sys, gc, warnings, logging, shutil
import json, time, glob, math

# determine GPU number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # hide INFO and WARNING messages

# define paths to model files
MODELS_DIR = "models/"
MODEL_TF = MODELS_DIR + "model.pb"
MODEL_NO_QUANT_TFLITE = MODELS_DIR + "model_no_quant.tflite"
MODEL_TFLITE_MICRO = MODELS_DIR + "model.cc"
SEED = 7

os.makedirs(MODELS_DIR, exist_ok=True)

logging.disable(logging.WARNING)
logging.disable(logging.INFO)
warnings.filterwarnings("ignore")

# import basic libraries
import random

import tensorflow as tf
import pandas as pd
import numpy as np

from tensorflow import keras

# Set a "seed" value, so we get the same random numbers each time we run this notebook for reproducible results.
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)

from utils.data_loader import load_dataset
from utils.data_desc import AVAILABEL_DATASETS, CLS_DATASETS, REG_DATASETS
from utils import quantize_model, brief_profile_model

# Do not change this
from sklearn.metrics import accuracy_score

N_EPOCHS = 100

1025

21



BATCH_SIZE = 32
task = "classification"

keras.backend.clear_session()

data_name = os.path.basename(__file__).split(".")[0] # or replace with the user given dataset name

# 1. Loading the Target Dataset
X_train, y_train, X_test, y_test, class_names = load_dataset(data_name, task)
print("Experiment on:", data_name, X_train.shape)
seq_length = X_train.shape[1]
n_features = X_train.shape[2]
n_classes = len(class_names) # Number of output classes

# 2. Design the Model
def get_model():

model = keras.Sequential([
keras.layers.Conv1D(filters=16, kernel_size=3, activation='relu', strides=1,

input_shape=(seq_length, n_features)),
keras.layers.BatchNormalization(),
keras.layers.MaxPooling1D(pool_size=2),
keras.layers.DepthwiseConv1D(kernel_size=3, activation='relu', strides=1),
keras.layers.BatchNormalization(),
keras.layers.AveragePooling1D(pool_size=2),
keras.layers.LSTM(units=32, activation='tanh', dropout=0.2, return_sequences=False),
keras.layers.Dense(units=32, activation='relu'),
keras.layers.Dense(units=n_classes, activation='softmax')

])
return model

model = get_model()
model.compile(

optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
es = keras.callbacks.EarlyStopping(monitor="val_accuracy", mode="max", patience=10, restore_best_weights=True)

# 3. Train the Model
model.fit(X_train, y_train, epochs=N_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[es])

# 4. Evaluate the Model and Save Results (Do not change this)
y_pred = model.predict(X_test)
y_pred = y_pred.argmax(1)
acc = accuracy_score(y_test, y_pred)

# 5. Convert model to TFLite model
quantized_model = quantize_model(model, X_train)
# Save the model to disk
MODEL_TFLITE = MODELS_DIR + f"{model.name}_{task}_{data_name}.tflite"
open(MODEL_TFLITE, "wb").write(quantized_model)

# 6. Profile the converted model with a simulator
print(model.name, data_name)
print(acc)
brief_profile_model(MODEL_TFLITE)

del model
keras.backend.clear_session()
gc.collect()

1026

Potential Interpretation In the UCI-HAR case study, the system interprets the user’s hardware and1027

latency constraints as signals to prioritize lightweight layers such as Conv1D, SeparableConv1D, and1028

small LSTM units. The generated search space and model configuration are interpretable due to their1029

modularity and domain alignment: each layer type is associated with a specific functionality (e.g., LSTM1030

layers to capture temporal patterns in time-series signals). Moreover, the explicit computational analysis1031

produced during architecture evaluation (e.g., parameter count, FLOPs, and memory usage) provides1032

actionable insights into trade-offs made during model construction. These details empower users to1033

make informed decisions about model simplification, hardware adaptation, and runtime behavior, thereby1034

promoting transparent model deployment in safety-critical settings.1035

D.2 Regression Tasks1036

The following shows the intermediate results from the BIDMC32SpO2 dataset on the regression task.1037

22



Example Results of BIDMC32SpO2 Dataset

User Input: Our company has a project to deploy a predictive model on wearable devices, such as
fitness trackers, to estimate blood oxygen saturation levels using PPG and ECG data. Please create
a lightweight model suitable for deployment on these devices. The model should use no more than
32KB of RAM and be no larger than 64KB in size.

Rewriting Result:
{
'task_description': 'Develop a lightweight predictive model for wearable devices like fitness trackers to estimate blood

oxygen saturation levels using PPG and ECG data. The model must be optimized for low resource usage, specifically using
no more than 32KB of RAM and 64KB of storage.',

'data_aspects': {'name': 'BIDMC Blood Oxygen Saturation Dataset',
'description': "The dataset aims to estimate blood oxygen saturation levels using PPG and ECG data. It contains 7949 time

series from the Physionet's BIDMC PPG and Respiration dataset, extracted from the MIMIC II waveform database.",
'features': 'The dataset includes PPG and ECG data sampled at 125 Hz over 32-second windows. The label is the SpO2 level,

sampled at 1 Hz.',
'context': 'The dataset is used to estimate blood oxygen saturation levels, crucial for health monitoring in wearable

devices.',
'patterns': 'The time series plots show consistent patterns across different SpO2 ranges, with slight variations in

amplitude and frequency in PPG and ECG signals.'},

'model_aspects': {'name': '',
'hardware_specs': {'device_name': 'Wearable fitness tracker',
'ram': '32768',
'flash': '65536'},
'MAC': '',
'parameters': '',
'latency': '',
'performance': ''}

}

Design Result:
Based on the requirements and constraints for developing a lightweight predictive model for wearable devices, here is a

proposed search space for neural network design using TensorFlow/Keras:

```python
{

"layer_type": ["Conv1D", "DepthwiseConv1D", "LSTM", "Dense"],
"Conv1D_kernel_size": [1, 3],
"Conv1D_filters": [4, 8],
"DepthwiseConv1D_kernel_size": [1, 3],
"LSTM_units": [4, 8],
"Dense_units": [4, 8],
"activation": ["relu", "tanh"],
"optimizer": ["adam", "rmsprop"],
"batch_size": [1, 2],
"dropout_rate": [0.0, 0.1],
"learning_rate": [0.001, 0.01]

}
```

### Explanation:

1. **Layer Types**:
- **Conv1D** and **DepthwiseConv1D**: Useful for extracting features from time-series data.
- **LSTM**: Effective for capturing temporal dependencies in time-series data.
- **Dense**: Used for final output layers or simple transformations.

2. **Kernel Sizes and Filters/Units**:
- Smaller kernel sizes and fewer filters/units are chosen to minimize resource usage while still capturing essential

patterns.

3. **Activation Functions**:
- **ReLU** and **Tanh** are efficient and commonly used in lightweight models.

4. **Optimizers**:
- **Adam** and **RMSprop** are popular choices for efficient training.

5. **Batch Size**:
- Small batch sizes help reduce memory usage.

6. **Dropout Rate**:
- Low dropout rates to maintain model simplicity and reduce overfitting.

7. **Learning Rate**:
- Standard learning rates for effective training convergence.

1038

23



This search space is designed to ensure that the models can be executed within the given constraints of 32KB RAM and 64KB
storage, while still providing flexibility to find a high-performing model for the task.

Search Result:
["### Model Analysis\n\n#### Computational Complexity and Memory Usage\n\n1. **Conv1D Layer**:\n - **Parameters**: \\( \\text{

filters} \\times (\\text{input channels} \\times \\text{kernel size} + 1) = 4 \\times (2 \\times 3 + 1) = 28 \\)\n - **
Output Shape**: Depends on input length, but generally reduces by kernel size - 1.\n\n2. **LSTM Layer**:\n - **
Parameters**: \\( 4 \\times (\\text{input size} + \\text{units} + 1) \\times \\text{units} = 4 \\times (4 + 4 + 1) \\
times 4 = 160 \\)\n\n3. **Dense Layer**:\n - **Parameters**: \\( \\text{input units} \\times \\text{output units} + \\
text{output units} = 4 \\times 4 + 4 = 20 \\)\n\n4. **Output Layer**:\n - **Parameters**: \\( 4 \\times 1 + 1 = 5 \\)\n\
n5. **Total Parameters**: \\( 28 + 160 + 20 + 5 = 213 \\)\n\n#### Memory and Storage Constraints\n\n- **RAM Usage**: The
model's parameters (213) and activations must fit within 32KB. With minimal parameters and batch size of 1, this is

feasible.\n- **Storage**: 213 parameters with 32-bit precision require approximately 852 bytes, well within the 64KB
limit.\n\n#### Inference Latency\n\n- **FLOPs**: \n - Conv1D: \\( \\approx \\text{input length} \\times \\text{filters}
\\times \\text{kernel size} \\)\n - LSTM: \\( \\approx 4 \\times \\text{units}^2 + 4 \\times \\text{input size} \\times
\\text{units} \\)\n - Dense: \\( \\approx \\text{input units} \\times \\text{output units} \\)\n\n- **Inference Speed**:
With small batch size and lightweight architecture, inference should be quick, suitable for real-time applications on

wearables.\n\n### Expected Performance\n\n- **RMSE**: For time-series regression on SpO2 levels, an RMSE of around 2-3%
is reasonable given the model's simplicity and constraints.\n- **Training Time**: Minimal due to small dataset size and
model complexity, likely a few minutes on a standard CPU.\n- **Inference Speed**: Fast enough for real-time applications,
likely within milliseconds per sample.\n\n### Conclusion\n\nThe proposed model is well-suited for the constraints of

wearable devices, balancing performance and resource usage effectively. It should provide adequate accuracy for SpO2
estimation while maintaining low computational and memory demands.",

"### Model Analysis\n\n#### Computational Complexity\n- **Conv1D Layer**:\n - Parameters: \\(8 \\times (3 \\times \\text{
input channels} + 1)\\)\n - FLOPs: \\(8 \\times (\\text{input length} - 3 + 1) \\times 3\\)\n\n- **DepthwiseConv1D
Layer**:\n - Parameters: \\(\\text{input channels} \\times 3\\)\n - FLOPs: \\(\\text{input channels} \\times (\\text{
input length} - 3 + 1) \\times 3\\)\n\n- **LSTM Layer**:\n - Parameters: \\(4 \\times (4 + \\text{input channels} + 1)
\\)\n - FLOPs: \\(4 \\times (\\text{input length} \\times \\text{input channels} \\times 4)\\)\n\n- **Dense Layer**:\n -
Parameters: \\(4 \\times (\\text{input channels} + 1)\\)\n - FLOPs: \\(4 \\times \\text{input channels}\\)\n\n####

Memory Usage\n- **Total Parameters**: Sum of parameters from all layers.\n- **Model Size**: Total parameters \\(\\times
\\) 4 bytes (for float32).\n\n#### Inference Latency\n- **Expected Latency**: Depends on the number of FLOPs and the
device's processing capability.\n\n### Performance Estimation\n\n#### Quantitative Regression Performance\n- **Expected
RMSE**: Typically ranges between 1-2% for SpO2 estimation, depending on the model's training and validation.\n\n####

Complexity Metrics\n- **Number of Parameters**: Estimated based on the above calculations.\n- **FLOPs**: Total FLOPs
from all layers.\n- **Model Size**: Should be within the 64KB storage constraint.\n- **Training Time**: Depends on
dataset size and computational resources.\n- **Inference Speed**: Should be fast enough for real-time applications on
wearables.\n\n### Conclusion\nThe proposed model configuration is designed to be lightweight, adhering to the
constraints of 32KB RAM and 64KB storage. The use of Conv1D and DepthwiseConv1D layers helps capture spatial features
efficiently, while the LSTM layer captures temporal dependencies. The Dense layer ensures the model's output is
suitable for regression tasks.\n\nOverall, this configuration should provide a good balance between performance and
efficiency, making it suitable for deployment on wearable devices for SpO2 estimation.",

"### Model Analysis\n\n#### Computational Complexity\n- **Conv1D Layer**: \n - Filters: 4, Kernel Size: 3\n - Parameters:
\\(3 \\times \\text{input channels} \\times 4 + 4\\)\n - FLOPs: Minimal due to small filter size and number of filters
.\n\n- **DepthwiseConv1D Layer**:\n - Kernel Size: 3\n - Parameters: \\(3 \\times \\text{input channels}\\)\n - FLOPs:
Reduced due to depthwise operation.\n\n- **LSTM Layer**:\n - Units: 4\n - Parameters: \\(4 \\times (\\text{input size}
+ \\text{units} + 1) \\times \\text{units}\\)\n - FLOPs: Higher than Conv1D but manageable with 4 units.\n\n- **Dense
Layer**:\n - Units: 4\n - Parameters: \\(4 \\times (\\text{input size} + 1)\\)\n - FLOPs: Minimal due to small number
of units.\n\n#### Memory Usage\n- **RAM**: \n - The model is designed to fit within 32KB RAM. The small batch size and
minimal layer sizes help achieve this.\n \n- **Storage**:\n - The total number of parameters should fit within 64KB
storage. Given the small number of layers and units, this is feasible.\n\n#### Inference Latency\n- The model's
simplicity ensures low latency, suitable for real-time applications on wearable devices.\n\n### Expected Performance\n\
n#### Quantitative Regression Performance\n- **RMSE**: Expected to be moderate due to the small model size. Exact
values depend on data variability and model tuning.\n \n#### Complexity Metrics\n- **Number of Parameters**: Estimated
to be under 1000, given the small layer sizes.\n- **FLOPs**: Low, due to the use of lightweight operations.\n- **Model
Size**: Expected to be under 64KB.\n- **Training Time**: Fast, due to the small model size and batch size.\n- **
Inference Speed**: Real-time capable on constrained devices.\n\n### Conclusion\nThe proposed model is well-suited for
deployment on resource-constrained wearable devices. It balances simplicity and performance, fitting within the
specified RAM and storage limits while providing adequate regression performance for estimating blood oxygen saturation
levels. Further tuning and validation on the specific dataset will be necessary to optimize performance metrics like

RMSE.",
'### Model Analysis\n\n#### Computational Complexity\n1. **Conv1D Layer**:\n - Filters: 4, Kernel Size: 3\n - Input size:

Assuming 125 Hz sampling over 32 seconds, the input length is 4000.\n - Parameters: \\(4 \\times (3 \\times \\text{
input channels})\\)\n - FLOPs: Approximately \\(4 \\times 3 \\times 4000\\)\n\n2. **DepthwiseConv1D Layer**:\n - Kernel
Size: 3\n - Parameters: \\(3 \\times \\text{input channels}\\)\n - FLOPs: Approximately \\(3 \\times 4000\\)\n\n3. **

LSTM Layer**:\n - Units: 4\n - Parameters: \\(4 \\times (4 + 1 + \\text{input size})\\)\n - FLOPs: Higher due to
recurrent operations, approximately \\(8 \\times \\text{input size} \\times 4\\)\n\n4. **Dense Layer**:\n - Units: 4\n -
Parameters: \\(4 \\times (\\text{input size} + 1)\\)\n - FLOPs: Approximately \\(4 \\times \\text{input size}\\)\n\n

#### Memory Usage\n- **Parameters**: Total parameters from all layers.\n- **RAM Usage**: Includes parameters and
intermediate activations. Estimated to be within 32KB.\n- **Storage**: Model size should be within 64KB, considering
quantization techniques if necessary.\n\n#### Inference Latency\n- **Batch Size**: 1 for real-time processing.\n- **
Expected Latency**: Low due to small model size and batch processing.\n\n### Performance Estimation\n\n#### Regression
Performance\n- **Expected RMSE**: Based on similar models, RMSE could be around 2-3% for SpO2 estimation.\n\n####
Complexity Metrics\n- **Number of Parameters**: Estimated to be a few hundred, given the small network size.\n- **FLOPs
**: Estimated to be in the low thousands, ensuring fast computation.\n- **Model Size**: Likely under 64KB with
potential quantization.\n- **Training Time**: Minimal due to small dataset size and model complexity.\n- **Inference
Speed**: Fast, suitable for real-time applications on wearables.\n\n### Conclusion\nThe proposed model configuration is
well-suited for the constraints of wearable devices, balancing computational efficiency and predictive performance. It
should fit within the specified RAM and storage limits while providing accurate SpO2 level predictions.',

"To evaluate the proposed model for time-series regression on a wearable device, let's analyze its characteristics,
computational complexity, memory usage, and expected performance.\n\n### Model Characteristics\n\n1. **Layer
Configuration**:\n - **Conv1D Layer**: \n - Filters: 4\n - Kernel Size: 3\n - Activation: ReLU\n - **LSTM Layer**: \n -
Units: 4\n - Activation: Tanh\n - **Dense Layer**: \n - Units: 4\n - Activation: Tanh\n\n2. **Optimizer**:\n - Adam

with a learning rate of 0.001\n\n3. **Training Configuration**:\n - Batch Size: 1\n - Dropout Rate: 0.1\n\n###

1039

24



Computational Complexity\n\n1. **Number of Parameters**:\n - **Conv1D Layer**: \n - Parameters = (Input Channels *
Kernel Size + 1) * Filters\n - **LSTM Layer**: \n - Parameters = 4 * (Input Size + LSTM Units + 1) * LSTM Units\n - **
Dense Layer**: \n - Parameters = (Input Size + 1) * Units\n\n2. **FLOPs (Floating Point Operations)**:\n - Conv1D and
Dense layers are relatively simple, while LSTM is more complex due to recurrent connections.\n\n3. **Model Size**:\n -
The model needs to fit within 64KB storage, which is feasible given the small number of parameters.\n\n### Memory Usage
\n\n- The model must use no more than 32KB RAM. Given the small batch size and layer sizes, this is achievable.\n\n###
Inference Latency\n\n- With a batch size of 1 and lightweight layers, inference latency should be low, suitable for
real-time applications on wearable devices.\n\n### Expected Performance\n\n1. **Regression Performance**:\n - **RMSE (
Root Mean Square Error)**: \n - Expected to be low due to the model's ability to capture temporal dependencies and
extract features efficiently.\n - Exact RMSE would depend on the specific dataset and training conditions but should be
competitive given the model's design.\n\n2. **Training Time**:\n - Should be relatively short due to the small model

size and batch size.\n\n3. **Inference Speed**:\n - Fast enough for real-time applications, given the model's
simplicity.\n\n### Conclusion\n\nThe proposed model is well-suited for the constraints of a wearable device, balancing
computational efficiency and performance. It is expected to perform well in estimating blood oxygen saturation levels
using PPG and ECG data, with low memory usage and fast inference speed. The model's design allows it to fit within the
specified RAM and storage limits, making it an excellent choice for deployment on resource-constrained devices."]

Evaluation Result:
Based on the user requirements and constraints, the best model configuration to meet the needs of developing a lightweight

predictive model for wearable devices is **Model Configuration #1**. This model is designed to fit within the specified
RAM and storage limits while providing adequate performance for estimating blood oxygen saturation levels using PPG and
ECG data. Here is the complete configuration for the selected model:

### Selected Model Configuration:

- **Layers**:
1. **Conv1D Layer**:

- Filters: 4
- Kernel Size: 3
- Activation: ReLU

2. **LSTM Layer**:
- Units: 4
- Dropout Rate: 0.1

3. **Dense Layer**:
- Units: 4
- Activation: ReLU

4. **Output Layer**:
- Units: 1 (for regression output)
- Activation: Linear

- **Optimizer**:
- Type: Adam
- Learning Rate: 0.001

- **Batch Size**:
- Size: 1

- **Memory and Storage Constraints**:
- RAM Usage: Must fit within 32KB
- Storage: Must fit within 64KB

- **Expected Performance**:
- RMSE: Around 2-3% for SpO2 estimation
- Inference Speed: Fast enough for real-time applications on wearables

This configuration provides a balance between computational efficiency and predictive performance, making it suitable for
deployment on resource-constrained wearable devices.

Code Result:
# import utilitiy packages
import os, sys, gc, warnings, logging, shutil
import json, time, glob, math

# determine GPU number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # hide INFO and WARNING messages

# define paths to model files
MODELS_DIR = "models/"
MODEL_TF = MODELS_DIR + "model.pb"
MODEL_NO_QUANT_TFLITE = MODELS_DIR + "model_no_quant.tflite"
MODEL_TFLITE_MICRO = MODELS_DIR + "model.cc"
SEED = 7

os.makedirs(MODELS_DIR, exist_ok=True)

logging.disable(logging.WARNING)
logging.disable(logging.INFO)

1040

25



warnings.filterwarnings("ignore")

# import basic libraries
import random

import tensorflow as tf
import pandas as pd
import numpy as np

from tensorflow import keras

# Set a "seed" value, so we get the same random numbers each time we run this notebook for reproducible results.
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)

from utils.data_loader import load_dataset
from utils.data_desc import AVAILABEL_DATASETS, CLS_DATASETS, REG_DATASETS
from utils import quantize_model, brief_profile_model

# Do not change this
from sklearn.metrics import root_mean_squared_error

N_EPOCHS = 100
BATCH_SIZE = 32
task = "regression"

keras.backend.clear_session()

data_name = os.path.basename(__file__).split(".")[0] # or replace with the user given dataset name

# 1. Loading the Target Dataset
X_train, y_train, X_test, y_test = load_dataset(data_name, task)
print("Experiment on:", data_name, X_train.shape)
seq_length = X_train.shape[1]
n_features = X_train.shape[2]

# 2. Design the Model
def get_model():

model = keras.Sequential([
keras.layers.Conv1D(filters=4, kernel_size=3, activation='relu', input_shape=(seq_length, n_features)),
keras.layers.LSTM(units=4, dropout=0.1, return_sequences=False),
keras.layers.Dense(units=4, activation='relu'),
keras.layers.Dense(units=1, activation='linear')

])
return model

model = get_model()
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mean_squared_error", metrics=keras.metrics.

RootMeanSquaredError(name="rmse", dtype=None))
es = keras.callbacks.EarlyStopping(monitor="val_rmse", mode="min", patience=10, restore_best_weights=True)

# 3. Train the Model
model.fit(X_train, y_train, epochs=N_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[es])

# 4. Evaluate the Model and Save Results (Do not change this)
y_pred = model.predict(X_test)
rmse = root_mean_squared_error(y_test, y_pred)

# 5. Convert model to TFLite model
quantized_model = quantize_model(model, X_train)
# Save the model to disk
MODEL_TFLITE = MODELS_DIR + f"{model.name}_{task}_{data_name}.tflite"
open(MODEL_TFLITE, "wb").write(quantized_model)

# 6. Profile the converted model with a simulator
print(model.name, data_name)
print(rmse)
brief_profile_model(MODEL_TFLITE)

del model
keras.backend.clear_session()
gc.collect()

1041

Potential Interpretation In the case study on the BIDMC32SpO2 dataset, the framework translates1042

high-level user constraints, such as hardware limitations and physiological signal types, into explicit1043

model design decisions (e.g., use of Conv1D and LSTM layers). First, the intermediate outputs from the1044

multimodal query generation and model design stages reveal the alignment between user requirements1045

and architectural choices. For instance, the use of LSTM layers is justified based on the temporal nature of1046

26



physiological data, while lightweight convolutional layers are selected for edge deployment efficiency. 1047

These design decisions are accompanied by detailed computational and memory analysis, enabling users 1048

to audit trade-offs between performance and deployment feasibility. Second, the generated search space 1049

itself is interpretable. Each dimension (e.g., kernel size, activation, and optimizer) directly corresponds to 1050

meaningful architectural decisions, making the space semantically rich. The choices are not arbitrary; 1051

they are grounded in hardware specifications, dataset characteristics, and task constraints, facilitating 1052

both expert validation and human-in-the-loop adjustments. Finally, the analysis of multiple model 1053

candidates, including FLOPs, parameter counts, RMSE estimates, and memory usage, serves as a concrete 1054

interpretability mechanism. These metrics expose how changes in layer composition affect efficiency 1055

and accuracy, enabling stakeholders—especially in sensitive domains like healthcare—to make informed 1056

decisions regarding trade-offs and model trustworthiness. 1057

Datasets Metrics MLP LSTM CNN TCN D-CNN DS-CNN ConvLSTM TENet(6) Grid Search Random Search TinyTNAS GPT-4o-mini GPT-4o MONAQ

AtrialFibrillation

Accuracy 0.200 0.400 0.333 0.333 0.467 0.333 0.400 0.267 0.333 0.333 0.400 0.333 0.333 0.467
FLASH 45.120 8.824 14.024 34.640 7.192 15.600 10.864 165.296 13.136 17.976 6.808 669.600 661.416 14.976
RAM 3.868 18.448 33.880 30.976 4.696 44.680 43.700 364.564 10.652 12.188 11.508 43.868 43.740 23.504
MAC 41,624 24 2,051,840 1,392,664 18,240 540,160 122,648 11,755,808 55,596 25,716 42,115 2,744,512 2,717,504 62,560

Energy 1.17E-06 3.40E-08 1.73E-03 2.92E-03 9.45E-05 9.93E-04 2.31E-04 2.06E-02 2.25E-04 3.28E-04 1.46E-04 1.41E-03 1.36E-03 2.45E-04
Latency 1.886 0.064 128.190 244.950 8.765 84.754 31.931 1536.669 20.845 16.870 21.621 120.508 117.157 18.417

BinaryHeartbeat

Accuracy 0.659 0.727 0.732 0.449 0.732 0.732 0.732 0.732 0.732 0.727 0.732 0.732 0.732 0.732
FLASH 597.104 8.752 84.072 34.592 15.384 85.800 10.752 170.840 12.680 7.760 11.152 9494.408 9494.408 9.360
RAM 38.300 447.888 892.616 746.608 39.256 1189.736 1188.628 9524.084 152.352 77.384 152.480 595.404 595.404 299.528
MAC 593,616 16 55,219,392 39,728,336 259,419 14,879,582 1,778,832 340,379,296 1,130,543 301,138 1,130,543 24,606,944 24,606,944 204,080

Energy 3.33E-06 3.40E-08 3.43E-02 1.75E-01 1.09E-03 1.60E-02 4.15E-03 3.70E-01 5.30E-03 2.03E-03 5.30E-03 1.89E-02 1.89E-02 1.32E-02
Latency 5.570 0.061 2106.132 10783.571 90.710 1052.569 268.145 21462.749 419.023 191.470 419.023 1191.453 1191.453 177.662

Cricket

Accuracy 0.125 0.069 0.556 0.097 0.569 0.208 0.069 0.125 0.083 0.083 0.167 0.500 0.528 0.625
FLASH 234.088 9.192 39.824 34.872 28.192 40.768 11.352 171.784 13.056 15.080 11.520 2465.664 621.344 1229.520
RAM 15.644 31.888 60.632 53.376 16.728 80.392 79.412 650.116 18.592 20.168 18.720 79.452 40.796 39.988
MAC 230,560 96 4,931,424 2,757,984 118,476 1,218,434 688,544 22,015,424 115,261 65,860 115,261 6,814,528 1,876,384 1,568,608

Energy 3.33E-06 3.40E-08 3.88E-03 4.25E-03 4.05E-04 2.41E-03 9.76E-04 6.44E-02 3.76E-04 4.38E-04 3.76E-04 3.18E-03 9.83E-04 9.33E-04
Latency 5.631 0.121 270.929 373.199 32.402 176.782 70.096 4310.810 37.793 29.876 37.793 228.040 85.385 63.480

FaultDetectionA

Accuracy 0.713 0.622 0.978 0.746 0.602 0.966 0.804 0.999 0.983 0.990 0.989 0.989 0.985 1.000
FLASH 168.000 8.968 40.680 34.608 9.960 42.416 10.768 170.984 17.120 18.592 11.176 10500.352 8193.600 20.680
RAM 11.548 126.096 248.920 210.176 12.376 331.400 330.420 2658.244 56.432 47.176 45.216 330.588 330.460 167.948
MAC 164,504 24 15,267,840 10,977,304 72,960 4,121,600 491,480 94,044,352 521,465 499,382 312,624 26,706,304 24,381,036 2,211,680

Energy 3.33E-06 3.40E-08 2.05E-02 2.83E-02 4.24E-04 1.07E-02 3.50E-03 2.42E-01 1.83E-03 1.58E-03 1.37E-03 1.62E-02 1.62E-02 8.49E-03
Latency 5.574 0.064 1299.218 1857.094 34.409 708.650 227.471 14647.130 168.597 147.271 132.681 1048.406 1047.739 358.068

UCI-HAR

Accuracy 0.781 0.348 0.819 0.813 0.627 0.822 0.348 0.904 0.783 0.805 0.858 0.814 0.817 0.908
FLASH 23.968 9.128 12.872 34.704 7.256 14.288 10.992 171.280 18.800 18.104 25.128 223.432 110.848 14.176
RAM 2.460 8.208 13.016 13.696 3.800 16.904 15.924 142.228 11.080 12.188 11.816 16.092 9.052 10.508
MAC 20,464 48 707,792 454,896 9,261 183,110 58,928 3,796,960 23,700 9,583 160,134 901,440 285,760 53,936

Energy 6.24E-07 3.40E-08 3.24E-04 1.10E-03 3.77E-05 3.35E-04 8.99E-05 5.49E-03 2.45E-04 2.87E-04 1.85E-04 4.59E-04 2.21E-04 2.73E-04
Latency 1.151 0.086 49.271 81.811 4.513 30.229 16.282 494.159 11.759 11.021 22.373 57.644 26.284 18.675

Average

Accuracy 0.496 0.433 0.684 0.488 0.599 0.612 0.471 0.605 0.583 0.588 0.629 0.674 0.679 0.746
FLASH 213.656 8.973 38.294 34.683 13.597 39.774 10.946 170.037 14.958 15.502 13.157 4670.691 3816.323 257.742
RAM 14.364 126.506 249.813 210.966 15.371 332.622 331.617 2667.847 49.822 33.821 47.948 213.081 203.890 108.295
MAC 210,153 41 15,635,657 11,062,236 95671 4,188,577 628,086 94,398,368 369,313 180,335 352,135 12,354,745 10,773,525 820,172

Energy 2.35E-06 3.40E-08 1.22E-02 4.23E-02 4.10E-04 6.09E-03 1.79E-03 1.40E-01 1.59E-03 9.32E-04 1.47E-03 8.04E-03 7.54E-03 4.62E-03
Latency 3.963 0.079 770.748 2668.125 34.160 410.597 122.785 8490.304 131.603 79.302 126.698 529.210 493.604 127.260

Table 5: Full experimental results on time-series classification tasks comparing downstream task accuracy and
model complexity metrics.

27



Dataasets Metrics MLP LSTM CNN TCN D-CNN DS-CNN ConvLSTM TENet(6) Grid Search Random Search TinyTNAS GPT-4o-mini GPT-4o MONAQ

AppliancesEnergy

RMSE 3.610 9.345 4.104 9.606 3.541 3.720 10.532 6.573 3.682 3.624 3.756 3.537 4.026 3.607
FLASH 114.376 10.192 14.824 27.536 8.088 11.936 12.648 166.736 20.880 36.168 13.056 44.864 226.064 8.112
RAM 8.136 8.892 11.268 12.336 9.860 13.112 11.872 110.528 12.968 16.092 11.216 11.400 8.076 8.088
MAC 111,240 8 1,170,720 414,728 47,520 244,512 327,304 2,647,328 78,357 48,206 32,234 468,032 223,264 544

Energy 3.31E-06 1.75E-08 5.44E-04 1.07E-03 1.98E-04 2.99E-04 2.52E-04 4.26E-03 2.42E-04 3.60E-04 2.04E-04 2.91E-04 5.05E-06 9.03E-05
Latency 5.521 0.011 45.537 61.912 16.722 27.735 20.712 361.481 15.459 16.729 11.063 27.002 8.383 0.070

BenzeneConcentration

RMSE 2.884 6.087 2.739 46.666 2.181 2.231 8.107 3.226 3.365 5.268 3.453 4.022 11.858 1.847
FLASH 65.224 9.168 11.432 24.448 6.120 11.056 11.112 170.376 9.088 9.912 43.600 40.592 127.760 8.816
RAM 5.064 8.892 14.596 15.548 6.148 19.128 18.016 159.552 7.288 7.296 20.048 26.616 5.004 10.480
MAC 62,088 8 1,091,040 552,968 26,400 257,760 182,920 4,409,120 34,826 51,153 573,765 1,056 124,960 91,464

Energy 1.22E-06 1.75E-08 6.48E-04 9.65E-04 9.04E-05 4.03E-04 1.97E-04 6.62E-03 1.61E-04 1.57E-04 4.51E-04 3.96E-08 1.25E-03 1.13E-04
Latency 2.171 0.011 55.659 90.251 11.711 38.473 19.111 571.345 12.188 13.935 52.972 0.090 5.382 15.559

BIDMC32SpO2

RMSE 16.682 4.808 5.884 5.156 4.773 5.092 4.789 4.879 4.974 4.961 5.716 5.200 5.649 4.670
FLASH 259.784 8.784 17.608 26.832 7.048 18.176 10.536 164.664 32.704 157.784 10.944 134.088 133.680 8.624
RAM 17.224 99.132 195.076 165.420 18.180 259.764 258.656 2084.752 71.036 78.972 36.172 130.184 66.184 66.984
MAC 256,648 8 12,808,000 8,704,008 110,000 3,360,000 767,752 73,472,224 1,460,740 2,662,864 272,266 2,048,016 1,088,008 88,100

Energy 3.31E-06 1.75E-08 1.55E-02 2.39E-02 4.85E-04 9.40E-03 3.26E-03 2.05E-01 2.67E-03 3.21E-03 1.06E-03 3.42E-03 1.87E-03 3.36E-04
Latency 5.521 0.011 992.415 1579.982 40.737 628.213 209.449 12286.802 240.532 288.318 104.746 231.939 136.535 82.258

FloodModeling

RMSE 0.117 0.023 0.019 1.494 0.020 0.014 0.020 0.018 0.007 0.019 0.008 0.032 0.047 0.019
FLASH 12.296 8.720 9.912 26.800 5.008 10.632 10.440 169.704 16.584 91.840 17.728 41.464 20.720 14.672
RAM 1.992 9.532 15.876 16.044 3.716 20.788 19.680 172.864 9.500 19.496 11.340 19.336 10.092 19.736
MAC 9,160 8 792,144 570,312 3,657 213,062 25,480 4,906,112 41,554 117,224 113,919 263,648 29,576 25,776

Energy 2.73E-07 1.75E-08 4.04E-04 1.20E-03 4.80E-05 4.56E-04 7.95E-05 8.20E-03 2.15E-04 3.72E-04 1.88E-04 1.94E-04 1.14E-04 3.99E-05
Latency 0.530 0.011 57.769 111.068 4.326 37.563 18.619 657.498 14.081 23.218 20.308 31.807 16.405 17.243

LiveFuelMoistureContent

RMSE 43.157 53.006 49.777 231.972 42.301 42.527 41.723 42.176 42.715 43.567 40.803 45.470 47.836 39.369
FLASH 85.544 8.960 11.456 26.672 6.176 11.104 10.872 170.344 11.528 10.744 23.160 190.352 168.400 12.688
RAM 6.344 11.836 20.612 20.012 7.428 27.188 25.952 223.936 9.416 10.996 16.980 13.960 6.284 15.424
MAC 82,408 8 1,577,336 852,648 35,119 377,685 244,072 6,732,992 46,273 100,859 309,140 579,248 165,600 61,120

Energy 3.17E-06 1.75E-08 8.68E-04 1.66E-03 6.68E-05 5.94E-04 2.61E-04 1.23E-02 2.13E-04 1.91E-04 2.79E-04 3.89E-04 4.35E-06 9.51E-05
Latency 5.103 0.011 75.181 134.888 14.228 57.358 23.025 968.620 15.924 22.647 40.198 43.769 7.191 8.516

Average

RMSE 13.290 14.654 12.505 58.979 10.563 10.717 13.034 11.374 10.948 11.488 10.747 11.652 13.883 9.902
FLASH 107.445 9.165 13.046 26.458 6.488 12.581 11.122 168.365 18.157 61.290 21.698 90.272 135.325 10.582
RAM 7.752 27.657 51.486 45.872 9.066 67.996 66.835 550.326 22.042 26.570 19.151 40.299 19.128 24.142
MAC 104,308 8 3,487,848 2,218,932 44,539 890,603 309,505 18,433,555 332,350 596,061 260,264 672,000 326,281 53,400

Energy 2.26E-06 1.75E-08 3.60E-03 5.75E-03 1.78E-04 2.23E-03 8.10E-04 4.73E-02 7.00E-04 8.58E-04 4.36E-04 8.58E-04 6.50E-04 1.35E-04
Latency 3.769 0.011 245.312 395.620 17.545 157.868 58.183 2969.149 59.637 72.970 45.857 66.921 34.779 24.729

Table 6: Full experimental results on time-series regression tasks comparing downstream task error (RMSE) and
model complexity metrics.

Datasets Metrics MLP LSTM CNN TCN D-CNN DS-CNN ConvLSTM TENet(6) Grid Search Random Search TinyTNAS GPT-4o-mini GPT-4o MONAQ

P12

Accuracy 0.850 0.859 0.855 0.854 0.862 0.852 0.860 0.860 0.862 0.861 0.862 0.859 0.853 0.862
FLASH 251.824 11.192 18.648 35.712 13.400 14.880 14.112 174.304 24.392 15.872 12.376 36.096 118.328 15.520
RAM 16.796 14.480 18.136 20.868 18.904 19.724 18.356 147.348 22.732 21.708 20.260 18.012 18.428 18.228
MAC 248,336 16 2,326,096 701,776 108,252 466,020 736,272 3,967,936 110,421 44,118 65,877 554,464 634,432 368,592

Energy 3.33E-06 3.40E-08 1.01E-03 1.17E-03 3.98E-04 5.56E-04 5.27E-04 6.07E-03 4.08E-04 4.05E-04 3.23E-04 3.14E-04 4.57E-04 2.00E-04
Latency 5.570 0.061 76.829 88.827 32.468 49.898 37.155 529.373 24.170 19.607 19.162 33.114 43.708 19.024

P19

Accuracy 0.974 0.973 0.974 0.974 0.974 0.974 0.975 0.975 0.974 0.975 0.973 0.974 0.974 0.976
FLASH 69.424 11.064 17.592 35.648 10.416 14.144 13.920 174.112 13.488 9.552 15.552 24.608 40.376 9.888
RAM 5.404 6.288 7.384 9.728 7.512 8.328 7.220 67.476 8.988 7.884 9.124 6.876 6.620 7.264
MAC 65,936 16 622,320 192,016 28,560 125,400 189,456 1,112,832 25,270 16,583 34,760 244,224 174,848 81,680

Energy 1.23E-06 3.40E-08 3.97E-04 1.03E-03 4.57E-05 1.44E-04 1.12E-04 1.54E-03 1.69E-04 1.31E-04 1.69E-04 1.51E-04 7.77E-05 8.71E-05
Latency 2.167 0.061 32.520 26.039 10.691 15.555 10.739 162.068 8.169 6.564 8.700 13.116 9.440 5.633

PAMAP2

Accuracy 0.201 0.521 0.739 0.149 0.839 0.831 0.248 0.901 0.895 0.104 0.752 0.672 0.789 0.912
FLASH 330.616 10.048 23.168 35.176 28.128 22.384 12.360 172.504 24.096 57.192 11.848 312.360 1245.584 14.528
RAM 21.660 23.056 32.344 34.176 23.256 42.248 41.140 343.956 27.464 31.688 24.864 22.876 41.308 23.316
MAC 327,104 64 3,945,600 1,593,664 158,100 863,400 976,128 11,022,688 204,073 174,016 104,199 1,247,776 4,052,224 488,480

Energy 3.33E-06 3.40E-08 2.00E-03 2.64E-03 6.25E-04 1.35E-03 6.48E-04 1.96E-02 4.82E-04 5.91E-04 3.95E-04 6.46E-04 1.69E-03 3.20E-04
Latency 5.614 0.104 140.920 235.823 47.499 101.277 44.612 1489.623 37.915 37.992 29.631 59.565 133.391 25.559

Average ↑

Accuracy 0.675 0.785 0.856 0.659 0.891 0.886 0.695 0.912 0.910 0.647 0.862 0.835 0.872 0.916
FLASH 217.288 10.768 19.803 35.512 17.315 17.136 13.464 173.640 20.659 27.539 13.259 124.355 468.096 13.312
RAM 14.620 14.608 19.288 21.591 16.557 23.433 22.239 186.260 19.728 20.427 18.083 15.921 22.119 16.269
MAC 213,792 32 2,298,005 829,152 98,304 484,940 633,952 5,367,819 113,255 78,239 68,279 682,155 1,620,501 312,917

Energy 2.63E-06 3.40E-08 1.14E-03 1.62E-03 3.56E-04 6.83E-04 4.29E-04 9.08E-03 3.53E-04 3.76E-04 2.96E-04 3.70E-04 7.41E-04 2.03E-04
Latency 4.450 0.075 83.423 116.896 30.219 55.576 30.835 727.021 23.418 21.388 19.164 35.265 62.180 16.739

HouseholdPowerConsumption1

RMSE 154.118 1587.395 163.577 419.708 321.482 159.706 1424.762 920.171 157.645 148.238 156.421 528.786 156.914 152.468
FLASH 234.184 8.976 13.160 26.888 7.136 13.256 10.824 170.088 18.128 11.984 11.048 39.232 2968.512 14.240
RAM 15.688 37.692 72.196 63.020 16.644 95.924 94.816 773.936 25.756 19.232 18.636 141.816 187.528 24.212
MAC 231,048 8 5,578,560 3,271,688 99,000 1,378,080 690,376 26,450,432 342,766 65,290 128,426 528 21,934,272 184,064

Energy 3.31E-06 1.75E-08 5.00E-03 4.30E-03 4.13E-04 2.64E-03 9.85E-04 7.98E-02 6.68E-04 4.14E-04 3.93E-04 3.50E-08 1.06E-02 2.55E-04
Latency 5.521 0.011 342.462 429.557 31.991 199.602 70.924 5128.256 71.745 31.542 42.347 0.057 677.695 26.393

HouseholdPowerConsumption2

RMSE 50.930 172.072 50.086 54.395 57.065 53.406 64.535 184.172 54.538 59.565 54.566 55.732 55.729 52.349
FLASH 234.184 8.976 13.160 26.888 7.136 13.256 10.824 164.952 16.488 55.552 11.048 39.232 39.232 381.328
RAM 15.688 37.692 72.196 63.020 16.644 95.924 94.816 774.064 22.684 25.332 18.636 141.816 141.816 50.092
MAC 231,048 8 5,578,560 3,271,688 99,000 1,378,080 690,376 26,450,432 274,188 282,567 128,426 528 528 2,787,856

Energy 3.31E-06 1.75E-08 5.00E-03 4.30E-03 4.13E-04 2.64E-03 9.85E-04 7.98E-02 6.02E-04 5.98E-04 3.93E-04 3.50E-08 3.50E-08 2.85E-03
Latency 5.521 0.011 342.462 429.557 31.991 199.602 70.924 5128.256 60.644 52.580 42.347 0.057 0.057 242.887

Average ↓

RMSE 102.524 879.733 106.832 237.051 189.274 106.556 744.649 552.171 106.092 103.902 105.494 292.259 106.322 102.409
FLASH 234.184 8.976 13.160 26.888 7.136 13.256 10.824 167.520 17.308 33.768 11.048 39.232 1503.872 197.784
RAM 15.688 37.692 72.196 63.020 16.644 95.924 94.816 774.000 24.220 22.282 18.636 141.816 164.672 37.152
MAC 231,048 8 5,578,560 3,271,688 99,000 1,378,080 690,376 26,450,432 308,477 173,929 128,426 528 10,967,400 1,485,960

Energy 3.31E-06 1.75E-08 5.00E-03 4.30E-03 4.13E-04 2.64E-03 9.85E-04 7.98E-02 6.35E-04 5.06E-04 3.93E-04 3.50E-08 5.30E-03 1.55E-03
Latency 5.521 0.011 342.462 429.557 31.991 199.602 70.924 5128.256 66.194 42.061 42.347 0.057 338.876 134.640

Table 7: Full experimental results on noisy and irregular time-series classification and regression tasks, comparing
downstream error (RMSE), accuracy, and model complexity metrics.

28



Datasets Grid Search Random Search TinyTNAS MONAQ

AppliancesEnergy 1,195.44 691.18 151.72 332.53
BIDMC32SpO2 489.21 605.25 156.31 178.19

BenzeneConcentration 1,156.71 718.81 424.27 324.53
FloodModeling 4,385.44 3,872.19 241.79 151.85

LiveFuelMoistureContent 347.17 1,891.60 265.96 175.51

AtrialFibrillation 1,145.92 3,249.92 215.81 165.50
BinaryHeartbeat 155.91 185.56 217.73 170.40

Cricket 128.87 153.04 176.87 300.68
FaultDetectionA 1,018.39 2,190.53 122.50 216.64

UCIHAR 3,544.73 3,573.73 240.68 279.88

Average 1,356.78 1,713.18 221.36 229.57

Table 8: Search cost (in seconds) comparison between
traditional NAS methods and MONAQ.

E Full Experimental Results1058

In Tables 5 and 6, we present the full results for1059

classification and regression tasks, respectively.1060

The model performance metric for classification1061

is accuracy and for regression is RMSE. The model1062

complexity metrics extensively include FLASH,1063

RAM, MAC, Latency, and Energy Consumption.1064

In addition, Table 7 presents the complete results1065

for irregular and noisy time-series datasets.1066

F Resource Cost Comparison1067

To quantify MONAQ’s relative efficiency, we1068

compare the resource cost—specifically, the run-1069

time—for the main results presented in Tables 51070

and 6. The results are reported in Table 8. For grid1071

search and random search, we set the number of1072

rounds and the number of candidates per round to1073

be the same as in MONAQ, i.e., B = 3 and C = 5.1074

Thus, we have 15 candidates in total and select1075

the best one based on validation performance. For1076

TinyTNAS, we set the permissible search time to be1077

twice the average time of MONAQ, i.e., 8 minutes.1078

According to the results, MONAQ consistently1079

achieves significantly lower search costs compared1080

to traditional NAS methods such as grid search1081

and random search. On average, MONAQ takes1082

only 229.57 seconds (including image generation1083

in the multimodal query generation preprocessing1084

time), whereas grid search and random search take1085

1,356.78 and 1,713.18 seconds, respectively. Even1086

compared to the efficient TinyTNAS, which aver-1087

ages 221.36 seconds, MONAQ performs compara-1088

bly while maintaining or improving performance,1089

especially across various classification and regres-1090

sion datasets. This result highlights the practical1091

efficiency and scalability of MONAQ.1092

29


	Introduction
	Related Work
	MONAQ: Multimodal NAQ with LLMs
	Problem Formulation
	Multimodal Query Generation
	LLM Agent Based Multi-Objective Search

	Experiments
	Setup
	Main Results
	Ablation Studies
	Hyperparameter Studies
	Resource Cost

	Conclusions
	Extended Related Work
	On-Device Time-Series Analysis
	Hardware-Aware NAS (HW-NAS)
	LLMs for NAS

	Details of Experimental Setup
	Skeleton Code for LLM-based NAS
	Prompt for Zero-Shot LLM Baselines
	Code for Classification Task
	Code for Regression Task


	Full Prompts for MONAQ
	Multi-Objective Query Rewriting
	Agent Specifications
	Manager Agent Prompt
	Design Agent Prompt
	Search Agent Prompt
	Evaluation Agent Prompt
	Code Agent Prompt


	Examples of Intermediate Results and Interpretability Analysis
	Classification Tasks
	Regression Tasks

	Full Experimental Results
	Resource Cost Comparison

